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Abstract the TTP at all. However, should a failure occur maliciously

or accidentally, the participants are provided with fadck

Multi-party contract signing protocols specify how a scenarios, which enable them to recover to a fair state with
number of signers can cooperate in achieving a fully signedhe TTP’s help.
contract, even in the presence of dishonest signers. This The premise of optimistic protocols is that failures are
problem has been studied in different settings, yieldingnfrequent, thus fall-back sub-protocols only need to be ex
solutions of varying complexity. Here we assume presencecuted rarely. Therefore, a meaningful measure of effigienc
of a trusted third party that will be contacted only in case in these protocols is the number of messages exchanged in
of a conflict, asynchronous communication, and a totallythe main protocol. Pfitzmann, Schunter, and Waidner have
ordered protocol. Our goal is to develop a lower bound shown that in two-party contract signing protocols, four
on the number of messages in such a protocol. Using thenessages in the main protocol are necessary and sufficient
notion of abort chaining, which is a specific type of attackto achieve fairness [23]. We study in this paper the problem
on the fairness of signing protocols, we derive the lowerof determining the number of messages necessary to achieve
bound a? + 1, with @ > 2 being the number of involved fairness in multi-party contract signing protocols.
signers. In order to achieve this lower bound, we relate Our approach is based on the notionatfort chaining
the problem of developing fair signing protocols to theas introduced by Mukhamedov and Ryan [21]. An abort-
open combinatorial problem of finding shortest permutationchaining attack on an optimistic contract signing protocol
sequences. This relation also indicates a way to construatonsists of a sequence of requests by the signers to the TTP,
signing protocols which are shorter than current state-of-forcing the TTP to abort the protocol, even though one of the
the-art protocols. We illustrate this by presenting thersdést  honest signers already signed the contract. Mukhamedov and

three-party fair contract signing protocol. Ryan used abort chaining to prove that the contract signing
protocol proposed in [18] is inherently flawed, regardless
1. Introduction of the behavior of the TTP. They refer to this essolve

impossibility We use abort chaining to derive a lower bound

Contract signing protocols deal with the situation whereon the number of messages in multi-party contract signing
a parties wish to sign a publicly-known contract textin protocols.
a fair manner. Informally, fairness means that either every The contribution of the present paper is threefold. First
honest party obtains the signature of all the other 1  of all, we model contract-signing protocols as sequences
parties onc, or none of the parties obtains the signature ofof numbers, which we callsigning sequencesin this
any honest party on; this definition is made precise in the simple model, fairness attacks can be studied independent
following sections. of cryptographic considerations. The fairness requirémen

Deterministic fair contract signing protocols cannot beprovides boundary conditions on the behavior of the TTP.
constructed in asynchronous systems with no presumedn abort-chaining attack can be described as a marking of
trust [14]. A way to circumvent this impossibility is to raso  the signing sequence in such a way that it contradicts these
to randomized protocols (see [15] for a survey). Randomizedoundary conditions, which impliegsolve impossibilityof
protocols nonetheless require exchanging a large number ¢fie modeled protocol. Absence of abort-chaining attacks
messages to approximate fairness, and usually assume thatis boils down to proving that such a marking does not
the involved parties have nearly equal computational pswer exist.
A second way to construct fair contract signing protocols is Our second contribution is to relate the problem of finding
to add an impartial process to the system that is trustedl by ah marking in a signing sequence to the (open) combinatorial
the protocol participants; the impartial process is thukeda problem of finding the shortest sequences containing all
a trusted third party (TTP). In theptimisticfamily of TTP-  permutations of a finite set as subsequences. This problem
based contract signing protocols, the participants egeaut was stated in 1972 [12] and several authors have provided
main (or, optimistic) sub-protocol which does not involve algorithms to produce such sequences of length 2a + 4,



wherea > 2 is the number of elements in the set. This isparty contract signing is based on a careful analysis of all
conjectured to be optimal in the sense that these algorithmthe possibilities that may arise if the number of messages
produce sequences of minimal length. We prove that thigxchanged in the main protocol is less than four [23]. Such
lower bound can be transformed into a lower bound on then exhaustive analysis is infeasible in multi-party sggim
length of a signing sequence, and thus on the number afontribution of this paper is to encode multi-party contrac
messages in a multi-party contract signing protocol: everyigning as an abstract mathematical problem which can be
protocol consisting ofy?> or fewer messages is unfair, with understood and investigated in isolation. Another possibl
a > 2 being the number of involved signers. For the classvay of proving lower bounds on the number of messages
of balanced protocolsin which all signers roughly send the needed to perform a certain distributed task is based on
same number of messages, this bound is provably tight. extracting the least amount of knowledge which is necessary
The third contribution of this paper is the application of to be acquired by the participants, as done for instance
these results to develop novel multi-party contract signin in [11].
protocols. We show for the case of three signers how We remark that we only consider purely asynchronous
the algorithms for generating short permutation sequencesommunication. Therefore, our analysis is orthogonal to
can be used to construct a protocol which is shorter thathose lower bound results which are obtained by assuming
currently known three-party contract signing protocols. the existence of broadcast channels or various degrees of
The paper is structured as follows. In Section 2, wesynchrony in the communication system, as in [24], [8].
discuss literature related to MPCS and our approach. Multi-
party contract signing protocols, abort chaining, and our3, Optimistic multi-party contract signing
assumptions are explained in Section 3. The interpretation
of MPCS protocols as signing sequences is described in In this section we give a conceptual description of the
Section 4 and the step towards the problem of short pemulti-party contract-signing problem. This rather higkiee
mutation sequences is taken in Section 5. This section alsof abstraction is sufficient to describe abort-chainingcits.
contains our main results. In Section 6 we prove the mairWe mention explicitly that the development of a fully formal
conjecture for the class of balanced MPCS protocols. Arsemantics of MPCS protocols and the required properties is
example is presented in Section 7 to illustrate our resultsnot a goal of this paper. Such a formalization, while highly
Finally, we summarize the paper and indicate possibilitieslesirable, is independent of the contribution of this paper

for future research in Section 8. and we consider it a research question on its own. Given
the assumptions and restrictions mentioned in this section
2. Related work the notion ofsigning sequencets for our goals the most

appropriate and elegant formalization of the problems unde

The standard reference for the optimistic family of fair study.
exchange protocols is Asokan’s thesis [2]. Multi-party op-
timistic contract signing (or, more generally, fair excga) 3.1. Communication and intruder model
protocols have not received as much attention as their
two-party variants. Nonetheless, there are several rotabl We assume a fully connected communication network.
exceptions, for instance, the work of [4] for synchronousCommunication between signers is asynchronous and mes-
protocols and [7], [6], [18], [10], [21] for asynchronous sages can get lost or be delayed arbitrary long. In order
protocols. We focus on optimistic asynchronous protocolsto simplify our reasoning, we will not assume a general
One can roughly divide the asynchronous protocols intdolev-Yao style intruder model [13] for the communication
two groups. One contains the protocol proposed in [7]between the signers. We consider the problem of delivering
and improved in [6], and the other contains the protocolsecret and authentic messages as orthogonal to the current
from [18], broken and fixed for four parties in [10], and later problem setting. The communication channels between sign-
broken and shown to be beyond repair in [21]. The state oérs and the TTP are assumed to be resilient, which means
the art in the asynchronous class of protocols has been s#tat the messages sent over these channels are guaranteed to
by Mukhamedov and Ryan [21], whose protocol is morebe delivered eventually and without modifications. Various
efficient than [6], and does not have the fatal vulnerabilitycryptographic techniques can be used to guarantee the in-
of [18]. This protocol requires &— 1)([§1+ 1) messages tegrity of the transmitted messages against a computdigiona
to be exchanged in the main protocol, withbeing the bounded attacker. Guaranteed delivery, however, reqthiees
number of signing parties involved. This bound pertains tcassumption that communication channels faie lossy; i.e.
the case where piggybacking is used to reduce the numbeany message inserted at one end of the channel an infinite
of messages in the protocol. number of times, is delivered to the other end of the channel

Regarding the proof technique, Pfitzmann et al’s proofan infinite number of times. Given a fair lossy channel,
that four is the optimal number of messages for two-which may duplicate and reorder messages, then, essgntiall



retransmission and tagging allow us to construct a reliable Table 1. Assumptions.

FIFO channel on top of the fair lossy Channel,_see S_tennlng S [ Asynchronous communication,
protocol [25] and [20, chapter 22]. Assuming fair lossy - Fully connected network.
channels amounts to assuming a limited attacker who cannot | - Eossly C?arrl]n(EIS tlaett\)mien sigﬁfg- i
. . s - Resllient channels between ana signers.
entlrely disconnect partlc_;lpant processes. . . - Signer can verify promises without contacting TTP.
In view of the abstraction of cryptographic techniques for - Only TTP can transform set of promises into valid contract.
delivering secret and authentic messages, the followitg da - gignelrs execute totally ordered F;]r_otocol-f o
. . ] . - Resolve request contains entire history of requestingesig
!tems_ will be sufficient for the class of protqcols consmer_e - All messages are integrity-protected.
in this paper. The properties assumed in the following

definition can be realized using cryptographic primitives

such asprivate contract signind17], [21]. (and nobody else) has the capability to transform a cobiacti
Definition 1. of promises_ of all si_gne_rs into a fully signed contract. She
may use this capability in the resolve protocol. The resolve
protocol is a two message protocol between a signer and
the TTP. The signer sends all promises and signatures in its
possession to the TTP. The TTP answers aitlort or with
a fully signed contract. We will discuss the TTP’s decision
procedure between the two answers in the resolve protocol
in the following section.

We summarize our assumptions in Table 1.

1) A contract conti€, TTPR, py, ..., p,) is a function of a
contract text C, a TTP, and signerg,p..,[,-

2) A level | promise pron(c,i) is a string uniquely
identifying a contract c, signerjpand level | with
the properties that

. Only p can generatgrom(c,i) for any I.
. Everybody can verify thgirom(c, i) identifies the
contract c, signer p and level I.

3) A signature sig i) is a string uniquely identifying a 3 3. Fajrness, timeliness, and the TTP’s decision
contract ¢ and signer jp The string has the following

properties Apart from satisfying the functional requirement of con-
« P can generatesig(c,i). structing a fully signed contract, contract-signing pomic
- The TTP can generatsig(C, i) from prom(c,i) for  must satisfy three security requirements, ¥arness time-
any |. liness andabuse-freeness
. Nobody else can generasig(c, i). In the general setting of fair-exchange protocols, faisnes
. Everybody can verify thasig(c,i) identifies the means that none of the parties involved in the protocol can
contract ¢ and signer ip gain advantage over any of the other honest parties taking
4) Afully signedcontract is a setsig(c, 1), ..., sig(c,a)},  part in the protocol. For contract-signing protocols ttes i
where c is a contract. made more precise by requiring that no honest signer should
be left in the position of having sent another signer his
3.2. Optimistic contract-signing protocols signature on the contract, without being able to obtain a

fully signed contract [21].

The goal of a multi-party contract-signing protocol is to
fairly construct a fully signed contract such that, evenriéo
or more signers misbehave, eithertadinestsigners obtain a

Definition 2. A contract-signing protocol idair for the
signers if, for every execution of the protocol, either all
émnest signers terminate with a fully signed contract irirthe

fully signed contract or none of the signers obtain a signe . . . .
contract [3], [6]. Honest signers are those agents thabitxhi possession or none of the signers can obtain a signature of
iy an honest signer as a consequence of the protocol execution.

no other behavior than prescribed by the protocol. All other
agents, except for the TTP, are considered dishonest. Timeliness ensures that no signer can force another signer

In this paper, we consid@ptimistic contract-signing pro- to wait for any length of time [5], or, phrased differently-e
tocols Such protocols consist of two sub-protocols, viz. theery signer has some recourse to prevent endless waiting [21]
main protocol and theesolveprotocol. The main protocol Definition 3. A contract-signing protocol satisfig¢gneliness
governs the regular exchange of promises and signaturefs o gning p . .

) ok . i every execution of every honest signer eventually termi-
between the signers. Upon termination of the main protocol
. . : hates successfully.

all signers have obtained a fully signed contrade assume
that the messages of the main protocol are totally ordered, Successful termination in Definition 3 refers to the fact
thereby ignoring protocols with interleaved or parallel sae that the signer must be in an end state rather than a deadlock
sagesThe main protocol does not involve the TTP. The TTP state.
is not even aware of the fact that the protocol is executed, A signing protocol is said to be abuse-free if at any
unless her help is requested by one of the signers to resohstage of the protocol, it is impossible for any signer to
a problem. As stated in definition 1, we assume that the TTProve to an outside challenger that he has the power to



choose between completing the contract-signing protocol which is currently considered honest, then an abort

and aborting it [17]. Although abuse-freeness is an impdrta reply is sent.

security requirement for contract-signing protocols, ittw  \We observe that, in some instances, the decision rules

not play a role in our observations on message minimalityallow the TTP to issue a fully signed contract in spite of

Henceforth, we will only focus on fairness and timeliness. earlier abort replies, viz. when previous abort repliesewver
Whenever a signer has to wait (too long) for an incomingissued to dishonest signers. However, if the TTP ever sends

message, he may stop the main protocol and start the resoléefully signed contract to a signer she must send a fully

protocol with the TTP by issuing eesolve requestvhich  signed contract to every subsequent resolve request of a
includes the signer’s full communication history. This mea (supposedly) honest signer.

that it contains all promises and signatures sent and reteiv

by this signer. After having started the resolve protocol,3.4. Abort chaining

honest signers are supposed to never continue with the

main protocol. Upon termination of the resolve protocol, From the fairness requirement it follows that if the TTP
the signer has either receivedesolve reply(containing a ever sends an abort reply to a (presumably) honest signer
fully signed contract) from the TTP, or he has received anp, she has to send an abort reply to every subsequent
abort reply. In both cases an honest signer terminates theesolve request as well, unless, based on new information,
execution of the protocol. p can be proved to be dishonest. In that case she may

The decision of the TTP to issue an abort reply or alater decide to overturn the decision and to issue a resolve
signed contract depends on the information provided byeply. A complicating factor is that the TTP in the meantime
the requesting signer and by all previous resolve requestgnay have sent an abort reply to a signer that is (still)
The TTP assumes that all signers are honest unless thi®nsidered honest, implying that she has to stick to the
contradicts the information received in any of the resolveabort decision. This is the problem abort chainingas
requests. This is her only source of information with respecintroduced by Mukhamedov and Ryan [21] to prove their
to honesty. resolve-impossibility result.

A signer’s ability to start the resolve protocol whenever Figure 1 contains an example of an MPCS protocol
he has to wait for a message from another signer is #stantiated for five signers. Messages that contain a g@mi
consequence of the timeliness requirement. This requitemeto send a signature are represented by unlabeled arrows. The
also implies that the TTP must reply to resolve requestsirrows labeledsig denote messages containing one or more
in finite time. Resolution of requests in finite time implies signatures. The protocol consists of three rounds, each of
that inthe worst caséhe TTP needs to decide between awnhich contains a message sequence from signer 1 to signer
resolve reply and an abort reply without the possibility to5 and back.
wait for further resolve requests or to contact other signer  The dots in the diagram indicate the points where a signer
If the TTP has to wait for an answer of signeiin order to  can issue a resolve request. These are the points where the
reply to a request of signey, progress ofj would depend  signer expects an incoming message. Such a dot indicates
on the willingness ofp to answer in a timely fashion. In that the signer has sent the outgoing message at this point
particular, a protocol in which the TTP uses broadcast canndn the protocol, but complains to the TTP that he has not
satisfy timeliness. Thus we may assume without loss ofeceived the next expected message. For example, the first
generality that the TTP immediately decides and replies t@-dot on the left subfigure indicates that signer 5 has sent
resolve requests. This leads to the following decisionsrule the 5th protocol message to signer 4, but has not received
which any decision procedure under the above assumptiorthe 12th protocol message from signer 4.
must follow: TTPO and TTP1 follow from the timeliness  These points are labeled with the possible decisions of the
requirement, TTP2 and TTP3 from the fairness requirementTTP when receiving this resolve request. LabBebenotes

TTPO All signers are considered honest, until the TTP'sthat the TTP must decide to send an abort reply because

information shows that a signer deviated from thethe resolve request cannot contain sufficient information
protocol specification, for instance by participating to construct a fully signed contract. Label denotes that

in the main protocol after having issued a resolvethe TTP must decide to reply with a fully signed contract,
request. because at that point the requesting signer has already sent

TTP1 If the TTP does not have enough information toa contract with his signature to another signer. In the other

issue a fully signed contract, she answers with arncases, labeled with, the decision of the TTP is not a priori
abort message. determined. She may have to send an abort reply or a resolve

TTP2 If a signature has been sent by any currently conreply based on her current knowledge and history.

sidered honest signer, then a fully signed contract The right diagram in Figure 1 shows an abort-chaining
is sent. attack on the protocol, implying that the protocol is not.fai

TTP3 If a previous reply was an abort reply to a signerThe attack goes as follows. Signer 4 is dishonest and sends
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Figure 1. An abstract MPCS protocol indicating enforced abort and resolve decisions (left) and an abort-chaining
attack on this protocol (right).

a resolve request to the TTP while still continuing his role i abort-chaining problem, based on the high-level desoripti
the protocol. Since the TTP assumes that signer 4 is honeptovided in the previous section.

until the opposite is proved she has to decide to abort the Our starting point is the observation that a totally-ordere
protocol and sends an abort reply to signer 4. Next, signer Bontract-signing protocol can be represented by a sequence
decides to send a resolve request. This request is based ohnumberso, ..., oy, Whereo identifies the sending of a
the first five messages of the protocol, so the TTP cannamessage by signeg,,.

conclude from this request that the previous resolve raques For instance, the protocol in Figure 1 (left) can be
by signer 4 was bogus, so she still believes that signer 4 igepresented by the sequence

hongst and, consequently, she has to se_nd an abort reply 12345432 12345432 12345432

to signer 5, too. However, signer 5 is dishonest as well

and continues his execution of the protocol. The next signer The TTP’s decision rules allow us to naturally distinguish
to complain is signer 2. Since his resolve request concerniree phases in the main protocol. We recall that in the
the first 10 messages of the protocol, it is now clear to theesolve protocol the requesting signer sends all promises a
TTP that signer 4 has been cheating. However, she cannéignatures in his possession to the TTP. The TTP uses all
overturn her decision to abort the protocol, since in theinformation received in her decision procedure followihg t
meantime she has sent an abort reply to signer 5, who is stifules TTPO through TTP3.

assumed to be honest. The same situation occurs after sign§kyinition 4. Theinitial phaseis the largest sequential union
3 decides to issue a resolve request. Since the TTP does NGt 5| messages of the main protocol, starting from the first

know yet that signer 2 is dishonest, she has to be CO”SiStemessage, based on which a TTP is forced to send an abort
in her choice to send an abort reply. The problem now is that \<\ver to a resolve request. Tlemd phases the set of

by the time signer 1 complains, he has already sent a signgflessages starting with the earliest message in the main
contract to signer 2 without receiving a signed contraainfro protocol in which a signaturesig(c, i) is sent and ending
the other signers. Whichever answer the TTP sends to signgli, the |ast message of the protocol. Timéddle phaseof

1, he or signer 3 will be treated unfairly while neither canhe hrotocol is the set of messages not belonging to thaliniti

pe s_hown to be dishonest. Summarizing, this abort Cha”bhase nor to the end phase.

implies that there cannot be a resolve protocol correctly _ _ _ _
handling the resolve requests, so the main protocol does not We will not consider degenerate protocols in which the
satisfy fairness. For more on the abort chaining attack and ainitial phase and the end phase have a non-empty intersec-

example of its realization on a concrete protocol, see [21].tion. Thus the initial phase contains all messages up to the
first promise of the signer who is the last to become active in

the protocol (i.e. signer 5 in Figure 1). During this phabe, t
TTP is forced to decide to abort the protocol upon a resolve
request because she does not have enough information to
In this section we definsigning sequencesvhich serve generate a fully signed contract yet. In the middle phase
to formulate a precise and idealized description of thepromises are exchanged and the level of commitment is

4. Signing sequences



increased. The end phase starts when the first signed contra@bservation 2, stating that the idealized end phase hathleng

is sent by a signer. During this phase, the TTP is forced ta = 5. We enhance the notation by including the resolve

decide to resolve the protocol upon a resolve request. requests as dot marks above the numbers. For instance, in
Two observations concerning the shape of the initial andhe attack in Figure 1, the dot marks appear as follows:

end phase will allow us to define aidealized contract oo . o e

signing protocol. Both observations result from our focus 1234 | 543212345482 | 12345

on abort-chaining attacks. More precisely, a dot above numbermeans that after
Observationl. In the initial phase, only theast appearance paving sent the current message, sigpedecides to issue
of each signer is relevant. For an honest signer appearing resolve request. Using this notation we can now give a
several times in the initial phase, a resolve request at an¥imple characterization of an abort-chaining attack. A dot

stage in the initial phase will lead to an abort reply from marking can be interpreted as a successful attack if and only
the TTP. For a dishonest signer sending a resolve requegti; satisfies the following properties.

before his last appearance in the initial phase only makes it
easier for the TTP to disqualify the signer as being dishiones
Consequently, if there are signers, we can assume that the
idealized protocol starts with a sequence acofmessages,
one for each signer. Then the initial phase of the idealized
protocol consists of the first — 1 messages, which are sent
by a — 1 different signers and the middle phase starts with protocol (i.e. left of the first separator).

a message sent by the one remaining _S|gner. This follows from the fact that the first resolve request

Observatior2. In the end phase, only tHest appearance of needs to be answered with an abort reply for an abort-
each party is relevant. For any resolve request in this phase chaining attack to be possible.

the TTP has to resolve by sending a fully signed contract. p3 The right-most mark must be in the end phase of the
The later the resolve request occurs, the more signers can be  protocol (i.e. right of the second separator).

shown to have participated, making it easier for the TTP to The reason is that the TTP cannot abort a resolve
identify cheaters. Therefore, we can assume that in the end  request of an honest signer in this phase of the
phase of the idealized protocol every signer sends exactly  protocol, since the signer already signed the contract.
one message, so the end phase of the idealized protocol hag4 Between two successively marked numbersnsayd

P1 A number with a mark cannot be marked anywhere
else in the sequence.
This follows from the fact that if a signer sends a
second resolve request, the signer will be considered
dishonest and his request will be ignored.
2 The left-most mark must be in the initial phase of the

lengtha. ny, there must be no occurrence mf.

In the remainder of this paper, we will analyze the If there would be an occurrence of between two
minimal number of messages of an idealized protocol. consecutive resolve requests of and ny, then the
The two observations above enable us to select only those  resolve request oh, would reveal thatn; behaved
events from the protocol which are essential for the abort- dishonestly. This is because the TTP can infer from
chaining analysis. In order to translate this result back to resolve request, thatn; has continued with the nor-
full MPCS protocols, the events that were deleted during mal course of the protocol after having sent a resolve
idealization have to be taken into account. The following request. In such a case the TTP could immediately
observation shows that this means that we then have to add  overturn an earlier abort decision fof.

(2a - 2) — @ = @ — 2 messages. Henceforth, we will assume thak (the set of signers)

Observation3. The end phase of an MPCS protocol mustis a finite set of sizer. Let A* denote the set of all finite
consist of at least ®— 2 messages. This can be seen agséquencesr = (o1,...,oyq) over A. A sequenceo’ is a
follows. In the end phase all signers have to send theifubsequencef o if o can be obtained by erasing zero or
signature. This costs at leastessages. After the last signer more symbols fromy-.

has sent his signature, there are at least 2 messages The observations above are formalized as follows.
needed to distribute his signature to all other signers. Definition 5. Let ¢ = (01,...,00) € A°. Theno is a

Following Observations 1 and 2 we can represent a totallysigning sequence if r 2« and if it starts and ends with a
ordered MPCS protocol, such as the one in Figure 1, morgermutation of A. The prefix of length-1 of o is called the

abstractly as a sequence of numbers initial sequence ofr and the suffix of length is called the
end sequence of. The sequence remaining after removing
1234 54321234543* 12345 the initial and end sequence from is called the middle

. sequence ofr.
where numben corresponds to the sending of a message q

by signerp,. The separators indicate the three phases of the The four conditions for successful abort-chaining attacks
protocol. The end sequence, 12345, is in accordance witban now be stated as follows.



Definition 6. Let o € A* be a signing sequence of length of elements iPA as a subsequence. For the remainder of this
n. A subsequenceyqy,...ofx Of o is called an abort- and the following section we will assume tHag > 3.
chaining subsequence (AC subsequence for short)

if th I o .
following holds: theorem 1. A signing sequence is fair if and only if the

sequence consisting of its middle and end sequence contains

1) Vorq oi(p) # 1@ all permutations of A as a subsequence.

2) f()<a;

3) f(K>n-a; Proof: Let o’ be the sequence consisting of the middle
4) Yo oip) & Usp<j<tpr) Ti- and end sequence of. Assumeo is fair. Suppose towards

_ . . a contradiction thap is a permutation ofA which is not
A signing sequence which has an AC subsequence will a subsequence of’. Then by Lemma 2 belowp can be

be calledunfair. A signing sequence which is not unfair will ;.o <0 rmad into an AC subsequence «f contradicting
be calledfair. The relation between protocols satisfying the ¢o.-nace of -

fairness requirement and fair signing sequences is stated i

) Conversely, assume that contains all permutations of
the following Lemma.

A as a subsequence and suppose towards a contradiction

Lemma 1. Every MPCS protocol which gives rise to an thats = (ot ..., or) is an AC subsequence of. We
unfair signing sequence does not satisfy the fairness requi may assume without loss of generality thig®) > o and
ment. f(k—1) < n- a. Sinceo’ containsall permutations of

_ o A as a subsequence, it must contairas a subsequence
Proof: The lemma follows from the formalization lead- T4ty - -+ Tgo)- By Condition 4 of definition 6, it follows

ing to Definition 6 as follows. An unfair signing sequence g - g() < () or gi) > fi+1) fori = 1,....k—1.
satisfies the conditions in Definition 6. These conditiores ar However,_since dqu).. .. Tqu) is @ subsequence af’,
equivalent to Fhe properties P1 through PL_L By property P24 toliows that g(l)g > a> %(1), thusg(1) > f(2). Since
the TTP has issued an abort reply to a signer. By_ repeategl; | 1) > g(i), it follows inductively thatg(i) > f(i + 1) for
application of properties P1 and P4, the TTP has issued -1 . k-1.This implies thag(k) > g(k—1) > (k) which
abort or fully signed contract to a signer while the previousis a contradiction, since(k) > F(k) > N—a, ogi = T g0,
resolution-seeking signer is deemed honest. Since the ﬁr%fnd the end sequence is a permutatiorof 0
answer was an abort reply, all the following answers are an The lemma below is used in the proof of theorem 1.
abort reply. By property P3 and rule TTP2, the TTP has
issued a fully signed contract to a signer. Since the praviouLemma 2. A signing sequence has an AC subsequence if
resolution-seeking signer is honest and the current signer there is a permutation g (ps, ..., p,) of A such that p is
honest, fairness cannot be satisfied. O hot a subsequence of the sequence consisting of the middle
Note that a fair signing sequeneedoes not necessarily and end sequence of.

give rise to a fair protocol, because there may be attacks Proof. We construct an AC  subsequence
on the fairness property of a protocol which are not abort-(o_f - oiw) Of o by computing its indices
chaining attacks, while unfair signing sequences are dichit f(j(J—il)j,..'...’, f((;; backwards, starting fronf(a).
o Itthfe I(IeX|stence of abort-chaining attacks. . . Sinceo is a signing sequence, there is a unique element

1t Toflows that the number Of messages in fair contract-m = p, in the end sequence. Lé{a) be the index of that
signing protocols investigated in this paper is necessary telement that is
achieve fairness, but it may in general not be sufficient. ' '

f(a) = max{i | o = p.} -

5. Relation to an open problem
P b Consider the longest suffip(, pj+1, ..., P) Of pwhich is

a subsequence of the middle and end sequenee (Bince
p itself is not a subsequence, it follows thiat 1.)

Let f(j),..., f(a) be an increasing sequence such that for
S i<a

An open combinatorial problem is to find the shortest
sequence over a sétwhich contains every permutation of
elements ofA as a subsequence. For instancé, # {1, 2, 3}, .
the shortest such sequence is 1213121. This problem hd
been listed as a research problem in [12, Problem 36] where f(i) = max{c| ¢ < f(i + 1),00 = pi}. 1)
it is attributed to R.M. Karp. Solutions by Newey [22],

Adleman [1], and Galbiati and Preparata [16] show that the Such a sequence exists, becaupg ffj+1,...,P.) IS a
length (@) of such a sequence is at mast — 2o + 4 for  subsequence of the middle and end sequence. of
a=|A>3. Since j, pj+1...-,Pe) is the longest possible subse-

In this section we show that the problem of finding the quence andr is a signing sequence, it follows that there
shortest fair signing sequence is equivalent to the problerexists f(j — 1) < & with o ¢(j-1) = pj-1. (Recall that the first
of finding the shortest sequence containing all permutationa elements ofr are a permutation of\.)



We show that ¢(j-1).....0 () IS an AC sequence ef  shortest fair signing sequence has length at lebsta — 1
by verifying all conditions of the definition: and at mostl + 2« — 3.

. Condition 1 is satisfied sincp is a permutation.

« Condition 2 is satisfied sincé(j — 1) < a.

. Condition 3 is satisfied sincE(«) was chosen such that
f(a) >n-a. ]

. Condition 4 is satisfied by equation 1. 0 - Suppose that the first or the last elements of

To illustrate the preceding Lemma and Theorem, consider o’ are a permutation of elements iA. (That is,

the signing sequence given by (T asrr ot = AONoy,. . o0 = A)
Since the reverse sequence of contains all per-

1234 54321234543? 12345. mutations of A as a subsequence if and only df
does, we may, in this case, assume without loss of

generality, that~” ends with a permutation of elements

54321234543212345. in A. By Theorem 10 = (py,..., Po-1,07,...,0%) IS

) a fair signing sequence, of length+ o — 1. A fair
The permutation 45231 does not occur as a subsequence signing sequence shorter tharwould, by Corollary 1

in the middle and enql sequence, thus we can find an AC  gniradict the minimal length af.
subsequence by marking the first occurrence of the elements Suppose that neither the first nor the lastlements of

Proof: Let o’ be the shortest sequence of length
A containing all permutations oA as subsequences. Let
P1,. .., Pe-1 € A\ {c}} be pairwise distinct.

Its middle and end sequence is the sequence

of 45231 backwards in the signing sequence: o’ are a permutation of elements A
1234| 54321234543} 12345 Then,  ~for pp....p,p, ~ such that
P s P 00 g} = A the sequence
1234| 54321234582 | 12345 T = (P Pats O O P o) IS A
. .. fair signing sequence by Theorem 1. Its length is
1234| 5432234582 | 12345 A+20-3. 0

L . LN Remarkl. We could strengthen the last two corollaries if we
1234| 5432]2345432| 12345 knew that the shortest sequence containing all permutation
1235, | 5432ﬁ3454§2| 12345 of A as subsequences starts or ends with a permutatidn of
In that case, the difference between the lengths of shortest
fair signing sequences and shortest sequences contaihing a
Conversely, the permutation 15234 appears as a subsBermutations oA as subsequences would alwaysde 1.
quence of the middle and end sequence emphasized in Newey [22] and Adleman [1] have constructively shown
boldface: that there are sequences of lengfh- 2« + 4 containing all
54321234543212345. permutations ofA as subsequences. These constructions are
such that the sequences start with a permutatioA.ofVe

By the construction in the proof of Theorem 1, the 2 . .
permutation sequence 15234 cannot be an AC subsequent@" therefore sel = o — 2 + 4 in Corollary 2 and obtain

of o, because elements of any valid marking will always©U" Main theorem.

trail behind the permutation sequence: Main Theorem. There is a fair signing sequence in Af

lengtha? — a + 3.

1234| 543212345432 | 12345
Proof: Apply the proof of Corollary 2 to Newey’s or

By Condition 4 of Definition 6, the 4 in the end sequenceAdleman’s sequences. 0
cannot be marked because of the boldface 3 in the enﬂemarkz A fair signing sequence of length?
sequence. '

—a+3
can be transformed back into a MPCS protocol of length
Corollary 1. Let n be the length of a shortest fair signing @+ 1. However, this transformation does not automatically
sequence over A. Then there is a sequence of lengthid  imply fairness of the resulting MPCS protocol, but merely
containing all permutations of A as subsequences. resistance to abort chaining attacks.

Proof: Let o be the shortest fair signing sequence over Newey's and Adleman’s construction and the conjec-
A. The initial sequence af has lengthr—1, thus the length  ture [22], [19] thata® — 2o + 4 is the shortest possible
of the middle and end sequencenis(e—1). By Theorem 1, length for any sequence containing all permutationsAof
this is a sequence containing all permutationshof [ @s subsequences imply the following conjecture.

Corollary 2. Let A be the length of the shortest sequenceconiecz'fure 1. Fora > 3, all signing sequences € A" with
containing all permutations of A as subsequences. Then thel < @” — « + 3 are unfair.



> 3, all MPCS protocols with 7. A minimal protocol
fewer thane? + 1 messages are unfair.

The Main Conjecture follows from Conjecture 1 by In this section, we build upon the previous sections to
adding the minimal length of the end phase as derived ifl€Sign a three-party optimistic contract signing protawith

Observation 3 minus, which is the length of the end phase Minimal number of messages. The presented protocol ex-
in the abstract signing sequences. changes only 10 messages in the main protocol, hence being

In the next section, we will prove the Main Conjecture More efficient than any existing protocol for this purpose
for the class of MPCS protocols in which all parties send(the protocol of Mukhamedov and Ryan [21] exchanges 12-
equally many messages in the middle phase of the protocolessages in the main protocol).

Main Conjecture. For a >

We refer to such protocols as beibglanced * The main purpose of this section is to illustrate the con-
cepts defined before and to show their possible application.
6. Balanced protocols Thus, a full and formal verification of this protocol is owlsi

the scope of this paper. The level of formality and precision

According to the Main Conjecture, stated in the precedingichieved in the current security analysis is comparable wit
section, an MPCS protocol in which at mastmessages are the level of formality achieved in the proofs of state-oéth
sent cannot be fair. We prove that the conjecture is true foft and well-established protocols, such as in [21]. Wedeav
protocols in which no signer sends more than2 messages @ model-checker based verification of the current protocol

during the middle phase of the protocol. for future research.

. - ) To construct the protocol the following steps are taken:
Theorem 2. If @ > 3 ando is a signing sequence in whose

middle sequence no element appears more thar times,
theno is unfair.

« A sequence which contains all permutations of num-
bers in{1,2,3} is constructed, e.g. using Adleman’s
algorithm [1]. This serves as the middle and (idealized)

Proof: If a sequence contains all permutations of ele- end phase of the Signing sequence. One such sequence
ments of a sefA as subsequences, then there must be an s 3123 123, of lengthe? — 2a + 4 which evaluates to
element of A appearing at Ieasdyl times. This has been seven whenr = 3. It has been shown in [22] that seven
observed by Newey [22, Observation 2.12] and can be shown g jngeed the length of the shortest sequence containing
by mathematical induction on the number of elementé.of all permutations of1, 2, 3}.

It follows from this observation that a sequence in which | The initial phase a’nd’ the end phase are completed
each element oA appears less tham times cannot contain according to Observations 1 and 2. We thus get
all permutations ofA. The Theorem now follows from the

12| 3123| 123 as the complete signing sequence and
the exchange pattern shown in Figure 2 for the complete
protocol.

Corollary 3. MPCS protocols with at least three parties in =\ specify the contents of messages, TTP’s logic, etc.,
whose middle phase no party sends more ta@ messages  similar to the protocol of [21]. These are briefly explained
are unfair. below; all other terms are according to Definition 1.

Corollary 3 can be used to prove lower bounds for We write [M]; for messageM signed by entityi, where
a variety of MPCS protocols that satisfy some regularityi € {1,2,3, T} with T standing for the TTP: We assume that
conditions. For instance, if every party sends equally manyM can be extracted fromM];, and that all agents check
and at moste — 2 messages during the middle phase ofthe validity of the received signatures. A message which
an MPCS protocol, the protocol is unfair. In this case wecarries a bogus signature is destroyed by the recipient and
havea? — 2 messages in the middle sequence. Under thés considered as not being received. Messages exchanged
assumption that a minimal number of messages will bdn the protocol are assumed to uniquely identify the in-
exchanged in the initial and end phase of the protocol, th&olved signers, their positions in the network, the idgntit
initial phase containgr — 1 messages and the end phaseof the trusted party, and the contract text. We wigte-

contains 2 —2 messages. Thus we have a totah®fa—3  ContrC, TTP, py,..., p,) for the complete description of
messages and we obtain the following corollary. this information. The contents of messages are specified in

. i Figure 2.
Corollary 4. MPCS protocols with at least three parties and The intuition is that signers start by giving a level 1

5 . X
of at mostg +a_ﬁ messages in whose mldcile. phase ever3fc)romise to sign the contract, then they increase the level
party sends equally many messages are unfair. of their promise to level 2, and finally they release their

equivalence in Theorem 1. O
We now have the following immediate corollaries.

1. The notion ofbalancedas used here pertains to even distribution of
messages exchanged in an MPCS protocol; this should not Heseoh 2. Note that these signatures are used to authenticate reessaud
with balanced MPCS protocolas introduced in [9]. should not be confused with a party’s signature on a contract



promy(c, 1)

prom(c, 2), promy(c, 3)

prom(c, 1), promy(c, 2)

A

prom(c, 3), prom,(c, 1)

promy(c, 2), prom,(c, 3)

promy(c, 1), promy(c, 2) '

R

sigc. 1)

sig(c, 1), sig(c, 2)

outcome. Itis up to the TTP to decide which of these must be
the outcome of the dispute. The abort and resolve symbols
shown in Figure 2 merely indicate the decision of the TTP
in case the first dispute is raised at the corresponding .point
For each contract signing session, uniquely identified
with ¢, the TTP maintains a tuplé, status in her persis-
tent, secure databa&B. Upon receiving a dispute request
[dispute, i, Hi, c]i, the TTP checks whether her identity is
mentioned irc as the trusted entity in the exchange, whether
all the signatures contained in the history are genuine, and
whether the history is valid given the number of signers and

sig(c, 3)

sig(c, 2), sig(c, 3)

Figure 2. Three-party contract signing with 10 mes-
sages in the main protocol

signature on the contract (that is g, for i € {1,2, 3}).
A signed contracis the set

{sig(c, 1), sig(c, 2), sig(c, 3)}

The TTP is assumed to be able to transform posi) to
sig(c. i), for any levell and anyi € {1,2,3}; no one else
excepti has this ability. Cryptographic techniques to realize
such transformations are prevalent in the literature,[24.

If an expected message does not arrive, or the received
message does not conform to the protocol, signemay
simply quit the protocol or resort to the TTP, depending
on wherei is in the main protocol. A signer quits the
exchange if and only if he has not received any message
in the main protocol. That is, signers 2 and 3 can simply
quit the exchange if they do not receive prgm1l) and
prom(c, 1), promy(c,2) in time, respectively. In all other
cases, signers have to resort to the TTP by sending the
following message:

i — T : [dispute,i, Hj, C];

Here, dispute is a reserved keyword indicating that the
signer is disputing an exchange, amt] is the history

of signeri. The history ofi at each stage of the pro-
tocol is the set of messages that he has sent or re-
ceived so far in the current execution. For instance,
Hy = {prom(c, 1), promy(c, 2), prom;(c, 3), promy(c, 1)} for
signer 1, after sending thé"4nmessage and before receiving
the 6" one. By sending his history, a signer attests his
position in the main protocol to the TTP and gives hints to
the TTP about the positions of other signers. Nevertheless,
a malicious signer can obviously lie about his history, e.g.
by pretending to be behind the actual state of the protocol.

R their position in the network. If all these tests pass, th@TT
checks whethetc, ) € DB:

. (c,x) ¢ DB: A new exchange is being disputed. Hf
corresponds to a point with al symbol in Figure 2,
then the TTP sends back

T—-i:[ACclt

and storegc, (i : H;)) in DB. The pair { : H;) helps
the TTP to remember at what positiorclaims to be

at the moment of raising the dispute (below, we see
how this information is used). On the other hand, if
H; corresponds to a point with @ in Figure 2, then
the TTP compute$ = {sig(c, 1), sig(c, 2), sig(c, 3)} and
sends back

T—i:S

and stores (c,S) in DB. Note that all H;
that correspond to anR in Figure 2 contain
prom(c, 1), promy(c, 2), promy(c,3). Therefore, the
TTP is able to comput& from such histories.

. {c,status € DB: In case(c,S) € DB, for a set of
signaturesS, then the TTP simply replies as:

T—i:S

Note that this corresponds to the case the exchange has
been disputed before, and has been settled to a resolve.
We split the case the exchange has been considered
aborted before, i.€c, (j : Hj)) € DB, into two different
situations:3

— The currentH; corresponds to an abort point in
Figure 2. Then, the TTP sends back

T—-i:[ACct

and appendsi ( H;) to the statusassociated ta,
i.e. the TTP storesc, (j : H;); (i : Hi)) in DB.

— The currentH; corresponds to a resolve point in
Figure 2. This case is more complicated, as the
TTP may realize that some of the past disputes
were malicious. The key idea here is that the TTP
may overturn her abort decision, if she can deduce

Note that when contacting the TTP, signers do not eXp“C' 3. As we will see in the following, thetatusassociated te@ in DB may

itly specify whether they ask for an aboktor a resolveR

contain a list of histories of the forre, (j : Hj);---; (i : Hi)).



from the current historyH; that all the previous
disputes (resulted in abort) were malicious. A pre-
vious abort by signef is deemed malicious iff the
current historyH; contains a message signed by
j which shows thatj has continued the protocol
after resorting to the TTP (the position pfat the
time he resorted to the TTP is storedstatusof

c as j’s history). If the TTP finds out thaall the
previous disputes were malicious, then she sends
back

1)

T—i:S

Signeri has obtainedj’s signature by receiving a
signed contract from the TTP via a resolve protocol.
If signer k has not received a signed contract in the
main protocol, he must have resorted to the TTP. If
K's dispute has been processed afterrequest, then
according to the TTP’s logid has also received the
signed contract from the TTP, via a resolve protocol.
If K's dispute has been processed beftsreequest, we
need to show that the TTP would never send a signed
contract to any signer, after sending an abort token
to k (or, any honest signer in general). This, however,

is clear, as the only case in which the TTP considers a
signer as malicious and overturns her abort decision, is
the one where the signer proceeds in the main protocol
after having resorted to the TTP. Honest signers in
general, and in particular, do not participate in the
main protocol after disputing the exchange.

Signeri has obtained'’s signature (possibly indirectly)
from j himself; that is,j has released his signature in
the main protocol. Honest signéreither receives a
signed contract in the main protocol, or resorts to the
TTP. Thereforek may not receive a signed contract
only if the TTP replies with an abort token tids
dispute. The TTP replies withbortto an honest signer
(in particular k) only if either this honest signek

has disputed the exchange in the initial phase of the
protocol, or the TTP cannot grant a resolve due to
her earlier abort decisions. The former is impossible,
since j would not have released his signature if an
honest signer had stopped the main protocol in the
initial phase. The latter is a typical instance of abort
chaining, to which, according to our theorems, this

and replaces the entry iDB corresponding ta
with (c, S). Otherwise, the TTP sends back

T—-i:[ACt

and appendsi ( H;) to the statusassociated t@
in DB.

Remark3. The protocol presented in this section is more
efficient than existing protocols for the same purpose. $t ha
however a feature, which might limit its usability in certai
scenarios. The exchange pattern of the protocol (and thereb
the algorithms executed by the principals) depend on the
number of involved parties. For example, if another party
is added to the exchange, to ensure efficiency, we need to
devise a new exchange pattern, e.g., based on the algorithm
of [1]. This can be seen as a trade-off between efficiency
and scalability of these protocols.

2)

Security analysis.In the following, we give a proof sketch
for the security of the protocol described above. Recall tha
the desired properties of the protocol consist of timeknes protocol is not susceptible.

abuse-freeness, and faimess. _ ~ While a full proof of timeliness, abuse-freeness, and
» Timeliness is achieved simply because a signer can givgirness is not the aim of the preceding analysis, given a

up waiting for a message at any time and resort to theyitable framework, such a proof can be achieved following
TTP (if the signer has not received any message, then hge sketch outlined above.

can simply quit the exchange); the TTP will answer to any

dispute without waiting for input from other signers. It is 8. Conclusions

worth mentioning that all disputes raised by honest signers

will be processed by the TTP. This is due to the assumption |n this paper, we derived a lower bound on the number of

(cf. Table 1) that any signer can check whether the signaturemessages in an optimistic asynchronous multi-party contra

he receives are valid without contacting the TTP. signing protocol. This lower bound is not of a purely the-
e Abuse-freeness is implied by usingrivate contract oretical nature, since our approach has several implitgtio

signaturesa la [21] for the signatures (i.eM];) exchanged with respect to security.

in the protocol. First of all, our work affects the design of correct and
e Now, we turn to fairness. Suppose an execution ofefficient multi-party contract signing protocols. Due teth

the protocol has ended, i.e., none of the honest signemonstructive nature of our approach, we can generate proto-

are waiting for input. This state is always reachable, dueols which are optimal with respect to the derived bound. We

to timeliness of the protocol. Further, assume signbas illustrated this for the case of three signers by constngcti

received honest signgrs signature on the contract. Then, a protocol which is shorter than current state-of-the-art

we show that any honest signkrhas received a signed solutions. We leave the generalization of this construgtio

contract, consisting of the signatures of all the involvedincluding a full and formal correctness proof as a topic of

signers on the contract. We distinguish two possibilities: future research. We conjecture that the protocols obtaimed
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