
Minimal message complexity of asynchronous multi-party contract signing

Sjouke Mauw
University of Luxembourg

sjouke.mauw@uni.lu

Sǎsa Radomirovíc
University of Luxembourg
sasa.radomirovic@uni.lu

Mohammad Torabi Dashti
ETH Zürich

torabidm@inf.ethz.ch

Abstract

Multi-party contract signing protocols specify how a
number of signers can cooperate in achieving a fully signed
contract, even in the presence of dishonest signers. This
problem has been studied in different settings, yielding
solutions of varying complexity. Here we assume presence
of a trusted third party that will be contacted only in case
of a conflict, asynchronous communication, and a totally
ordered protocol. Our goal is to develop a lower bound
on the number of messages in such a protocol. Using the
notion of abort chaining, which is a specific type of attack
on the fairness of signing protocols, we derive the lower
bound α2

+ 1, with α > 2 being the number of involved
signers. In order to achieve this lower bound, we relate
the problem of developing fair signing protocols to the
open combinatorial problem of finding shortest permutation
sequences. This relation also indicates a way to construct
signing protocols which are shorter than current state-of-
the-art protocols. We illustrate this by presenting the shortest
three-party fair contract signing protocol.

1. Introduction

Contract signing protocols deal with the situation where
α parties wish to sign a publicly-known contract textc, in
a fair manner. Informally, fairness means that either every
honest party obtains the signature of all the otherα − 1
parties onc, or none of the parties obtains the signature of
any honest party onc; this definition is made precise in the
following sections.

Deterministic fair contract signing protocols cannot be
constructed in asynchronous systems with no presumed
trust [14]. A way to circumvent this impossibility is to resort
to randomized protocols (see [15] for a survey). Randomized
protocols nonetheless require exchanging a large number of
messages to approximate fairness, and usually assume that
the involved parties have nearly equal computational powers.
A second way to construct fair contract signing protocols is
to add an impartial process to the system that is trusted by all
the protocol participants; the impartial process is thus called
a trusted third party (TTP). In theoptimisticfamily of TTP-
based contract signing protocols, the participants execute a
main (or, optimistic) sub-protocol which does not involve

the TTP at all. However, should a failure occur maliciously
or accidentally, the participants are provided with fall-back
scenarios, which enable them to recover to a fair state with
the TTP’s help.

The premise of optimistic protocols is that failures are
infrequent, thus fall-back sub-protocols only need to be ex-
ecuted rarely. Therefore, a meaningful measure of efficiency
in these protocols is the number of messages exchanged in
the main protocol. Pfitzmann, Schunter, and Waidner have
shown that in two-party contract signing protocols, four
messages in the main protocol are necessary and sufficient
to achieve fairness [23]. We study in this paper the problem
of determining the number of messages necessary to achieve
fairness in multi-party contract signing protocols.

Our approach is based on the notion ofabort chaining,
as introduced by Mukhamedov and Ryan [21]. An abort-
chaining attack on an optimistic contract signing protocol
consists of a sequence of requests by the signers to the TTP,
forcing the TTP to abort the protocol, even though one of the
honest signers already signed the contract. Mukhamedov and
Ryan used abort chaining to prove that the contract signing
protocol proposed in [18] is inherently flawed, regardless
of the behavior of the TTP. They refer to this asresolve
impossibility. We use abort chaining to derive a lower bound
on the number of messages in multi-party contract signing
protocols.

The contribution of the present paper is threefold. First
of all, we model contract-signing protocols as sequences
of numbers, which we callsigning sequences. In this
simple model, fairness attacks can be studied independent
of cryptographic considerations. The fairness requirement
provides boundary conditions on the behavior of the TTP.
An abort-chaining attack can be described as a marking of
the signing sequence in such a way that it contradicts these
boundary conditions, which impliesresolve impossibilityof
the modeled protocol. Absence of abort-chaining attacks
thus boils down to proving that such a marking does not
exist.

Our second contribution is to relate the problem of finding
a marking in a signing sequence to the (open) combinatorial
problem of finding the shortest sequences containing all
permutations of a finite set as subsequences. This problem
was stated in 1972 [12] and several authors have provided
algorithms to produce such sequences of lengthα2−2α+4,

whereα > 2 is the number of elements in the set. This is
conjectured to be optimal in the sense that these algorithms
produce sequences of minimal length. We prove that this
lower bound can be transformed into a lower bound on the
length of a signing sequence, and thus on the number of
messages in a multi-party contract signing protocol: every
protocol consisting ofα2 or fewer messages is unfair, with
α > 2 being the number of involved signers. For the class
of balanced protocols, in which all signers roughly send the
same number of messages, this bound is provably tight.

The third contribution of this paper is the application of
these results to develop novel multi-party contract signing
protocols. We show for the case of three signers how
the algorithms for generating short permutation sequences
can be used to construct a protocol which is shorter than
currently known three-party contract signing protocols.

The paper is structured as follows. In Section 2, we
discuss literature related to MPCS and our approach. Multi-
party contract signing protocols, abort chaining, and our
assumptions are explained in Section 3. The interpretation
of MPCS protocols as signing sequences is described in
Section 4 and the step towards the problem of short per-
mutation sequences is taken in Section 5. This section also
contains our main results. In Section 6 we prove the main
conjecture for the class of balanced MPCS protocols. An
example is presented in Section 7 to illustrate our results.
Finally, we summarize the paper and indicate possibilities
for future research in Section 8.

2. Related work

The standard reference for the optimistic family of fair
exchange protocols is Asokan’s thesis [2]. Multi-party op-
timistic contract signing (or, more generally, fair exchange)
protocols have not received as much attention as their
two-party variants. Nonetheless, there are several notable
exceptions, for instance, the work of [4] for synchronous
protocols and [7], [6], [18], [10], [21] for asynchronous
protocols. We focus on optimistic asynchronous protocols.
One can roughly divide the asynchronous protocols into
two groups. One contains the protocol proposed in [7]
and improved in [6], and the other contains the protocol
from [18], broken and fixed for four parties in [10], and later
broken and shown to be beyond repair in [21]. The state of
the art in the asynchronous class of protocols has been set
by Mukhamedov and Ryan [21], whose protocol is more
efficient than [6], and does not have the fatal vulnerability
of [18]. This protocol requires 2(α − 1)(⌈α2 ⌉ + 1) messages
to be exchanged in the main protocol, withα being the
number of signing parties involved. This bound pertains to
the case where piggybacking is used to reduce the number
of messages in the protocol.

Regarding the proof technique, Pfitzmann et al.’s proof
that four is the optimal number of messages for two-

party contract signing is based on a careful analysis of all
the possibilities that may arise if the number of messages
exchanged in the main protocol is less than four [23]. Such
an exhaustive analysis is infeasible in multi-party settings. A
contribution of this paper is to encode multi-party contract
signing as an abstract mathematical problem which can be
understood and investigated in isolation. Another possible
way of proving lower bounds on the number of messages
needed to perform a certain distributed task is based on
extracting the least amount of knowledge which is necessary
to be acquired by the participants, as done for instance
in [11].

We remark that we only consider purely asynchronous
communication. Therefore, our analysis is orthogonal to
those lower bound results which are obtained by assuming
the existence of broadcast channels or various degrees of
synchrony in the communication system, as in [24], [8].

3. Optimistic multi-party contract signing

In this section we give a conceptual description of the
multi-party contract-signing problem. This rather high level
of abstraction is sufficient to describe abort-chaining attacks.
We mention explicitly that the development of a fully formal
semantics of MPCS protocols and the required properties is
not a goal of this paper. Such a formalization, while highly
desirable, is independent of the contribution of this paper
and we consider it a research question on its own. Given
the assumptions and restrictions mentioned in this section,
the notion ofsigning sequencesis for our goals the most
appropriate and elegant formalization of the problems under
study.

3.1. Communication and intruder model

We assume a fully connected communication network.
Communication between signers is asynchronous and mes-
sages can get lost or be delayed arbitrary long. In order
to simplify our reasoning, we will not assume a general
Dolev-Yao style intruder model [13] for the communication
between the signers. We consider the problem of delivering
secret and authentic messages as orthogonal to the current
problem setting. The communication channels between sign-
ers and the TTP are assumed to be resilient, which means
that the messages sent over these channels are guaranteed to
be delivered eventually and without modifications. Various
cryptographic techniques can be used to guarantee the in-
tegrity of the transmitted messages against a computationally
bounded attacker. Guaranteed delivery, however, requiresthe
assumption that communication channels arefair lossy, i.e.
any message inserted at one end of the channel an infinite
number of times, is delivered to the other end of the channel
an infinite number of times. Given a fair lossy channel,
which may duplicate and reorder messages, then, essentially,

retransmission and tagging allow us to construct a reliable
FIFO channel on top of the fair lossy channel, see Stenning’s
protocol [25] and [20, chapter 22]. Assuming fair lossy
channels amounts to assuming a limited attacker who cannot
entirely disconnect participant processes.

In view of the abstraction of cryptographic techniques for
delivering secret and authentic messages, the following data
items will be sufficient for the class of protocols considered
in this paper. The properties assumed in the following
definition can be realized using cryptographic primitives
such asprivate contract signing[17], [21].

Definition 1.
1) A contract contr(C,TTP, p1, . . . , pα) is a function of a

contract text C, a TTP, and signers p1,. . . ,pα.
2) A level l promise proml(c, i) is a string uniquely

identifying a contract c, signer pi , and level l with
the properties that
• Only pi can generateproml(c, i) for any l.
• Everybody can verify thatproml(c, i) identifies the

contract c, signer pi , and level l.
3) A signature sig(c, i) is a string uniquely identifying a

contract c and signer pi . The string has the following
properties
• pi can generatesig(c, i).
• The TTP can generatesig(c, i) from proml(c, i) for

any l.
• Nobody else can generatesig(c, i).
• Everybody can verify thatsig(c, i) identifies the

contract c and signer pi .
4) A fully signedcontract is a set{sig(c,1), . . . , sig(c, α)},

where c is a contract.

3.2. Optimistic contract-signing protocols

The goal of a multi-party contract-signing protocol is to
fairly construct a fully signed contract such that, even if one
or more signers misbehave, either allhonestsigners obtain a
fully signed contract or none of the signers obtain a signed
contract [3], [6]. Honest signers are those agents that exhibit
no other behavior than prescribed by the protocol. All other
agents, except for the TTP, are considered dishonest.

In this paper, we consideroptimistic contract-signing pro-
tocols. Such protocols consist of two sub-protocols, viz. the
main protocol and theresolveprotocol. The main protocol
governs the regular exchange of promises and signatures
between the signers. Upon termination of the main protocol,
all signers have obtained a fully signed contract.We assume
that the messages of the main protocol are totally ordered,
thereby ignoring protocols with interleaved or parallel mes-
sages.The main protocol does not involve the TTP. The TTP
is not even aware of the fact that the protocol is executed,
unless her help is requested by one of the signers to resolve
a problem. As stated in definition 1, we assume that the TTP

Table 1. Assumptions.

- Asynchronous communication.
- Fully connected network.
- Lossy channels between signers.
- Resilient channels between TTP and signers.
- Signer can verify promises without contacting TTP.
- Only TTP can transform set of promises into valid contract.
- Signers execute totally ordered protocol.
- Resolve request contains entire history of requesting signer.
- All messages are integrity-protected.

(and nobody else) has the capability to transform a collection
of promises of all signers into a fully signed contract. She
may use this capability in the resolve protocol. The resolve
protocol is a two message protocol between a signer and
the TTP. The signer sends all promises and signatures in its
possession to the TTP. The TTP answers withabort or with
a fully signed contract. We will discuss the TTP’s decision
procedure between the two answers in the resolve protocol
in the following section.

We summarize our assumptions in Table 1.

3.3. Fairness, timeliness, and the TTP’s decision

Apart from satisfying the functional requirement of con-
structing a fully signed contract, contract-signing protocols
must satisfy three security requirements, viz.fairness, time-
liness, andabuse-freeness.

In the general setting of fair-exchange protocols, fairness
means that none of the parties involved in the protocol can
gain advantage over any of the other honest parties taking
part in the protocol. For contract-signing protocols this is
made more precise by requiring that no honest signer should
be left in the position of having sent another signer his
signature on the contract, without being able to obtain a
fully signed contract [21].

Definition 2. A contract-signing protocol isfair for the
signers if, for every execution of the protocol, either all
honest signers terminate with a fully signed contract in their
possession or none of the signers can obtain a signature of
an honest signer as a consequence of the protocol execution.

Timeliness ensures that no signer can force another signer
to wait for any length of time [5], or, phrased differently, ev-
ery signer has some recourse to prevent endless waiting [21].

Definition 3. A contract-signing protocol satisfiestimeliness
if every execution of every honest signer eventually termi-
nates successfully.

Successful termination in Definition 3 refers to the fact
that the signer must be in an end state rather than a deadlock
state.

A signing protocol is said to be abuse-free if at any
stage of the protocol, it is impossible for any signer to
prove to an outside challenger that he has the power to

choose between completing the contract-signing protocol
and aborting it [17]. Although abuse-freeness is an important
security requirement for contract-signing protocols, it will
not play a role in our observations on message minimality.
Henceforth, we will only focus on fairness and timeliness.

Whenever a signer has to wait (too long) for an incoming
message, he may stop the main protocol and start the resolve
protocol with the TTP by issuing aresolve requestwhich
includes the signer’s full communication history. This means
that it contains all promises and signatures sent and received
by this signer. After having started the resolve protocol,
honest signers are supposed to never continue with the
main protocol. Upon termination of the resolve protocol,
the signer has either received aresolve reply(containing a
fully signed contract) from the TTP, or he has received an
abort reply. In both cases an honest signer terminates the
execution of the protocol.

The decision of the TTP to issue an abort reply or a
signed contract depends on the information provided by
the requesting signer and by all previous resolve requests.
The TTP assumes that all signers are honest unless this
contradicts the information received in any of the resolve
requests. This is her only source of information with respect
to honesty.

A signer’s ability to start the resolve protocol whenever
he has to wait for a message from another signer is a
consequence of the timeliness requirement. This requirement
also implies that the TTP must reply to resolve requests
in finite time. Resolution of requests in finite time implies
that in the worst casethe TTP needs to decide between a
resolve reply and an abort reply without the possibility to
wait for further resolve requests or to contact other signers.
If the TTP has to wait for an answer of signerp in order to
reply to a request of signerq, progress ofq would depend
on the willingness ofp to answer in a timely fashion. In
particular, a protocol in which the TTP uses broadcast cannot
satisfy timeliness. Thus we may assume without loss of
generality that the TTP immediately decides and replies to
resolve requests. This leads to the following decision rules
which any decision procedure under the above assumptions
must follow: TTP0 and TTP1 follow from the timeliness
requirement, TTP2 and TTP3 from the fairness requirement.

TTP0 All signers are considered honest, until the TTP’s
information shows that a signer deviated from the
protocol specification, for instance by participating
in the main protocol after having issued a resolve
request.

TTP1 If the TTP does not have enough information to
issue a fully signed contract, she answers with an
abort message.

TTP2 If a signature has been sent by any currently con-
sidered honest signer, then a fully signed contract
is sent.

TTP3 If a previous reply was an abort reply to a signer

which is currently considered honest, then an abort
reply is sent.

We observe that, in some instances, the decision rules
allow the TTP to issue a fully signed contract in spite of
earlier abort replies, viz. when previous abort replies were
issued to dishonest signers. However, if the TTP ever sends
a fully signed contract to a signer she must send a fully
signed contract to every subsequent resolve request of a
(supposedly) honest signer.

3.4. Abort chaining

From the fairness requirement it follows that if the TTP
ever sends an abort reply to a (presumably) honest signer
p, she has to send an abort reply to every subsequent
resolve request as well, unless, based on new information,
p can be proved to be dishonest. In that case she may
later decide to overturn the decision and to issue a resolve
reply. A complicating factor is that the TTP in the meantime
may have sent an abort reply to a signer that is (still)
considered honest, implying that she has to stick to the
abort decision. This is the problem ofabort chaining as
introduced by Mukhamedov and Ryan [21] to prove their
resolve-impossibility result.

Figure 1 contains an example of an MPCS protocol
instantiated for five signers. Messages that contain a promise
to send a signature are represented by unlabeled arrows. The
arrows labeledsig denote messages containing one or more
signatures. The protocol consists of three rounds, each of
which contains a message sequence from signer 1 to signer
5 and back.

The dots in the diagram indicate the points where a signer
can issue a resolve request. These are the points where the
signer expects an incoming message. Such a dot indicates
that the signer has sent the outgoing message at this point
in the protocol, but complains to the TTP that he has not
received the next expected message. For example, the first
?-dot on the left subfigure indicates that signer 5 has sent
the 5th protocol message to signer 4, but has not received
the 12th protocol message from signer 4.

These points are labeled with the possible decisions of the
TTP when receiving this resolve request. LabelA denotes
that the TTP must decide to send an abort reply because
the resolve request cannot contain sufficient information
to construct a fully signed contract. LabelR denotes that
the TTP must decide to reply with a fully signed contract,
because at that point the requesting signer has already sent
a contract with his signature to another signer. In the other
cases, labeled with?, the decision of the TTP is not a priori
determined. She may have to send an abort reply or a resolve
reply based on her current knowledge and history.

The right diagram in Figure 1 shows an abort-chaining
attack on the protocol, implying that the protocol is not fair.
The attack goes as follows. Signer 4 is dishonest and sends

1 2 3 4 5

A
A

A
A

?
?

?
?

?
?

?
?

?
?

?
?sig

R
sig

R
sig

R
sig

R sig
sig

sig
sig

1 2 3 4 5

A
A

A

Asig
R

Figure 1. An abstract MPCS protocol indicating enforced abort and resolve decisions (left) and an abort-chaining
attack on this protocol (right).

a resolve request to the TTP while still continuing his role in
the protocol. Since the TTP assumes that signer 4 is honest
until the opposite is proved she has to decide to abort the
protocol and sends an abort reply to signer 4. Next, signer 5
decides to send a resolve request. This request is based on
the first five messages of the protocol, so the TTP cannot
conclude from this request that the previous resolve request
by signer 4 was bogus, so she still believes that signer 4 is
honest and, consequently, she has to send an abort reply
to signer 5, too. However, signer 5 is dishonest as well
and continues his execution of the protocol. The next signer
to complain is signer 2. Since his resolve request concerns
the first 10 messages of the protocol, it is now clear to the
TTP that signer 4 has been cheating. However, she cannot
overturn her decision to abort the protocol, since in the
meantime she has sent an abort reply to signer 5, who is still
assumed to be honest. The same situation occurs after signer
3 decides to issue a resolve request. Since the TTP does not
know yet that signer 2 is dishonest, she has to be consistent
in her choice to send an abort reply. The problem now is that
by the time signer 1 complains, he has already sent a signed
contract to signer 2 without receiving a signed contract from
the other signers. Whichever answer the TTP sends to signer
1, he or signer 3 will be treated unfairly while neither can
be shown to be dishonest. Summarizing, this abort chain
implies that there cannot be a resolve protocol correctly
handling the resolve requests, so the main protocol does not
satisfy fairness. For more on the abort chaining attack and an
example of its realization on a concrete protocol, see [21].

4. Signing sequences

In this section we definesigning sequences, which serve
to formulate a precise and idealized description of the

abort-chaining problem, based on the high-level description
provided in the previous section.

Our starting point is the observation that a totally-ordered
contract-signing protocol can be represented by a sequence
of numbersσ1, . . . , σn, whereσi identifies the sending of a
message by signerpσi .

For instance, the protocol in Figure 1 (left) can be
represented by the sequence

12345432 12345432 12345432.

The TTP’s decision rules allow us to naturally distinguish
three phases in the main protocol. We recall that in the
resolve protocol the requesting signer sends all promises and
signatures in his possession to the TTP. The TTP uses all
information received in her decision procedure following the
rules TTP0 through TTP3.

Definition 4. Theinitial phaseis the largest sequential union
of all messages of the main protocol, starting from the first
message, based on which a TTP is forced to send an abort
answer to a resolve request. Theend phaseis the set of
messages starting with the earliest message in the main
protocol in which a signaturesig(c, i) is sent and ending
with the last message of the protocol. Themiddle phaseof
the protocol is the set of messages not belonging to the initial
phase nor to the end phase.

We will not consider degenerate protocols in which the
initial phase and the end phase have a non-empty intersec-
tion. Thus the initial phase contains all messages up to the
first promise of the signer who is the last to become active in
the protocol (i.e. signer 5 in Figure 1). During this phase, the
TTP is forced to decide to abort the protocol upon a resolve
request because she does not have enough information to
generate a fully signed contract yet. In the middle phase
promises are exchanged and the level of commitment is

increased. The end phase starts when the first signed contract
is sent by a signer. During this phase, the TTP is forced to
decide to resolve the protocol upon a resolve request.

Two observations concerning the shape of the initial and
end phase will allow us to define anidealized contract
signing protocol. Both observations result from our focus
on abort-chaining attacks.

Observation1. In the initial phase, only thelast appearance
of each signer is relevant. For an honest signer appearing
several times in the initial phase, a resolve request at any
stage in the initial phase will lead to an abort reply from
the TTP. For a dishonest signer sending a resolve request
before his last appearance in the initial phase only makes it
easier for the TTP to disqualify the signer as being dishonest.
Consequently, if there areα signers, we can assume that the
idealized protocol starts with a sequence ofα messages,
one for each signer. Then the initial phase of the idealized
protocol consists of the firstα− 1 messages, which are sent
by α − 1 different signers and the middle phase starts with
a message sent by the one remaining signer.

Observation2. In the end phase, only thefirst appearance of
each party is relevant. For any resolve request in this phase,
the TTP has to resolve by sending a fully signed contract.
The later the resolve request occurs, the more signers can be
shown to have participated, making it easier for the TTP to
identify cheaters. Therefore, we can assume that in the end
phase of the idealized protocol every signer sends exactly
one message, so the end phase of the idealized protocol has
lengthα.

In the remainder of this paper, we will analyze the
minimal number of messages of an idealized protocol.
The two observations above enable us to select only those
events from the protocol which are essential for the abort-
chaining analysis. In order to translate this result back to
full MPCS protocols, the events that were deleted during
idealization have to be taken into account. The following
observation shows that this means that we then have to add
(2α − 2)− α = α − 2 messages.

Observation3. The end phase of an MPCS protocol must
consist of at least 2α − 2 messages. This can be seen as
follows. In the end phase all signers have to send their
signature. This costs at leastαmessages. After the last signer
has sent his signature, there are at leastα − 2 messages
needed to distribute his signature to all other signers.

Following Observations 1 and 2 we can represent a totally-
ordered MPCS protocol, such as the one in Figure 1, more
abstractly as a sequence of numbers

1234
∣

∣

∣

∣

543212345432
∣

∣

∣

∣

12345

where numbern corresponds to the sending of a message
by signerpn. The separators indicate the three phases of the
protocol. The end sequence, 12345, is in accordance with

Observation 2, stating that the idealized end phase has length
α = 5. We enhance the notation by including the resolve
requests as dot marks above the numbers. For instance, in
the attack in Figure 1, the dot marks appear as follows:

123
•

4
∣

∣

∣

∣

•

54321
•

23454
•

32
∣

∣

∣

∣

•

12345.

More precisely, a dot above numbern means that after
having sent the current message, signerpn decides to issue
a resolve request. Using this notation we can now give a
simple characterization of an abort-chaining attack. A dot
marking can be interpreted as a successful attack if and only
if it satisfies the following properties.

P1 A number with a mark cannot be marked anywhere
else in the sequence.
This follows from the fact that if a signer sends a
second resolve request, the signer will be considered
dishonest and his request will be ignored.

P2 The left-most mark must be in the initial phase of the
protocol (i.e. left of the first separator).
This follows from the fact that the first resolve request
needs to be answered with an abort reply for an abort-
chaining attack to be possible.

P3 The right-most mark must be in the end phase of the
protocol (i.e. right of the second separator).
The reason is that the TTP cannot abort a resolve
request of an honest signer in this phase of the
protocol, since the signer already signed the contract.

P4 Between two successively marked numbers, sayn1 and
n2, there must be no occurrence ofn1.
If there would be an occurrence ofn1 between two
consecutive resolve requests ofn1 and n2, then the
resolve request ofn2 would reveal thatn1 behaved
dishonestly. This is because the TTP can infer from
resolve requestn2 that n1 has continued with the nor-
mal course of the protocol after having sent a resolve
request. In such a case the TTP could immediately
overturn an earlier abort decision forn1.

Henceforth, we will assume thatA (the set of signers)
is a finite set of sizeα. Let A∗ denote the set of all finite
sequencesσ = (σ1, . . . , σn) over A. A sequenceσ′ is a
subsequenceof σ if σ′ can be obtained by erasing zero or
more symbols fromσ.

The observations above are formalized as follows.

Definition 5. Let σ = (σ1, . . . , σn) ∈ A∗. Then σ is a
signing sequence if n≥ 2α and if it starts and ends with a
permutation of A. The prefix of lengthα−1 of σ is called the
initial sequence ofσ and the suffix of lengthα is called the
end sequence ofσ. The sequence remaining after removing
the initial and end sequence fromσ is called the middle
sequence ofσ.

The four conditions for successful abort-chaining attacks
can now be stated as follows.

Definition 6. Let σ ∈ A∗ be a signing sequence of length
n. A subsequenceσ f (1), . . . σ f (k) of σ is called an abort-
chaining subsequence (AC subsequence for short) if the
following holds:

1) ∀p,q σ f (p) , σ f (q);
2) f (1) < α;
3) f (k) > n− α;
4) ∀p σ f (p) <

⋃

f (p)< j< f (p+1)σ j .

A signing sequenceσ which has an AC subsequence will
be calledunfair. A signing sequence which is not unfair will
be calledfair. The relation between protocols satisfying the
fairness requirement and fair signing sequences is stated in
the following Lemma.

Lemma 1. Every MPCS protocol which gives rise to an
unfair signing sequence does not satisfy the fairness require-
ment.

Proof: The lemma follows from the formalization lead-
ing to Definition 6 as follows. An unfair signing sequence
satisfies the conditions in Definition 6. These conditions are
equivalent to the properties P1 through P4. By property P2,
the TTP has issued an abort reply to a signer. By repeated
application of properties P1 and P4, the TTP has issued an
abort or fully signed contract to a signer while the previous
resolution-seeking signer is deemed honest. Since the first
answer was an abort reply, all the following answers are an
abort reply. By property P3 and rule TTP2, the TTP has
issued a fully signed contract to a signer. Since the previous
resolution-seeking signer is honest and the current signeris
honest, fairness cannot be satisfied.

Note that a fair signing sequenceσ does not necessarily
give rise to a fair protocol, because there may be attacks
on the fairness property of a protocol which are not abort-
chaining attacks, while unfair signing sequences are limited
to the existence of abort-chaining attacks.

It follows that the number of messages in fair contract-
signing protocols investigated in this paper is necessary to
achieve fairness, but it may in general not be sufficient.

5. Relation to an open problem

An open combinatorial problem is to find the shortest
sequence over a setA which contains every permutation of
elements ofA as a subsequence. For instance, ifA = {1,2,3},
the shortest such sequence is 1213121. This problem has
been listed as a research problem in [12, Problem 36] where
it is attributed to R.M. Karp. Solutions by Newey [22],
Adleman [1], and Galbiati and Preparata [16] show that the
length l(α) of such a sequence is at mostα2 − 2α + 4 for
α = |A| ≥ 3.

In this section we show that the problem of finding the
shortest fair signing sequence is equivalent to the problem
of finding the shortest sequence containing all permutations

of elements inA as a subsequence. For the remainder of this
and the following section we will assume that|A| ≥ 3.

Theorem 1. A signing sequenceσ is fair if and only if the
sequence consisting of its middle and end sequence contains
all permutations of A as a subsequence.

Proof: Let σ′ be the sequence consisting of the middle
and end sequence ofσ. Assumeσ is fair. Suppose towards
a contradiction thatp is a permutation ofA which is not
a subsequence ofσ′. Then by Lemma 2 below,p can be
transformed into an AC subsequence ofσ contradicting
fairness ofσ.

Conversely, assume thatσ′ contains all permutations of
A as a subsequence and suppose towards a contradiction
that s = (σ f (1), . . . , σ f (k)) is an AC subsequence ofσ. We
may assume without loss of generality thatf (2) ≥ α and
f (k − 1) ≤ n − α. Sinceσ′ containsall permutations of
A as a subsequence, it must contains as a subsequence
(σg(1), . . . , σg(k)). By Condition 4 of definition 6, it follows
that g(i) ≤ f (i) or g(i) > f (i + 1) for i = 1, . . . , k − 1.
However, since (σg(1), . . . , σg(k)) is a subsequence ofσ′,
it follows that g(1) ≥ α > f (1), thus g(1) > f (2). Since
g(i + 1) > g(i), it follows inductively thatg(i) > f (i + 1) for
i = 1, . . . , k−1. This implies thatg(k) > g(k−1) > f (k) which
is a contradiction, sinceg(k) > f (k) > n − α, σg(k) = σ f (k),
and the end sequence is a permutation ofA.

The lemma below is used in the proof of theorem 1.

Lemma 2. A signing sequenceσ has an AC subsequence if
there is a permutation p= (p1, . . . , pα) of A such that p is
not a subsequence of the sequence consisting of the middle
and end sequence ofσ.

Proof: We construct an AC subsequence
(σ f (j−1), . . . , σ f (α)) of σ by computing its indices
f (j − 1), . . . , f (α) backwards, starting fromf (α).

Sinceσ is a signing sequence, there is a unique element
σi = pα in the end sequence. Letf (α) be the index of that
element, that is,

f (α) = max{i | σi = pα} .

Consider the longest suffix (p j , p j+1, . . . , pα) of p which is
a subsequence of the middle and end sequence ofσ. (Since
p itself is not a subsequence, it follows thatj > 1.)

Let f (j), . . . , f (α) be an increasing sequence such that for
j ≤ i < α

f (i) = max{ι | ι < f (i + 1), σι = pi} . (1)

Such a sequence exists, because (p j , p j+1, . . . , pα) is a
subsequence of the middle and end sequence ofσ.

Since (p j , p j+1, . . . , pα) is the longest possible subse-
quence andσ is a signing sequence, it follows that there
exists f (j − 1) < α with σ f (j−1) = p j−1. (Recall that the first
α elements ofσ are a permutation ofA.)

We show that (σ f (j−1), . . . , σ f (α)) is an AC sequence ofσ
by verifying all conditions of the definition:
• Condition 1 is satisfied sincep is a permutation.
• Condition 2 is satisfied sincef (j − 1) < α.
• Condition 3 is satisfied sincef (α) was chosen such that

f (α) > n− α.
• Condition 4 is satisfied by equation 1.
To illustrate the preceding Lemma and Theorem, consider

the signing sequenceσ given by

1234
∣

∣

∣

∣

543212345432
∣

∣

∣

∣

12345.

Its middle and end sequence is the sequence

54321234543212345.

The permutation 45231 does not occur as a subsequence
in the middle and end sequence, thus we can find an AC
subsequence by marking the first occurrence of the elements
of 45231 backwards in the signing sequence:

1234
∣

∣

∣

∣

543212345432
∣

∣

∣

∣

•

12345

1234
∣

∣

∣

∣

5432123454
•

32
∣

∣

∣

∣

•

12345

1234
∣

∣

∣

∣

54321
•

23454
•

32
∣

∣

∣

∣

•

12345

1234
∣

∣

∣

∣

•

54321
•

23454
•

32
∣

∣

∣

∣

•

12345

123
•

4
∣

∣

∣

∣

•

54321
•

23454
•

32
∣

∣

∣

∣

•

12345

Conversely, the permutation 15234 appears as a subse-
quence of the middle and end sequence emphasized in
boldface:

54321234543212345.

By the construction in the proof of Theorem 1, the
permutation sequence 15234 cannot be an AC subsequence
of σ, because elements of any valid marking will always
trail behind the permutation sequence:

•

1234
∣

∣

∣

∣

•

54321
•

23454
•

32
∣

∣

∣

∣

12345

By Condition 4 of Definition 6, the 4 in the end sequence
cannot be marked because of the boldface 3 in the end
sequence.

Corollary 1. Let n be the length of a shortest fair signing
sequence over A. Then there is a sequence of length n−α+1
containing all permutations of A as subsequences.

Proof: Let σ be the shortest fair signing sequence over
A. The initial sequence ofσ has lengthα−1, thus the length
of the middle and end sequence isn−(α−1). By Theorem 1,
this is a sequence containing all permutations ofA.

Corollary 2. Let λ be the length of the shortest sequence
containing all permutations of A as subsequences. Then the

shortest fair signing sequence has length at leastλ + α − 1
and at mostλ + 2α − 3.

Proof: Let σ′ be the shortest sequence of length
λ containing all permutations ofA as subsequences. Let
p1, . . . , pα−1 ∈ A \ {σ′1} be pairwise distinct.

• Suppose that the first or the lastα elements of
σ′ are a permutation of elements inA. (That is,
{σ′
λ−α+1, . . . , σ

′
λ
} = A or {σ′1, . . . , σ

′
α} = A.)

Since the reverse sequence ofσ′ contains all per-
mutations of A as a subsequence if and only ifσ′

does, we may, in this case, assume without loss of
generality, thatσ′ ends with a permutation of elements
in A. By Theorem 1,σ = (p1, . . . , pα−1, σ

′
1, . . . , σ

′
λ
) is

a fair signing sequence, of lengthλ + α − 1. A fair
signing sequence shorter thanσ would, by Corollary 1,
contradict the minimal length ofσ′.

• Suppose that neither the first nor the lastα elements of
σ′ are a permutation of elements inA.
Then, for p′1, . . . , p

′
α−2 such that

{p′1, . . . , p
′
α−2, σ

′
λ
, σ′
λ−1} = A, the sequence

σ = (p1, . . . , pα−1, σ
′
1, . . . , σ

′
λ
, p′1, . . . , p

′
α−2) is a

fair signing sequence by Theorem 1. Its length is
λ + 2α − 3.

Remark1. We could strengthen the last two corollaries if we
knew that the shortest sequence containing all permutations
of A as subsequences starts or ends with a permutation ofA.
In that case, the difference between the lengths of shortest
fair signing sequences and shortest sequences containing all
permutations ofA as subsequences would always beα − 1.

Newey [22] and Adleman [1] have constructively shown
that there are sequences of lengthα2−2α+4 containing all
permutations ofA as subsequences. These constructions are
such that the sequences start with a permutation ofA. We
can therefore setλ = α2 − 2α + 4 in Corollary 2 and obtain
our main theorem.

Main Theorem. There is a fair signing sequence in A∗ of
lengthα2 − α + 3.

Proof: Apply the proof of Corollary 2 to Newey’s or
Adleman’s sequences.

Remark2. A fair signing sequence of lengthα2 − α + 3
can be transformed back into a MPCS protocol of length
α2
+ 1. However, this transformation does not automatically

imply fairness of the resulting MPCS protocol, but merely
resistance to abort chaining attacks.

Newey’s and Adleman’s construction and the conjec-
ture [22], [19] thatα2 − 2α + 4 is the shortest possible
length for any sequence containing all permutations ofA
as subsequences imply the following conjecture.

Conjecture 1. For α ≥ 3, all signing sequencesσ ∈ A∗ with
|σ| < α2 − α + 3 are unfair.

Main Conjecture. For α ≥ 3, all MPCS protocols with
fewer thanα2

+ 1 messages are unfair.

The Main Conjecture follows from Conjecture 1 by
adding the minimal length of the end phase as derived in
Observation 3 minusα, which is the length of the end phase
in the abstract signing sequences.

In the next section, we will prove the Main Conjecture
for the class of MPCS protocols in which all parties send
equally many messages in the middle phase of the protocol.
We refer to such protocols as beingbalanced. 1

6. Balanced protocols

According to the Main Conjecture, stated in the preceding
section, an MPCS protocol in which at mostα2 messages are
sent cannot be fair. We prove that the conjecture is true for
protocols in which no signer sends more thanα−2 messages
during the middle phase of the protocol.

Theorem 2. If α ≥ 3 andσ is a signing sequence in whose
middle sequence no element appears more thanα−2 times,
thenσ is unfair.

Proof: If a sequence contains all permutations of ele-
ments of a setA as subsequences, then there must be an
element of A appearing at leastα times. This has been
observed by Newey [22, Observation 2.12] and can be shown
by mathematical induction on the number of elements ofA.
It follows from this observation that a sequence in which
each element ofA appears less thanα times cannot contain
all permutations ofA. The Theorem now follows from the
equivalence in Theorem 1.

We now have the following immediate corollaries.

Corollary 3. MPCS protocols with at least three parties in
whose middle phase no party sends more thanα−2 messages
are unfair.

Corollary 3 can be used to prove lower bounds for
a variety of MPCS protocols that satisfy some regularity
conditions. For instance, if every party sends equally many
and at mostα − 2 messages during the middle phase of
an MPCS protocol, the protocol is unfair. In this case we
haveα2 − 2α messages in the middle sequence. Under the
assumption that a minimal number of messages will be
exchanged in the initial and end phase of the protocol, the
initial phase containsα − 1 messages and the end phase
contains 2α−2 messages. Thus we have a total ofα2

+α−3
messages and we obtain the following corollary.

Corollary 4. MPCS protocols with at least three parties and
of at mostα2

+α−3 messages in whose middle phase every
party sends equally many messages are unfair.

1. The notion ofbalancedas used here pertains to even distribution of
messages exchanged in an MPCS protocol; this should not be confused
with balanced MPCS protocolsas introduced in [9].

7. A minimal protocol

In this section, we build upon the previous sections to
design a three-party optimistic contract signing protocolwith
minimal number of messages. The presented protocol ex-
changes only 10 messages in the main protocol, hence being
more efficient than any existing protocol for this purpose
(the protocol of Mukhamedov and Ryan [21] exchanges 12-
messages in the main protocol).

The main purpose of this section is to illustrate the con-
cepts defined before and to show their possible application.
Thus, a full and formal verification of this protocol is outside
the scope of this paper. The level of formality and precision
achieved in the current security analysis is comparable with
the level of formality achieved in the proofs of state-of-the-
art and well-established protocols, such as in [21]. We leave
a model-checker based verification of the current protocol
for future research.

To construct the protocol the following steps are taken:

• A sequence which contains all permutations of num-
bers in {1,2,3} is constructed, e.g. using Adleman’s
algorithm [1]. This serves as the middle and (idealized)
end phase of the signing sequence. One such sequence
is 3123

∣

∣

∣

∣

123, of lengthα2 − 2α + 4 which evaluates to
seven whenα = 3. It has been shown in [22] that seven
is indeed the length of the shortest sequence containing
all permutations of{1,2,3}.

• The initial phase and the end phase are completed
according to Observations 1 and 2. We thus get
12
∣

∣

∣

∣

3123
∣

∣

∣

∣

123 as the complete signing sequence and
the exchange pattern shown in Figure 2 for the complete
protocol.

We specify the contents of messages, TTP’s logic, etc.,
similar to the protocol of [21]. These are briefly explained
below; all other terms are according to Definition 1.

We write [M] i for messageM signed by entityi, where
i ∈ {1,2,3,T} with T standing for the TTP.2 We assume that
M can be extracted from [M] i , and that all agents check
the validity of the received signatures. A message which
carries a bogus signature is destroyed by the recipient and
is considered as not being received. Messages exchanged
in the protocol are assumed to uniquely identify the in-
volved signers, their positions in the network, the identity
of the trusted party, and the contract text. We writec =
contr(C,TTP, p1, . . . , pα) for the complete description of
this information. The contents of messages are specified in
Figure 2.

The intuition is that signers start by giving a level 1
promise to sign the contract, then they increase the level
of their promise to level 2, and finally they release their

2. Note that these signatures are used to authenticate messages, and
should not be confused with a party’s signature on a contract.

1 2 3

prom1(c,1)

A
prom1(c,1),prom1(c,2)

A
prom1(c,2),prom1(c, 3)

R
prom1(c,3),prom2(c, 1)

R
prom2(c,1),prom2(c,2)

R
prom2(c,2),prom2(c, 3)

R
sig(c,1)

R
sig(c,1), sig(c,2)

R
sig(c,3)

sig(c,2), sig(c, 3)

Figure 2. Three-party contract signing with 10 mes-
sages in the main protocol

signature on the contract (that is sig(c, i), for i ∈ {1,2,3}).
A signed contractis the set

{sig(c,1), sig(c,2), sig(c,3)}

The TTP is assumed to be able to transform proml(c, i) to
sig(c, i), for any level l and anyi ∈ {1,2,3}; no one else
excepti has this ability. Cryptographic techniques to realize
such transformations are prevalent in the literature, e.g.[21].

If an expected message does not arrive, or the received
message does not conform to the protocol, signeri may
simply quit the protocol or resort to the TTP, depending
on where i is in the main protocol. A signer quits the
exchange if and only if he has not received any message
in the main protocol. That is, signers 2 and 3 can simply
quit the exchange if they do not receive prom1(c,1) and
prom1(c,1),prom1(c,2) in time, respectively. In all other
cases, signers have to resort to the TTP by sending the
following message:

i → T : [dispute, i,Hi , c] i

Here, dispute is a reserved keyword indicating that the
signer is disputing an exchange, andHi is the history
of signer i. The history of i at each stage of the pro-
tocol is the set of messages that he has sent or re-
ceived so far in the current execution. For instance,
H1 = {prom1(c,1),prom1(c,2),prom1(c,3),prom2(c,1)} for
signer 1, after sending the 4th message and before receiving
the 6th one. By sending his history, a signer attests his
position in the main protocol to the TTP and gives hints to
the TTP about the positions of other signers. Nevertheless,
a malicious signer can obviously lie about his history, e.g.
by pretending to be behind the actual state of the protocol.

Note that when contacting the TTP, signers do not explic-
itly specify whether they ask for an abortA or a resolveR

outcome. It is up to the TTP to decide which of these must be
the outcome of the dispute. The abort and resolve symbols
shown in Figure 2 merely indicate the decision of the TTP
in case the first dispute is raised at the corresponding point.

For each contract signing session, uniquely identified
with c, the TTP maintains a tuple〈c, status〉 in her persis-
tent, secure databaseDB. Upon receiving a dispute request
[dispute, i,Hi , c] i , the TTP checks whether her identity is
mentioned inc as the trusted entity in the exchange, whether
all the signatures contained in the history are genuine, and
whether the history is valid given the number of signers and
their position in the network. If all these tests pass, the TTP
checks whether〈c, ∗〉 ∈ DB:

• 〈c, ∗〉 < DB: A new exchange is being disputed. IfHi

corresponds to a point with anA symbol in Figure 2,
then the TTP sends back

T → i : [A, c]T

and stores〈c, (i : Hi)〉 in DB. The pair (i : Hi) helps
the TTP to remember at what positioni claims to be
at the moment of raising the dispute (below, we see
how this information is used). On the other hand, if
Hi corresponds to a point with anR in Figure 2, then
the TTP computesS = {sig(c,1), sig(c,2), sig(c,3)} and
sends back

T → i : S

and stores 〈c,S〉 in DB. Note that all Hi

that correspond to anR in Figure 2 contain
prom1(c,1),prom1(c,2),prom1(c,3). Therefore, the
TTP is able to computeS from such histories.

• 〈c, status〉 ∈ DB: In case 〈c,S〉 ∈ DB, for a set of
signaturesS, then the TTP simply replies as:

T → i : S

Note that this corresponds to the case the exchange has
been disputed before, and has been settled to a resolve.
We split the case the exchange has been considered
aborted before, i.e.〈c, (j : H j)〉 ∈ DB, into two different
situations:3

– The currentHi corresponds to an abort point in
Figure 2. Then, the TTP sends back

T → i : [A, c]T

and appends (i : Hi) to the statusassociated toc,
i.e. the TTP stores〈c, (j : H j); (i : Hi)〉 in DB.

– The currentHi corresponds to a resolve point in
Figure 2. This case is more complicated, as the
TTP may realize that some of the past disputes
were malicious. The key idea here is that the TTP
may overturn her abort decision, if she can deduce

3. As we will see in the following, thestatusassociated toc in DB may
contain a list of histories of the form〈c, (j : H j); · · · ; (i : Hi)〉.

from the current historyHi that all the previous
disputes (resulted in abort) were malicious. A pre-
vious abort by signerj is deemed malicious iff the
current historyHi contains a message signed by
j which shows thatj has continued the protocol
after resorting to the TTP (the position ofj at the
time he resorted to the TTP is stored instatusof
c as j’s history). If the TTP finds out thatall the
previous disputes were malicious, then she sends
back

T → i : S

and replaces the entry inDB corresponding toc
with 〈c,S〉. Otherwise, the TTP sends back

T → i : [A, c]T

and appends (i : Hi) to the statusassociated toc
in DB.

Remark3. The protocol presented in this section is more
efficient than existing protocols for the same purpose. It has
however a feature, which might limit its usability in certain
scenarios. The exchange pattern of the protocol (and thereby
the algorithms executed by the principals) depend on the
number of involved parties. For example, if another party
is added to the exchange, to ensure efficiency, we need to
devise a new exchange pattern, e.g., based on the algorithm
of [1]. This can be seen as a trade-off between efficiency
and scalability of these protocols.

Security analysis.In the following, we give a proof sketch
for the security of the protocol described above. Recall that
the desired properties of the protocol consist of timeliness,
abuse-freeness, and fairness.
• Timeliness is achieved simply because a signer can give

up waiting for a message at any time and resort to the
TTP (if the signer has not received any message, then he
can simply quit the exchange); the TTP will answer to any
dispute without waiting for input from other signers. It is
worth mentioning that all disputes raised by honest signers
will be processed by the TTP. This is due to the assumption
(cf. Table 1) that any signer can check whether the signatures
he receives are valid without contacting the TTP.
• Abuse-freeness is implied by usingprivate contract

signaturesà la [21] for the signatures (i.e. [M] i) exchanged
in the protocol.
• Now, we turn to fairness. Suppose an execution of

the protocol has ended, i.e., none of the honest signers
are waiting for input. This state is always reachable, due
to timeliness of the protocol. Further, assume signeri has
received honest signerj’s signature on the contract. Then,
we show that any honest signerk has received a signed
contract, consisting of the signatures of all the involved
signers on the contract. We distinguish two possibilities:

1) Signer i has obtainedj’s signature by receiving a
signed contract from the TTP via a resolve protocol.
If signer k has not received a signed contract in the
main protocol, he must have resorted to the TTP. If
k’s dispute has been processed afteri’s request, then
according to the TTP’s logic,k has also received the
signed contract from the TTP, via a resolve protocol.
If k’s dispute has been processed beforei’s request, we
need to show that the TTP would never send a signed
contract to any signer, after sending an abort token
to k (or, any honest signer in general). This, however,
is clear, as the only case in which the TTP considers a
signer as malicious and overturns her abort decision, is
the one where the signer proceeds in the main protocol
after having resorted to the TTP. Honest signers in
general, andk in particular, do not participate in the
main protocol after disputing the exchange.

2) Signeri has obtainedj’s signature (possibly indirectly)
from j himself; that is,j has released his signature in
the main protocol. Honest signerk either receives a
signed contract in the main protocol, or resorts to the
TTP. Therefore,k may not receive a signed contract
only if the TTP replies with an abort token tok’s
dispute. The TTP replies withabort to an honest signer
(in particular k) only if either this honest signerk
has disputed the exchange in the initial phase of the
protocol, or the TTP cannot grant a resolve due to
her earlier abort decisions. The former is impossible,
since j would not have released his signature if an
honest signer had stopped the main protocol in the
initial phase. The latter is a typical instance of abort
chaining, to which, according to our theorems, this
protocol is not susceptible.

While a full proof of timeliness, abuse-freeness, and
fairness is not the aim of the preceding analysis, given a
suitable framework, such a proof can be achieved following
the sketch outlined above.

8. Conclusions

In this paper, we derived a lower bound on the number of
messages in an optimistic asynchronous multi-party contract
signing protocol. This lower bound is not of a purely the-
oretical nature, since our approach has several implications
with respect to security.

First of all, our work affects the design of correct and
efficient multi-party contract signing protocols. Due to the
constructive nature of our approach, we can generate proto-
cols which are optimal with respect to the derived bound. We
illustrated this for the case of three signers by constructing
a protocol which is shorter than current state-of-the-art
solutions. We leave the generalization of this construction,
including a full and formal correctness proof as a topic of
future research. We conjecture that the protocols obtainedin

this way will be correct since the three security requirements
follow by construction: abuse-freeness is implied by the
use of private contract signing, timeliness follows from the
ability to contact the TTP, and fairness follows mainly from
the absence of abort-chaining attacks. Indeed, we conjecture
that under the given assumptions, with the given structure
of the messages, the only source of unfairness can be abort
chaining.

The second application to security consists of the pos-
sibility to efficiently verify protocols in this domain with
respect to abort-chaining attacks. Obvious algorithms to test
if a sequence contains all permutations, can be easily found.
An interesting question is whether it is possible to improve
upon these obvious algorithms.

As stated before, developing a full formalization of MPCS
protocols was not the goal of this paper because that would
be orthogonal to the results of our research. We consider
signing sequences as an elegant and formal model of the
problem of abort chaining. Nevertheless, the development of
a full formal model of MPCS protocols and their security
requirements is an important next step.

There are several other directions in which future work
could be carried out. Given a set of regularity requirements
imposed by practical considerations, the question of the most
efficient MPCS protocol satisfying these requirements arises.
Such questions could be treated similarly to the balanced
protocols in Section 6. Along the same lines and in view of
the present results, the Mukhamedov and Ryan protocol [21]
is close to being optimal for an even number of parties, but
not for an odd number of parties.

Concerning the fairness property itself, it can be expected
that similar methods for reasoning about fairness of multi-
party contract signing protocols exist when some of the
assumptions shown in Table 1 are relaxed. In particular,
it would be interesting to investigate such methods when
allowing for concurrency in the protocol execution instead
of requiring total order of messages.

Aside from tackling the obvious open problem of proving
the main conjecture, showing that for any shortest sequence
containing all permutations of a setA, there is a sequence
of equal length which starts with a permutation ofA would
not only be of mathematical interest, but it would also close
the gap between Corollaries 1 and 2 as stated in Remark 1.

As a final note, recall that in optimistic two-party con-
tract signing protocols, four messages in the main protocol
are necessary and sufficient to achieve fairness [23]. The
conjectured lower bound for optimistic multi-party contract
signing protocols withα > 2 signers isα2

+1. It is interesting
that this off-by-one connection is paralleled in the related
combinatorial problem. The shortest sequence containing all
permutations of two elements has length three, while the
conjectured formula for the shortest sequence ofα > 2
elements isα2 − 2α + 4. This formula is known to hold
true for 2< α < 8.

References

[1] L. Adleman, “Short permutation strings,”Discrete Math.,
vol. 10, pp. 197–200, 1974.

[2] N. Asokan, “Fairness in electronic commerce,” PhD Thesis,
University of Waterloo, 1998.

[3] N. Asokan, M. Schunter, and M. Waidner, “Optimistic
protocols for multi-party fair exchange,” IBM Research,
Research Report RZ 2892 (90840), Dec. 1996. [Online].
Available: citeseer.ist.psu.edu/article/asokan98optimistic.html

[4] ——, “Optimistic protocols for fair exchange,” inCCS ’97:
Proceedings of the 4th ACM conference on Computer and
communications security. New York, NY, USA: ACM, 1997,
pp. 7–17.

[5] N. Asokan, V. Shoup, and M. Waidner, “Optimistic fair
exchange of digital signatures,”IEEE Journal on Selected
Areas in Communications, vol. 18, no. 4, pp. 593–610, 2000.

[6] B. Baum-Waidner, “Optimistic asynchronous multi-party
contract signing with reduced number of rounds,” in
Automata, Languages and Programming — ICALP 2001,
ser. LNCS, F. Orejas, P. G. Spirakis, and J. van
Leeuwen, Eds., vol. 2076. Crete, Greece: Springer-
Verlag, July 2001, pp. 898–911. [Online]. Available:
citeseer.ist.psu.edu/article/baum-waidner01optimistic.html

[7] B. Baum-Waidner and M. Waidner, “Round-optimal and
abuse free optimistic multi-party contract signing,” inAu-
tomata, Languages and Programming — ICALP 2000, ser.
LNCS, U. Montanari, J. D. P. Rolim, and E. Welzl, Eds., vol.
1853. Geneva, Switzerland: Springer-Verlag, July 2000, pp.
524–535.

[8] M. Ben-Or, E. Pavlov, and V. Vaikuntanathan, “Byzantine
agreement in the full-information model in o(log n) rounds,”
in STOC ’06: Proceedings of the thirty-eighth annual ACM
symposium on Theory of computing. New York, NY, USA:
ACM, 2006, pp. 179–186.

[9] R. Chadha, M. Kanovich, and A. Scedrov, “Inductive methods
and contract-signing protocols,” inCCS ’01. ACM, 2001,
pp. 176–185.

[10] R. Chadha, S. Kremer, and A. Scedrov, “Formal analysis of
multi-party contract signing,” inCSFW ’04. Washington,
DC, USA: IEEE Computer Society, 2004, p. 266.

[11] K. M. Chandy and J. Misra, “How processes learn,” inPODC
’85. ACM, 1985, pp. 204–214.

[12] V. Chvatal, D. A. Klarner, and D. E. Knuth, “Selected com-
binatorial research problems,” Stanford University, Depart-
ment of Computer Science, Stanford, CA, USA, Tech. Rep.
STAN-CS-72-292, June 1972, http://infolab.stanford.edu/pub/
cstr/reports/cs/tr/72/292/CS-TR-72-292.pdf.

[13] D. Dolev and A. Yao, “On the security of public key proto-
cols,” IEEE Transactions on Information Theory, vol. IT-29,
no. 12, pp. 198–208, Mar. 1983.

[14] S. Even and Y. Yacobi, “Relations among public key signature
systems,” Computer Science Dept., Technion, Haifa, Isreal,
Tech. Rep. 175, March 1980.

[15] M. Franklin, Z. Galil, and M. Yung, “An overview of secure
distributed computing,” Department of Computer Science,
Columbia University, Tech. Rep. TR CUCS-008-92, March
1992.

[16] G. Galbiati and F. Preparata, “On permutation-embedding
sequences,”SIAM Journal on Applied Mathematics, vol. 30,
no. 3, pp. 421–423, May 1976.

[17] J. Garay, M. Jakobsson, and P. MacKenzie, “Abuse-free
optimistic contract signing,” inAdvances in Cryptology –
CRYPTO’99, ser. LNCS, M. J. Wiener, Ed., vol. 1666. Santa
Barbara, California, USA: Springer-Verlag, Aug. 1999, pp.
449–466.

[18] J. A. Garay and P. D. MacKenzie, “Abuse-free multi-party
contract signing,” inInternational Symposium on Distributed
Computing, 1999, pp. 151–165. [Online]. Available: citeseer.
ist.psu.edu/article/garay99abusefree.html

[19] P. Koutas and T. Hu, “Shortest string containing all permuta-
tions,” Discrete Math., vol. 11, pp. 125–132, 1975.

[20] N. Lynch, Distributed Algorithms. Morgan Kaufmann Pub-
lishers, 1996.

[21] A. Mukhamedov and M. D. Ryan, “Fair multi-party
contract signing using private contract signatures,”Inf.
Comput., vol. 206, no. 2-4, pp. 272–290, 2008.
[Online]. Available: ftp://ftp.cs.bham.ac.uk/pub/authors/M.
D.Ryan/06-contract-IC-review.pdf

[22] M. C. Newey, “Notes on a problem involving permutations as
subsequences,” Stanford University, Department of Computer
Science, Stanford, CA, USA, Tech. Rep. STAN-CS-73-340,
March 1973, http://infolab.stanford.edu/pub/cstr/reports/cs/tr/
73/340/CS-TR-73-340.pdf.

[23] B. Pfitzmann, M. Schunter, and M. Waidner, “Optimal effi-
ciency of optimistic contract signing,” inPODC ’98. ACM
Press, 1998, pp. 113–122, extended version as technical report
RZ 2994 (#93040), IBM Z̈urich Research Lab, Feb. 1998.

[24] A. Russell, M. E. Saks, and D. Zuckerman, “Lower bounds
for leader election and collective coin-flipping in the perfect
information model,”SIAM J. Comput., vol. 31, no. 6, pp.
1645–1662, 2002.

[25] N. Stenning, “A data transfer protocol,”Computer Networks,
vol. 1, no. 2, pp. 99–110, 1976.

