On Password-Authenticated Key Exchange Security
Modeling*

Jean Lancrenon

Université du Luxembourg,
Interdisciplinary Centre for Security, Reliability and Trust,
6 rue Richard Coudenhove-Kalergi, [-1359 Luxembourg City,
LUXEMBOURG

jean.lancrenon@uni.lu

Abstract. Deciding which security model is the right one for Authenticated
Key Exchange (AKE) is well-known to be a difficult problem. In this paper, we
examine definitions of security for Password-AKE (PAKE) in the style proposed
by Bellare et al. [5] at Eurocrypt 2000. Indeed, there does not seem to be any
consensus, even when narrowing the study down to this particular authentication
method and model style, on how to precisely define fundamental notions such
as accepting, terminating, and partnering. The aim of this paper is to begin
addressing this problem. We first show how definitions vary from paper to paper.
We then propose and thoroughly motivate a definition of our own, and use the
opportunity to correct a minor flaw in a more recent and more PAKE-appropriate
model proposed by Abdalla et al. [3] at Public Key Cryptography 2005. Finally,
we argue that the uniqueness of partners holding with overwhelming probability
ought to be an explicitly required and proven property for AKE in general, but
even more so in the password case, where the optimal security bound one aims
to achieve is no longer a negligible value. To drive this last point, we exhibit a
protocol that is provably secure following the Abdalla et al. definition, and at
the same time fails to satisfy this property.

1 Introduction

Password-authenticated key exchange. Key Exchange (KE) is preoccupied with
establishing a secure ephemeral session key between two remote parties over an insecure
network. The well-known Diffie-Hellman protocol [16] solves this problem over commu-
nication lines that are perhaps eavesdropped on, but remain otherwise undisturbed.
Authenticated KE (AKE) aims to realize KE in such a way that the communicating
parties gain some guarantee that they have established a key with the right partner
even in the face of malicious - i.e. more than just eavesdropping - attackers. This is only
possible if all honest parties in play have some sort of trusted setup in place prior to the
exchange, taking the form e.g. of a Public Key Infrastructure (PKI) correctly managing
everybody’s public keying information, or pairwise-Shared long-term Symmetric Keys
(SSK), etc. Password AKE (PAKE) is AKE in which the long-term keys are simple
passwords.

Using ordinary passwords - by which we mean low-entropy, human-memorable pieces
of data - as long-term authentication material cannot simply be securely viewed as a
particular case of the shared-symmetric-key scenario. Indeed, the low entropy of pass-
words makes them vulnerable to dictionary attacks, both off-line and on-line. Hence,
special care must be taken in designing a PAKE protocol. Note that it is always trivially

* This is the full version of paper [30], which appeared in the proceedings of the PASSWORDS
2015 workshop in Cambridge, UK, in December 2015.

2 Jean Lancrenon

possible to simply run the protocol with an honest participant using a guessed pass-
word as input, and observing whether the exchange fails or succeeds. Such an on-line
attack is inherent to the service, and cannot be avoided. Intuitively, we would like to
limit a network adversary’s effective attacks to this trivial strategy. This implies namely
that untampered protocol network traffic must protect, at least computationally, every
single bit of information on the underlying passwords. In a nutshell, on-line attacks are
limited to successive login attempts, and off-line attacks are completely prohibited.

Security models. Complexity theoretic PAKE security models capturing these re-
quirements made their first appearance at Eurocrypt 2000, in the form of the Bellare
et al. [5] and Boyko et al. [9] models. This paper is concerned with proofs of security
using the former, which we shall call BPR-style proofs. We also consider proofs using
Abdalla et al.’s [3] model, which is a slight modification of the [5] model. BPR-style
proofs are by far the most common in the literature, but unfortunately they are not
very easy to understand. One reason for this is that often, small technicalities vary in
the models’ definitions from paper to paper, and it is not always clear why. This is
especially the case when trying to define when it is that two parties have had a correct
protocol conversation, a notion known as partnering.

Our aim is to draw attention to this issue, in order to at least start clarifying it.
This is important to be able to more accurately interpret security claims in papers.

Our contributions. In Section 2, we focus on the current state of BPR-style modeling
in the literature. We first show how definitions vary from paper to paper in terms
of instances accepting, terminating, and partnering, citing precise examples. We then
show how the subsequent security model of Abdalla et al. [3] is slightly bugged. These
considerations lead into Section 3, in which we redefine the model(s) to fit all usual
protocol scenarios and also fix the bug in [3]. The change has to do with the uniqueness
requirement of the partner in the definition. As a follow-up, we examine this uniqueness
property in detail in Section 4. We namely present evidence that it ought to be an
explicitly stated and proven property of any AKE protocol, and even more so in the
PAKE case, where the optimal security bounds are no longer negligible values (in order
to account for the adversary’s natural ability to simply guess a password and try it out).
To this end, we exhibit a PAKE which is provably secure according to the Abdalla et
al. definition (the proof is in Appendix A), but fails to satisfy that partners be unique
with overwhelming probability.

Related work. PAKE was first considered by Bellovin and Merritt [7] and Jablon [21],
with informal security arguments. Lucks [31] and Halevi et al. [20] were the first to
produce formal models involving passwords. They were followed by Bellare et al. [5]
and Boyko et al. [9], building on the AKE models introduced in [6] and [35], respec-
tively. Since, many protocols have been proposed and studied: Katz et al. [23] showed
that PAKE can be practically realized without random oracles but with a Common
Reference String (CRS), Goldreich et al. [18] showed that PAKE can be realized solely
under general complexity assumptions, and Canetti et al. [13] introduced universally
composable (see [12]) PAKE, to name a few. A more complete bibliography on PAKE
can be found in [34].

Some research on comparing AKE security models in general has been conducted.
Notably, Choo et al. [14] and Cremers [15] examine how differing definitions affect
security in indistinguishability-based models, but none of these works focus on password
protocols. To our knowledge, nothing of the sort for PAKE has been considered yet.

Organization of the paper. The rest of the paper is structured as follows. Section 2
overviews existing PAKE model definitions, and points to some differences and incon-
sistencies. Next, Section 3 revisits all of these definitions, trying to place them under

On PAKE security modeling 3

one roof, and introduces the matter of partner uniqueness. Then, Section 4 shows why
making uniqueness of partners a property is important, especially in the context of
PAKEs. Finally, Section 5 concludes the paper.

2 Different BPR-style models

In what follows, we denote L the special error symbol and & the empty string. We use
U to designate both the entity U, and the bitstring identifying U.

2.1 The models’ main foundations

Here we describe the main aspects commonly shared by all BPR-style models. Some
of the notions are at first left intentionally vague. We first detail the parties in play,
then we list the adversary’s abilities. The security definitions capturing confidentiality
of SKs and authentication come at the end.

Principals and instances. An interactive game, indexed by the security parameter
A € N| is played between a challenger CH and an adversary A. All of the algorithms
considered are Probabilistic, Polynomial-Time (PPT) in .

At the beginning of the game, there is a fixed set of principals (or users), which is
partitioned into non-empty sets of clients C and servers S. Each client C is assigned a
password pwe drawn uniformly at random from some finite - possibly small - set PW
of bitstrings. Each server S holds the full set of all clients’ passwords {pwe}c.

The adversary A has oracle access - via the queries described below - to any number
of instances U' (i € N) of any principal U. Intuitively, an instance of U represents
an attempt U makes at running the AKE protocol over the network, which is fully
controlled by A. An instance’s objective is to compute a Session Key (or SK) it believes
it shares with an instance V7 of some other principal V. This should happen only if I/*
thinks it has “had a correct exchange with” V7.

At any point in time, an instance U* may declare itself “ready to use a SK”. By
this time, the instance should have computed 1) a Partner Identity (or PID) pid;,, a 2)
Session Identity (SID) sid;,, and of course 3) the SK skj, itself. The PID is a bitstring
indicating the identity of the instance with which 2/* believes it has communicated with.
The SID is a bitstring serving as an identifier for both the key exchange run that just
occurred, and the session in which the computed SK will subsequently serve. Often in
practice the SID is set to being the ordered concatenation of all exchanged protocol
messages, except possibly the last message. At any point in time an instance may also
“refuse to participate any longer in the protocol”, and halt altogether. This can happen
if a message e.g has an incorrect format, or if authentication fails. Once an instance
has finished - either declaring it has a SK, or having just stopped - it can no longer be
reused.

We purposefully did not make the notions of “having a correct exchange with an
instance”, “declaring oneself ready to use a SK”, and “refusing to participate any longer
in the protocol” precise, because these are where consensus does not seem to hold. They
will be made more precise 1) in the different examples we give further below and 2)
when we give and motivate our own definition in Section 3. These notions are also
correlated to when and how the PID, SID, and SK are computed.

4 Jean Lancrenon

We now describe the oracle queries the adversary has access to. These change accord-
ing to whether we are in the Find-then-Guess (or FtG) model [5] or the Real-or-Random
(or RoR) model [3].! The security definitions themselves will come after.

Find-then-Guess. This is the original model introduced in [5]. It can be viewed as a
“password spin-off” of the classic Bellare/Rogaway model [6] for AKE security.

— send (U, i,m): A has message m delivered to U’. U processes the message according
to protocol specification. To instruct an instance U to send the first protocol message
to entity V, A makes the query with m = V. This query is used to model arbitrary
message delivery to an instance. In particular, it serves to count impersonation
attacks.

— execute(U,V,i,7): The protocol is executed faithfully and completely between U
and V7 and the resulting transcript is given to A. A thus gets to see as many honest
protocol runs as it wishes.

— reveal(U,q): If U is not ready to use a SK, the query returns L. Otherwise, it returns
ski, to A. This models leakage of session key information through use in the ensuing
session (the quality of the algorithms of which we know nothing about).

— test(U,q): If U* is not ready to use a SK, this returns L. Otherwise, CH flips a coin
b outside of A’s view. If b = 0, a random string R is drawn from the session key
space and tk};, <+ R. Otherwise, tk:zil — skb The test key (or TK) tkzz is returned
to A. The test query may only be used once in the game. Its purpose is to measure
the adversary’s advantage in breaking session key security.

Eventually, A halts the overall game, at which point it outputs a bit &’. If the game was
halted without A making any test query, then CH privately flips a coin b.

Freshness: To get a meaningful definition of SK security (see below), a restriction
must be put in place on the test query. Namely, A cannot be considered victorious if it
already trivially knows the SK that it tested. Therefore, the notion of freshness must
be introduced: An instance U’ is fresh if neither it, nor any instance with which it has
had a correct exchange, has been the subject of a reveal query. Thus, we must slightly
modify the test and reveal queries presented above: we add that test returns L if U* is
not fresh and that reveal returns L if 2%, or an instance with which it has had a correct
exchange, has been tested.

Real-or-Random. This is the model introduced in [3]. In a nutshell, it differs from
FtG in that it makes all of the keys revealed to the adversary either the truly computed
keys or completely random strings. In [3] it is proven that for PAKEs, this makes a
real security difference. Thus, it is recommended to use RoR rather than FtG when
employing BPR-style models. (See [3] for details.)

The send and execute queries are identical to those in the FtG model. However, the
reveal query is no longer available. Instead, it is replaced by as many test queries as A
wants. How they are answered depends on the value of a bit b flipped by CH outside of
A’s view at the beginning of the game.

— test(U,i): If U* is not ready to use a session key, L is returned. Otherwise, suppose
first that b = 0. If & has not had a correct exchange with any instance, or no
instance that it has had a correct exchange with was subjected to a test query, CH
selects a random R from the session key space and sets tk{/, +— R. If Y* has had
a correct exchange with an instance V7 that has been tested, CH sets tk{, <+ tk;{,.
Suppose now that b = 1. In this case, CH sets tk;, < ski,. Then, A receives tkj,.

! To simplify our exposition, in this preliminary study we make no attempt at dealing with
the corruption query - used to model the important property of forward secrecy - in this
paper.

On PAKE security modeling 5

The slight complication arising in case b = 0 is that even if the SKs assigned are random,
they must at least remain consistent across instances that should hold the same keys.
As in FtG, at any point in time A may halt the game and output a bit ¥'.

Technically defining security. In both FtG and RoR, one usually considers three
security properties: SK security, Client-to-Server (C2S) authentication, and Server-to-
Client (S2C) authentication.

SK security: Let S be the event that “b" = b at the end of the game”. Event S
measures the semantic security of the SK, i.e. the adversary’s ability to tell this key
apart from a random string. Since A can simply flip a coin to get the answer right
with probability 1/2, A’s natural advantage is defined to be Adv®(A) := 2Pr[S] — 1.
A PAKE protocol is said to have semantically secure SKs if there exists a non-zero
constant C' € N such that for any PPT A, there exists a negligible (in \) function negl
with the property that Adv®(A) < |CPT\‘N| + negl(\) where ng. is an upper bound on the
number of send queries the adversary makes.

Authentication: Let C2S be the event that “there exists some server instance S’
that is ready to use a SK, but has not had a correct exchange with a client instance.”
This event measures the adversary’s ability to cause client-to-server authentication to
fail, i.e. a server thinks it is talking to a correct client when it is not. Here we simply set
Adv®*(A) := Pr[C2S], and we say that a PAKE achieves client-to-server authentication
if there exists a non-zero C' such that for any PPT A, there exists a negligible function
negl with the property that Adve®*(A) < \C;\l/\/l + negl(A). Server-to-client authentication
is defined similarly.

Intuitively, the constant C represents the number of passwords that can be ruled
out per login attempt. Obviously, C' = 1 is the optimal bound.

We will return to these definitions with precise terminology in Section 3.

2.2 Differences in accepting, terminating, and partnering

In this section, we illustrate how the notions of “having had a correct exchange”, “declar-
ing oneself ready to use a SK”, and “refusing to further participate in the protocol”,
among other things, are formalized in various examples of the literature. These formal-
izations often vary from paper to paper, usually without much justification.

We begin with some technical terminology which is mostly common to all papers,
but the interpretation and use of which are what always seem to vary:

— Two instances which “have had a correct exchange” are said to be partnered;

— An instance that is “ready to use a session key” is said to have accepted or termi-
nated;

— The “refusal to further participate in the protocol”, oddly, does not seem to have a
technical term commonly attached to it.

In the examples that follow, we recapitulate precisely how the afore-mentioned points
are dealt with and interpreted. We picked these three examples as they can be considered
“landmark” papers: The first [5] introduced BPR-style reasoning to PAKE analysis, the
second [3] brought in the RoR model, and the (conference version [23]) of the third [24]
showed that PAKE is realizable without random oracles.? After each example, we also
compile a list of additional papers that emulate (or claim to emulate) the example in
question. Recall that € designates the empty string.

2 Of course, these are not the only beacons in the field; they are just the most relevant to our
work.

6 Jean Lancrenon

In the original model from [5]. This model - the first of its kind - is FtG. Accepting:
At any point in time, an instance 4% may accept. This means that it holds a non-e SK
and has computed a non-¢ PID and non-¢ SID. Terminating: At any point in time
after having accepted, an instance may terminate. This means that it will no longer
send, nor expect to receive, any more messages. Partnering: Two instances U’ and V7
are partnered if 1) one is a client and one is a server, 2) both instances have accepted,
3) pidj, = V and pid}, = U, 4) sid := sidy, = sid},, 5) sk, = ski,, and 6) no other
instance accepts with a SID sid.

Apparent intended interpretation: Accepting in this model appears to mean
being ready to use the session key, since it is under the condition of having accepted that
reveal and test queries can be made. However, accepting is different from terminating in
that an instance may wish to accept at one point in time, and yet terminate later. This
is to model key confirmation: an instance accepts first - it believes it holds a good session
key - but waits for its purported partner to send it a confirmation code to terminate.

Some observations: That the session key can be used before a confirmation code
is received is puzzling to us. We believe it may be more logical to have the SK be
formally accepted as such at termination time, using this terminology.

There does not appear to be any special term for when an instance refuses to continue
in the protocol.

Also, notice that formally, for an instance to be partnered, its partner must be
unique. More on this uniqueness is in Paragraph 2.3 and Section 4.

No notion of protocol correctness is defined.

Papers following this approach include [32, 10,11, 29, 33, §].

The RoR model paper [3]. This paper’s primary topic of investigation is PAKE
in the three-party setting® (or 3-PAKE, as opposed to the two-party setting, or 2-
PAKE), but it contains contributions (namely, the RoR method) relevant to both 3-
PAKE and 2-PAKE. (In this paper, we consider only 2-PAKE, which we shall also
continue calling just “PAKE”.) We focus on the 2-PAKE definitions, referring to the
3-PAKE ones when appropriate. Accepting: For 2-PAKE, accepting is not formally
defined, so it is unclear whether a session key exists at this point or not. For 3-PAKE,
accepting only happens “after receiving the last expected protocol message”, so this
actually corresponds more to termination in [5]. It is unclear whether the 2-PAKE
definition is assumed to be the same. Terminating: This is not formally defined.
However, it is stated that “in practice, the SID can be taken to be the partial transcript
of the conversation between the client and the server instances before the acceptance.”
This implies that accepting comes earlier than something else, possibly termination.
Partnering: For 2-PAKE, two instances U’ and V7 are partnered if 1) both instances
have accepted, 2) sid := sidj, = sid},, 3) “the partner identifier for ¢* is V7 and vice-
versa”, and 4) “no instance other than #* and V7 accepts with a partner identifier equal
to U’ or VI7.

Observations: Accepting and terminating are unclear. Accepting here may be the
same as terminating in [5].

Nothing is in place to indicate if an instance refuses to continue in the protocol.

In terms of partnering, for 2-PAKE there is no need for one instance to be a client
and the other a server, unlike in [5]. Points 3) and 4) are unclear, because the PID of
an instance is never defined anywhere. However, these points should be probably be
understood respectively as “pida =V and pidj, = U” and “no other instance accepts
with a SID sid”, as in [5]. Also, in contrast to [5], there is no condition on the SK
anymore.

3 A server aids two clients that wish to exchange a key between themselves; each client shares
a private password with the server.

On PAKE security modeling 7

The uniqueness condition is still required to formally satisfy partnering.
There is no mention of correctness.
Papers following this approach include [27, 2, 1].

The journal version [24] of [23]. Paper [23] presented the first practical PAKE se-
cure under standard assumptions (but with a CRS). We discuss the journal version [24]
here, which is FtG. Accepting: For a given instance U’, once U" accepts, sid;,, pid,,
and sk;, are no longer . Also, acceptance implies termination. Terminating: Ter-
minating means the instance will no longer send nor receive messages. Partnering:
Two instances U and V? are partnered if 1) one is a client and the other a server, 2)
sidj, = sid}, # ¢, and 3) pidj, =V and pid}, = U.

Observations: Accepting and terminating are distinct, but unlike in [5], accepting
implies termination. This suggests that termination without acceptance is used, in this
paper, to designate when an instance refuses to continue.

Partnering differs here from [5] in that acceptance is no longer required, there is no
condition on the SK, and there is no requirement of partner uniqueness.

There is a correctness notion: If 4* and V7 are partnered, then they must have both
accepted and have equal session keys.

The authors state that their definition only covers implicitly authenticated proto-
cols, and that partnering would have to be redefined in order to account for explicit
authentication.

Papers following this approach include [17,22, 19, 25, 26]*.

Having such a variety of definitions to pin down formally fundamental notions is
problematic. First, while we have not attempted to show so in this work, it is more
than likely that protocols deemed secure according to one definition become trivially
insecure according to another definition. Situations like these have been documented in
the past in non-password-based cases, see [14, 15]. Secondly, it is confusing for anybody
trying to decide whether a protocol’s formal security can be trusted or not.

In what follows, we focus on the “uniqueness of partners” aspect in these definitions.
We begin by taking another look at the RoR model as defined in [3].

2.3 A bug in the RoR model

In [3], it seems the RoR definition is slightly ill-defined.

Consider the following scenario in the RoR security game. Suppose that the bit
flipped at the beginning of the game ends up being 0, making CH output all-random
keys. Suppose also that at some point in time, the adversary A gets a pair of instances
U* and V7 to accept and be partners according to the definition in Section 2.2. In
particular, at this point in the game, 4* and V7 are the only instances to have accepted
with a SID equal to sid := sidj,. Next, A performs a test query on each instance. The
result is that A receives the same random string R from both instances. Now, suppose
that somehow A gets a third instance V¥ with pid¥, = U to accept with SID equal
to sid. This removes the uniqueness part of the partnering definition, thus 4/ and V7
are not partnered anymore. Hence, the result of the test query is formally inconsistent
with the definition, because U and V’ should have independent random keys, now that
they are not partnered. As for V¥, it is unclear really which key should be assigned in
the event a test occurs. Should it be random in order to remain consistent with the
definition, or should it be set to R in order to be consistent with A’s view?

4 [19] contains a notion of semi-partnering in order to have a definition for instances that
have had a correct exchange even if the last message has not been delivered. We adopt this
further in this work.

8 Jean Lancrenon

This definitional problem can be solved by changing the requirements of partnering
with respect to uniqueness. Note however that ultimately, it is reasonable to expect
that double partnering should occur with negligible probability only anyway. However,
we cannot make any security statements to enforce this at this point in the model. It
must be a proven property, so should not be integrated into the definition.

3 A well-motivated definition

In this section, we build on - and complete - all of the definitions above by supplying a
model of our own. We then show how it could fit several protocol formats, covering all
typical scenarios of implicit and explicit, unilateral and mutual authentication.

In order to obtain a full description of the formal model, one could simply replace
the phrases “ready to use a session key”, “refuses to pursue the protocol”, and “has
had a correct exchange with &/*” with “has accepted”, “has aborted”, “is partnered to
U™ respectively.

In order to stay with the habits of the literature, we continue to use the random
variables for SID, PID, and SK, and the terms “accepting”, “terminating”, and “part-
nering”. We add explicit terms to indicate when an instance simply stops, and when it
refuses to continue mid-protocol.

The notions are compatible with both the FtG and RoR methodologies.

A full recap of the model we propose (taking into account our discussion on unique-
ness of partners in Section 4) can be found in Appendiz B.

3.1 The definition itself

Status of instances and partnering.
Halting. An instance halts if it stops sending and receiving messages, and ceases to
compute anything.

Halting can either be “good” (i.e. with a SK) or “bad” (i.e. without a SK).

Accepting. An instance U accepts if and only if sid}, is set to a non-¢ value. Accepting
means that U’ believes it is holding enough information to compute a SK. The instance
has not necessarily halted.

This formally includes the possibility that it may have actually computed the SK
value, but is not yet willing ot use it.

Terminating. An instance U’ terminates if and only if skj, is set to a non-¢ value. If
an instance terminates, it halts. Terminating means U believes it holds a good SK, and
is now willing to use it in higher-level applications. & will no longer send nor receive
PAKE protocol messages.

If an instance terminates, it accepts, or has previously accepted. In both cases, sid},
is set to a non-¢ value and remains so. If an instance accepts, it has not necessarily
terminated.?

Aborting. An instance U’ aborts if it halts without having terminated.

In other words, it has stopped participating in the protocol exchange, and is unwilling
to assign a value to skb Aborting can very well happen after accepting: Just imagine
an instance holding a SK, but waiting for the last confirmation message to finally start
using this SK.

> We stuck to the idea in [5] that accepting may happen before terminating, even though
the term “accepting” seems better suited to designate “successful termination”. We did this
because the original BPR model is still the most used, so it is probable that this is how the
terminology is commonly understood.

On PAKE security modeling 9

Semi-partnering. U' and V7 are semi-partnered if 1) one is a client and one is a
server, 2) pidy, =V and pidj, = U, 3) sidy, # ¢, sid}, # ¢, and sidy, = sidy,.
Partnering. U' and V7 are partnered if 1) they are semi-partnered and 2) skj, # ¢,
sk, # e, and skj, = ski,.

By definition, if an instance is semi-partnered to another, it has accepted, and holds
a SID. If it is partnered to another, it has terminated and holds a SK.

Explicitly defining semi-partnering and partnering in this way seems to be the only
way to have a unique formal treatment of security regardless of whether instances accept
and terminate at the same time. In case an instance terminates after accepting, we still
want to be able to express at acceptance time that it may have another unique instance
to which it is bound, hence the semi-partnering.

To properly define security in the RoR model, and in particular to eliminate the bug
identified in Section 2.3, it will be convenient to have the following notion:

Partnering graph. A partnering graph is a graph with instances for nodes. Two nodes
have an edge if and only if corresponding instances are partners.

Correctness. Let U be a client and V be a server. If U* with pid}, = V and V7 with
pidj, = U run the protocol fully and correctly, U “ and V7 are partnered.

Remarks: Using the language of graphs to make the definition work may seem to add
some rather heavy-handed complexity, but we believe this to be only superficially true.
Indeed, in a secure protocol, we want partners to be unique, thus reducing partnering
graph sizes to having at most two nodes. Hence, in practice the added complication
disappears quite easily.

Correctness can be formulated formally using matching conversations [6]. Note that
correctness says that matching conversations lead to partnering. However, just because
two instances are partnered does not mean that they have had a matching conversation.
Intuitively, the protocol should provide a session key that is secure for use once the
instances are partnered.

Queries in the FtG and RoR models. The list of queries in Section 2.1 remains
exactly the same. We only re-write the test and reveal queries with the technical terms.

We begin by revisiting freshness for the FtG model: an instance I? is said to be
fresh if it is in a partnering graph in which no instance has been the target of a reveal

query.

— (FtG) test(U,4): If U* has not terminated or is not fresh, this returns L. Otherwise,
CH flips a coin b outside of A’s view. If b = 0, a random string R is drawn from the
session key space and tsz, + R. Otherwise, tki, — sk}/, tk};, is then returned to A.
The test query may only be used once in the game.

— (FtG) reveal(U,i): If U has not terminated or if it is part of a partnering graph in
which an instance has been tested, the query returns L. Otherwise, it returns skz,
to A.

— (RoR) test(U,i): If U* has not terminated, L is returned. Otherwise, suppose first
that b = 0. If * is not partnered to any instance, or no instance in the partnering
graph it is a part of was subjected to a test query, CH selects a random R from the
session key space and sets tk}, < R. If U’ is within a partnering graph where some
instance V7 has been tested, CH sets tk}, « tk{,. Suppose now that b = 1. In this
case, CH sets tkj, < skj,;. Then, A receives tk;,.

It should be clear that the introduction of the partnering graph and the absence
of any uniqueness requirement in the partnering definition eliminate the bugs raised in

10 Jean Lancrenon

the RoR model. Of course, it is merely a tool to keep the definitions consistent; as we
have pointed out before, one would want at most one partner to exist. The problem of
partner uniqueness is studied in Section 4.

3.2 Examples of how it functions

We give here a few examples of protocol structures that fit our definition in various ways.
In what follows, m and p basically represent the main protocol flows, i.e. the messages
that a shared secret is usually computed with. The symbols sid and sk designate the
SID and SK. The k and k values are confirmation codes; their role is to prove to the
other party that the same shared secret was computed at both ends of the protocol run.
As such, they must be computed from, or at the same time as, the shared secret.

We look at two-pass, three-pass, and four-pass protocols, but one can easily construct
similar examples with protocols having more messages.

In practice, the SID is usually taken to be the concatenation of C, S, m, and u. This
makes the randomness of both parties an input to SID. We shall return to this point
later.

Acceptance and termination occur in one step for both the client and the
server. Examples of protocols like this are OMDHKE in [11] and EKE2 in [5]. The
former achieves explicit authentication of the server to the client, as in Figure 1 and
the latter achieves implicit authentication. (Take Figure 1 and remove all mention of
and k.) Obviously, in two-pass protocols the parties involved have no other choice but
to accept and terminate at the same time. Also, it is clear that the receiver of the first
protocol message cannot be assured that it is talking to a live instance.

Client C Server S
compute m
C,m
" compute u, k, sid, sk
accept and terminate
set sids < sid
set sks < sk
S, u, Kk
compute k, sid, sk~
abort if kK # k
accept and terminate
set sidc < sid
set skc < sk
Fig. 1.

One party accepts and terminates in one step, the other accepts first and
terminates later. In this class of protocols, we find e.g. the protocol of Groce and
Katz [19], the OEKE protocol from [10], and the F 4+ PaKE protocol from [17]. The Groce-
Katz protocol achieves mutual authentication, as in Figure 2. OEKE and F + PaKE only
achieve explicit authentication of the client to the server. (Remove all mention of x;

On PAKE security modeling 11

and kp in Figure 2.) In both cases, acceptance by the server occurs right before sending
the second message, and termination occurs at the very end.

After C sends the last message, but before this message is received by S, C and S
are semi-partnered.

In this class of protocols, the code k5 and SK sk need not be computed by the server

once it receives the first message (as shown in Figure 2); this can be postponed to the
end.b

Client C Server S
compute m
C,m
~compute p, K1, K2, sid, sk
accept
set sids < sid
S, u, k1
compute ki, k2, sid, sk™
abort if k1 # k1
accept and terminate
set sidc < sid
set skc < sk
S, ks
“abort if k}z 7& K2
terminate
set sks < sk
Fig. 2.

Both parties accept and terminate in two steps. This happens for instance in the
AMP protocol from [28], see Figure 3. Both client and server accept at different stages.
Note that sometimes protocols of this form can regroup certain messages in order to
yield n-pass rather than (n+1)-pass protocols. (However, four-pass protocols have some
advantages over three-pass ones too, e.g. in [29] Kwon reports on a practical multiple-
password online guessing attack against three-pass protocols, that four-pass protocols do
not suffer from. This attack depends on the server’s actual response time in processing
an authentication request, so falls out of the scope of currently used security models.)

As in the previous case, the actual computation of the SK (which is different from
it being formally accepted as usable) can be moved around somewhat, this time both
at the server and client end.

4 The quality of partner uniqueness

In this section, we examine just exactly “how unique” partners can be in AKEs, with a
special treatment of PAKESs, assuming we stick to the definitions of partnering
and testing that do not take into account our modifications, in particular
with no notion of partnering graph. We also assume a partnering definition
that does not mention uniqueness, e.g. that of [17, 22, 19, 25, 26]. This serves

S This may even be desirable for efficiency reasons.

12 Jean Lancrenon

Client C Server §
compute m
C,m
" compute p, K1, K2, sid, sk
accept
set sids < sid
S,u
compute ki, ko, sid, sk~
accept
set sidc < sid
C, ki
‘abort if k)1 ;é K1
terminate
set sks < sk
S, K2
abort if ko # ko
terminate
set skc < sk
Fig. 3.

as further evidence that partnering and partner uniqueness must be carefully treated,
and probably separately.

In general, we note that it seems uniqueness of partners has completely disappeared
from AKE requirements in a very large proportion of AKE research papers. Also, when
uniqueness is mentioned, it is not even clear how probable this uniqueness should be
(e.g. [5,3,26]). This is odd, since partner uniqueness was actually considered in perhaps
the very first AKE modeling paper [6]. Of course, it is quite natural to expect that
for all AKEs, if an instance runs the protocol it should have at most one partner
with overwhelming probability, but this is rarely explicitly mentioned. One reason for
this may be that usually an attempt is made at funneling all of the desirable security
properties into the definition of session key security, but there are two problems with
this, which we show below.

First, even in the general case not all security properties can be treated through this
mechanism, and it so happens that uniqueness of partners is one of them. Secondly, in
the PAKE case - where the optimal bound for semantic security is not even a negligible
value - the property may formally fail altogether.

4.1 An obstacle caused by the test query

We begin with some flawed reasoning that applies to all AKE settings, and concerning
the link between multiple partnering of instances and SK security. Again, we stress
that this is specific to a partnering definition without partnering graphs, and
without built-in uniqueness. Also, we use the RoR setting as an example.

What we cannot do... Let AKE be an authenticated key exchange protocol. In the
game played in Section 2.1, we can always consider the event “there exist distinct users
U and V, and distinct instances U*, V7, and V* such that U* and V7 are partnered
and U’ and V* are partnered”, which we denote MP (for Multiple Partnering). For any
adversary B, let Adv"?(B) := Pr[MP]. Our objective is to relate Adv"?(B) to Adv®(.A)

On PAKE security modeling 13

for a suitably constructed A. Ultimately, it would be nice if the negligibility of the latter
implied that of the former.

o Construction €: Fiz some adversary B, and consider adversary A, trying to break
the semantic security of AKE, designed as follows. A runs exactly like B, but examining
whether or not B can cause MP to occur. Whenever an instance terminates, A checks to
see if MP has happened. If B halts and MP never happened, A flips a coin b’ and outputs
b'. As soon as MP happens (if it does), A stops B, and studies the involved instances.
LetU', V7, and V’“ be these instances. A performs one test query on V7 and another on
VR, receiving tki, and tk$,. If thi, = tk%,, A sets b’ + 1, and otherwise b’ + 0. A then
outputs b’ and halts.

At this point, in the event that MP does indeed occur, it is tempting to directly
conclude that since the instances V7 and V¥ are clearly not partners (since their PIDs
do not correspond) but do hold identical session keys (since they are each partnered to
U?), the test queries performed should give either independent random keys if b = 0 or
identical keys if b = 1. From this, one immediately sees that if semantic security of the
session key holds, then MP may only occur with negligible probability as well. However,
we cannot make this assertion, because it may be that &/’ has also had a test query
performed on it. It the RoR model, this would make all keys identical no matter the
value of b.”

Unfortunately, there does not seem to be any way around this obstruction. It looks
as though one would have to somehow need the probability that A makes a test query
on U’ to be itself a negligible value, but this is not justifiable. Thus, in order to prove
anything in this way, one has to consider a more restricted version of MP.

...what we can do... We consider event MP* defined as “there exist distinct users U
and V, and distinct instances U, V7, and V¥, such that 1) U and V7 are partnered, 2)
U* and V* are partnered, and 3) no test query was performed on U*.”

We also consider construction €* which is basically identical to construction €,
except that A looks out for event MP* rather than MP. The next lemma precisely
relates Adv™ (B) to Adv®(A).

Lemma 1 It holds that Adv®(A) = (1 — %)AdeP* (B).
Proof: We have
Pr[S] = P[S|MP*|Pr[MP*] + P[S|-MP*|Pr[-MP*] (1)

Conditioned on MP* not having occurred, by definition of .A we have P[S|-MP*] = 1.
If MP* has occurred, all three instances should hold the same SK sk. However, since
pidy, = pid¥, = U, V7 and V* are not partnered. Finally, no test query was performed
on U. Therefore, if b = 0 the test(V,j) and test(V, k) queries output tk{, and tk?,
independently and randomly. Thus, A will output the correct bit value unless these keys
collide, which may happen with probability 2%; Plugging these values into Equation 1
gives Pr[S] = 3 (1 — 574)Pr[MP] + 1. Taking the advantage function formulas finishes
the proof. B

On one hand, this lemma shows that for AKE protocols for which Adv® is required
to be negligible (such as PKI-AKEs, or SSK-AKEs), the probability that MP* occurs

7 Similar reasoning shows that the FtG model suffers from the phenomenon as well, basically
because if U* is tested, the freshness condition prohibits testing of the two other instances.
Thus, our observation is valid “beyond RoR”.

14 Jean Lancrenon

is negligible as well. On the other hand, for PAKEs, this no longer holds: All we can
say is

2t—1) Cnge

mp*
Adv (B)g(ize_l_1 W 2)

where C' and n, are as in Paragraph 2.1.

...and what we can assert. Hence, we can basically gather the following three points:

— 1) Adv®’s negligibility does not immediately imply that event MP will occur with
negligible probability. Notably, this concerns the PKI and SSK cases.

— 2) Adv®’s negligibility only implies that event MP*will occur with negligible prob-
ability. This is certainly a desirable guarantee, but remains weaker than MP.

— 3) In the PAKE case, even the restricted event MP* has no immediate reason to be
negligible at all.

Point 3) is further illustrated in Paragraph 4.2 below, where we propose a PAKE
that is secure according the the model of Paragraph 2.1, but at the same time can cause
MP* to occur with a probability nearly optimally respecting the bound in Equation 2.

4.2 A “secure” PAKE protocol where non-negligible multiple partnering
may occur

We now describe our flawed protocol, dubbed P. It actually is not a “pure” PAKE, since
the client authenticates the server using a public key, while the server authenticates the
client using a password. We were unable to construct a suitable example in the “pure”
setting, but we believe our point is still valid. (However, a “pure” example would be
very interesting.)

Setup. From here on, (SKeyGen, Sig, Ver) is a strongly-EU-CMA-secure (see [4])® signa-
ture scheme and (EKeyGen, Enc, Dec) is a CCA-2-secure public key encryption scheme.
We assume that there can be many different client identities, but only one server iden-
tity S. Thus, there are many clients, and many client instances, but only one server, and
many server instances. The KeyGen algorithms are run once to obtain public key/secret
key pairs (pkg, skg) and (pks, sks) for encryption and signing respectively. Each client
C has its password pwe registered at server S, and has (pkg,pks), say, hardcoded
into its software specification. Server S holds the full password file {pwc}c, as well as
(skg, sks).”

Running P. The protocol flows are shown in Figure 4. First, the server S pings the
client C with a signed nonce. C then verifies the signature, accepts without terminating,
and returns an encryption of the nonce it just received, a fresh nonce of its own, a
session key it selects itself randomly, and its password. Upon receiving this encryption,
S decrypts and checks if the password matches C’s identity and if it recognizes its own
nonce. If so, it accepts and terminates, validates the session key, and returns to C a new
signature on both nonces. Finally, if the signature verifies C terminates and validates
the session key.

Upon acceptance, for our protocol the SID is set as being (M, C,S), where M is C’s
chosen nonce. As the reader may expect, the fact that the SID is a function of only the
client’s nonce is what causes trouble.

8 The fact that signatures are strongly secure is used to make the security proof simpler, but
is not strictly necessary.

9 One may think of a setup of this sort as being implemented e.g. for a large group of employees
in a company.

On PAKE security modeling 15

Client C Server §
N« {0,1}*
o < Sig,,, (N,C,S)
S,N,o
Abort if Verpr, (N,C,S,0) # 1
M + {0,1}*
K «{0,1}*
C < EncpkE(K,N,M,C,S,pwc)
side + (M, C,S)
C,c

Abort if Decgy, (¢) # (pwe, K, N,
M,C,S) for some K and M

in {0,1}*

T = Sigg, (N, M,C, S)

sids < (M, C,S)

sks +— K

Abort if Verprg (N, M,C,S,7) # 1
Skc — K

Fig. 4. The P protocol.

Discussion. On one hand, P definitely looks like a bad protocol, given that it is abso-
lutely littered with red flags:

— 1) The SID depends only on the random bits of one of the two parties involved;
— 2) The session key is completely determined by one of the two parties involved;
— 3) The session key and identifier are completely decoupled.

These points certainly go against well-established design principles that PAKEs com-
monly follow. As for item 4), it illustrates the need to study uniqueness of partners as
a security property in its own right in the PAKE case.

On the other hand, P actually satisfies an appropriately modified BPR-style defini-
tion of security for PAKEs:

Theorem 1 Protocol P is a secure PAKE in that for any efficient adversary A, when
A plays the RoR game against challenger CH as described in Section 2.1, we have
Adv®(A) < \SWI + negl(\), where nge is an upper bound on the number of send queries
made by A.

Proof: See Appendix A. B

Furthermore, P also suffers from point 4) below:
— 4) Event MP* may occur with non-negligible probability.

A demonstration of this is in the next paragraph.

16 Jean Lancrenon

Partnering a client instance to two server instances. We construct a specific
attacker B in the security model described in Section 2.1. B is trying to cause the event
MP*.

B first initializes a client instance C' and server instance S' with pid; = S and
pids = C. Next, it performs an execute query on these instances. They now share a
SK sk and a SID (M,C,S). Then, it performs a test query on S! to get sk. Now, for
j = 2, ... it repeats the following steps until some server instance S’ accepts:

— 1) It initializes S7 with pidg = C, and instructs it to send the first protocol message
S,N7 o;

— 2) It chooses pw? < PW randomly and computes ¢ < Encpy,, (sk, N7, M,C, S, pw?);

— 3) It sends ¢ to &/ and observes whether S accepts or not.

When some S finally accepts, B has guessed the right password pwc, and the instances
C! and 87 are partnered: sid% = sids = (M,C,S) and sk = sk} = sk.

In the above scenario, it should be clear that if ¢ is the number of S7 instances (for
j > 2) used in order to succeed, we have

. t
mp = * = —
Adv'™” (B) = Pr[MP*] W

which is certainly not negligible. Also, since we have t < ng.—2, this is well in accordance
with Equation 2 (taking C' = 1, the best possible constant), and thus with the required
bound on semantic security.

4.3 Lessons learned on requirements

We should conclude that MP has to be considered as an event to render negligible
in its own right for both AKEs, where the semantic security of SK only provides a
safety net in that it renders a more restricted event negligible, and PAKEs, where
there is no safety net at all. Fortunately, most AKEs in the literature do not have
these problems because of the way partnering is instantiated by concrete protocols. In
particular, as previously stated most PAKEs build the SIDs from concatenations of
almost all messages, so all parties’ random values are involved, and uniqueness of SIDs,
and therefore of partners, is a trivially verified matter. However, as we have shown, it
can formally fail in “non-concatenation” cases, and so it is better off being a stated and
formally proven requirement, no matter how trivial. Thus it seems worthwhile to add
to the security model the property that MP should be negligible all the time. In fact,
using our language from Section 3, multiple semi-partnering should be negligible all the
time.

In the particular case where SIDs are used to establish partnering - this is almost
always the case in BPR-style models - The simplest way to do this would be to prove
that the event SID is negligible, where we define SID to be “there exist more than two
instances that share the same non—e SID”. In other words, we add the following point
to our model:

Partner uniqueness: Let SID be the event that “there exist more than two instances
that have the same non-e SID”. Let Adv®**(A) := Pr[SID]. We say that PAKE achieves
unique partnering if for any PPT A the function Adv®? is negligible. Note that the
quality of the long-term keying material here no longer should have an influence on the
security bound we require.

For a complete model description, we refer to Appendix B.

On PAKE security modeling 17
5 Conclusion and future work

In this paper, we have shown that there are multiple BPR-style definitions of security
for PAKEs in the literature, and have attempted to unify them. In the process, we
found a way to solve a bug in the model of [3]. Finally, we showed that uniqueness of
partners is a property worth establishing explicitly, similarly to explicit authentication
and semantic security of the session key. Specifically, it should hold with overwhelming
probability even in the PAKE case, where the other main security properties can only
be ensured with non-negligible probability.

As far as this study goes, it should be extended to include long-term key corruptions.
Also, it would be extremely interesting to find a counter-example similar to protocol
P in the “pure PAKE” setting. Finally, it may be worthwhile to further refine BPR-
style models by adding a specific variable to designate the shared secret computed
by protocol participants. It seems reasonable that this variable would be non-¢ when
semi-partnering occurs.

Acknowledgments. We would like to thank the reviewers for their comments. The
author is supported by the Fonds National de la Recherche, Luzembourg, via the CORE
project AToMS and the INTER, project SEQUOIA.

References

1. Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE Password-
Authenticated Key Exchange Protocol. In: 2015 IEEE Symposium on Security and Privacy
(2015)

2. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indistinguishable
under plaintext-checkable attacks. In: Katz, J. (ed.) Public-Key Cryptography — PKC 2015,
Lecture Notes in Computer Science, vol. 9020, pp. 332-352. Springer Berlin Heidelberg
(2015), http://dx.doi.org/10.1007/978-3-662-46447-2_15

3. Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-based authenticated key exchange in
the three-party setting. In: Vaudenay, S. (ed.) Public Key Cryptography - PKC 2005, Lec-
ture Notes in Computer Science, vol. 3386, pp. 65-84. Springer Berlin Heidelberg (2005),
http://dx.doi.org/10.1007/978-3-540-30580-4_6

4. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Pro-
ceedings of the International Conference on the Theory and Applications of Cryptographic
Techniques: Advances in Cryptology. pp. 83-107. EUROCRYPT ’02, Springer-Verlag, Lon-
don, UK, UK (2002), http://dl.acm.org/citation.cfm?id=647087.715701

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure Against
Dictionary Attacks. In: Preneel, B. (ed.) Advances in Cryptology — EUROCRYPT 2000.
LNCS, vol. 1807, pp. 139-155. Springer (2000)

6. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R.
(ed.) Advances in Cryptology — CRYPTO ’93. LNCS, vol. 773, pp. 232-249. Springer
(1993)

7. Bellovin, S.M., Merritt, M.: Encrypted Key Exchange: Password-Based Protocols Secure
Against Dictionary Attacks. In: 1992 IEEE Computer Society Symposium on Research in
Security and Privacy, May 4-6, 1992. pp. 72-84 (1992)

8. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New techniques
for sphfs and efficient one-round pake protocols. In: Canetti, R., Garay, J. (eds.) Advances
in Cryptology CRYPTO 2013, Lecture Notes in Computer Science, vol. 8042, pp. 449-475.
Springer Berlin Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-40041-4_25

9. Boyko, V., MacKenzie, P.D., Patel, S.: Provably Secure Password-Authenticated Key Ex-
change Using Diffie-Hellman. In: Preneel, B. (ed.) Advances in Cryptology - EUROCRYPT
2000. LNCS, vol. 1807, pp. 156-171. Springer (2000)

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Jean Lancrenon

Bresson, E., Chevassut, O., Pointcheval, D.: Security Proofs for an Efficient Password-
based Key Exchange. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM Conference on
Computer and Communications Security. pp. 241-250. ACM (2003)

Bresson, E., Chevassut, O., Pointcheval, D.: New Security Results on Encrypted Key Ex-
change. In: Bao, F., Deng, R.H., Zhou, J. (eds.) Public Key Cryptography. LNCS, vol.
2947, pp. 145-158. Springer (2004)

Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: Proceedings of the 42Nd IEEE Symposium on Foundations of Computer Science. pp.
136—. FOCS ’01, IEEE Computer Society, Washington, DC, USA (2001), http://dl.acm.
org/citation.cfm?id=874063.875553

Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally Composable
Password-Based Key Exchange. In: Cramer, R. (ed.) Advances in Cryptology — EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 404-421. Springer (2005)

Choo, K.K., Boyd, C., Hitchcock, Y.: Examining indistinguishability-based proof models
for key establishment protocols. In: Roy, B. (ed.) Advances in Cryptology - ASTACRYPT
2005, Lecture Notes in Computer Science, vol. 3788, pp. 585—604. Springer Berlin Heidel-
berg (2005), http://dx.doi.org/10.1007/11593447_32

Cremers, C.: Examining indistinguishability-based security models for key exchange pro-
tocols: The case of ck, ck-hmqv, and eck. In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security. pp. 80-91. ASIACCS ’11, ACM,
New York, NY, USA (2011), http://doi.acm.org/10.1145/1966913.1966925

Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor. 22(6),
644-654 (Sep 2006), http://dx.doi.org/10.1109/TIT.1976.1055638

Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. In:
Biham, E. (ed.) Advances in Cryptology EUROCRYPT 2003, Lecture Notes in Computer
Science, vol. 2656, pp. 524-543. Springer Berlin Heidelberg (2003), http://dx.doi.org/
10.1007/3-540-39200-9_33

Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. In: Kilian,
J. (ed.) Advances in Cryptology CRYPTO 2001, Lecture Notes in Computer Science,
vol. 2139, pp. 408-432. Springer Berlin Heidelberg (2001), http://dx.doi.org/10.1007/
3-540-44647-8_24

Groce, A., Katz, J.: A new framework for efficient password-based authenticated key
exchange. In: Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security. pp. 516-525. CCS ’10, ACM, New York, NY, USA (2010), http:
//doi.acm.org/10.1145/1866307.1866365

Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. ACM Trans.
Inf. Syst. Secur. 2(3), 230-268 (Aug 1999), http://doi.acm.org/10.1145/322510.322514
Jablon, D.P.: Strong Password-Only Authenticated Key Exchange. ACM SIGCOMM Com-
puter Communication Review 26(5), 5-26 (1996)

Jiang, S., Gong, G.: Password based key exchange with mutual authentication. In: Hand-
schuh, H., Hasan, M. (eds.) Selected Areas in Cryptography, Lecture Notes in Computer
Science, vol. 3357, pp. 267-279. Springer Berlin Heidelberg (2005), http://dx.doi.org/
10.1007/978-3-540-30564-4_19

Katz, J., Ostrovsky, R., Yung, M.: Efficient Password-Authenticated Key Exchange Using
Human-Memorable Passwords. In: Pfitzmann, B. (ed.) Advances in Cryptology — EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 475-494. Springer (2001)

Katz, J., Ostrovsky, R., Yung, M.: Efficient and secure authenticated key exchange using
weak passwords. JOURNAL OF THE ACM 57(1) (2009)

Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based authen-
ticated key exchange from lattices. In: Matsui, M. (ed.) Advances in Cryptology ASI-
ACRYPT 2009, Lecture Notes in Computer Science, vol. 5912, pp. 636-652. Springer
Berlin Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-10366-7_37

Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key exchange.
In: Ishai, Y. (ed.) Theory of Cryptography, Lecture Notes in Computer Science, vol.
6597, pp. 293-310. Springer Berlin Heidelberg (2011), http://dx.doi.org/10.1007/
978-3-642-19571-6_18

On PAKE security modeling 19

27. Kiefer, F., Manulis, M.: Oblivious pake: Efficient handling of password trials. Cryptology
ePrint Archive, Report 2013/127 (2013), http://eprint.iacr.org/

28. Kwon, T.: Authentication and key agreement via memorable password. In: ISOC Network
and Distributed System Security Symposium (2001)

29. Kwon, T.: Practical Authenticated Key Agreement Using Passwords. In: Zhang, K., Zheng,
Y. (eds.) Information Security, LNCS, vol. 3225, pp. 1-12. Springer Berlin Heidelberg
(2004)

30. Lancrenon, J.: On password-authenticated key exchange security modeling. In: PASS-
WORDS 2015, Cambridge, UK, December 7-9, 2015, Proceedings. LNCS, vol. 9551, pp.
120-143. Springer International Publishing (2016)

31. Lucks, S.: Open key exchange: How to defeat dictionary attacks without encrypting public
keys. In: Proceedings of the 5th International Workshop on Security Protocols. pp. 79-90.
Springer-Verlag, London, UK, UK (1998), http://dl.acm.org/citation.cfm?id=647215.
720526

32. MacKenzie, P.: The PAK Suite: Protocols for Password-Authenticated Key Exchange.
DIMACS Technical Report 2002-46 (2002), (Page 7)

33. MacKenzie, P., Patel, S., Swaminathan, R.: Password-authenticated key exchange based
on rsa. Int. J. Inf. Secur. 9(6), 387—410 (Dec 2010), http://dx.doi.org/10.1007/
s10207-010-0120-3

34. Pointcheval, D.: Password-Based Authenticated Key Exchange. In: Fischlin, M., Buch-
mann, J., Manulis, M. (eds.) Public Key Cryptography PKC 2012, LNCS, vol. 7293, pp.
390-397. Springer (2012)

35. Shoup, V.: On Formal Models for Secure Key Exchange. Cryptology ePrint Archive, Report
1999/012 (1999), http://eprint.iacr.org/1999/012

A Proof of Theorem 1

Here is the proof of Theorem 1. We actually prove a bit more, in that we also show that
P satisfies Client-to-Server (C2S) authentication.

The proof proceeds in a sequence of games. Pr; and Adv; designate the probability
and advantage functions respectively in the probability space defined by game i.

Game 0. This is the original attack game described in Section 2.

Game 1. If any of the instances’ chosen nonces - i.e. the N and M values - collide,

abort the game. The probability of this occurring is controlled by the birthday bound
2

("“;{%I) which is negligible. Here, n.,, is a bound on the the number of execute queries

A may make. Thus:
|Adv§(A) — Adv; (A)| < negl(\) and |Advi™ (A) — Advi**(A)] < negl())

From this point on, existing client and server instances are uniquely determined by
their random nonces.

Game 2. Suppose a client instance C’ receives the first or third protocol message and
the signature verification passes. If said message was not computed by an appropriate
server instance, abort the game. The probability of this occurring is controlled by the
security of the signature scheme:

|Adv§ (A) — Advs(A)| < negl(\) and |Advi**(A) — Adv5*(A)| < negl())

Thus, from now on if a client instance receives a valid first or third message, this
message comes from a unique (see game 1) server instance. (We can indeed assert
that it is the exact same message because we took the precaution of requiring that
(SKeygen, Sig, Ver) be strongly-EU-CMA-secure.)

20 Jean Lancrenon

Game 3. In this game, C' computes its ciphertext as follows: Instead of encrypting
(K,N,M,C,S,pwe), it encrypts (1Y, N, M,C,S, 1%w).

When a server instance S’ receives a second protocol message my, CH examines
mo’s origins. If my was computed by some C? that received and accepted S? ’s first
protocol message, CH simply accepts mo without decrypting and assigns sid% < M
and sks < K, where M and K were chosen by C'. We know that this is well defined
because the previous games make C? unique if it exists. If my was computed by some
C? that accepted some other protocol message, CH rejects without decrypting. Finally,
if mo was adversary-generated, CH responds according to protocol specification.

The changes made to this game are computationally unnoticeable by A by virtue of
the CCA-2 security of (EKeyGen, Enc, Dec). Hence:

|Adv3(A) — Advi(A)| < negl(\) and |Advs™ (A) — Adv**(A)] < negl())

(In order to make this “hop” fully rigorous, one must implement a decryption oracle to
properly respond to the adversary-generated encryptions; this is the technical reason
CCA-2 security is required.)

Note that from now on, the encryptions produced by client instances contain neither
password information nor session key information.

Game 4. Let Bad be the event “a server instance accepts an adversary-generated
message”. Game 4 aborts and declares the adversary victorious if Bad occurs. Clearly:

Adv3(A) < Advi(A) and Adv§?* (A) < AdvE®(A)

Interlude: Where are we at with the SIDs? The modifications to the games played
up until now show that if a client instance C* accepts the third protocol message, then
it must be partnered to some unique server instance. In particular, both instances are
uniquely bound to the random SID (M, S,C), and hold the same SK sk = K. Similarly,
if some server instance S’ accepts the second protocol message, it must be (at least)
semi-partnered to some unique client instance C’. Again, the SIDs match and indeed
bind the session to the instances. Thus, it really looks as though the SID is doing its
job, which is to uniquely identify a session.

Finishing the proof. A server accepts an adversary generated message if and only if
this message decrypts to (pw, K, N, M,C,S) for C = pid%, some K and M in {0, 1},
where N is §7’s nonce, and pw = pwe. In particular, we must have pw = pwe. But from
the changes in game 3, there is no password information anywhere in A’s view, so pw

is independent of pwc. This implies that Pr[Bad] < ‘SW‘. Using this, we can evaluate

Advi(A) and Adv§**(A).

We have Pry[S] = Pry[S|Bad]Pr4[Bad] 4+ Pry[S|=Bad]Pr4[—Bad]. Since conditioned on
Bad not having occurred all session keys are completely random and independent of A’s
view, we have Pry[S|-Bad] = 1. Combining this with the fact that the adversary wins
if Bad occurs, we get Pry[S] < 1 + 1Pry[Bad] < 1 + 3Tpy> Which yields

nse

Advi < —=
= TPw

A similar argument using C2S gives us that

nSE

PW|

Adv§® <

Summing up all the terms from the previous games gives us the final result. B

On PAKE security modeling 21

B BPR-style models revisited

In this appendix, we just gather all of our requirements for a complete PAKE model,
including the uniqueness of partners. This is a formal recap of what has already been
stated.

Principals and instances. An interactive game, indexed by the security parameter
A € N, is played between a challenger CH and an adversary A. All of the algorithms
considered are Probabilistic, Polynomial-Time (PPT) in .

At the beginning of the game, there is a fixed set of principals (or users), partitioned
into non-empty sets of clients C and servers S. FEach client C is assigned a password
pwe drawn uniformly at random from some finite set PW of bitstrings. Each server S
holds the full set of all clients’ passwords {pwc}c.

Adversary A has oracle access - via the queries described below - to any number
of instances U* (i € N) of any principal U. An instance of U* represents an attempt
U makes at running the PAKE protocol over the network fully controlled by A. An
instance’s objective is to compute a Session Key (or SK) it believes it shares with
an instance V7 of some other principal V. This should happen only if ¢/ thinks it is
partnered (see below) to V7.

At any point in time, an instance U* may terminate (see below). By this time, U®
should have computed 1) a Partner Identity (or PID) pid;,, a 2) Session Identity (SID)
sidzi/{, and 3) a SK ski,. The PID is a bitstring indicating the identity of the instance
with which ? believes it has communicated with. The SID is a bitstring serving as an
identifier for both the key exchange run that just occurred, and the session in which the
computed SK will subsequently serve. Often the SID is always in practice set to being
the ordered concatenation of all exchanged protocol messages, except possibly the last
message. At any point in time an instance may also abort (see below), with no SK.
Once an instance has halted (see below) it can no longer be reused.

Status of instances and partnering.

Halting. An instance halts if it stops sending and receiving messages, and ceases to
compute anything.

Halting can either be “good” (i.e. with a SK) or “bad” (i.e. without a SK).
Accepting. An instance U accepts if and only if sid}, is set to a non-¢ value. Accepting
means that U* believes it is holding enough information to compute a SK. The instance
has not necessarily halted.

This formally includes the possibility that it may have actually computed the SK
value, but is not yet willing ot use it.

Terminating. An instance U’ terminates if and only if sk}, is set to a non-¢ value. If
an instance terminates, it halts. Terminating means U believes it holds a good SK, and
is now willing to use it in higher-level applications. ¢* will no longer send nor receive
PAKE protocol messages.

If an instance terminates, it accepts, or has previously accepted. In both cases, sidi,
is set to a non-¢ value and remains so. If an instance accepts, it has not necessarily
terminated.

Aborting. An instance U’ aborts if it halts without having terminated.

In other words, it has stopped participating in the protocol exchange, and is unwilling
to assign a value to skj,. Aborting can very well happen after accepting: Just imagine
an instance holding a SK, but waiting for the last confirmation message to finally start
using this SK.

Semi-partnering. U’ and _Vj are semi-partnered if 1) one is a client and one is a
server, 2) pidi, =V and pid}, = U, 3) sidj, # ¢, sid}, # ¢, and sidj, = sid3,.

22 Jean Lancrenon

Partnering. U' and V7 are partnered if 1) they are semi-partnered and 2) ski, # e,
sk, # ¢, and skj, = ski,.

By definition, if an instance is semi-partnered to another, it has accepted, and holds
a SID. If it is partnered to another, it has terminated and holds a SK.

Partnering graph. A partnering graph is a graph with instances for nodes. Two nodes
have an edge if and only if corresponding instances are partners.

Correctness. If C' with pid>, = S and &7 with pidf9 = C run the protocol fully and
correctly, C* and &7 are partnered.

Remark: Correctness can be formulated formally using matching conversations [6)].
Note that correctness says that matching conversations lead to partnering. However, in
full generality, just because two instances are partnered does not mean that they have
had a matching conversation, although in practice for PAKEs this is often the case.

Find-then-Guess.

— send(U,i,m): A has message m delivered to U’. U* processes the message according
to protocol specification. To instruct an instance U to send the first protocol message
to entity V, A makes the query with M = V. This query is used to model arbitrary
message delivery to an instance. In particular, it serves to count impersonation
attacks.

— execute(U,V,i,7): The protocol is executed faithfully and completely between U
and V7 and the resulting transcript is given to A. A thus gets to see as many honest
protocol runs as it wishes.

— reveal(U,4): If U* has not terminated or if it is part of a partnering graph in which
an instance has been tested, the query returns L. Otherwise, it returns sk’Z, to A.

— test(U,): test(U,7): If U" has not terminated or is not fresh, this returns L. Other-
wise, CH flips a coin b outside of A’s view. If b = 0, a random string R is drawn from
the session key space and tki, + R. Otherwise, tkzil — sk}/, tkzij is then returned to
A. The test query may only be used once in the game.

Eventually, A halts the overall game, at which point it outputs a bit ¥'. If the game was
halted without A making any test query, then CH privately flips a coin b.

Freshness: An instance U’ is said to be fresh if it is in a partnering graph in which no
instance has been the target of a reveal query.

Real-or-Random. The send and execute queries are identical to those in the FtG
model. However, the reveal query is no longer available. Instead, it is replaced by as
many test queries as A wants. How they are answered depends on the value of a bit b
flipped by CH outside of A’s view at the beginning of the game.

— test(U,i): If U has not terminated, L is returned. Otherwise, suppose first that
b= 0. If U is not partnered to any instance, or no instance in the partnering graph
it is a part of was subjected to a test query, CH selects a random R from the session
key space and sets tk& + R.If U’ is within a partnering graph where some instance
V7 that has been tested, CH sets tk;zil — tk{, Suppose now that b = 1. In this case,
CH sets tk;, < skj,. Then, A receives tky,.

The slight complication arising in case b = 0 is that even if the SKs assigned are random,
they must at least remain consistent across instances that should hold the same keys.
As in FtG, at any point in time A may halt the game and output a bit o’

Technically defining security. In both FtG and RoR, one usually considers three
security properties: SK security, Client-to-Server (C2S) authentication, and Server-to-
Client (S2C) authentication. We explicitly add to this uniqueness of partners by requir-
ing that SIDs are shared by at most two instances (SID).

On PAKE security modeling 23

SK security: Let S be the event that “b’ = b at the end of the game”. Event S
measures the semantic security of the SK, i.e. the adversary’s ability to tell this key
apart from a random string. Since A can simply flip a coin to get the answer right
with probability 1/2, A’s natural advantage is defined to be Adv®(A) := 2Pr[S] — 1.
A PAKE protocol is said to have semantically secure SKs if there exists a non-zero
constant C' € N such that for any PPT A, there exists a negligible (in A) function negl
with the property that Adv®(A) < (I/;T\lNT + negl(\) where ng. is an upper bound on the
number of send queries the adversary makes.

Authentication: Let C2S be the event that “there exists some server instance S’
that is ready to use a SK, but has not had a correct exchange with a client instance.”
This event measure the adversary’s ability to cause client-to-server authentication to
fail, i.e. a server thinks it is talking to a correct client when it is not. Here we simply set
Adv**(A) := Pr[C2S], and we say that a PAKE achieves client-to-server authentication
if there exists a non-zero C' such that for any PPT A, there exists a negligible function

negl with the property that Adve®*(A) < ﬁ;\LM + negl(\). Server-to-client authentication

is defined similarly.

Partner uniqueness: Let SID be the event that “there exists more than two
instances that have the same non-¢ SID”. Let Adv***(A) := Pr[SID]. We say that PAKE
achieves unique partnering if for any PPT A the function Adv®? is negligible. Note that
the quality of the long-term keying material here no longer should have an influence on
the security bound we require.

Of the four afore-mentioned security properties, our discussion implies that the first
and last are always required.

