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ABSTRACT

We propose an extension of our previous work on spatial
domain Time-of-Flight (ToF) data enhancement to the tem-
poral domain. Our goal is to generate enhanced depth maps
at the same frame rate of the 2-D camera that, coupled with
a ToF camera, constitutes a hybrid ToF multi-camera rig. To
that end, we first estimate the motion between consecutive
2-D frames, and then use it to predict their corresponding
depth maps. The enhanced depth maps result from the fusion
between the recorded 2-D frames and the predicted depth
maps by using our previous contribution on ToF data en-
hancement. The experimental results show that the proposed
approach overcomes the ToF camera drawbacks; namely,
low resolution in space and time and high level of noise
within depth measurements, providing enhanced depth maps
at video frame rate.

Index Terms— Time of Flight, spatio-temporal data en-
hancement, sensor fusion, multimodal sensors.

1 Introduction
With the ongoing progress in technology, new depth sensing
devices based on the ToF principle are becoming available. In
addition to being economic, compact, robust to illumination
changes, and of low-weight, ToF cameras are able to provide
full-scene depth information at a relatively high frame rate.
However, the downside of this promising technology is the
low resolution of the provided depth maps and the high con-
tamination by noise in the distance measurements. Besides
and despite being much faster than alternative depth sensing
systems, their frame rate is still lower than the frame rate of
standard 2-D video cameras. As a result, computer vision ap-
plications such as the identification of a moving object (or
multiple objects) over time, may become intricate or even
impossible. Therefore, in computer vision or robotic appli-
cations where the ToF camera limitations are critical, a very
promising strategy is sensor fusion [1, 2]. In [3], we proposed
the so-called Unified Multi-Lateral (UML) filter based upon
the bilateral filter. The UML filter enhances the spatial reso-
lution of the ToF data by considering the 2-D data recorded
using a hybrid ToF multi-camera rig. In this paper, we pro-
pose to extend it from spatial to the spatio-temporal domain.
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We focus on increasing the hybrid ToF multi-camera frame
rate up to the same frame rate of the 2-D camera. To that end,
we use the flow information between each 2-D frame to pre-
dict their corresponding depth maps, then apply the UML fil-
ter. The organization of the paper is as follows: In Section 2,
we present the literature review on depth enhancement over
time, and give the problem statement. Section 3 proposes our
concept for spatio-temporal depth enhancement. In Section 4,
we quantitatively and qualitatively evaluate our proposed so-
lution. Finally, in Section 5, we give our conclusions and
perspectives.

2 Related work and problem statement
Choi et al. [4] proposed to use another bilateral-based fusion
filter [1] to tackle the spatial resolution problem for a given
low-resolution depth map. Then, they proposed to interpolate
depth maps according to their corresponding 2-D frames, as
the frame rate of 2-D cameras is usually higher than that of
the ToF camera. To that end, they used the motion given by a
Full-search Block Matching Algorithm (FBMA) between the
previous and the next 2-D frames. The final enhanced depth
video is the result of filtering the interpolated depth maps and
their corresponding 2-D frames. The same authors proposed
in [5, 6] to reduce the temporal fluctuation problem by filter-
ing where they start by simultaneously filtering several depth
and 2-D image pairs in order to preserve depth consistency
within static regions in the scene. Kim et al. [7] proposed to
enhance the spatial resolution of a given depth map by mini-
mizing the unmatched boundary problem between depth and
2-D image pairs using joint bilateral upsampling (JBU), in ad-
dition to a boundary refinement to reduce the edge blurring ar-
tifact by using linear interpolation with a color segment set. In
addition, they minimized temporal depth flickering artifacts
on stationary objects, i.e., they preserved depth consistency
using the motion between two consecutive frames.

Similarly to the aforementioned approaches, we assume
the frame rate of the 2-D camera to be higher than that of the
ToF camera. Our aim is to predict the missing low-resolution
depth maps by using the motion between consecutive 2-D
frames. The resulting enhanced depth video will result from
filtering such predicted depth maps and their corresponding
2-D frames using the UML filter. For our purpose and to es-
timate the dense motion between 2-D video frames, we have



considered the work by Brox et al. [8] who proposed a high
accuracy optical flow estimation based on an energy formula-
tion. For two given consecutive frames Ii and Ii−1, taken at
times i and i− 1, respectively, the gray value at a pixel posi-
tion pi = (u, v)T is assumed invariant to displacement, i.e.,
Ii(pi) = Ii−1(pi −wi) with wi = (ũ, ṽ)T being the investi-
gated displacement vector of the pixel pi between the frames
Ii and Ii−1. In order to overcome the high sensitivity to slight
changes in brightness from this first assumption, the gradient
of a grey value image is considered to be invariant to displace-
ment, i.e.,∇Ii(pi) = ∇Ii−1(pi−wi), where∇ = (∂u, ∂v)

T

denotes the spatial gradient. The global deviations are min-
imized due to the gray and gradient constancy assumptions,
and are measured by an energy function Edata(wi). These
two assumptions operate locally without considering neigh-
boring pixels. A smoothness flow field Esmooth(wi) is there-
fore introduced, and the total energy to minimize becomes

E(wi) = Edata(wi) + αEsmooth(wi), (1)

with α > 0 being a regularization parameter. Finally, in
the case of large pixel displacements between video frames,
multi-scale ideas were considered; starting from a coarse,
smoothed version of the problem and finishing with a multi-
resolution strategy. In [8], Brox et al. proposed the estimation
of a high accuracy optical flow by minimizing the non-linear
energy function defined in (1). The resulting motion vector
wi accomplishes that Ii(pi) = Ii−1(pi−1) with

pi−1 = pi −wi = g(pi). (2)

We note that the function g(·) gives the flow between any pair
of two consecutive frames. Then, no subscript is needed as it
only depends on its argument. We also note that the subscript
i in a pixel position pi or motion vector wi is to relate the
frame Ii and not their pixel position within the image.
In [9], Sand et al. combined the minimization of Brox et
al. with the regularization of the estimated flow proposed by
Xiao et al. in [10]. In what follows, we have considered Sand
et al’s motion estimation algorithm and used its Matlab im-
plementation provided by Chari 1. We note that the better the
motion estimation is, the more accurate will be the enhanced
depth map.

We now investigate the problem of depth resolution en-
hancement over time. That is, we are in the case of a se-
quence of 2-D frames Ii taken at a frame rate 1/τI, where
the subscript i ∈ N, indicates the ith frame taken at time
(i × τI). We consider the corresponding sequence of ToF
frames Dnκ, n ∈ N, taken at a frame rate of 1/τD, such that
the period τD is multiple of τI, i.e., τD = κ · τI. Indeed,
during a time period τD, the 2-D camera provides κ frames
while the ToF camera provides a single one. We refer to the
depth maps Dnκ as ToF keyframes and to their corresponding
frame-synchronised 2-D images Inκ as 2-D keyframes. We

1http://www.mathworks.com/matlabcentral/fileexchange/17500

recall that our objective is to increase the hybrid ToF multi-
camera rig resolution over time. To that end, we first esti-
mate the motion vectors wnκ+i between every consecutive
2-D frames Inκ+i and Inκ+i+1, 0 ≤ i < κ. Then, we use the
estimated motion vectors to predict the missing ToF frames
between every consecutive ToF keyframes Dnκ and D(n+1)κ.
For the sake of simplicity, we formulate our concept for the
first period τD, i.e., n = 0.

3 Proposed motion cumulation
The function g(·) introduced in (2) relates the pixel posi-
tions between two consecutive frames. However, in general
we want to relate pixel positions between non-consecutive
frames. Indeed, we want to relate the pixel position of pi on
the current image frame Ii, 0 < i < κ with its corresponding
pixel position on the keyframe I0. We therefore propose a
cumulative forward motion estimation approach and define it
as the cumulation of the estimated motion between each pair
of 2-D frames starting from the current 2-D frame Ii until the
2-D keyframe I0. We prove by induction that

p0 = gi(pi), where gi = g ◦ ... ◦ g︸ ︷︷ ︸
i times

, (3)

where ◦ is the combination of functions, and i ∈ N∗ being
the number of frames between the current frame Ii and the
keyframe I0. From (2), we note that the case of i = 1 in (3)
is true by definition. We then assume that (3) is correct and
we show that p0 = gi+1(pi+1) as p0 = gi

(
g(pi+1)

)
=

(gi ◦ g)(pi+1) = gi+1(pi+1). The predicted depth map D́i,
where ‘´’ denotes forward-predicted frame, results from us-
ing the estimated cumulative forward motion between the cur-
rent frame Ii and the keyframe I0, on the ToF keyframe D0,
i.e., D́i(pi) = D0

(
gi(pi)

)
for all pixel positions pi. The

final enhanced depth video results from the fusion between
the predicted depth frames D́i and their corresponding 2-D
frames Ii by using the UML filter, or an earlier version re-
ferred to as PWAS filter for Pixel Weighted Average Strat-
egy [11], such that,

J́i(pi)=

∑
qi∈N(pi)

fS(pi,qi)fI
(
Ii(pi),Ii(qi)

)
Qi(qi)D́i(qi)∑

qi∈N(pi)
fS(pi,qi)fI

(
Ii(pi),Ii(qi)

)
Qi(qi)

,

(4)
with Qi = fQ(−|∇D́i|) being a credibility map that weights
the reliability of each depth pixel and minimizes the un-
matched boundary problem to cope with the edge blurring
artifact. The weighting functions fS(·), fI(·), and fQ(·) are
taken to be Gaussian functions with standard deviations σS,
σI, and σQ, respectively. We note that a stronger edge blur-
ring artifact [11] appears within the enhanced depth maps J́i
that are closer in time to their next ToF keyframe Dκ than to
their precedent ToF keyframe D0, from which they have been
predicted (compare Fig. 1n and Fig. 1f). The reason is due
to the large displacement in both time and space between the



frame Ii and its preceding keyframe I0. We therefore propose
a cumulative backward motion estimation in which, in con-
trast to the cumulative forward motion estimation approach,
the predicted depth maps result from the next ToF keyframe
Dκ. Thus, in this case, the estimated motion vector wi veri-
fies that Ii(pi) = Ii+1(pi+1) with pi+1 = pi +wi = h(pi).
Similarly to the forward approach, we prove by induction
that pκ = hi(pκ−i). Thus, the predicted depth map D̀i,
where ‘`’ denotes backward-predicted frame, follows as
D̀i(pi) = Dκ

(
hi(pκ−i)

)
. Enhanced depth maps that result

from considering forward-predicted depth maps D́i are more
accurate the closer they are to the precedent ToF keyframe
D0. Instead, enhanced depth maps that result from consid-
ering backward-predicted depth maps D̀i are more accurate
the closer they are to the next ToF keyframe Dκ (compare
Fig. 1o with Fig. 1g). We therefore propose to linearly
combine the forward-predicted and backward-predicted low-
resolution depth frames, and define a bidirectional motion
estimation, as follows D̂i = κ−i

κ · D́i + i
κ · D̀i, where ‘ˆ’

denotes bidirectionally predicted frame. Enhanced depth
maps that result from considering bidirectional motion esti-
mation are expected to present a major advantage of reducing
the noise within depth measurements between consecutive
ToF frames D0 and Dκ [6, 7]; hence, preserving depth con-
sistency and reducing the temporal fluctuation problem. In
addition, enhanced depth maps from such a combination are
more accurate and less noisy than when considering depth
maps resulting from a single directional motion estimation.
It is, however, important to note that both backward and bidi-
rectional approaches require the next ToF keyframe and thus
impose a higher latency.

4 Experimental results
In the following, we present some experimental results com-
puted on a real sequence of a hand moving through the scene.
The sequence has been recorded using a hybrid ToF multi-
camera rig that comprises a 3D MLI Sensor

TM
from IEE S.A. 2

and a Flea R©2 video camera from Point Grey
TM 3. Both sen-

sors are coupled with a narrow baseline of 36 mm. Also,
they are calibrated for a perfect data alignment and frame-
synchronised. Whereas the Flea R©2 video camera provides
(648×488) pixels, the 3D MLI Sensor

TM
provides a lower

resolution of (56×61) pixels. In order to quantify our con-
cept for depth video enhancement, we assume the frame rate
of the 2-D camera to be four times higher than the frame
rate of the ToF camera, i.e., κ = 4. That is, three low-
resolution depth maps are replaced every four 2-D frames by
the predicted low-resolution depth maps. In order to quantify
the performance of our proposed method we compute the
peak signal-to-noise ratio (PSNR) as well as the structural
similarity (SSIM) index between the enhanced depth maps

2IEE S.A., 3D MLI Sensor
TM

, http://www.iee.lu
3Point Grey

TM
, Flea R©2, http://www.ptgrey.com/products/flea2/
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Fig. 1: Predicted and enhanced depth maps using forward,
backward, and bidirectional motion estimation.

resulting from filtering using the predicted depth maps and
the enhanced depth maps resulting from filtering using the
neglected depth maps, i.e., the ground truth. Fig. 1 shows
an experiment where enhanced depth maps using the UML
filter have been predicted from forward motion estimation
(1st column), backward motion estimation (2nd column), and
bidirectional motion estimation (3rd column). It can be ob-
served that forward-predicted depth maps are visually better
the closer they are to J0, the enhanced depth map using the
precedent ToF keyframe D0. Instead, the backward-predicted
depth maps are better the closer they are to Jκ, the enhanced
depth map that results form the next ToF keyframe Dκ. Thus,
the combination of both strategies gives better results as re-
ported in Table 1. Indeed, Table 1 quantifies the predicted
enhanced depth maps with their corresponding ground truth,
i.e., the enhanced depth maps that result from filtering the
pair of Inκ and Dnκ given by the camera rig. From the table,
we can observe that the predicted depth enhancement frames
from bidirectional motion are more similar to the ground truth
than considering either forward or backward motion.



Table 1: Quantification of forward-predicted, backward-
predicted and bidirectional-predicted enhanced depth maps.

Forward Backward Bidirectional
PSNR SSIM PSNR SSIM PSNR SSIM

Ĵ1 53.72 0.98 46.69 0.97 54.97 0.99
Ĵ2 53.41 0.98 48.88 0.97 54.26 0.98
Ĵ3 49.17 0.98 51.50 0.98 52.93 0.99

We next quantify the robustness to noise due to the active
illumination of ToF cameras [3]. We simulate this behavior
by adding Gaussian noise with a standard deviation linearly
dependent on the distance measurement. In Fig. 2 we present
the response of the proposed depth maps prediction strategies
obtained over 50 Monte Carlo runs. The graphs confirm that
the forward strategy performs better when predicting frames
closer to the precedent keyframe while the backward strategy
performs better the closer the predicted frame is to the next
keyframe. In contrast, the bidirectional strategy outperforms
in all cases. However, the runtime is doubled as both forward
and backward motion estimation have to be computed and
combined.

(a) J́1, J̀1, and Ĵ1.

(b) J́3, J̀3, and Ĵ3.

Fig. 2: Responses against to Gaussian noise using cumula-
tive forward (B), backward (C), and bidirectional (�) motion
estimation approaches.

5 Conclusions
We have proposed to extend the sensor fusion concept to the
temporal domain. As a result, we enhance both in time and
space the low-resolution depth maps delivered by the ToF

camera up to the image resolution and frame rate of the cou-
pled 2-D video camera in a hybrid ToF multi-camera rig. Fu-
sion using the UML filter [3] ensures dense depth maps that
present more accurate measurements where the depth discon-
tinuities are well defined and adjusted to the 2-D guidance
image; hence avoiding the unmatched boundary problem be-
tween depth and 2-D image pairs and consequently, reduc-
ing the edge blurring artifact within the enhanced depth map.
As a consequence of being based upon a bilateral filter, the
filtered depth measurements are smoothed. Therefore, the
global noise level is significantly reduced. Furthermore, the
bidirectional approach reduces the temporal fluctuation prob-
lem by preserving depth consistency between ToF keyframes.
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