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Young’s modulus identification
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Error minimisation

Least squares method(conventional
approach):

σ = Eε

J = 1
2

N∑
i=1

(σi − Eεi )2

E = argmin
E

J(E )

σ

ε

E
1
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Frequentist inference

Example

Chance that a specific coin lands heads or tails
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Frequentist inference

10 6
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Frequentist inference

Pr(head) = 10
16
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Frequentist inference

Pr(head) = 10
16 Pr(tail) = 6
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Frequentist inference: Young’s modulus identification

Method of maximum likelihood (ML):

σ = Eε

σi = Eεi + Ω

Ω : noise in stress measurement, it is a random variable
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Frequentist inference: Young’s modulus identification
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Calibrate πnoise(ω):
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Frequentist inference: Young’s modulus identification

Method of maximum likelihood
(ML):

Calibrate πnoise(ω):

πnoise(ω) = 1√
2πSnoise

exp
(
− ω2

2S2
noise

)

σ

ε
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Frequentist inference: Young’s modulus identification

Method of maximum likelihood
(ML):

σi = Eεi + Ω with
πnoise(ω) = 1√

2πSnoise
exp

(
− ω2

2S2
noise

)

π(σi |E , Snoise) =

1√
2πSnoise

exp
(
− (σi − Eεi )2

2S2
noise

)
σi

εi
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Frequentist inference: Young’s modulus identification

ML for M measurements:

σm =
[
σ1, σ2, · · · , σM

]

εm =
[
ε1, ε2, · · · , εM

] π(σm|E ,Snoise) =

1
(2πS2

noise)
M
2

exp
(
−

M∑
i=1

(σi − Eεi )2

2S2
noise

)
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Bayesian inference
Coin example:
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Bayesian inference

Given a coin is it biased or not?
If two rolls turn up head, do we have biased coin?
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Bayesian inference

Original belief

Observqations

New belief

π(cause|effect) =

prior︷ ︸︸ ︷
π(cause)×

likelihood︷ ︸︸ ︷
π(effect|cause)

π(effect)︸ ︷︷ ︸
evidence
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Bayesian inference: Young’s modulus identification

Bayes’ formula:

σi = Eεi + Ω

Ω : noise in stress measurement

π(E |σi ) = π(E)π(σi |E)
π(σi )
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Bayesian inference: Young’s modulus identification

Bayes’ formula:

σi = Eεi + Ω

Ω : noise in stress measurement

π(E |σi ) = π(E)π(σi |E)
π(σi )

=⇒ π(E |σi ) = π(E)π(σi |E)
C

π(E |σi ) ∝ π(E )π(σi |E )
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Bayesian inference: Young’s modulus identification

BI for M measurment:

prior : π(E )π(σ1|E )π(σ2|E ) · · ·π(σM−1|E )

likelihood : π(σM |E )

π(E |σM) ∝ π(E )π(σ1|E )π(σ2|E ) · · ·π(σM−1|E )π(σM |E )
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Bayesian inference: Young’s modulus identification

π(E |σM) ∝
M∏

i=1
exp

(
− (σi − Eεi )2

2S2
noise

)
exp

(
− (E − E )2

2S2
E

)
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Bayesian inference: Young’s modulus identification

π(E |σM) ∝
M∏

i=1
exp

(
− (σi − Eεi )2

2S2
noise

)
exp

(
− (E − E )2

2S2
E

)

π(E |σM) ∝ exp
(
− (E − µ)2

2S2
post

)

with µ = f (σi ,E , Snosie ,SE , εi )
Spost = f (σi ,E , Snosie ,SE , εi )
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Frequentist vs Bayesian

Frequentist:
Data are a repeatable random
sample there is a frequency
Underlying parameters remain
constant during this repeatable
process
Parameters are fixed

Bayesian:
Data are observed from the
realised sample
Parameters are unknown and
described probabilistically
Data are fixed
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Why Bayesian?

Error minimisation cannot take statistical info of measurement device
into account
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Why Bayesian?

Error minimisation cannot take statistical info of measurement device
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You probably will not test hundreds of specimens and then the prior
(πprior ) may have a positive influence
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Why Bayesian?

Error minimisation cannot take statistical info of measurement device
into account
You probably will not test hundreds of specimens and then the prior
(πprior ) may have a positive influence
For inverse problems, the prior (πprior ) regularises the system (avoids
ill-posedness)
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What have we accomplished?

Closed form expression of the posterior for:
elastoplasticity with perfect plasticity
elastoplasticity with linear hardening
elastoplasticity with nonlinear hardening
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What can be improved?

In all cases discussed, we search for parameters and we get a
distribution of the parameters
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What can be improved?

In all cases discussed, we search for parameters and we get a
distribution of the parameters
However, this is not the distribution of the heterogeneity in the
material, but

a ‘certainty measure’ for the parameters
If heterogeneity is to be incorporated, we have to search for that as
well, hence

search for parameters and the distribution
thereof → future work...
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The End
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