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Young's modulus identification
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Error minimisation

Least squares method(conventional
approach):

o= Ee

(0; — Eei)?
1 : ‘
E = argminJ(E) o
E

M=

_1
J=1%
1
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Frequentist inference

Example

Chance that a specific coin lands heads or tails
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Frequentist inference
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Frequentist inference

Pr(head) = 12
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Frequentist inference
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Frequentist inference: Young's modulus identification

Method of maximum likelihood (ML):
o= Ee
o; = Eei + 1

Q) : noise in stress measurement, it is a random variable
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Frequentist inference: Young's modulus identification

Method of maximum likelihood
(ML):

Calibrate Tpoise(w):
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Frequentist inference: Young's modulus identification

Method of maximum likelihood
(ML):

Calibrate Tpoise(w):

, 1 _ “—2)
WnoISE(w) T V27 Snoise eXp< 2Sr2mise

OTENERITO0

Hussein Rappel (UL-Ulg) Bl for parameter identification 13 /38



Frequentist inference: Young's modulus identification

Method of maximum likelihood
(ML):

o;i = E¢j + € with

1 2
7rnoise(W) = V27 Smome exp( - 25“; )

noise
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Frequentist inference: Young's modulus identification

Method of maximum likelihood
(ML):
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Frequentist inference: Young's modulus identification

Method of maximum likelihood
(ML):

o;i = E¢; + Q with

Tnoise(W) = —e—— exp( S )
noise /2775/701'58 25,270,‘55

gj
71'(0','|E, Snoise) =
1 ( (0; — Ee€;j)?
= &Pl - =& !
V 2T Snoise 2530[’56 €j
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Frequentist inference: Young's modulus identification

ML for M measurements:

o™= |:0-170-27 T ao-/\/l:|
W(Um‘Ea Snoise) =
M 2
em — [61,62’... ,GM} 1 ZI(U;—Ee;)
(27T5r270ise) % ( 25'30"56 )
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Bayesian inference

Coin example:
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Bayesian inference

@ Given a coin is it biased or not?
@ If two rolls turn up head, do we have biased coin?
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Bayesian inference

Original belief
New belief

Observqations

prior likelihood

—— ——
7(cause)x(effect|cause)
(effect)
———

evidence

7(causeleffect) =
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Bayesian inference: Young's modulus identification

Bayes’ formula:
o; = Ee; + 9
€2 : noise in stress measurement

m(Elo;) = m(E)n(oi|E)

m(o7)
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Bayesian inference: Young's modulus identification

Bayes’ formula:
o; = Ee; + 9
€2 : noise in stress measurement

w(Eloi) = % — 7(E|oy) = w
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Bayesian inference: Young's modulus identification

Bayes’ formula:
g;j = EE,' + Q

 : noise in stress measurement

n(Elo) = TEMGIE) — 7(E|g;) = TE(IE)

(o)

| 7(E|o) o w(E)m(oi[E) |
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Bayesian inference: Young's modulus identification

Bl for M measurment:
prior : w(E)w(o1|E)m(02|E) - - w(opm—1|E)

likelihood : w(opm|E)

| 7(Elom) o w(E)m(01|E)n(02|E) - - (0w 1| E)m(om| E) |
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Bayesian inference: Young's modulus identification

M i — Ee;)? E—E)
o) [T (- CoE Lo - £
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Bayesian inference: Young's modulus identification

w(Elonm) x Hexp( BT

i=1 noise

M O','—EE,' 2
Q)GXM

252

E—E)?
( ))

m(Elopm) x exp( -

(E—p)?

253051:

)

Wlth ,LL = f(O',‘,E, *21051'67 SE7 6I')
Spost = f(U,’, E, 5nosie> SE; 6i)
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Frequentist vs Bayesian

Frequentist: .
. Bayesian:

@ Data are a repeatable random

i @ Data are observed from the
sample there is a frequency

) _ realised sample
@ Underlying parameters remain

constant during this repeatable
process

@ Parameters are unknown and
described probabilistically

) @ Data are fixed
@ Parameters are fixed
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-
Why Bayesian?

@ Error minimisation cannot take statistical info of measurement device
into account
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-
Why Bayesian?

@ Error minimisation cannot take statistical info of measurement device
into account

@ You probably will not test hundreds of specimens and then the prior
(7prior) may have a positive influence

e For inverse problems, the prior (7pior) regularises the system (avoids
ill-posedness)
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What have we accomplished?

@ Closed form expression of the posterior for:

o elastoplasticity with perfect plasticity
o elastoplasticity with linear hardening
o elastoplasticity with nonlinear hardening
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|
What can be improved?

In all cases discussed, we search for parameters and we get a
distribution of the parameters
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What can be improved?

In all cases discussed, we search for parameters and we get a
distribution of the parameters
However, this is not the distribution of the heterogeneity in the
material, but

a ‘certainty measure’ for the parameters
If heterogeneity is to be incorporated, we have to search for that as
well, hence

search for parameters and the distribution

thereof — future work...
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The End
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