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A pair (X, d) is called a metric space, if X is a nonempty set and
d is a distance on X, that is a function d: X2 — R such that:
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n-distance

Definition
We say that d: X" — Ry (n > 2) is an n-distance if:
(i) d(x1,...,xp) =0 if and only if x; = -+ = xp,
(ii) d(Xl, . ,X,,) = d(X7r(1)7 . ,Xw(n)) for all x1,...,x, € X and
all m € S,

(iii) Thereis a 0 < K < 1 such that
d(x1,...,xn) < K D1 d(x1, ..., Xn)|x=z for all
X1y..0yXn, Z € X.
We denote by K* the smallest constant K for which (iii) holds.
For n = 2, we assume that K* = 1.
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Example (Drastic n-distance)
The function d: X" — R defined by d(xy,...,x,) =0, if

X1 =-++ = Xp, and d(x1,...,xp) = 1, otherwise.
K* = ﬁ for every n > 2.
Proposition

Let d and d’ be n-distances on X and let A\ > 0. The following
assertions hold.

(1) d+d" and \d are n-distance on X.

(2) ﬁid is an n-distance on X, with value in [0, 1].
Lemma
Let a,as,...,a, be nonnegative real numbers such that

> %iai >a. Then

a < ai i 4 dn
14a = 1+a; 1+a,
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Condition (iii) in Definition 1 can be generalized as follows.

Definition
Let g: R — R, be a symmetric function. We say that a function
d: X" — R7 is a g-distance if it satisfies conditions (i), (ii) and

d(x1,...,%n) < g(d(xl,...,x,,)|X1:z,..., d(xl,...,x,,)|xn:z)

for all x1,...,x,,z € X.

It is natural to ask that d + d’, A d, and Hid be g-distances
whenever so are d and d’.
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Proposition

Let g: R — Ry be a (symmetric) function, d and d’ be

g-distances. The following assertions hold.

(1) If g is positively homogeneous, i.e., g(Ar) = A g(r) for all
r € R and all A > 0, then for every A >0, Ad is a
g-distance.

(2) If g is superadditive, i.e., g(r +s) > g(r) + g(s) for all
r,s € R7, then d + d' is a g-distance.

(3) If g is both positively homogeneous and superadditive, then it
is concave.

(4) If g is bounded below (at least on a measurable set) and
additive, that is, g(r +s) = g(r) + g(s) for all r,s € R, then
and only then there exist A1, ..., A, = 0 such that

gr) = > Xir; (1)
i=1
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and dy: X" — R, defined by
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Example (Basic examples)

Given a metric space (X, d) and n > 2, the maps dmax: X" — R
and dy: X" — R, defined by

dmax(Xla cee ,Xn) — 1<rp<ajx<n d(Xia X_/)
dy(X1,...,Xn) = Z d(xi, ;)
1<i<j<n

are n-distances for which the best constants are given by
K* = 1

n—1"
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Generalization

Let X be a set.Associate a full, (weighted) graph K, to the points
X1,...,xn € X.For a subgraph G of K, we denote E(G) the edge
set of a graph G.

Let P be a class of graphs over xq, ..., Xp.

Theorem
Let (X, d) be a metric space and n > 2. Then for any nonempty
class P the map dg,: X" — R, defined by

der(x1, - xn) =max > d(x,)
(xi,x;)EE(G)

are n-distances for which the best constants are given by
K* = 1

~ n—-1-
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Example
1. f P={G ~ Ky}, then dg, = dmax(x1,- -, Xn)-
2. 1f P = {G ~ K}, then dg, = ds(x1, ..., Xn).
3. Forany1<s<nlet P={G =~ Ks}. Then
dr. (X1, .., Xn) = max Z d(xi, x;j)
(xixj)€E(G)

is an n-metric with K* = nil.

4. If P is the class of Hamiltonian cycles of K,,. Then

dHam(X1> <. ,X,,) = Wé]?)?( Z d(Xi>Xj)
(xi, ) EE(H)

is an n-metric with K* = nil.

5. P is a class of circles of given size, or the class of spanning
trees, etc.
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can be shown that this ball always exist, is unique, and can be
determined in linear time.
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Examples II.

Example (Geometric constructions)

Let xi,...,X, be n > 2 arbitrary points in R¥ (k > 2) and denote
by B(xi,...,xn) the smallest closed ball containing x1,...,x,. It
can be shown that this ball always exist, is unique, and can be
determined in linear time.

(1) The radius of B(x,...,Xp) is an n-distance whose best

* 1
constant K* = —=5.

(2) If k =2, then the area of B(x1,...,xp) is an n-distance
whose best constant K* =

_1

n—3/2"

(3) The k-dimensional volume of B(xi,...,xp) is an n-distance
and we conjecture that the best constant K™ is given by

K* = W This is correct for k =1 or 2.
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Example (Fermat point based n-distances)

Given a metric space (X, d), and an integer n > 2, the Fermat set
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Example (Fermat point based n-distances)

Given a metric space (X, d), and an integer n > 2, the Fermat set
Fy of any element subset Y = {x1,...,x,} of X, is defined as

Fy = {x €X: Zn:d(x,-,x) < zn:d(x,-,z) for all z € X}.
i=1

i=1

Since h(x) = Y i, d(x;, x) is continuous and bounded from below
by 0, Fy is non-empty but usually not a singleton.
We can define dr : X" — R by

dr(x1,...,%n) = min{ id(x,-,x) X € X}.
i=1

Proposition

df is an n-distance and K* <

I‘ngl'l .
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Median graphs

Let G = (V, E) be an undirected graph.

G is called median graph if for every u, v,w € V there is a unique
z := m(u, v, w) such that z is in the intersection of shortest paths
between any two elements among u, v, w.

Examples: Hypercubes and trees.
We can define d,,, : V3 — R, by

dm(u, v, w) = Enel\g {d(u,s)+ d(v,s) +d(w,s)}.

Proposition
dm is a 3-distance, dm(u, v, w) is realized by s = m(u, v, w) and
K =1

2
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Every median graph can be embedded into a hypercube
Hp = {0,1}™ for some m (with respect to the Hamming-distance).
For a given m, we can define dgn, by

dgm(X1,...,Xp) = min )Zd(z,x,—).

ze V(Hm -1
Let m = Maj(xi, ..., x,) denote the majority of x1,...,x,.*
Theorem
dgm is a n-distance, dgm(x1, ..., xn) is realized by (any)

m = Maj(xi,...,xp) and K* = -1

= o=
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K* =1, Example IV.

For all of the previous examples ﬁ < K*<L % (when we know
the exact value).

Question
Are there any n-distance d such that the K* =1 for any n?

Yes. In R we can define

= u, min(x) = min{xg, ..., Xxp}
n n

An(x)

and dn(x) = Ap(x) — miny(x), where x = (x1,...,x,) € R™.

Proposition
d, is an n-distance for every n > 2 and K* = 1.

But it is not realized. (For every e > 0 it can be shown that
K*>1-¢.)
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Table: Critical values

n-distance space X K* nb. of var.
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Summary

Table: Critical values

n-distance space X K* nb. of var.
der, dmax, dZ arbitrary metric ﬁ n>1
ddiameter R™ (m > 1) nil n>1
darea R™ (m > 2) n713/2 n>1
dvolume(k) R™ (m > k) ?= W n>1
dFermat arbitrary metric | 7 < f"LW n>1
2
drmedian median graph G % n=23
dhypercube {07 1}n nil n>1
d, R 1 n>1
Conjecture
1 <K*<1




Question

1
2. Can we characterize the n-distances for which K* =
3.
4

. Can we show an example where K* = 1 is realized?

. Are there any n-distance such that K* < ﬁ ?

Can we characterize the n-distances for which K* =




Thank you for your kind attention!



