
An extension of the concept of distance to
functions of several variables

Gergely Kiss, Jean-Luc Marichal, Bruno Teheux

Mathematics Research Unit, University of Luxembourg
Luxembourg, Luxembourg

36th Linz Seminar on Fuzzy Set Theory, Linz, Austria
2-6. February 2016.



A pair (X , d) is called a metric space, if X is a nonempty set and
d is a distance on X , that is a function d : X 2 → R+ such that:

(i) d(x1, x2) = 0 if and only if x1 = x2,

(ii) d(x1, x2) = d(x2, x1) for all x1, x2 ∈ X ,

(iii) d(x1, x2) 6 d(x1, z) + d(z , x2) for all x1, x2, z ∈ X .

Multidistance: A generalization of a distance by Mart́ın and Mayor.
We say that d : ∪n>1 X

n → R+ is a multidistance if:

(i) d(x1, . . . , xn) = 0 if and only if x1 = · · · = xn,

(ii) d(x1, . . . , xn) = d(xπ(1), . . . , xπ(n)) for all x1, . . . , xn ∈ X and
all π ∈ Sn,

(iii) d(x1, . . . , xn) 6
∑n

i=1 d(xi , z) for all x1, . . . , xn, z ∈ X .
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n-distance

Definition
We say that d : X n → R+ (n ≥ 2) is an n-distance if:

(i) d(x1, . . . , xn) = 0 if and only if x1 = · · · = xn,

(ii) d(x1, . . . , xn) = d(xπ(1), . . . , xπ(n)) for all x1, . . . , xn ∈ X and
all π ∈ Sn,

(iii) There is a 0 6 K 6 1 such that
d(x1, . . . , xn) 6 K

∑n
i=1 d(x1, . . . , xn)|xi=z for all

x1, . . . , xn, z ∈ X .

We denote by K ∗ the smallest constant K for which (iii) holds.
For n = 2, we assume that K ∗ = 1.
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Example (Drastic n-distance)

The function d : X n → R+ defined by d(x1, . . . , xn) = 0, if
x1 = · · · = xn, and d(x1, . . . , xn) = 1, otherwise.

K ∗ = 1
n−1 for every n > 2.

Proposition

Let d and d ′ be n-distances on X and let λ > 0. The following
assertions hold.

(1) d + d ′ and λ d are n-distance on X .

(2) d
1+d is an n-distance on X , with value in [0, 1].

Lemma
Let a, a1, . . . , an be nonnegative real numbers such that∑n

i=1 ai ≥ a. Then

a

1 + a
≤ a1

1 + a1
+ · · ·+ an

1 + an
.
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A generalization of n-distance

Condition (iii) in Definition 1 can be generalized as follows.

Definition
Let g : Rn

+ → R+ be a symmetric function. We say that a function
d : X n → R+ is a g-distance if it satisfies conditions (i), (ii) and

d(x1, . . . , xn) 6 g
(
d(x1, . . . , xn)|x1=z , . . . , d(x1, . . . , xn)|xn=z

)
for all x1, . . . , xn, z ∈ X .

It is natural to ask that d + d ′, λ d , and d
1+d be g -distances

whenever so are d and d ′.
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Proposition

Let g : Rn
+ → R+ be a (symmetric) function, d and d ′ be

g-distances. The following assertions hold.

(1) If g is positively homogeneous, i.e., g(λ r) = λ g(r) for all
r ∈ Rn

+ and all λ > 0, then for every λ > 0, λ d is a
g-distance.

(2) If g is superadditive, i.e., g(r + s) > g(r) + g(s) for all
r, s ∈ Rn

+, then d + d ′ is a g-distance.

(3) If g is both positively homogeneous and superadditive, then it
is concave.

(4) If g is bounded below (at least on a measurable set) and
additive, that is, g(r + s) = g(r) + g(s) for all r, s ∈ Rn

+, then
and only then there exist λ1, . . . , λn > 0 such that

g(r) =
n∑

i=1

λi ri (1)
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Summerizing: If g is symmetric, non-negative, additive on Rn
+,

then g(r) = λ
∑n

i=1 ri , which gives the ’original’ definition of
n-distance.

d : X n → R+ (n ≥ 2) is an n-distance if satisfies (i), (ii) and

(iii) There is a 0 6 K 6 1 such that
d(x1, . . . , xn) 6 K

∑n
i=1 d(x1, . . . , xn)|xi=z for all

x1, . . . , xn, z ∈ X .

We denote by K ∗ the smallest constant K for which (iii) holds.
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Example I.

What would be K ∗?

Example (Basic examples)

Given a metric space (X , d) and n > 2, the maps dmax : X n → R+

and dΣ : X n → R+ defined by

dmax(x1, . . . , xn) = max
16i<j6n

d(xi , xj)

dΣ(x1, . . . , xn) =
∑

16i<j6n

d(xi , xj)

are n-distances for which the best constants are given by
K ∗ = 1

n−1 .
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Generalization

Let X be a set.

Associate a full, (weighted) graph Kn to the points
x1, . . . , xn ∈ X .For a subgraph G of Kn we denote E (G ) the edge
set of a graph G .
Let P be a class of graphs over x1, . . . , xn.

Theorem
Let (X , d) be a metric space and n > 2. Then for any nonempty
class P the map dGr : X n → R+ defined by

dGr (x1, . . . , xn) = max
G∈P

∑
(xi ,xj )∈E(G)

d(xi , xj)

are n-distances for which the best constants are given by
K ∗ = 1

n−1 .
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Example

1. If P = {G ' K2}, then dGr = dmax(x1, . . . , xn).

2. If P = {G ' Kn}, then dGr = dΣ(x1, . . . , xn).

3. For any 1 ≤ s ≤ n let P = {G ' Ks}. Then

dKs (x1, . . . , xn) = max
G∈P

∑
(xi ,xj )∈E(G)

d(xi , xj)

is an n-metric with K ∗ = 1
n−1 .

4. If P is the class of Hamiltonian cycles of Kn. Then

dHam(x1, . . . , xn) = max
H∈P

∑
(xi ,xj )∈E(H)

d(xi , xj)

is an n-metric with K ∗ = 1
n−1 .

5. P is a class of circles of given size, or the class of spanning
trees, etc.



Example

1. If P = {G ' K2}, then dGr = dmax(x1, . . . , xn).

2. If P = {G ' Kn}, then dGr = dΣ(x1, . . . , xn).

3. For any 1 ≤ s ≤ n let P = {G ' Ks}. Then

dKs (x1, . . . , xn) = max
G∈P

∑
(xi ,xj )∈E(G)

d(xi , xj)

is an n-metric with K ∗ = 1
n−1 .

4. If P is the class of Hamiltonian cycles of Kn. Then

dHam(x1, . . . , xn) = max
H∈P

∑
(xi ,xj )∈E(H)

d(xi , xj)

is an n-metric with K ∗ = 1
n−1 .

5. P is a class of circles of given size, or the class of spanning
trees, etc.



Example

1. If P = {G ' K2}, then dGr = dmax(x1, . . . , xn).

2. If P = {G ' Kn}, then dGr = dΣ(x1, . . . , xn).

3. For any 1 ≤ s ≤ n let P = {G ' Ks}. Then

dKs (x1, . . . , xn) = max
G∈P

∑
(xi ,xj )∈E(G)

d(xi , xj)

is an n-metric with K ∗ = 1
n−1 .

4. If P is the class of Hamiltonian cycles of Kn. Then

dHam(x1, . . . , xn) = max
H∈P

∑
(xi ,xj )∈E(H)

d(xi , xj)

is an n-metric with K ∗ = 1
n−1 .

5. P is a class of circles of given size, or the class of spanning
trees, etc.



Example

1. If P = {G ' K2}, then dGr = dmax(x1, . . . , xn).

2. If P = {G ' Kn}, then dGr = dΣ(x1, . . . , xn).

3. For any 1 ≤ s ≤ n let P = {G ' Ks}. Then

dKs (x1, . . . , xn) = max
G∈P

∑
(xi ,xj )∈E(G)

d(xi , xj)

is an n-metric with K ∗ = 1
n−1 .

4. If P is the class of Hamiltonian cycles of Kn. Then

dHam(x1, . . . , xn) = max
H∈P

∑
(xi ,xj )∈E(H)

d(xi , xj)

is an n-metric with K ∗ = 1
n−1 .

5. P is a class of circles of given size, or the class of spanning
trees, etc.



Example

1. If P = {G ' K2}, then dGr = dmax(x1, . . . , xn).

2. If P = {G ' Kn}, then dGr = dΣ(x1, . . . , xn).

3. For any 1 ≤ s ≤ n let P = {G ' Ks}. Then

dKs (x1, . . . , xn) = max
G∈P

∑
(xi ,xj )∈E(G)

d(xi , xj)

is an n-metric with K ∗ = 1
n−1 .

4. If P is the class of Hamiltonian cycles of Kn. Then

dHam(x1, . . . , xn) = max
H∈P

∑
(xi ,xj )∈E(H)

d(xi , xj)

is an n-metric with K ∗ = 1
n−1 .

5. P is a class of circles of given size, or the class of spanning
trees, etc.



Examples II.

Example (Geometric constructions)

Let x1, . . . , xn be n > 2 arbitrary points in Rk (k > 2) and denote
by B(x1, . . . , xn) the smallest closed ball containing x1, . . . , xn. It
can be shown that this ball always exist, is unique, and can be
determined in linear time.

(1) The radius of B(x1, . . . , xn) is an n-distance whose best
constant K ∗ = 1

n−1 .

(2) If k = 2, then the area of B(x1, . . . , xn) is an n-distance
whose best constant K ∗ = 1

n−3/2 .

(3) The k-dimensional volume of B(x1, . . . , xn) is an n-distance
and we conjecture that the best constant K ∗ is given by
K ∗ = 1

n−2+(1/2)k−1 . This is correct for k = 1 or 2.
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Examples III.

Example (Fermat point based n-distances)

Given a metric space (X , d), and an integer n ≥ 2, the Fermat set
FY of any element subset Y = {x1, . . . , xn} of X , is defined as

FY =
{
x ∈ X :

n∑
i=1

d(xi , x) ≤
n∑

i=1

d(xi , z) for all z ∈ X
}
.

Since h(x) =
∑n

i=1 d(xi , x) is continuous and bounded from below
by 0, FY is non-empty but usually not a singleton.
We can define dF : X n → R+ by

dF (x1, . . . , xn) = min
{ n∑

i=1

d(xi , x) : x ∈ X
}
.

Proposition

dF is an n-distance and K ∗ ≤ 1
d n−1

2
e .
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Median graphs

Let G = (V ,E ) be an undirected graph.

G is called median graph if for every u, v ,w ∈ V there is a unique
z := m(u, v ,w) such that z is in the intersection of shortest paths
between any two elements among u, v ,w .
Examples: Hypercubes and trees.
We can define dm : V 3 → R+ by

dm(u, v ,w) = min
s∈V

{
d(u, s) + d(v , s) + d(w , s)

}
.

Proposition

dm is a 3-distance, dm(u, v ,w) is realized by s = m(u, v ,w) and
K ∗ = 1

2 .
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Every median graph can be embedded into a hypercube
Hm = {0, 1}m for some m (with respect to the Hamming-distance).

For a given m, we can define dgm by

dgm(x1, . . . , xn) = min
z∈V (Hm)

n∑
i=1

d(z , xi ).

Let m = Maj(x1, . . . , xn) denote the majority of x1, . . . , xn.*

Theorem
dgm is a n-distance, dgm(x1, . . . , xn) is realized by (any)
m = Maj(x1, . . . , xn) and K ∗ = 1

n−1 .
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K ∗ = 1, Example IV.

For all of the previous examples 1
n−1 ≤ K ∗ ≤ 1

n−2 (when we know
the exact value).

Question
Are there any n-distance d such that the K ∗ = 1 for any n?

Yes. In R we can define

An(x) =
x1 + · · ·+ xn

n
, min

n
(x) = min{x1, . . . , xn}

and dn(x) = An(x)−minn(x), where x = (x1, . . . , xn) ∈ Rn.

Proposition

dn is an n-distance for every n ≥ 2 and K ∗ = 1.
But it is not realized. (For every ε > 0 it can be shown that
K ∗ > 1− ε.)
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Summary

Table: Critical values

n-distance space X K∗ nb. of var.

dGr , dmax , d∑ arbitrary metric 1
n−1 n > 1

ddiameter Rm (m ≥ 1) 1
n−1 n > 1

darea Rm (m ≥ 2) 1
n−3/2 n > 1

dvolume(k) Rm (m ≥ k) ? = 1
n−1−(1/2)k−1 n > 1

dFermat arbitrary metric ? ≤ 1
d n−1

2
e n > 1

dmedian median graph G 1
2 n = 3

dhypercube {0, 1}n 1
n−1 n > 1

dn R 1 n > 1

Conjecture

1

n − 1
≤ K ∗ ≤ 1.
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Question

1. Are there any n-distance such that K ∗ < 1
n−1 ?

2. Can we characterize the n-distances for which K ∗ = 1
n−1 ?

3. Can we characterize the n-distances for which K ∗ = 1?

4. Can we show an example where K ∗ = 1 is realized?



Thank you for your kind attention!


