

An extension of the concept of distance to functions of several variables

Gergely Kiss, Jean-Luc Marichal, Bruno Teheux

Mathematics Research Unit, University of Luxembourg
Luxembourg, Luxembourg

36th Linz Seminar on Fuzzy Set Theory, Linz, Austria
2-6. February 2016.

A pair (X, d) is called a *metric space*, if X is a nonempty set and d is a distance on X , that is a function $d: X^2 \rightarrow \mathbb{R}_+$ such that:

- (i) $d(x_1, x_2) = 0$ if and only if $x_1 = x_2$,
- (ii) $d(x_1, x_2) = d(x_2, x_1)$ for all $x_1, x_2 \in X$,
- (iii) $d(x_1, x_2) \leq d(x_1, z) + d(z, x_2)$ for all $x_1, x_2, z \in X$.

A pair (X, d) is called a *metric space*, if X is a nonempty set and d is a distance on X , that is a function $d: X^2 \rightarrow \mathbb{R}_+$ such that:

- (i) $d(x_1, x_2) = 0$ if and only if $x_1 = x_2$,
- (ii) $d(x_1, x_2) = d(x_2, x_1)$ for all $x_1, x_2 \in X$,
- (iii) $d(x_1, x_2) \leq d(x_1, z) + d(z, x_2)$ for all $x_1, x_2, z \in X$.

Multidistance: A generalization of a distance by Martín and Mayor.

A pair (X, d) is called a *metric space*, if X is a nonempty set and d is a distance on X , that is a function $d: X^2 \rightarrow \mathbb{R}_+$ such that:

- (i) $d(x_1, x_2) = 0$ if and only if $x_1 = x_2$,
- (ii) $d(x_1, x_2) = d(x_2, x_1)$ for all $x_1, x_2 \in X$,
- (iii) $d(x_1, x_2) \leq d(x_1, z) + d(z, x_2)$ for all $x_1, x_2, z \in X$.

Multidistance: A generalization of a distance by Martín and Mayor.
We say that $d: \cup_{n \geq 1} X^n \rightarrow \mathbb{R}_+$ is a *multidistance* if:

- (i) $d(x_1, \dots, x_n) = 0$ if and only if $x_1 = \dots = x_n$,
- (ii) $d(x_1, \dots, x_n) = d(x_{\pi(1)}, \dots, x_{\pi(n)})$ for all $x_1, \dots, x_n \in X$ and all $\pi \in S_n$,
- (iii) $d(x_1, \dots, x_n) \leq \sum_{i=1}^n d(x_i, z)$ for all $x_1, \dots, x_n, z \in X$.

n-distance

Definition

We say that $d: X^n \rightarrow \mathbb{R}_+$ ($n \geq 2$) is an *n-distance* if:

n-distance

Definition

We say that $d: X^n \rightarrow \mathbb{R}_+$ ($n \geq 2$) is an *n-distance* if:

- (i) $d(x_1, \dots, x_n) = 0$ if and only if $x_1 = \dots = x_n$,

n-distance

Definition

We say that $d: X^n \rightarrow \mathbb{R}_+$ ($n \geq 2$) is an *n-distance* if:

- (i) $d(x_1, \dots, x_n) = 0$ if and only if $x_1 = \dots = x_n$,
- (ii) $d(x_1, \dots, x_n) = d(x_{\pi(1)}, \dots, x_{\pi(n)})$ for all $x_1, \dots, x_n \in X$ and all $\pi \in S_n$,

n-distance

Definition

We say that $d: X^n \rightarrow \mathbb{R}_+$ ($n \geq 2$) is an *n-distance* if:

- (i) $d(x_1, \dots, x_n) = 0$ if and only if $x_1 = \dots = x_n$,
- (ii) $d(x_1, \dots, x_n) = d(x_{\pi(1)}, \dots, x_{\pi(n)})$ for all $x_1, \dots, x_n \in X$ and all $\pi \in S_n$,
- (iii) There is a $0 \leq K \leq 1$ such that
$$d(x_1, \dots, x_n) \leq K \sum_{i=1}^n d(x_1, \dots, x_n)|_{x_i=z} \text{ for all } x_1, \dots, x_n, z \in X.$$

n-distance

Definition

We say that $d: X^n \rightarrow \mathbb{R}_+$ ($n \geq 2$) is an *n-distance* if:

- (i) $d(x_1, \dots, x_n) = 0$ if and only if $x_1 = \dots = x_n$,
- (ii) $d(x_1, \dots, x_n) = d(x_{\pi(1)}, \dots, x_{\pi(n)})$ for all $x_1, \dots, x_n \in X$ and all $\pi \in S_n$,
- (iii) There is a $0 \leq K \leq 1$ such that
$$d(x_1, \dots, x_n) \leq K \sum_{i=1}^n d(x_1, \dots, x_n)|_{x_i=z} \text{ for all } x_1, \dots, x_n, z \in X.$$

We denote by K^* the smallest constant K for which (iii) holds.

For $n = 2$, we assume that $K^* = 1$.

Example (Drastic n -distance)

The function $d: X^n \rightarrow \mathbb{R}_+$ defined by $d(x_1, \dots, x_n) = 0$, if $x_1 = \dots = x_n$, and $d(x_1, \dots, x_n) = 1$, otherwise.

Example (Drastic n -distance)

The function $d: X^n \rightarrow \mathbb{R}_+$ defined by $d(x_1, \dots, x_n) = 0$, if $x_1 = \dots = x_n$, and $d(x_1, \dots, x_n) = 1$, otherwise.
 $K^* = \frac{1}{n-1}$ for every $n \geq 2$.

Example (Drastic n -distance)

The function $d: X^n \rightarrow \mathbb{R}_+$ defined by $d(x_1, \dots, x_n) = 0$, if $x_1 = \dots = x_n$, and $d(x_1, \dots, x_n) = 1$, otherwise.
 $K^* = \frac{1}{n-1}$ for every $n \geq 2$.

Proposition

Let d and d' be n -distances on X and let $\lambda > 0$. The following assertions hold.

- (1) $d + d'$ and λd are n -distance on X .
- (2) $\frac{d}{1+d}$ is an n -distance on X , with value in $[0, 1]$.

Example (Drastic n -distance)

The function $d: X^n \rightarrow \mathbb{R}_+$ defined by $d(x_1, \dots, x_n) = 0$, if $x_1 = \dots = x_n$, and $d(x_1, \dots, x_n) = 1$, otherwise.
 $K^* = \frac{1}{n-1}$ for every $n \geq 2$.

Proposition

Let d and d' be n -distances on X and let $\lambda > 0$. The following assertions hold.

- (1) $d + d'$ and λd are n -distance on X .
- (2) $\frac{d}{1+d}$ is an n -distance on X , with value in $[0, 1]$.

Lemma

Let a, a_1, \dots, a_n be nonnegative real numbers such that $\sum_{i=1}^n a_i \geq a$. Then

$$\frac{a}{1+a} \leq \frac{a_1}{1+a_1} + \dots + \frac{a_n}{1+a_n}.$$

A generalization of n -distance

Condition (iii) in Definition 1 can be generalized as follows.

Definition

Let $g: \mathbb{R}_+^n \rightarrow \mathbb{R}_+$ be a symmetric function. We say that a function $d: X^n \rightarrow \mathbb{R}^+$ is a g -distance if it satisfies conditions (i), (ii) and

$$d(x_1, \dots, x_n) \leq g(d(x_1, \dots, x_n)|_{x_1=z}, \dots, d(x_1, \dots, x_n)|_{x_n=z})$$

for all $x_1, \dots, x_n, z \in X$.

A generalization of n -distance

Condition (iii) in Definition 1 can be generalized as follows.

Definition

Let $g: \mathbb{R}_+^n \rightarrow \mathbb{R}_+$ be a symmetric function. We say that a function $d: X^n \rightarrow \mathbb{R}^+$ is a g -distance if it satisfies conditions (i), (ii) and

$$d(x_1, \dots, x_n) \leq g(d(x_1, \dots, x_n)|_{x_1=z}, \dots, d(x_1, \dots, x_n)|_{x_n=z})$$

for all $x_1, \dots, x_n, z \in X$.

It is natural to ask that $d + d'$, λd , and $\frac{d}{1+d}$ be g -distances whenever so are d and d' .

Proposition

Let $g: \mathbb{R}_+^n \rightarrow \mathbb{R}_+$ be a (symmetric) function, d and d' be g -distances. The following assertions hold.

- (1) If g is positively homogeneous, i.e., $g(\lambda \mathbf{r}) = \lambda g(\mathbf{r})$ for all $\mathbf{r} \in \mathbb{R}_+^n$ and all $\lambda > 0$, then for every $\lambda > 0$, λd is a g -distance.

Proposition

Let $g: \mathbb{R}_+^n \rightarrow \mathbb{R}_+$ be a (symmetric) function, d and d' be g -distances. The following assertions hold.

- (1) If g is positively homogeneous, i.e., $g(\lambda \mathbf{r}) = \lambda g(\mathbf{r})$ for all $\mathbf{r} \in \mathbb{R}_+^n$ and all $\lambda > 0$, then for every $\lambda > 0$, λd is a g -distance.
- (2) If g is superadditive, i.e., $g(\mathbf{r} + \mathbf{s}) \geq g(\mathbf{r}) + g(\mathbf{s})$ for all $\mathbf{r}, \mathbf{s} \in \mathbb{R}_+^n$, then $d + d'$ is a g -distance.

Proposition

Let $g: \mathbb{R}_+^n \rightarrow \mathbb{R}_+$ be a (symmetric) function, d and d' be g -distances. The following assertions hold.

- (1) If g is positively homogeneous, i.e., $g(\lambda \mathbf{r}) = \lambda g(\mathbf{r})$ for all $\mathbf{r} \in \mathbb{R}_+^n$ and all $\lambda > 0$, then for every $\lambda > 0$, λd is a g -distance.
- (2) If g is superadditive, i.e., $g(\mathbf{r} + \mathbf{s}) \geq g(\mathbf{r}) + g(\mathbf{s})$ for all $\mathbf{r}, \mathbf{s} \in \mathbb{R}_+^n$, then $d + d'$ is a g -distance.
- (3) If g is both positively homogeneous and superadditive, then it is concave.

Proposition

Let $g: \mathbb{R}_+^n \rightarrow \mathbb{R}_+$ be a (symmetric) function, d and d' be g -distances. The following assertions hold.

- (1) If g is positively homogeneous, i.e., $g(\lambda \mathbf{r}) = \lambda g(\mathbf{r})$ for all $\mathbf{r} \in \mathbb{R}_+^n$ and all $\lambda > 0$, then for every $\lambda > 0$, λd is a g -distance.
- (2) If g is superadditive, i.e., $g(\mathbf{r} + \mathbf{s}) \geq g(\mathbf{r}) + g(\mathbf{s})$ for all $\mathbf{r}, \mathbf{s} \in \mathbb{R}_+^n$, then $d + d'$ is a g -distance.
- (3) If g is both positively homogeneous and superadditive, then it is concave.
- (4) If g is bounded below (at least on a measurable set) and additive, that is, $g(\mathbf{r} + \mathbf{s}) = g(\mathbf{r}) + g(\mathbf{s})$ for all $\mathbf{r}, \mathbf{s} \in \mathbb{R}_+^n$, then and only then there exist $\lambda_1, \dots, \lambda_n \geq 0$ such that

$$g(\mathbf{r}) = \sum_{i=1}^n \lambda_i r_i \quad (1)$$

Summerizing: If g is symmetric, non-negative, additive on \mathbb{R}_+^n , then $g(\mathbf{r}) = \lambda \sum_{i=1}^n r_i$, which gives the 'original' definition of n -distance.

Summerizing: If g is symmetric, non-negative, additive on \mathbb{R}_+^n , then $g(\mathbf{r}) = \lambda \sum_{i=1}^n r_i$, which gives the 'original' definition of n -distance.

$d: X^n \rightarrow \mathbb{R}_+$ ($n \geq 2$) is an n -distance if satisfies (i), (ii) and

(iii) There is a $0 \leq K \leq 1$ such that

$$d(x_1, \dots, x_n) \leq K \sum_{i=1}^n d(x_1, \dots, x_n)|_{x_i=z} \text{ for all } x_1, \dots, x_n, z \in X.$$

Summerizing: If g is symmetric, non-negative, additive on \mathbb{R}_+^n , then $g(\mathbf{r}) = \lambda \sum_{i=1}^n r_i$, which gives the 'original' definition of n -distance.

$d: X^n \rightarrow \mathbb{R}_+$ ($n \geq 2$) is an n -distance if satisfies (i), (ii) and

(iii) There is a $0 \leq K \leq 1$ such that

$$d(x_1, \dots, x_n) \leq K \sum_{i=1}^n d(x_1, \dots, x_n)|_{x_i=z} \text{ for all } x_1, \dots, x_n, z \in X.$$

We denote by K^* the smallest constant K for which (iii) holds.

Example I.

What would be K^* ?

Example I.

What would be K^* ?

Example (Basic examples)

Given a metric space (X, d) and $n \geq 2$, the maps $d_{\max}: X^n \rightarrow \mathbb{R}_+$ and $d_{\Sigma}: X^n \rightarrow \mathbb{R}_+$ defined by

$$d_{\max}(x_1, \dots, x_n) = \max_{1 \leq i < j \leq n} d(x_i, x_j)$$

$$d_{\Sigma}(x_1, \dots, x_n) = \sum_{1 \leq i < j \leq n} d(x_i, x_j)$$

Example I.

What would be K^* ?

Example (Basic examples)

Given a metric space (X, d) and $n \geq 2$, the maps $d_{\max}: X^n \rightarrow \mathbb{R}_+$ and $d_{\Sigma}: X^n \rightarrow \mathbb{R}_+$ defined by

$$d_{\max}(x_1, \dots, x_n) = \max_{1 \leq i < j \leq n} d(x_i, x_j)$$

$$d_{\Sigma}(x_1, \dots, x_n) = \sum_{1 \leq i < j \leq n} d(x_i, x_j)$$

are n -distances for which the best constants are given by

$$K^* = \frac{1}{n-1}.$$

Generalization

Let X be a set.

Generalization

Let X be a set. Associate a full, (weighted) graph K_n to the points $x_1, \dots, x_n \in X$.

Generalization

Let X be a set. Associate a full, (weighted) graph K_n to the points $x_1, \dots, x_n \in X$. For a subgraph G of K_n we denote $E(G)$ the edge set of a graph G .

Generalization

Let X be a set. Associate a full, (weighted) graph K_n to the points $x_1, \dots, x_n \in X$. For a subgraph G of K_n we denote $E(G)$ the edge set of a graph G .

Let \mathcal{P} be a class of graphs over x_1, \dots, x_n .

Generalization

Let X be a set. Associate a full, (weighted) graph K_n to the points $x_1, \dots, x_n \in X$. For a subgraph G of K_n we denote $E(G)$ the edge set of a graph G .

Let \mathcal{P} be a class of graphs over x_1, \dots, x_n .

Theorem

Let (X, d) be a metric space and $n \geq 2$. Then for any nonempty class \mathcal{P} the map $d_{Gr}: X^n \rightarrow \mathbb{R}_+$ defined by

$$d_{Gr}(x_1, \dots, x_n) = \max_{G \in \mathcal{P}} \sum_{(x_i, x_j) \in E(G)} d(x_i, x_j)$$

are n -distances for which the best constants are given by

$$K^* = \frac{1}{n-1}.$$

Example

1. If $\mathcal{P} = \{G \simeq K_2\}$, then $d_{Gr} = d_{\max}(x_1, \dots, x_n)$.

Example

1. If $\mathcal{P} = \{G \simeq K_2\}$, then $d_{Gr} = d_{\max}(x_1, \dots, x_n)$.
2. If $\mathcal{P} = \{G \simeq K_n\}$, then $d_{Gr} = d_{\Sigma}(x_1, \dots, x_n)$.

Example

1. If $\mathcal{P} = \{G \simeq K_2\}$, then $d_{Gr} = d_{\max}(x_1, \dots, x_n)$.
2. If $\mathcal{P} = \{G \simeq K_n\}$, then $d_{Gr} = d_{\Sigma}(x_1, \dots, x_n)$.
3. For any $1 \leq s \leq n$ let $\mathcal{P} = \{G \simeq K_s\}$. Then

$$d_{K_s}(x_1, \dots, x_n) = \max_{G \in \mathcal{P}} \sum_{(x_i, x_j) \in E(G)} d(x_i, x_j)$$

is an n -metric with $K^* = \frac{1}{n-1}$.

Example

1. If $\mathcal{P} = \{G \simeq K_2\}$, then $d_{Gr} = d_{\max}(x_1, \dots, x_n)$.
2. If $\mathcal{P} = \{G \simeq K_n\}$, then $d_{Gr} = d_{\Sigma}(x_1, \dots, x_n)$.
3. For any $1 \leq s \leq n$ let $\mathcal{P} = \{G \simeq K_s\}$. Then

$$d_{K_s}(x_1, \dots, x_n) = \max_{G \in \mathcal{P}} \sum_{(x_i, x_j) \in E(G)} d(x_i, x_j)$$

is an n -metric with $K^* = \frac{1}{n-1}$.

4. If \mathcal{P} is the class of Hamiltonian cycles of K_n . Then

$$d_{Ham}(x_1, \dots, x_n) = \max_{H \in \mathcal{P}} \sum_{(x_i, x_j) \in E(H)} d(x_i, x_j)$$

is an n -metric with $K^* = \frac{1}{n-1}$.

Example

1. If $\mathcal{P} = \{G \simeq K_2\}$, then $d_{Gr} = d_{\max}(x_1, \dots, x_n)$.
2. If $\mathcal{P} = \{G \simeq K_n\}$, then $d_{Gr} = d_{\Sigma}(x_1, \dots, x_n)$.
3. For any $1 \leq s \leq n$ let $\mathcal{P} = \{G \simeq K_s\}$. Then

$$d_{K_s}(x_1, \dots, x_n) = \max_{G \in \mathcal{P}} \sum_{(x_i, x_j) \in E(G)} d(x_i, x_j)$$

is an n -metric with $K^* = \frac{1}{n-1}$.

4. If \mathcal{P} is the class of Hamiltonian cycles of K_n . Then

$$d_{Ham}(x_1, \dots, x_n) = \max_{H \in \mathcal{P}} \sum_{(x_i, x_j) \in E(H)} d(x_i, x_j)$$

is an n -metric with $K^* = \frac{1}{n-1}$.

5. \mathcal{P} is a class of circles of given size, or the class of spanning trees, etc.

Examples II.

Example (Geometric constructions)

Let x_1, \dots, x_n be $n \geq 2$ arbitrary points in \mathbb{R}^k ($k \geq 2$) and denote by $B(x_1, \dots, x_n)$ the smallest closed ball containing x_1, \dots, x_n . It can be shown that this ball always exist, is unique, and can be determined in linear time.

Examples II.

Example (Geometric constructions)

Let x_1, \dots, x_n be $n \geq 2$ arbitrary points in \mathbb{R}^k ($k \geq 2$) and denote by $B(x_1, \dots, x_n)$ the smallest closed ball containing x_1, \dots, x_n . It can be shown that this ball always exist, is unique, and can be determined in linear time.

- (1) The radius of $B(x_1, \dots, x_n)$ is an n -distance whose best constant $K^* = \frac{1}{n-1}$.

Examples II.

Example (Geometric constructions)

Let x_1, \dots, x_n be $n \geq 2$ arbitrary points in \mathbb{R}^k ($k \geq 2$) and denote by $B(x_1, \dots, x_n)$ the smallest closed ball containing x_1, \dots, x_n . It can be shown that this ball always exist, is unique, and can be determined in linear time.

- (1) The radius of $B(x_1, \dots, x_n)$ is an n -distance whose best constant $K^* = \frac{1}{n-1}$.
- (2) If $k = 2$, then the area of $B(x_1, \dots, x_n)$ is an n -distance whose best constant $K^* = \frac{1}{n-3/2}$.

Examples II.

Example (Geometric constructions)

Let x_1, \dots, x_n be $n \geq 2$ arbitrary points in \mathbb{R}^k ($k \geq 2$) and denote by $B(x_1, \dots, x_n)$ the smallest closed ball containing x_1, \dots, x_n . It can be shown that this ball always exist, is unique, and can be determined in linear time.

- (1) The radius of $B(x_1, \dots, x_n)$ is an n -distance whose best constant $K^* = \frac{1}{n-1}$.
- (2) If $k = 2$, then the area of $B(x_1, \dots, x_n)$ is an n -distance whose best constant $K^* = \frac{1}{n-3/2}$.
- (3) The k -dimensional volume of $B(x_1, \dots, x_n)$ is an n -distance and we conjecture that the best constant K^* is given by $K^* = \frac{1}{n-2+(1/2)^{k-1}}$. This is correct for $k = 1$ or 2 .

Examples III.

Example (Fermat point based n -distances)

Given a metric space (X, d) , and an integer $n \geq 2$, the *Fermat set* F_Y of any element subset $Y = \{x_1, \dots, x_n\}$ of X , is defined as

$$F_Y = \left\{ x \in X : \sum_{i=1}^n d(x_i, x) \leq \sum_{i=1}^n d(x_i, z) \text{ for all } z \in X \right\}.$$

Examples III.

Example (Fermat point based n -distances)

Given a metric space (X, d) , and an integer $n \geq 2$, the *Fermat set* F_Y of any element subset $Y = \{x_1, \dots, x_n\}$ of X , is defined as

$$F_Y = \left\{ x \in X : \sum_{i=1}^n d(x_i, x) \leq \sum_{i=1}^n d(x_i, z) \text{ for all } z \in X \right\}.$$

Since $h(x) = \sum_{i=1}^n d(x_i, x)$ is continuous and bounded from below by 0, F_Y is non-empty **but** usually not a singleton.

Examples III.

Example (Fermat point based n -distances)

Given a metric space (X, d) , and an integer $n \geq 2$, the *Fermat set* F_Y of any element subset $Y = \{x_1, \dots, x_n\}$ of X , is defined as

$$F_Y = \left\{ x \in X : \sum_{i=1}^n d(x_i, x) \leq \sum_{i=1}^n d(x_i, z) \text{ for all } z \in X \right\}.$$

Since $h(x) = \sum_{i=1}^n d(x_i, x)$ is continuous and bounded from below by 0, F_Y is non-empty **but** usually not a singleton.

We can define $d_F : X^n \rightarrow \mathbb{R}_+$ by

$$d_F(x_1, \dots, x_n) = \min \left\{ \sum_{i=1}^n d(x_i, x) : x \in X \right\}.$$

Proposition

d_F is an n -distance and $K^* \leq \frac{1}{\lceil \frac{n-1}{2} \rceil}$.

Median graphs

Let $G = (V, E)$ be an undirected graph.

Median graphs

Let $G = (V, E)$ be an undirected graph.

G is called *median graph* if for every $u, v, w \in V$ there is a unique $z := m(u, v, w)$ such that z is in the intersection of shortest paths between any two elements among u, v, w .

Median graphs

Let $G = (V, E)$ be an undirected graph.

G is called *median graph* if for every $u, v, w \in V$ there is a unique $z := m(u, v, w)$ such that z is in the intersection of shortest paths between any two elements among u, v, w .

Median graphs

Let $G = (V, E)$ be an undirected graph.

G is called *median graph* if for every $u, v, w \in V$ there is a unique $z := m(u, v, w)$ such that z is in the intersection of shortest paths between any two elements among u, v, w .

Examples: Hypercubes and trees.

Median graphs

Let $G = (V, E)$ be an undirected graph.

G is called *median graph* if for every $u, v, w \in V$ there is a unique $z := m(u, v, w)$ such that z is in the intersection of shortest paths between any two elements among u, v, w .

Examples: Hypercubes and trees.

We can define $d_m : V^3 \rightarrow \mathbb{R}_+$ by

$$d_m(u, v, w) = \min_{s \in V} \{d(u, s) + d(v, s) + d(w, s)\}.$$

Proposition

d_m is a 3-distance, $d_m(u, v, w)$ is realized by $s = m(u, v, w)$ and $K^* = \frac{1}{2}$.

Every median graph can be embedded into a hypercube
 $H_m = \{0, 1\}^m$ for some m (with respect to the Hamming-distance).

Every median graph can be embedded into a hypercube $H_m = \{0, 1\}^m$ for some m (with respect to the Hamming-distance). For a given m , we can define d_{gm} by

$$d_{gm}(x_1, \dots, x_n) = \min_{z \in V(H_m)} \sum_{i=1}^n d(z, x_i).$$

Every median graph can be embedded into a hypercube $H_m = \{0, 1\}^m$ for some m (with respect to the Hamming-distance). For a given m , we can define d_{gm} by

$$d_{gm}(x_1, \dots, x_n) = \min_{z \in V(H_m)} \sum_{i=1}^n d(z, x_i).$$

Let $m = Maj(x_1, \dots, x_n)$ denote the majority of x_1, \dots, x_n .*

Every median graph can be embedded into a hypercube
 $H_m = \{0, 1\}^m$ for some m (with respect to the Hamming-distance).
For a given m , we can define d_{gm} by

$$d_{gm}(x_1, \dots, x_n) = \min_{z \in V(H_m)} \sum_{i=1}^n d(z, x_i).$$

Let $m = Maj(x_1, \dots, x_n)$ denote the majority of x_1, \dots, x_n .*

Theorem

d_{gm} is a n -distance, $d_{gm}(x_1, \dots, x_n)$ is realized by (any)
 $m = Maj(x_1, \dots, x_n)$ and $K^* = \frac{1}{n-1}$.

$K^* = 1$, Example IV.

For all of the previous examples $\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n -distance d such that the $K^ = 1$ for any n ?*

$K^* = 1$, Example IV.

For all of the previous examples $\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n -distance d such that the $K^ = 1$ for any n ?*

Yes.

$K^* = 1$, Example IV.

For all of the previous examples $\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n -distance d such that the $K^* = 1$ for any n ?

Yes. In \mathbb{R} we can define

$$A_n(\mathbf{x}) = \frac{x_1 + \cdots + x_n}{n}, \quad \min_n(\mathbf{x}) = \min\{x_1, \dots, x_n\}$$

and $d_n(\mathbf{x}) = A_n(\mathbf{x}) - \min_n(\mathbf{x})$, where $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$.

$K^* = 1$, Example IV.

For all of the previous examples $\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n -distance d such that the $K^* = 1$ for any n ?

Yes. In \mathbb{R} we can define

$$A_n(\mathbf{x}) = \frac{x_1 + \cdots + x_n}{n}, \quad \min_n(\mathbf{x}) = \min\{x_1, \dots, x_n\}$$

and $d_n(\mathbf{x}) = A_n(\mathbf{x}) - \min_n(\mathbf{x})$, where $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$.

Proposition

d_n is an n -distance for every $n \geq 2$ and $K^* = 1$.

$K^* = 1$, Example IV.

For all of the previous examples $\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n -distance d such that the $K^* = 1$ for any n ?

Yes. In \mathbb{R} we can define

$$A_n(\mathbf{x}) = \frac{x_1 + \cdots + x_n}{n}, \quad \min_n(\mathbf{x}) = \min\{x_1, \dots, x_n\}$$

and $d_n(\mathbf{x}) = A_n(\mathbf{x}) - \min_n(\mathbf{x})$, where $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$.

Proposition

d_n is an n -distance for every $n \geq 2$ and $K^* = 1$.

But it is not realized.

$K^* = 1$, Example IV.

For all of the previous examples $\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n -distance d such that the $K^* = 1$ for any n ?

Yes. In \mathbb{R} we can define

$$A_n(\mathbf{x}) = \frac{x_1 + \cdots + x_n}{n}, \quad \min_n(\mathbf{x}) = \min\{x_1, \dots, x_n\}$$

and $d_n(\mathbf{x}) = A_n(\mathbf{x}) - \min_n(\mathbf{x})$, where $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$.

Proposition

d_n is an n -distance for every $n \geq 2$ and $K^* = 1$.

But it is not realized. (For every $\varepsilon > 0$ it can be shown that $K^* > 1 - \varepsilon$.)

Summary

Table: Critical values

n -distance	space X	K^*	nb. of var.
$d_{Gr}, d_{max}, d_{\sum}$	arbitrary metric	$\frac{1}{n-1}$	$n > 1$
$d_{diameter}$	\mathbb{R}^m ($m \geq 1$)	$\frac{1}{n-1}$	$n > 1$
d_{area}	\mathbb{R}^m ($m \geq 2$)	$\frac{1}{n-3/2}$	$n > 1$
$d_{volume(k)}$	\mathbb{R}^m ($m \geq k$)	$? = \frac{1}{n-1-(1/2)^{k-1}}$	$n > 1$
d_{Fermat}	arbitrary metric	$? \leq \frac{1}{\lceil \frac{n-1}{2} \rceil}$	$n > 1$
d_{median}	median graph G	$\frac{1}{2}$	$n = 3$
$d_{hypercube}$	$\{0, 1\}^n$	$\frac{1}{n-1}$	$n > 1$
d_n	\mathbb{R}	1	$n > 1$

Summary

Table: Critical values

n -distance	space X	K^*	nb. of var.
$d_{Gr}, d_{max}, d_{\sum}$	arbitrary metric	$\frac{1}{n-1}$	$n > 1$
$d_{diameter}$	\mathbb{R}^m ($m \geq 1$)	$\frac{1}{n-1}$	$n > 1$
d_{area}	\mathbb{R}^m ($m \geq 2$)	$\frac{1}{n-3/2}$	$n > 1$
$d_{volume(k)}$	\mathbb{R}^m ($m \geq k$)	$\text{?} = \frac{1}{n-1-(1/2)^{k-1}}$	$n > 1$
d_{Fermat}	arbitrary metric	$\text{?} \leq \frac{1}{\lceil \frac{n-1}{2} \rceil}$	$n > 1$
d_{median}	median graph G	$\frac{1}{2}$	$n = 3$
$d_{hypercube}$	$\{0, 1\}^n$	$\frac{1}{n-1}$	$n > 1$
d_n	\mathbb{R}	1	$n > 1$

Conjecture

$$\frac{1}{n-1} \leq K^* \leq 1.$$

Question

1. Are there any n -distance such that $K^* < \frac{1}{n-1}$?
2. Can we characterize the n -distances for which $K^* = \frac{1}{n-1}$?
3. Can we characterize the n -distances for which $K^* = 1$?
4. Can we show an example where $K^* = 1$ is realized?

Thank you for your kind attention!