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Abstract Alternating-time temporal logic (ATL) is a modal logic that allows to reason
about agents’ abilities in game-like scenarios. Semantic variants of ATL are usually built
upon different assumptions about the kind of game that is played, including capabilities
of agents (perfect vs. imperfect information, perfect vs. imperfect memory, etc.). ATL has
been studied extensively in previous years; however, most of the research focused on model
checking. Studies of other decision problems (e.g., satisfiability) and formal meta-properties
of the logic (like axiomatization or expressivity) have been relatively scarce, and mostly
limited to the basic variant of ATL where agents possess perfect information and perfect
memory. In particular, a comparison between different semantic variants of the logic is largely
left untouched. In this paper, we show that different semantics of ability in ATL give rise
to different validity sets. The issue is important for several reasons. First, many logicians
identify a logic with its set of true sentences. As a consequence, we prove that different
notions of ability induce different strategic logics. Secondly, we show that different concepts
of ability induce different general properties of games. Thirdly, the study can be seen as
the first systematic step towards satisfiability-checking algorithms for ATL with imperfect
information. We introduce sophisticated unfoldings of models and prove invariance results
that are an important technical contribution to formal analysis of strategic logics.
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1 Introduction

Alternating-time temporal logic (ATL) [7,9] is a temporal logic that incorporates some basic
game theoretic notions. In ATL we can for instance express that a group of agents is able to
bring about ¢, i.e., the agents in the group are able to enforce that property ¢ holds whatever
the other agents might do. Semantic variants of ATL are usually derived from different
assumptions about agents’ capabilities. Can the agents “see” the current state of the system,
or only a part of it? Can they memorize the whole history of observations in the game? Is
it enough that they have a way of enforcing the required temporal property “objectively”,
or should they be able to come up with the right strategy on their own? Different answers
to these questions induce different semantics of strategic ability, and they clearly give rise
to different analyses of a given game model. However, it is not entirely clear to what extent
they give rise to different logics. One natural question that arises in this respect is whether
these semantic variants generate different sets of valid (and, dually, satisfiable) sentences. In
this paper, we settle the issue and show that most “classical” semantic variants of ATL are
indeed different, and we characterize the relationship between their sets of validities.

The question is important for several reasons. First, many logicians identify a logic with
the set of sentences that are true in the logic; a semantics is just a possible way of defining
the set, alternative to an axiomatic inference system. Thus, by comparing validity sets we
compare the respective logics in the traditional sense. Secondly, validities of ATL capture
general properties of games under consideration: if, e.g., two variants of ATL generate the
same valid sentences then the underlying notions of ability induce the same kind of games.
All the variants studied here are defined over the same class of models (imperfect information
concurrent game structures) that generalizes extensive form games. The difference between
games “induced” by different semantics lies in the available strategies and the winning
conditions for them.

Thirdly, the satisfiability problem for ATL, though far less studied than model checking, is
not necessarily less important. While model checking ATL can be seen as the logical analogue
of game solving, satisfiability corresponds naturally to mechanism design. A systematic study
on the abstract level is the first step towards algorithms that solve the problem.

Our results are relevant also outside the logical context. As already mentioned, by look-
ing at validity sets we study general properties of strategic ability under various semantic
assumptions. Ultimately, we show that what agents can achieve is more sensitive to the
strategic model of an agent (and a precise notion of achievement) than it was generally
realized. No less importantly, our study reveals that some natural properties—usually taken
for granted when reasoning about temporal evolution of systems—may cease to be univer-
sally true if we change the strategic setting. Examples include fixpoint characterizations
of temporal/strategic operators (that enable incremental synthesis and iterative execution of
strategies) and the duality between necessary and obtainable outcomes in a game. The former
kind of properties is especially important for practical purposes, since fixpoint equivalences
provide the basis for most model checking and satisfiability checking algorithms. Finally,
we introduce sophisticated unfoldings of models to show invariance results with respect to
memoryless and perfect recall strategies. The unfoldings form an important technical contri-
bution of this article. We believe that their impact goes beyond ATL, as they can probably be
applied to other strategy logics. For example, it would be interesting to see which unfoldings
preserve the truth values of formulae when imperfect information is combined with strategic
commitment [66], or when explicit quantification over strategies is allowed [20,50,51].

The paper is structured as follows. We begin by presenting the relevant variants of ATL
in Sects. 2 and 3. Then we define several unfoldings of ATL models, and show that they
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preserve truth of ATL formulae under appropriate assumptions in Sect. 4. This is the most
technical part of the paper, and readers interested only in the main conceptual contribution are
advised to skip it and proceed to the next section. In Sect. 5, we show the formal relationships
between validity sets for different variants of ATL. Summary of the main results and some
conclusions are presented in Sect. 6.

About this article Preliminary versions of this paper appeared in [40,41]. The journal version
adds proofs, new results, examples, and more extensive discussions. This applies in particular
to Sect. 4 where we stress the importance of tree-like unfoldings and provide a sophisticated
construction as well as full proofs. We have also extended the results from [40,41] (formulated
mainly for the restricted language of ATL) to the more general language of ATL*.

1.1 Related work

ATL has been studied extensively in the last 15 years. The research can be roughly divided
into the computational and conceptual strands. The former has been focused on the way
in which ATL and its extensions can be used for verification of multi-agent systems, in
particular what is the complexity of model checking, and how one can overcome the inherent
difficulties. An interested reader is referred to [13] for an overview, and to [9,17,20,24,42,
48,57,59] for more specific results; some attempts at taming the complexity were proposed
e.g. in [18,23,38,46,47]. Studies on other decision problems than model checking were
much less frequent, though satisfiability of the basic variant of ATL has been investigated
in [30,31,54,64].

The conceptual strand originally emerged in quest of the “right” semantics for strate-
gies under uncertainty. ATL was combined with epistemic logic [1,2,39,60-62], and sev-
eral semantic variants were defined that match various possible interpretations of abil-
ity [35,39,43,45,57]. Moreover, many conceptual extensions have been considered, e.g.,
with explicit reasoning about strategies, rationality assumptions and solution concepts
[19,20,58,63,65], agents with bounded resources [5,6, 14,15], coalition formation and nego-
tiation [12], opponent modeling and action in stochastic environments [16,37,55,56] and
reasoning about irrevocable plans and interplay between strategies of different agents [3,11].

In the rich literature on the conceptual virtues of alternating-time temporal logic, formal
analysis is relatively scarce. Axiomatization of the basic variant of ATL was proposed in
[31], and its expressivity was addressed in [9,48]. Axiomatization of a particular variant of
imperfect information was proposed in [32]. For comparative studies, invariance of the basic
semantics with respect to a couple of classes of models was proven in [27], and the corre-
spondence between abstract and concrete models of strategic logics was the object of study in
[29,28,52]. Surprisingly, relationships between the “classical” semantic variants of ATL (as
defined e.g. in [57]) have not yet been studied, though analogous results exist that compare
more sophisticated variations to a more standard variant (cf. [36] for undominated play, [3]
for irrevocable strategies, [4] for agents with bounded memory, and [18] for recomputable
strategies under uncertainty). That means in particular that formal properties of strategic
ability under imperfect information are largely left untouched. We are trying to fill in the gap,
and start a more systematic charting of the landscape.

2 Reasoning about strategic abilities

Alternating-time temporal logic ATL [7,9] is a temporal logic that incorporates some basic
game-theoretical notions. Essentially, ATL generalizes the branching time logic CTL [21] by
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replacing path quantifiers E, A with strategic modalities ((A)). Informally, {(A))y expresses
that the group of agents A has a collective strategy to enforce temporal property y. ATL
formulae include temporal operators: “O” (“in the next state”), “01” (“always from now
on”), “0” (“now or sometime in the future”), and & (“until”). Since ATL offers no way
of representing agents’ uncertainty in its models, and no operators to refer to agents’ (lack
of) knowledge in the object language, it allows to reason only about abilities of agents with
perfect information about the current global state of the system.

2.1 Syntax of ATL

In the rest of the paper we assume that IT is a nonempty set of proposition symbols and Agt a
nonempty and finite set of agents. Alternating-time temporal logic comes in several syntactic
variants, of which ATL* is the broadest.

Definition 1 (Language of ATL*) The language of ATL* is given by formulae ¢ generated
by the grammar below, where A € Agt is a set of agents, and p € I is an atomic proposition:

pi=pl-elongl| {A)y,
yi=¢l=yvlyaylOylyUy.

The “sometime” and “always” operators can be defined as Oy = T U y and Oy = =0—y.

Formulae ¢ are called state formulae, and y path formulae of ATL*. A path formula is
simple if it consists of a temporal operator followed immediately by a state subformula and
in the case of “until” the operator is also immediately preceded by a state subformula. In
other words, temporal operators have to be applied to state subformulae.

The best known syntactic variant of alternating time temporal logic is ATL in which every
occurrence of a strategic modality is immediately coupled with a temporal operator, i.e., we
have coupled operators of the form (A)O, (A)O, and ((A)) U/ . The language of ATL™
sits between ATL* and ATL: it allows strategic modalities to be followed by a Boolean
combination of simple temporal subformulae.

Formally, formulae of ATL are defined be the following grammar:!

pr=pl-9lere| (A)Og | (A)De | (ApUep
and ATL™ formulae by:

p=pl=plerng | (A)y, vi=-vIyAy|Oelele.

Example 1 The ATL formula ((jamesbond, octopussy))QOKiss says that James Bond and
Octopussy can eventually kiss, no matter how the other agents act. On the other hand,
{(jamesbond, jaws))(O—crash A $land) (James Bond and Jaws can prevent the space
ship from crashing and make it eventually land) is a formula of ATL™ but not ATL.
Finally, {(jamesbond))(JQ)deadBlofeld A —((jamesbond))O1deadBlofeld is an ATL* for-
mula (which clearly belongs to neither ATL nor ATL™) which states that agent 007 can kill
Ernst Stavro Blofeld infinitely many times, but he cannot kill Blofeld once and forever.

2.2 Basic models of ATL

In [9], the semantics of alternating-time temporal logic is defined over a variant of transition
systems where transitions are labeled with combinations of actions, one per agent.

I Note that “always” is not definable from “until” in ATL [48], and has to be added explicitly to the language.
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Fig. 1 Two robots and a wait,wait
carriage: concurrent game 17”*'/7v/7“ShO

structure M

wait,push

wait,wait ] j
ait,wa wait,wait
push,push (\ push,push

pos, push,wait pos;

Definition 2 (Concurrent game structure) A concurrent game structure* (CGS) is a tuple
M = (Agt, St, I1, w, Act, d, o) which includes a nonempty finite set of all agents Agt =
{1, ..., k}, a nonempty (possibly infinite) set of states St¢, a set of atomic propositions IT
and their valuation 7 : IT — 25, and a nonempty set of (atomic) actions Act. Function
d : Agt x St — 24¢ defines nonempty sets of actions available to agents at each state, and o
is a (deterministic) transition function that assigns the outcome state ¢’ = o(q, oy, ..., o)
to state ¢ and a tuple of actions «; € d(i, ¢) that can be executed by Agt in g.

Thus, we assume that all the agents execute their actions synchronously; the combination
of the actions, together with the current state, determines the next transition of the system.

In the rest of the paper, we will write d; (¢) instead of d (i, ¢), and we will denote the set
of collective choice of group A at state g by da(q) = [[;c4 di(q).

We will sometimes use the term pointed CGS for a pair (91, ¢) of a concurrent game
structure and a state in it.

Definition 3 (Path) A path A = qoq1q> - . . is an infinite sequence of states such that there is
a transition between each g;, ¢;+1. We use A[i] to denote the ith position on path A (starting
from i = 0) and A[Z, oo] to denote the subpath of X starting from i. The set of paths starting
in g is denoted by Agn(g).

Example 2 (Robots and Carriage) Consider the scenario depicted in Fig. 1. Two robots push
a carriage from opposite sides. As aresult, the carriage can move clockwise or anticlockwise,
or it can remain in the same place. We assume that each robot can either push (action push)
or refrain from pushing (action wait). Moreover, they both use the same force when pushing.
Thus, if the robots push simultaneously or wait simultaneously, the carriage does not move.
When only one of the robots is pushing, the carriage moves accordingly.

To make our model of the domain discrete, we identify three different positions of the
carriage, and associate them with states g, g1, and g2. We label the states with propositions
posy, POSy, POS,, respectively, to allow for referring to the current position of the carriage
in the object language.

2.3 Finite versus infinite CGS

In our definition of CGS (Def. 2.2) we have not put up any requirement of finiteness with
respect to the set of states and actions. The only requirement is that the set of agents must be

2 We would like to note that it is essential for this work that we do not require a finite set of states or actions.
We give a more detailed discussion in Sect. 2.3.
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finite. In particular, we allow for infinitely many states in a model; we also allow for infinitely
branching models. In this section we shall discuss this choice in more detail.

We begin by reviewing the literature and showing that both types of CGS—finite and
infinite ones—have been considered by other authors. The semantics of ATL in concurrent
game models was originally proposed for finite structures only [9].> Many follow-up papers
also adopted the assumption of finite models, for example [43,57] that studied variants of
ATL with imperfect information [11], which extended ATL with persistent strategies, in
[48] the expressive power of ATL is investigated, etc.

On the other hand, other authors did not restrict their analysis to the finite case, beginning
with the work on coalition logic [52,53], through comparative studies of different semantics
of ATL [26,27], the interplay between knowledge and strategies [2,39], strategic play in
the presence of intentions and commitment [3,44], and so on. Also, different formalisms
extending ATL* with explicit quantification over strategies follow different assumptions: on
one hand, the strategy logic by Chatterjee et al. [20] assumes models to be finite; on the other,
the strategy logic recently proposed by Mogavero et al. [51] only requires states and actions
to be countable.

As we have already stated, we assume neither St nor Act to be finite (or even enumerable).
How does that affect our work? First of all, for the new results in this article, it is especially
important that some existing technical results can be applied to infinite models. This concerns
in particular the axiomatization of ATL from [31] which was shown sound and complete
for finite as well as infinite concurrent game models. To be more precise, the authors of
[31] allow for infinitely many states, but assume that, at any state, there are only finally
many outgoing transitions. However, their results extend to the case of infinite branching in a
straightforward way. We use the axiomatization as a source of “standard” validities (like the
fixpoint characterization for ((A))¢), and to show that the semantics of “perfect information
memoryless ATL” and “perfect information perfect recall ATL” coincide also for infinite
models (Proposition 1). Moreover, the notion of model equivalence for ATL (alternating
bisimulation alias strategic bisimulation), while originally proposed for finite models only
[10], was extended to the unrestricted case and proved correct in [3]. We use and extend the
concept to prove invariance results for tree-like unfoldings in Sect. 4.

Secondly, all the results proposed in this paper are proved to hold if the semantics of ATL
and ATL* does not restrict the class of models to finite ones. More precisely, it may be possible
that one of our inclusion results between the validity sets of two logics, Val(L1) € Val(Lp),
requires the existence of an infinite model. This does not mean that the theorems that we
present do not hold in the class of finite models. The latter issue, albeit interesting, is outside
of the scope of the paper. Essentially, showing that our results hold in the finite semantics
would require establishing finite model properties for the logics that we consider. To the best
of our knowledge, such properties have only been proven for the “perfect information/perfect
recall” variant of ATL [31] and ATL* [54]. Proving (or disproving) the finite model property
for the other variants of ATL/ATL* is undoubtedly important, and we would like to study it
further in the future.*

In summary:

1. our inclusion results rely on the fact that we define the semantics of ATL and ATL* in
both finite and infinite models; and

3 An interested reader may observe that the preliminary versions of the semantics (in alternating transition
systems) did not assume models explicitly to be finite [7,8]. However, the authors de facto considered only
finite models since they were solely interested in the model checking problem, where the input must be finite.

4 We thank an anonymous JAAMAS reviewer for suggesting this.
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2. whenever a finite model property holds for two logics under consideration, our results
comparing the two logics apply also when the semantics is restricted to finite models.

2.4 Strategies and abilities in basic semantics of ATL

ATL modalities refer to the outcome of strategic play for a given coalition. Following the
tradition of extensive form games in game theory, a strategy of agent a is understood as a plan
that specifies what a is going to do in each situation. In the standard version of ATL [7,9],
strategies are represented by functions s, : StT — Act. Thus, it is implicitly assumed that
agents have perfect information (at each moment, they can precisely recognize the current
global state of the system) and perfect recall (they can base their choices on the whole history
of the game so far, not just the last state). Alternatively, one can assume that agents have no
memory beyond what is already contained in the current state, which gives rise to the notion
of memoryless (or positional) strategy. As we explain more systematically in Sect. 3, we will
use the notation from [57] where i (resp. I) stands for imperfect (resp. perfect) information,
and r (resp. R) for imperfect (resp. perfect) recall.

Definition 4 (IR- and Ir-strategies) Let 9 be a CGS over states St and actions Act. A
perfect information perfect recall strategy for agent a in 9t (IR-strategy in short) is a function
sq @ StT — Act such that s,(qoq1 - .. qn) € d,(gy). The set of such strategies is denoted by
R,

A perfect information memoryless strategy for agent a in 9t (Ir -strategy in short) is a
function s, : St — Act where s,(q) € d,(q). The set of such strategies is denoted by Zé’ .

A collective strategy for a group of agents A = {ay, ..., a,} is simply a tuple of individual
strategies s4 = (Sq, - - ., Sq, ). The set of such strategies is denoted by EQR (for IR strategies)
and )3114’ (for Ir strategies, respectively).

The “outcome” function out (q, s4) returns the set of all paths that may occur when agents
A execute strategy s4 from state ¢ onward. Let a € A; by s4|,, we denote agent a’s part s,
of the collective strategy s4.

Definition 5 (Outcome) The outcome outgy(q, sa) of an IR -strategy s4 from state q in
model M is the setof all paths & = goq192 . . . such thatgo = g and foreachi =1, 2, ... there

exists a tuple of agents’ decisions (a;]_l, R a;k_l) such that: (i) ozfl_l € dy(gi—1) for every
a € Agt, (ii) a;’l = 54la(qoq1 - . .qi—1) forevery a € A, and (iii) o(qi_],aél’l, ce, aflk’l
=dqi-

The outcome outgn(q, sa) of an Ir-strategy s, is defined analogously but s4|,(qoq1 - - -

gi—1) is replaced by s4la(gi—1)-
Often, we will omit the subscript “9%” if it is clear from the context.

Let 9 be a CGS, ¢ a state, and A a path in 9. Now, the semantics of ATL* and its
sublanguages can be defined by the following clauses [9]:

M, q =piff g € m(p), forp € IT;
M, q = —eiff M, g = ¢;
M, q o1 Ap2iff M, g = @1 and M, g = ¢o2;

5 As commonly done we assume an implicit order on the elements in Agt allowing to conveniently represent
collective strategies as tuples. In our setting where agents are represented by natural numbers the order is
apparent. In the general case, a collective strategy for A is a function that associates individual strategies to
the agents in A.
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M, q = (A)y iff there is an IR-strategy s4 for agents A such that for each path
X € out(q, sa), we have 9, L = y.

M, A = @ iff M, A[0] = ¢;

M, A=y iff M A Ey;

MAEy Ay it M, A =y and M, A = y2;

M, A = Qyiff M, A[1, oo] = y; and

M, A = y1 Uy iff there is an i € Ny such that I, A[i, oo] = y» and M, A[j, o0] = »1
forall0 < j <.

Example 3 (Robots and Carriage, ctd.) Since the outcome of each robot’s action depends
on the current action of the other robot, no robot can make sure that the carriage moves
to any particular position. So, we have for example that My, qo = —{1)0Oposy. On
the other hand, the robots can cooperate to move the carriage. For instance, it holds that
Moy, qo E= (1, 2))Opos; (example strategy: robot 1 always pushes and robot 2 always waits).
Moreover, single robots can play strategically to avoid the carriage entering a particular
position: Mo, go = ((1))[d—pos; (the strategy: wait in go and push in g2).

Note that the semantics does not address the issue of coordination between members of
the coalition [25,34]: if there exist several successful joint strategies for A, the agents in A
are assumed to somehow choose between them.

Finally, validity and satisfiability in ATL are defined in the standard way.

Definition 6 (Validity and satisfiability) Formula ¢ is valid in model 90 iff it holds in every
state of 9, i.e., M, g = ¢ for every g € Stop. The formula is valid in a class of models C iff
it is valid in every model from C.

Dually, ¢ is satisfiable in a class of models C iff there exists 9t € C and a state g in 9
such that 9, g = ¢.

2.5 Some important validites

We recall that the following fixpoint properties are valid in the basic semantics of ATL
presented in Sect. 2.4:

(ANOg < ¢ A (ANO (A)DOep
(ANOp < @ Vv (AYO (A)Op
(A1 Upr <> @2V o1 A LANYO (Aho1 U ps.

Validity of these formulae was demonstrated in [9] for finite models, and in [31] for finitely
branching models (with possibly infinitely many states). It is easy to check that the argument
extends to models with infinite branching.

The intuitive meaning of the fixpoint equivalences is that planning for a long-term goal
(like achieving ¢ eventually, or maintaining ¢ persistently) can be decomposed into finding a
good opening move and a suitable follow-up. Such properties are crucial for building model
checking and satisfiability checking algorithms, and in particular they allow for incremental
iterative synthesis of strategies.

Moreover, the path quantifiers A, E of CTL can be expressed in the standard semantics
of ATL with ((#)), (Agt)) respectively. Again, checking this is routine, even for models with
infinitely many states and infinite branching. As a consequence, the CTL duality axioms can
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be rewritten in ATL, and become validities in the basic semantics:

—(Agt)Og < (MO —¢
—(Agt)O¢ < (W)0—g,
—(@) 09 < (Agt)O—¢.

We observe that all the properties presented in this subsection are schemes, rather than
single formulae, and allow for uniform substitution. More precisely, ¢ can be replaced by
any state formula of ATL, and the resulting formula is a validity of ATL. Moreover, ¢ in
the duality axioms can be replaced by any state or path formula of ATL*, and the resulting
formula is a validity of ATL*.

3 Semantic variants: uncertainty and recall

As we already pointed out in Sect. 2.4, one can distinguish between two types of strategies:
an agent may base its decision on the current state or on the whole history of states that have
occurred. Also, the agent may have complete or incomplete knowledge about the current
global state of the system throughout the game. A number of semantic variations have been
proposed for ATL, e.g. [3,4,35,39,43,45,57]. In this paper, we study the “canonical” variants
as proposed in [57]. There, a natural taxonomy of four strategy types was introduced and
labeled as follows: R (resp. r) stands for perfect (resp. imperfect) recall, and I (resp. i) refers
to perfect (resp. imperfect) information. The semantics of ATL, ATL* and ATL* can be
parameterized with the strategy type—yielding four different semantic variants of the logic,
labeled accordingly (ATL;g, ATL;,, ATL,g, ATL;,, etc.).

In this paper, we extend the taxonomy with a distinction between objective and subjective
abilities under imperfect information, denoted by i, and iy , respectively; the distinction can
be traced back to [35,39,43,45]. Intuitively, subjective ability to bring about y means that
the agents are able to both identify and execute the right strategy, i.e., they not only can
play to achieve y; they also know how to do it. Objective ability is a weaker property: the
agents could execute the right strategy, but they do not necessarily know which one works
out, and they might be even unaware that such a strategy exists. Examples of agents who have
objective but not subjective ability to achieve their goals include: garbage collecting robots
that execute a strategy (program) provided by the producer, a Master’s student executing a
strategy hinted by his/her supervisor, etc.

The distinction between perfect and imperfect recall (R vs. r) is reflected in the type of
function used to represent strategies (St* — Act vs. St — Act). The distinction between
perfect and imperfect information (I vs. i) yields constraints on the set of functions that
represent ‘“feasible” strategies. The additional refinement of the imperfect information case
(iy vs. i) determines which outcome paths will be taken into account when evaluating the
success of a strategy.

3.1 Imperfect information models and strategies

Models, imperfect information concurrent game structures (ICGS) [57,61], are concurrent
game structures augmented with a family of indistinguishability relations ~, < St x St, one
per agent a € Agt. The relations describe agents’ uncertainty: ¢ ~, ¢’ means that agent
a cannot distinguish between states g and ¢’ of the system. Each ~, is assumed to be an
equivalence relation. It is also required that agents have the same choices in indistinguishable
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states. Note that CGS’s can be seen as the subclass of iCGS’s where all ~, are the minimal
reflexive relations. Formally, we have:

Definition 7 (iCGS) An imperfect information concurrent game structure (ICGS) is given
by

M = (Agt, St, I1, w, Act, d, o, {~4| a € Agt})

where (Agt, St, T1, 7T, Act, d, o) is a CGS, each ~,C St x St is an equivalence relation, and
ifg ~4 ¢’ thend(a, q) = d(a, q’).

Definition 8 (Histories, h ~ h', last(h), o, |h|) A history is a finite sequence of states that
can be effected by subsequent transitions. Two histories & = goq1 ... g, and i’ = qq; . .. q,/l,
are indistinguishable for agent a (h ~4 h') iff n = n’ and ¢; ~, ¢/ fori = 0,...,n.
Concatenation of / and 4’ is denoted by 4 o &’ or simply hh'. We also use last (h) to refer to
the last state on history %, and |/ ] to denote the length of & (i.e., the number of states in /). As
for paths, we use h[i, jl,i < j,i < |h|, torefer to the subhistory h[i]...h[min(j, |h| —1)].
We do also allow j = co. We define Ai));ltn (g) as the set of all histories in 90t starting from
q, i.e., all the finite prefixes of paths in Agy (g). Moreover, Ag)%n = Uygest Azfnltn (¢) denotes
the set of all histories in 9.

Additionally, for any equivalence relation R over a set X we use [x]gr to denote the
equivalence class of x. Moreover, we use the abbreviations ~4:= |J,cq ~a and ~4:=
Uaea Xa. We also write N? and ~%" if the model is not clear from the context. Note that
relations ~4 and &4 implement the “everybody knows” type of collective knowledge (i.e.,
q and ¢’ are indistinguishable for group A iff there is at least one agent in A for whom ¢ and
q' look the same).

Definition 9 (ir-, iR-strategies) An imperfect information memoryless strategy (ir-strategy
in short) is an Ir-strategy satisfying the following additional constraint: if ¢ ~, ¢’ then
sa(q) = sa(q").

An imperfect information perfect recall strategy (iR-strategy in short) of agent a is an
IR-strategy such that, if 1 ~, h’, then s, (h) = s, (h').

That is, strategy s, is a conditional plan that specifies a’s action in each state of the system
(for memoryless agents) or for every possible history of the system evolution (for agents
with perfect recall). Moreover, imperfect information strategies specify the same choices for
indistinguishable states (resp. histories).

Example 4 (Robots and Carriage, ctd.) We refine the scenario from Example 2 by restricting
perception of the robots. Namely, we assume that robot 1 is only able to observe the color of
the surface on which it is standing, and robot 2 perceives only the texture (cf. Fig. 2a). As a
consequence, the first robot can distinguish between position 0 and position 1, but positions
0 and 2 look the same to it. Likewise, the second robot can distinguish between positions 0
and 2, but not 0 and 1 (cf. Fig. 2b).

Note that the strategy from Example 3 cannot be used anymore because it is not uniform
(indeed, the strategy tells robot 1 to wait in go and push in g» but both states look the same
to the robot).
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A) (B)

wait,wait
push,push O

wait,wait

£ push,push
wait,push

wait,wait
pos, S push,push O

pos, push,wait pos,

Fig. 2 Two robots and a carriage: a schematic view; b an imperfect information concurrent game structure
M(’) that models the scenario. Dashed lines represent indistinguishability relations between states

3.2 Subjective epistemic outcome

Assumptions about agents’ (un)certainty (i.e. the distinction between / and i) and recall (i.e.
the distinction between R and r) are encoded in the mathematical structures that are used to
represent strategies. However, if agent a is to make sure that a strategy s, enforces property
y, itis not sufficient to consider only the paths from out (¢, s,) because a does not necessarily
know that ¢ is the current state. To know that s, guarantees y, agent a should also check
the outcome paths starting from states indistinguishable from ¢. From a conceptual point of
view it makes sense to define two types of ability under imperfect information. Objective
ability (i,) means that a has an executable winning strategy, but the agent may be unaware
of that, or be unable to identify the strategy on her own. Subjective ability (i5) requires that
a has a winning strategy and that a can identify such a strategy, i.e., the agents knows how
to play and not only that a good way of playing exists.

On the semantic side, this is reflected by the set of paths that are taken into account.
Objective ability refers to the outcome paths that can objectively happen, while subjective
ability builds on the outcome paths that are subjectively possible according to a’s available
information.®

Definition 10 (Subjective epistemic outcome, x-outcome) Let 9 be an iCGS, ¢ a state
in it and s4 a collective strategy for group A € Agt. Let x € {is, iy, I}. The x-outcome
outyy (q, sa) is defined as follows:

Uq~Aq’ outon(q’, sa) if x =i

outsn(q, sa) =
m(q: $a) outgn(q, sA) else.

Again, we omit 91 if it is clear from context.

Example 5 (Robots and Carriage) In the scenario from Example 4, a possible uniform strat-
egy of robot 1 is to push in go and g2, and wait in g. If the starting state is go then the
strategy objectively makes sure that the system will never move to g>. However, robot 1 does
not know that the strategy is successful in avoiding ¢» since he must take into account also
the outcome paths starting from g, which trivially violate the path property [J—p0S,. Thus,
1 has the objective, but not the subjective, ability to enforce [J—p0S, in state gq.

6 The issue is closely related to epistemic feasibility of plans, cf. e.g. [22,49].
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In order to ensure a uniform notation, we introduce xy-strategies for x € {is, i,, I} and
y € {r, R} as follows:

IR: s, : St* — Act such that s,(qo ... q,) € d(a, q,) forall qq, . .., qu;
Ir: s, : St — Act such that s,(q) € d(a, q) for all g;
ior, isr: like Ir, with the additional constraint that ¢ ~, ¢’ implies s,(q) = s,(¢');
i,R, isR: like IR, with the additional constraint that & ~, h’ implies s, (h) = s, (h').

As before, collective xy-strategies s 4 are tuples of individual xy-strategies s,, one pera € A.
We emphasize that i y- and i, y-strategies are defined in the very same way, only the notion of
outcome is different. Note also that the constraints in collective strategies refer to individual
choices and individual relations ~, (resp. &), and not to collective choices and the derived
relations ~ 4 (resp. X4).

3.3 Unified setting: xy-semantics of ATL

Finally, we put the pieces together and define the semantics of ATL,,, ATL;S,, and ATL},

for x € {i5,i,, I} and y € {r, R} by changing the clause for {(A))y from Sect. 2.4 in the
following way:

M, q E, (A)y iff there is an xy-strategy sa for agents A such that for each path
A € out*(q, s4), we have M, A ':xy y.

Note, again, that the I and i, semantics look only at outcome paths starting from the
current global state of the system. In contrast, the iy semantics of ((A))y refers to all outcome
paths starting from states that look the same as the current state for coalition A. Hence, it
formalizes the notion of A knowing how to play in the sense that A can identify a single
strategy that succeeds from all the states they consider possible. We follow [57] by taking
the “everybody knows” interpretation of collective uncertainty. More general settings were
proposed in [39,43]. We believe that the results in this paper carry over to the other cases of
“knowing how to play”, too.

Example 6 (Robots and Carriage, ctd.) Consider the modified robots scenario from Exam-
ple 4 (Fig. 2). With observational capabilities of the robots restricted in this way, no agent
knows how to make the carriage reach or avoid any selected state singlehandedly from
90, i-e, My, q0 =, —(i)Opos; and My, qo |=,, —(i)T—pos; for all y € {r,R},i €
{1,2},j € {1,2,3}. Note in particular that the strategy from Example 3 cannot be used
here because it is not uniform, and the strategy from Example 5 does not succeed because
of outcome paths from indistinguishable states. Still, the latter strategy can be used to
demonstrate that robot 1 has the objective ability to avoid g (though not g; anymore):
M. qo |, (1)0=posy A —=((i)O—pos;.

The robots can keep the carriage away from pos together, but only in the objective sense:
M|, q0 = wy (1, 2)00—pos. However, they cannot identify a strategy which guarantees that:
M(’), q0 =, —(1,2)0—posy (when in go, robot 2 considers it possible that the system is
already in the “bad” state g1). So, do the robots know how to play to achieve anything? Yes,
for example they know how to make the carriage reach a given state eventually: M/, qo = -
(1,2)Opos; etc.—it suffices that one of the robots pushes all the time and the other waits
all the time.

For the above properties the type of robots’ recall does not matter (they hold in both mem-
oryless and perfect recall strategies). (1, 2)) 0TJp0S; is an example formula that distinguishes
between the two sets of strategies. Note that M(’), q0 |, =1, 2))000posy: the robots have
no memoryless strategy to bring the carriage to pos; and keep it there forever, even in the
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objective sense. Still, they have a successful perfect recall strategy for that, and are able to
identify it: M), go |=,x (1,2))00posy. The right strategy is that one robot pushes and the
other waits for the first 3 steps. After that, they know their current position exactly, and can
go straight to position 1 and stay there.

3.4 Folk result: memory does not matter for perfect information

We observe that the basic semantics of ATL* from [9] corresponds exactly to ATLj,. A folk
result states that, in the restricted language of ATL both semantics for perfect information
coincide. That is, exactly the same formulae characterize models and their states in ATLjg
and ATL,,.

Proposition 1 For every iCGS 0, state q, and ATL formula ¢, we have that MM, q =, ¢
ifrom q =, ¢

Proof For finite models, equivalence of the semantics has been observed in [57], and follows
from correctness of the model checking algorithm presented in [9]. It is not entirely obvious,
however, that the result should extend to the infinite case. We present our own proof sketch
below.

First, we observe that ATL;z and ATL;, have the same validities. This follows from the
results in [3] showing that: (1) perfect recall strategies in a CGS correspond to memoryless
strategies in its tree unfolding, (2) every pointed CGS is strategically bisimilar to its tree
unfolding, and (3) the same formulae of ATL;, hold in strategically bisimilar models (cf. also
a more detailed exposition in Sect. 4.1).

Now we can prove the equivalence of M, g =, ¢ and 9, ¢ |=,, ¢ by induction over the
structure of ¢. Cases ¢ = p, =, ¥ Ay, {ANO ¥ are straightforward. For ¢ = (A)Ovy,
we take the axiom schemes (FP) and (GFP) from [31]. It was proved in [31] that all their
instances are validities of ATL;z.” By the previous observation, all the instances of schemes
(FPp) and (GFPQ) are validities of ATL;, too. But that means that ({A))(J is the greatest
fixpoint of the same monotone transformer of state sets in both semantics =, and }=,, . Thus,
the set of states satisfying ((A))y in 90t is the same in both semantics.

The proof for ((A))v1 U v is analogous, by showing that its extension in |=, and |=,, is
the least fixpoint of the same monotone transformer of state subsets from 2t. O

Note that the IR and Ir semantics coincide only for the restricted syntactic variant ATL.
For ATL*, and even ATL™, there are formulae that distinguish the two semantics, as we
demonstrate in Sect. 5.1.

4 Perfect recall and tree-like unfoldings

Now we can turn to the original contribution of this paper. We begin by preparing the formal
ground for our comparison of ATL validities under different semantics. In this section, we
define several tree-like unfoldings of models, and show that they preserve truth of ATL
formulae provided appropriate assumptions about agents’ uncertainty and notion of success.
This is the most technical part of the paper, needed mostly to prove the inclusion results in
Sect. 5.1. However, its importance goes beyond technicalities. The unfoldings uncover some

7 The proof in [31] was for the class of finitely branching CGS (with possibly infinite state spaces) but it
extends to the case of infinite branching in a straightforward way.
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of the conceptual structure that underlies ATL. In particular, they expose a “forgetting”
phenomenon in the semantics of ATL: even agents with perfect recall are assumed to forget
their past observations when proceeding to a subtask specified by a nested subformula (like in
{a) O (a)Op). In a way, one can talk about two variants of perfect recall: the “almost perfect
recall” where agents use perfectrecall strategies but abandon their previous observations when
trying to enforce a nested strategic formula, and “truly perfect recall” where their hitherto
observations carry over to the nested strategic task. On the other hand, our invariance theorems
show that alternating-time temporal logic (even in its broadest syntactic variant ATL*) is too
poor to distinguish between the two kinds of recall.

We believe that this section is of interest to readers who are intrigued by intricacies of

game logics or search for tools that can be used to prove similar invariance results. On the
other hand, readers interested only in the main conceptual contribution of this paper (i.e.,
the comparison of validities for variants of ATL) are advised to skip this part and proceed
to Sect. 5.
Plan of Sect. 4 A tree-like unfolding of an iCGS is an (infinite) model in which nodes
correspond to finite sequences of states (i.e., histories) in the original iCGS. It is easy to see
that the underlying transition structure of such an unfolding is a tree or a forest. The advantage
of these structures is that perfect recall strategies and memoryless strategies coincide in tree-
like unfoldings. Moreover, each perfect recall strategy in the original model corresponds to
a memoryless strategy in the unfolding yielding an equivalent outcome, and vice versa. Both
properties are rather standard in the perfect information setting. For imperfect information,
however, the constructions are more involved due to the specialities of the iR-semantics;
more precisely, the knowledge of agents is “reset” whenever a nested strategic modality is
evaluated.

For each of the three semantic settings of:

— perfect information,
— imperfect information with the objective semantics,
— imperfect information with the subjective semantics,

we proceed as follows:

1. We characterise appropriate tree-like structures and show that memoryless and perfect
recall strategies coincide on them.

2. We define appropriate unfoldings and show that they result in tree-like structures.

3. We show that the unfoldings are truth-preserving (i.e. a formula which is true in the
original model is also true in the tree-like unfolding and vice versa).

4.1 Perfect information

We begin with tree unfoldings of perfect information CGS’s. We draw inspiration from the
proof of [3, Theorem 8.3].

Definition 11 (Tree-like CGS, pon(q1, q2)) Let M be a CGS. M is called tree-like iff there
is a state go (the root) such that for every ¢ there is a unique history leading from g to g.

Let g1 and ¢ be states in 1. If ¢, is reachable from g; then we use pg (g1, g2) to refer
to the unique history from state g to g»; otherwise, if ¢» is not reachable from ¢; we set
pom(q1,q2) = €. Moreover, we use psn(g) as a shortcut for pgn(go, ¢) (we will omit the
subscript if clear from context). We note that psi (go) = qo-
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Every state ¢ in a tree-like CGS uniquely determines the path that leads from the root to
q. Hence, perfect recall is already included in the states of the model. This is formally shown
in the following proposition.

Proposition 2 (Recall invariance for tree-like CGS) For every tree-like CGS 9, state q in
M, and ATL*-formula ¢, we have: M, q =, ¢ iff M, q =, ¢

Proof The proof is done by induction over the structure of ¢.
Base cases:

Propositional case: Straightforward.

Case: ¢ = ((A))y where y contains no nested strategic modalities. The left-to-right
direction is obvious. Now suppose that 9, g =, (A)y and let s4 be a collective IR-
strategy for A such that for all A € out(q, sa) it holds that M, A =, y. We define
ta(q") = sa(p(q, q")) for each state ¢" in 9 reachable from ¢. Then, 74 is a well-defined
Ir-strategy with out(q, ta) = out(q, sa). Hence, we have M, g =, (A)y.

Induction step:

Case: ¢ = Y1 A Y. Straightforward.

Case: ¢ = =Y. M, q =, —y iff not M, g =, ¢ iff (by induction hypothesis) not
M, q =, Yiff M, g =, V.

Case: ¢ = {{A))y. We observe that each state g’ at which a state subformula ¥ of y is
evaluated forms the root of a tree-like CGS. Then, by induction, v has the same truth
value in ¢’ according to the IR- and Ir-semantics and can be replaced by a new atomic
proposition with the appropriate valuation. This yields formula ¢’ = (A))y’ with no
nested strategic modalities, to which we apply the same argument as above. O

A natural question is whether every model has an equivalent tree-like CGS. By “equiv-
alent” we mean that the sets of formulae which hold at corresponding states are always the
same.

Definition 12 (Tree unfolding) Let MM = (Agt, St, I, w, Act, d, 0) be a CGS and ¢ be a
state in it. The (perfect information) tree unfolding of the pointed model (9N, q) denoted
T (M, q) is defined as (Agt, S', T1, 7/, Act, d’, 0’) where

- 8= AL @),

d'(a,h) :=d(a,last(h)),
o'(h,a) :=hoo(last(h),a), and
— 7/ (h) := m(last(h)).

The node ¢ in the unfolding is called the root of T (9, q).

An example tree unfolding is shown in Fig. 3. It is important to note that histories in 2t
are states in 7' (91, ¢) and that each tree unfolding is tree-like:

Proposition 3 The tree unfolding of a pointed CGS (9, q) is tree-like.

We now show that satisfaction of ATL*-formulae is invariant under tree unfoldings and
that memory is not needed in the tree unfolding.
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Fig. 3 Tree unfolding 7' (M, gg) for the robots and carriage CGS from Fig. 1

Theorem 1 For every CGS 9, state g in 9, and ATL*-formula ¢ we have:®

M, q =R eilf TON, q),q Fr ¢ iff TN, q), q =, ¢.

Proof The second equivalence follows from Propositions 2 and 3. To prove the first equiva-
lence we show that, for all & € Agjlt"(q), we have I, last (h) =, e HETON, q). h =4 @
(by induction over the structure of ). Note that for each state ¢’ reachable from ¢ in 9 there
is a history & such that last (h) = ¢’.

Base cases:

Propositional case: Straightforward.

Case: ¢ = ((A))y where y does not contain any strategic modalities.

“=": Suppose that 91, last(h) =, ¢. Then, there is an IR-strategy s4 such that for
all & € out(last(h), sa) we have that M, A |= y. Now let t4 be an Ir-strategy defined
as follows: t4 (hh') = sa(last(h)h'), and arbitrary otherwise. By definition of the tree
unfolding and the construction of #4 we have that

last(h)q1q2 - - - € outgn(last(h), sy) iff
(h)(hq1)(hq1q2) - - - € outTom,q)(h, ta).

Since the valuation of propositions only depends on the final state of a history and since Ir-
strategies can be seen as special cases of IR-strategies, we have also that T (90, q), h =,
@.
“4<": Suppose that T(IM, g), h =, ¢. Then, by Propositions 2 and 3, there is an Ir-
strategy s such that for all A € out (h, s4) we have that T (91, g), A |= y. We define the
following IR-strategy t4:

iA(h) = sa(h(W'[1,00])) if W'[0] = last(h)
A " e else, for some arbitrary a € da(last(h'))

8 The equivalence of M, g =, ¢ and T(IM, q), q = ¢ follows also from the results on alternating
bisimulation, cf. [10] for the bisimulation in finite models, and [3] for the general case. We present the
construction nevertheless, as it will be adapted in the following sections to the case of imperfect information.
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The first case of the definition ¢4 applies if 4'[1, 00], i.e. A’ without the initial state, is
a possible extension of history /. The history h(h'[1, 0o]) is the extension of & with A’
where the last state of & or the initial state of 4’ has to be removed as it occurs twice.
Again, we have

last(h)q1q2 - - - € outop(last(h), ty) iff
(M) (hq)(hq1q2) - - - € outr(om,q)(h, 54)
and thus M, last (h) =, .
Induction step:

Case: ¢ = Y1 A Y. Straightforward.

Case: ¢ = —. Straightforward.

Case: ¢ = {{A))y. We observe that for each state ¢’ in 91 reachable from ¢ at which a
state-subformula ¢’ of y is evaluated there is a history 4 such that 7 (90, ¢) contains a
state hq' at which the very subformula holds (by induction hypothesis). Then we apply
the same reasoning as for the case with no nested strategic modalities. O

4.2 Imperfect information: objective ability

Unlike in the perfect information case, tree unfoldings for imperfect information must also
take into account the indistinguishability relations. We construct our argument for the i, case
similarly to Sect. 4.1. The notion of tree-like imperfect information CGS has to include
suitable constraints on the epistemic relations—otherwise we would not get truth invariance
with respect to recall. To handle the issue, we introduce objective epistemic tree unfoldings
under perfect recall, or i,R-tree unfoldings in short.

Definition 13 (Tree structure of iCGS) Let 9 be an iCGS. 9 has tree structure iff the
underlying CGS of 91 (i.e., Mt without epistemic relations) is tree-like. As in Definition 11
we use pon (g1, g2) to refer to the unique history between ¢ and g in 91 if it exists and set
pon(q) = pon(qo, q) where gq is the root in 90t. Again, we omit 9t from pgy (+) if clear from
context.

Definition 14 (i, R-tree-like) Let M be an iCGS with tree structure. 91 is called i, R-tree-like
iff for all @ € Agt and all g1, g» € St we have g ~Mm q2 iff p(q1) %Sﬁ p(g2). (We note that

a

0(q1) =2 p(q2) implies g; ~ g2 by definition of ~2*.)

In other words, in an i,R-tree-like structure the information sets in a game can only be
more precise when the game already follows some previous interaction. The next proposition
is analogous to Proposition 2.

Proposition 4 (Recall invariance for i, R-tree-like models) For every i,R-tree-like iCGS 0,
state g in M, and ATL*-formula ¢, we have that M, q =, , ¢ iff M. q |=, 5 -

Proof Induction over the structure of ¢.
Base cases:

Propositional case: Straightforward.

Case: ¢ = ((A))y where y contains no strategic modalities. The left-to-right direction is
obvious. Now suppose that M, ¢ =, , (A))y and let s4 be a collective iR-strategy for A
suchthatforallA € out(q, sa)itholdsthat9, A k=, . y. Wedefinet,(¢") = sa(p(q.q"))
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Fig.4 i,R-tree unfolding 7, (M(’), qo) of the robots with limited information from Fig. 2 (we omitted reflexive
epistemic links)

for each state ¢’ in 90t which is reachable from q. Then, we have out (q, t4) = out(q, sa).
Moreover, we have for all states g1 and g and all agents a € Agt that g1 ~, g2 iff
p(q1) =4 p(q2) because: (a) the right-to-left direction is clear from the definition of
~, and (b) the left-to-right direction follows because 9 is i,R-tree-like. Hence, t4 is a
well-defined i,r-strategy with out (q, ta) = out(q, sa) and thus: M, g =, . (A)y.

Induction step:

Case: ¢ = Y1 A V. Straightforward.

Case: 9 = ~¢. M, q &=, ~¥ iff not M, g k=, , ¥ iff (by induction hypothesis) not
M, q ':l_DR Y it M, g ':l_DR Y.

Case: ¢ = {{A))y. We observe that each state g’ at which a state subformula v of y is
evaluated forms the root of a i,R-tree-like iCGS. Then, by induction, ¥ has the same
truth value in ¢’ according to the i,R- and i,r-semantics and can be replaced by a new
atomic proposition with the appropriate valuation. This yields formula ¢’ = ((A))y’ with
no nested strategic modalities, to which we apply the same argument as above. O

Now, the i, R-tree unfolding is defined as standard tree unfolding for the perfect information
case extended with indistinguishability relations between histories of the model (which are
nodes of the unfolding).

Definition 15 (i, R-tree unfolding) Given an iCGS 91 and a state ¢ in it, we define the
ioR-tree unfolding of (M, q), denoted T,(IM, g), as T (M, ¢q) from Definition 12 extended
with epistemic relations NZ”(m’q) reflecting indistinguishability of histories in 9; that is,

h ~LD prigf h ~M B’ where h and b’ start in g.

As an example, the i,R-tree unfolding of the robots and carriage iCGS 1is presented in
Fig. 4.
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Fig. 5 “Poor duck model” M; with one player (a) and transitions labeled with a’s actions. The dotted
line depicts a’s indistinguishability relation. Automatic transitions (i.e., such that there is only one possible
transition from the starting state) are left unlabeled

Proposition 5 Let (M, q) be a pointed iCGS. The i,R-tree unfolding of (MM, q) is i,R-tree-
like.

Proof Clearly, the unfolding has tree structure and is i,R-tree-like by definition of the indis-
tinguishability relations in the i, R-tree-unfolding. O

Analogously to Theorem 1 we have that i,R-tree unfoldings are truth preserving and that
memory does not matter in these unfolded models.

Theorem 2 For every iCGS 0, state q in MM, and ATL*-formula ¢ we have:
M. q = W TN q).q Fipp @ I ToON, ), q |, ¢

The proof is given in the Appendix.

4.3 Imperfect information: subjective ability

The case for the subjective semantics (i;) cannot be proven in the same way by using i,R-
tree unfoldings. Obviously, when constructing an unfolding of (91, ¢) for the i;R-semantics
one has to take into account paths starting from states indistinguishable from ¢g. A first
naive approach could be to define the i;R-unfolding as a structure consisting of i,R-tree
unfoldings, one for each epistemic alternative, and to connect the root nodes of all these
unfoldings. Unfortunately, this simple idea is not sufficient as illustrated in Example 7.

Example 7 (First naive approach to isR-tree unfoldings) We consider the iCGS M| shown
in Fig. 5. The story is as follows. A man wants to shoot down a yellow rubber duck in a
shooting gallery. The man knows that the duck is in one of the two cells in front of him,
but he does not know in which one. He can shoot to the left (action shooty) or to the right
(shootg). Alternatively, he can reach out and open one of the cells for a moment (action
look), thus removing his uncertainty.
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Fig.6 Two iyR-tree unfoldings connected by epistemic links. Each label i1 i3 . . . refers to the history g;, g, - - -

Let us take the i,R-tree unfoldings 7,(M1, qo) and T,(M1, q1), and interconnect their
nodes by epistemic links whenever the corresponding histories are indistinguishable in the
original model. The resulting model is shown in Fig. 6 (we will call the model 77). Unfor-
tunately, this construction is not truth-preserving. That is because if a state-subformula is
evaluated in states 040 and 151 of 77 the agent will know where the game is—which is not
consistent with the iy semantics: only the last state of each history should be considered.

To be more precise, let us consider formula ¢ = {a)O (a)O ((a)) O shot. Clearly, we
have My, qo [~i,r ¢. On the other hand, we have T, qo =ir ¢.

In order to improve the naive approach one may simply add an epistemic link between
states 040 and 151. Unfortunately, this does not work either. Such a link indicates that the
states 040 and 151 are indistinguishable for a; on the other hand, player a can distinguish
the histories which lead to these states. This contradicts the conceptual idea in which states
are associated with histories. Moreover, it is easy to construct a concrete counterexample.

To make the observation in Example 7 more formal, suppose kg is some node in the i, R-
tree unfolding 7, (91, go) and that in this node a formula ((a)) y is evaluated. Then, {(a))y holds
iff agent a has a successful iR-strategy not only for all paths starting from %¢q, but also for
paths starting from nodes /'q’ such that ¢ ~ ¢’. In the i,R-tree unfolding, however, these
nodes are usually not linked via an epistemic transition. On the other hand, we cannot simply
introduce the link g NZ”(Em’qO) h'q’ as we would loose soundness of the construction (in
general, 1 and &’ do not need to be indistinguishable). This observation makes it necessary to
introduce a more sophisticated construction for the subjective epistemic tree-like unfoldings
under perfect recall, or isR-pando unfoldings in short.?

Firstly, we discuss when an iCGS should be considered isR-pando-like. The idea of a set
of connected i,R-tree-like models (like in Example 7) seems to come close. However, we
should also account for the “forgetting” of the history of the play when a nested strategic
operator is evaluated. This is because if a state subformula (like {(a))y) is evaluated in a
history &, only the last state of 4 is relevant. The rest of 4 is “lost” as it does not influence
the truth of ((a))y in h. We deal with it by adding appropriate “hanging” trees with roots g
that are indistinguishable from last (h) in the original models. The new trees are connected

9 We thank an anonymous reviewer of JAAMAS for the excellent terminological suggestion. An igR unfolding
is not a tree, as it usually consists of several transition trees. On the other hand, it is not a typical forest because
the trees are not separate—they are intimately connected by epistemic relations. For the biological Pando, see
for example http://en.wikipedia.org/wiki/Pando(tree).
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to histories in the “basic” tree by appropriate epistemic links. We must also make sure that
there are no epistemic links between such trees apart from the ones just explained.
Definition 16 (i; R-pando-like, psn(q, q’)) AniCGS
M = (Agt, St, I, wr, Act, d, 0, {~a}acag)
is igR-pando-like iff it consists of submodels
M; = (Agt, Sti, T i, Act, di, 0 {~7 " Jaehel)
for i € I and some index set I C N, where:

— each 9; is an i,R-tree-like iCGS,

- St = L+Ji€1 St; (i.e. the states of the 9t;’s form a partition of 1),

71 St — 21 with w(q) = 7i(q) for q € St;,

d : St x Agt — 24 with d(q, a) = d;(q, a) for q € St;,

0: St x Act'*8!l — St with o(q,a) = o0i(q,a) for g € St;, and

~aC St x St with ~,:= (Uie[ N;m,-) U ~, where each <, C |J;; Sti x U;¢; Stis

and the following conditions are satisfied:

1. the relation ~, is transitive for every a € Agt.

2. %, is a symmetric relation for every a € Agt.

3. foralli € I wehave ~, N (St; x St;) = ¥ (the relation does only exist between different
i,R-tree like models).

4. for qi € St; and gq» € St; with i,j € I, i # j, we have that if g;~,q> then
P, (m)&?ﬁ po;(q2) or pow;(q1) = g1 or pon;(q2) = g2 where for two histories h
and i’ we have hézamh’ iff |h| = |h'| and A[I]~,h'[[] foralll =0, ..., |h| — 1 (indistin-
guishable nodes in different i,R-tree-like models must have indistinguishable histories
or at least one of the nodes is a root node).

5. for g1, g2 € St and ~pg= Uyepg ~as if 1(~ag) g2 then [pox, (q)| = |pom, (2)]
(nodes in the same tree indistinguishable for a group must be on the same level). The
idea behind this condition is illustrated in Fig. 7.

Moreover, we define pon (g1, g2) as pam; (1. g2) for g1, g2 € St; and set poan(q1, q2) = € if
q1 € St; and g3 € St; fori # j.

Remark 1 'We would like to note that it is possible, due to condition 4 of Definition 16, to
weaken condition 5 of Definition 16 to the following: Let g1 € St;, g2 € Stj,i,j € I,i # j,
q1(~ag)*q2, and pan; (q2) = q2 where ~a= [J,c4 ~a for A C Agt. If there is an ¢| € St;,
with g2 (~ag)*q1s then, | oo, (g1)] = | pon, (g

Before we give an intuitive example we show that the concept of i;R-pando-like iCGS is
well-defined.

Proposition 6 Let M be an isR-pando like iCGS as defined in Definition 16. Each relation
~, Is an equivalence relation for a € Agt.

Proof By definition, each ~, is transitive. Symmetry follows from the symmetry of ~, and
of N;m ", Reflexivity of ~Z" " does also imply reflexivity of ~,. O
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Fig. 7 Condition 5 of
Definition 16

same level
of the tree

Example 8 Figure 8 depicts an igR-pando-like iCGS. In fact, the model shows a suitable
unfolding of the pointed iCGS (M, qo) from Fig. 5. We will formally introduce i;R-pando
unfoldings in Definition 17.

In the spirit of Propositions 2 and 4 we have that memory is not needed in i;R-pando-
like models. The proof for the left-to-right direction is obvious. The sophisticated step is to
construct an igr-strategy from an igR-strategy. For the sake of readability we have moved the
technical part in the appendix (Lemma 3).

Proposition 7 (Recall invariance for iy R-pando-like models) For every isR-pando-like iCGS
M, state q in M, and ATL*-formula ¢, we have that M, q |=,, ¢ iff M, q =, ¢.

Proof Firstly, we recall that all the “subpandos” which form an i,R-tree-like iCGS are not
interconnected by transitions and thus the path to each state is unique. The proof is done
analogously to Proposition 4; we only consider the important base case where ¢ = ((A))y
and y contains no strategic modalities. The left-to-right direction is obvious.

For the right-to-left direction suppose that 9, g |=, . (A))y and let 54 be a collective
iR-strategy for A such that forall A € out’(q, s4) it holds that 901, A .z V-Letq' € Stjbea
state reachable from g € St; with ¢ NZm q for some a € A. Then, we define the memoryless
strategy 1, as follows: #,(¢") = s4(pam;(q, q')). We proceed like this for all states ¢, g and
define the strategies 7, arbitrarily but in a uniform way for all other states in 91. (Note, that
these are all states which are not reachable from any epistemic alternative of g for some agent
in A.) Firstly, we observe that each ¢, is well-defined as each 9; is i,R-tree-like and thus
the path pan; (¢, ¢') to a state ¢” is unique.

In order to show that each 7, is uniform and that out’s (q,ta) = out's (g, s4) we have to
prove that for any two states ¢ reachable from ¢y, and ¢, reachable from g, with ¢; Ngﬁ 92
and §1, g2 € {¢' € St | q ~4 ¢’} (ie. §1 ~2ﬁ g ~T g, for some b, ¢ € A) we also have
0(q1,q1) @ p(§2, q2). This part is shown in Lemma 3 in the Appendix. O

The basic idea of the subjective epistemic pando unfolding under perfect recall (izR-

pando unfolding in short) is to create copies of the tree starting in ¢’, one for each epistemic
alternative. Then, we can link hq with these new root nodes g’ of the “copies” of the trees
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Fig. 8 The figure shows the iyR-pando unfolding of (M1, qq) from Fig. 5. All dotted and dashed lines denote
the indistinguishability relation of agent a. Dashed links encode indistinguishability between nodes in trees
that have roots on the same level; dotted links connect nodes in trees from different levels. Again, for the sake
of readability, reflexive and transitive connections are omitted

starting in ¢ (cf. Fig. 8 and take e.g. h = 04, ¢ = 0, and ¢’ = 040a1; the new node is
named 040a1 to ensure that the name is unique as explained below). It is easy to see that
these “new” subtrees can only be reached if a formula ((a))y is evaluated in hg (or some
other state 1”q"” with hg ~ L Oq0) i q" by transitivity). As mentioned above all nodes in
these new subtrees must have unique names. This is the reason why we have to prefix each
node 4" in the new tree by hga where hq is the history in the “current tree” and a encodes
that we have used a’s indistinguishability relation to reach the “new” tree.

Before we formally define the i;R-pando unfolding, we introduce some additional notation.
In the following, we consider words over D := (St U Sto {a | a € Agt} o St)*. Thus, D
consists of finite sequences of states, possibly interleaved by references to some agents. We
use elements from D to give names to nodes of the pando unfolding. Essentially, the name of
anode shows how the node is reached from a root by following temporal paths and “jumping”
between different trees by use of epistemic links (cf. Fig. 8).
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We also define auxiliary functions rel : D — St*, ref : D — D, lastr : D — St and
Jjump : D — Agt U {€} as follows:

h, forheStt;

rel(h) =
(k) {h”, for h = h'ah” and h” € St and a € Agt;

h ifh e Stt;
refy =13 1S

h it h = harel(h);
lastr(h) = last(rel(h));
. e ifheStt;
Jump(h) = 4 ~

a if h = harel(h).
The intuition for these functions is as follows. Given an element 2 € D, rel(h) returns the
“relevant” part of £, i.e., the subhistory at the end of 2 of maximal length that does not contain
any a symbol for any a € Agt. On the other hand, ref (h) returns the “reference” node in
the higher-level tree which was used to obtain 4. Finally, jump(h) returns the agent whose
epistemic link was used to “jump” between the two trees. For example, rel (qlaq2q3bq4) = qu,
ref (q14q2q3bq4) = 414923, lastr(ref (q14q2q3bq4)) = g3 and jump(q1aqaq3bqa) = b.
Let M = ‘(Agt, St, IT, 7w, {~a}acag, Act, d, 0) be an iCGS and g € St. We recursively

define sets Af, € D which contain the nodes of the i;R-pando unfolding:

U Afm
IIN q
{(hah' | h € Aby(q), |rel(h)] > 2, a € Agt, and h' € Af’"(q)

for some ¢’ ~a lastr(h)}.

Adp(q) :

Al—H(q)

We write A’ for Aim(q) if state ¢ is clear from context. Note thateach i € Afm contains
exactly i symbols oftypea; fora; € Agtand j =1, ..., i.Intuitively, @ denotes that we took
a ~,-relation step between different trees. Note also that, for instance, gog1daq2 € A'(qo)
but godgs & A'(go). This is because if a link to a new tree model is taken histories have to
be “forgotten” and in cases in which the history consists of a single state (e.g. go in godq>)
such a link is not necessary and also not desired due to technical reasons. Now, we are ready
to define the i;R-pando unfolding.

Definition 17 (iy R-pando unfolding) Let M = (Agt, St, IT, 7, {~q}acag, Act, d, 0) be an
iCGS and g € St. The isR-pando unfolding of (M, g), denoted T (N, q), is defined as
Ty = T,(M, q) = (Agt, St', T, 7', {~ }ueag Act, d’, ') where d'(a, h), o'(h, &), and
7/(h) are given as in Definition 12 and 15 where function “last” is replaced with “lastr” and
(note that NZS refers to relation ~/):

1. 8t = Ul OA (q)
2. foralla € Agt, ~ S C Ston X Sty is the smallest reflexive relation such that & NZS n if:
(a) rel(h) ~2 rel(h'), for h, h' € A% (q), or
(b) rel(h) ~ ~fm rel(h ) and
i. ref(h) as ref (W) and jump(h) = a = jump(h’), and h, h’ € Al m(@),i >0,
or
ii. jump(h) = b = jump(h') witha # b,and h, h’ € Al,(q),i > 0, or
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Fig. 9 Structure of the proofs of Propositions 7 and 8 and of Theorem 3. Full proofs of all results are given
in Appendix 7.2

(©) h e Ay, b e AL, jump(h') = a, ref (W) ~5 h, lastr(ref (')~ rel(h') or
vice versa with the roles of & and h’ switched.
We note that this means that A’ = hagq, lastr(h) NZn g, and h N,? h for some

q € Ston and hi € Al (q).

Remark 2 (isR-pando unfolding) We motivate points 2(a), 2(b), and 2(c) in Definition 17.
Items 2(a) and (b) define indistinguishability between nodes of trees from the same set Al.In
this case, the “jump” must be obtained by the same epistemic relation and the final parts of the
corresponding histories in the current trees (the “relevant” parts) must be indistinguishable;
moreover, the “reference” nodes (in the trees one level up) must be indistinguishable for the
“jump” agent (point 2(b)i) in case we are concerned with epistemic alternatives of this very
agent. This is needed to obtain transitivity of the epistemic relation in the resulting forest.
Note that, in particular, the length of the relevant subhistories must be the same.

Item 2(c) defines the only way how nodes & and &’ from different sets A’ and A/, i # j,
can be linked via an epistemic link. Firstly, it must be the case that j = i + 1. Secondly, the
relevant part of i’ € Ai*! must be a single state which is indistinguishable from the last state
of the reference part of &’ € Al moreover, the reference part of 4’ must also be linked to .
Note, that the relevant parts of & and A" do not have to have the same length. This models the
“forgetting” if a new state-subformula is evaluated in /.

Example 9 (is R-pando unfolding) The isR-pando unfolding of model (M1, go) from Fig. 5
is shown in Fig. 8.

Similarly to Sect. 4.2 we can show that an i;R-pando unfolding is i;R-pando-like as
expected. For example, it has to be shown that all nodes are disjunct, in order to obtain a

tree-like structure, and that the epistemic relation ~£" M9 is an equivalence relation for each
agent a € Agt. The proof of the following result is rather technical and is formally proven
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in the Appendix. The structure of the proof of this proposition and also of our main result,
Theorem 3, is outlined in Fig. 9.

Proposition 8 The isR-pando unfolding of a pointed iCGS is isR-pando-like.

Then, thanks to Proposition 7, we obtain that iyR-pando unfoldings are truth-invariant
under recall. Now we can state our main result for i;R-pando unfoldings.

Theorem 3 For every iCGS 9, state g in MM, and ATL*-formula ¢, it holds that
M, q Fir ¢ WTON,q), g Fip ¢ M T5(M. ), g =i, ¢-

Again, the proof is moved to the Appendix.

5 Comparing validities for variants of ATL

In this section we present a formal comparison of the semantic variants defined in Sects. 2
and 3. As stated in the introduction, we compare the variants on the level of their validity
sets (or, equivalently, satisfiable sentences). In most cases, they turn out to be different. Also,
we can usually show that one variant is a refinement of the other in the sense that its set of
validities strictly subsumes the validities induced by the other variant.

In what follows, we write Val(ATLy,,,) to denote the set of ATL validities, or the the-
ory of ATL, under semantics sem. Likewise, we write Sat(ATLg,,,) for the set of ATL
formulae satisfiable in the semantics sem. Note that validity and satisfiability of formu-
lae in all cases considered in this paper is defined over the same class of models, namely
the class of imperfect information concurrent game structures. The conceptual reading of
Val(ATLep,) ¢ Val(ATLgey,,) can be as follows: for “game boards” given by iCGS’s, we
have that the “game rules” in the ATLy,,,, variant strictly refine the rules in ATLj,,,,. Note
also that Val(ATLye, ) C Val(ATLg,,) is equivalent to Sat(ATLge,) © Sat (ATLgep, ).
Thus, an alternative reading is “ATL,,,, admits reasoning about a larger variety of games
than ATL;,,,,”.

We will always prove inclusion results for the broadest possible language (usually ATL*)
and non-inclusion results for the narrowest one (usually ATL). Clearly, for languages £ C £/,
we have that Val(L},,,, ) € Val(L,,,,,) implies Val(Lsem,) S Val(Lsem,), and Val(Lgem,) €

sem| sem?
Val(Lsem,) implies Val (L, ) € Val(L,,,)-
Summary of the results Figure 10 gives an overview of the results of Sects. 5.3-5.6. We show
that almost all the semantic variants discussed here are different on the level of validities, and
that they show a strong pattern: perfect information is a special case of imperfect information,
perfect recall games are special case of memoryless games, and properties of objective and
subjective abilities of agents are incomparable. Moreover, the type of information has more
impact on the validities than the type of recall in the more restricted language of ATL.
Interestingly, for the richer languages of ATL™ and ATL* this is not the case anymore.
Note that if we reverse the subsumption signs in Fig. 10 then the graphs describe the

hierarchy of satisfiable sentences in different semantics of ATL/ATL*.

Remark 3 1t is important to observe that comparing validities is not the same as comparing
abilities. For example, subjective ability to enforce y always implies objective ability to
enforce y. Yet, as we show in Sect. 5.6, the set of validities for objective ability does not
subsume the one for subjective ability. It is tempting to think that it should, because for
every validity ((A))y in the subjective semantics, ((A))y must be also valid in the objective
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(A) B) Prop. 1, Th. 4
ATLY,
Th. 10 Th. 4 Th. 9
ATL; z—-Th. 11---ATL}, ~-h. 12.-ATL} o ATL; p---------: Th. 13-----=-- ATLi, R

Th. 6 Th.7

Fig. 10 Comparison of validity sets induced by various semantics of a ATL*, and b ATL. Arrows depict
strict subsumption of validity sets, e.g., “ATL}"r — ATL}"R” means that Val(ATL’;r) C Val(ATL;‘R). Dotted
lines connect semantic variants with incomparable validity sets. We do not include links that follow from
transitivity of the subsumption relation. The hierarchy for ATL™ is exactly the same as for ATL*

semantics. On the other hand, what about validities stating inability, i.e., = ({(A)) y ? Should they
adhere to the reverse subsumption? Either way, this line of reasoning is totally misleading.
The reason for that is simple. Almost no formulae of type ((A))y or —=({(A))y are validities
of ATL in any semantics that we study. There are only two exceptions: ((A)) T and —({(A)) L.
Or, to be more precise, all formulae ((A))y where y is tautologically true (i.e., holds on all
paths that can occur in any CGS) and —({(A))y where y is tautologically false (i.e., fails on all
paths in all CGS’s). For a nontrivial ability (that is, one which refers to a temporal property
that can, but does not have to be true), a valid formula can only connect it to another kind of
ability. For example, (A))Op — {(A U B))Op is valid in all the semantics considered in this

paper.

5.1 Perfect recall versus memoryless play under perfect information (IR vs. Ir)

We first proceed to examine the impact of recall on the general strategic properties of agent
systems under prefect information. The inclusion results follow naturally from the invariance
theorems for tree-like unfoldings presented in Sect. 4. Non-inclusion will be demonstrated
by appropriate formulae (that are valid in one semantics and not valid in another). We have
already mentioned that, in ATL, the Ir- and /R-semantics coincide (Proposition 1). As a
consequence, they induce the same validities: Val(ATLj.) = Val(ATL;g). Thus, regardless
of the type of their recall, perfect information agents possess the same abilities with respect
to winning conditions that can be specified in ATL. An interesting question is: Does it carry
over to more general classes of winning conditions, or are there (broader) languages that
can discern between the two types of ability? The answer is: no, it doesn’t, and yes, there are.
The Ir- and IR-semantics induce different validity sets for ATL*, and in fact the distinction
is already present in ATL ™. Moreover, it turns out that perfect recall can be seen as a special
case of memoryless play in the sense of their general properties.

Proposition 9 Val(ATL}.) C Val(ATL}y)

Proof Let an ATL*-formula ¢ be Ir-valid in iCGS’s, then it is also Ir-valid in tree-like
CGS’s, and by Proposition 2 also IR-valid in tree-like CGS’s. Thus, by Theorem 1, it is /R-
valid in arbitrary CGS’s. Since indistinguishability relations do not influence the semantic
relation =g, we get that ¢ is IR-valid in iCGS’s. O

In particular, the subsumption holds for formulae of ATL™. Moreover:
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Fig. 11 Single-agent model M5:
robot with multiple tasks

clean delivered

Proposition 10 Val(ATL}}) Z Val(ATL;).
Proof Consider formula

@3 = (a)(Op1 A OP2) < (a)O(P1 A (a)Op2 Vv P2 A (a)Op1).

The formula is valid in ATL;;2 [33]. On the other hand, its right-to-left part is not valid in
ATLIt. To see this, we take the single-agent CGS M5 from Fig. 11 where agent a (the robot)
can do the cleaning or deliver a package. Then, for p1 = clean, p» = delivered, we have
Ms, qo =, (@)0(P1 A (a)0Pa v P2 A (@)Ops) butalso Ms, qo K, (a)(Op1 A Op2). O

Theorem 4 Val(ATL;,) = Val(ATLig). However, Val(ATL}) ¢ Val(ATL;) and
Val(ATL}) C Val(ATL}y).

Proof From Proposition 1 it follows that Val(ATL;,.) = Val(ATL;g). From Proposition 9 we
know that Val(ATL},) € Val(ATL},) and can also deduce that Val(ATL;) € Val(ATL};)
because the language of ATL™ is just a syntactic restriction of the one of ATL*. Finally,
Proposition 10 proves that Val (ATL?;) c Val (ATL};) and also that Val(ATL}) C

=

Val(ATLjy) because the formula given in the proof of the very proposition is in particu-
lar also an ATL*-formula. O

5.2 Perfect recall versus memoryless play under imperfect information (iR vs. ir)

Now we compare the memoryless and perfect recall semantics under uncertainty. We treat
the case of objective and subjective ability separately.

5.2.1 Imperfect information: objective ability
Proposition 11 Val(ATL} ) € Val(ATL] p).

Proof We prove that Sat(ATL; z) < Sat(ATL] ). Let ¢ € Sat(ATL; z). Then, there
must be a pointed iICGS (90, q) such that 9, ¢ =, ; ¢. By Theorem 2, T,(M, q), q &=, ,
¢. But on i,R-tree unfoldings, iR- and ir-strategies coincide (Theorem 2), so we get that
T,(M, q), q k=, ¢, and as a consequence ¢ € Sat(ATLl-tr). ]

The converse does not hold:

Proposition 12 Val(ATL;,r) £ Val(ATL;,,)
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Fig. 12 Model Mg with kiss
Agt = {a}: dangers of marital life

angry suspicious

Proof To show this, we take the ATL embedding of the CTL duality between combinators
EO and AQ (see Sect. 2.5). In fact, only one direction of the equivalence is important here:

Py = —(#)0—p — (Agt)Dp

(note that the other direction is valid for all the semantics considered in this paper, and actually
for all the reasonable semantics of strategic ability that one can come up with).

First, we observe that: (i) —((#))O0—p expresses (regardless of the actual type of ability
being considered) that there is a path in the system on which p always holds; (ii) in the
“objective” semantics the set out (g, spgt) always consists of exactly one path; (iii) for every
path A starting from ¢, there is an i,R-strategy sao; such that out (g, sagt) = {A}. From these,
it is easy to see that @4 is valid in ATL; z.

Second, we consider model Mg in Fig. 12.10 Let us take p = —angry A —suspicious.
Then, we have Mg, qo |=,,, —{#)O—p but also Mg, qo %, (Agt)Up, which demonstrates
that @4 is not valid in ATL; .. O

Theorem 5 Val(ATL;,,) C Val(ATL; r), and similarly for ATL™ and ATL*.

5.2.2 Imperfect information: subjective ability

Proposition 13 Val(AT L;‘;r) C Val(ATLl’.‘X R)-

Proof Analogous to Proposition 11. O

Proposition 14 Val(ATL; )  Val(ATL;,).

Proof We take the formula &5 which is a consequence of the fixpoint equivalence for {(a)) Op:
@5 = (a)O (a)Oop — (a)Op.

The formula states that if @ has an opening move and a follow-up strategy to achieve p
eventually, then these can be integrated into a single strategy achieving p already from the

10" The example depicts some simple traps that await a married man if he happens to be absent-minded.
If he doesn’t kiss his wife in the morning, he is likely to make her angry. However, if he kisses her more
than once, she might get suspicious. It is easy to see that the absent-minded (i.e., memoryless) husband does
not have a strategy to survive safely through the morning, though a safe path through the model does exist
(A =qo0q1491491 - ).
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initial state. It is easy to see that ®s is valid in ATL; z, and that the single strategy is just
a concatenation of the two strategies that we get on the left hand side of the implication.
On the other hand, for the “poor duck model” M} and p = shot, we get that M, qo =,
{a)O (a)Op but also M1, qo . (@)Op, so ®s is not valid in ATL,. m]

Theorem 6 Val(ATL;,) C Val(ATL, ), and similarly for ATL™ and ATL*.

5.3 Perfect versus imperfect information under memoryless play (Ir vs. ir)

We continue by comparing perfect and imperfect information scenarios. That is, in the first
class (1), agents recognize the current global state of the system by definition. In the latter
(isli,), uncertainty of agents about states constrains their choices. Firstly, we observe that
perfect information can be seen as a special case of imperfect information.

Proposition 15 Val(ATLY,)  Val(ATL},) and Val(ATL},) C Val(ATL}).

Proof Since perfect information of agents can be explicitly represented in iCGS by fixing
all relations ~, as the minimal reflexive relations (¢ ~, ¢’ iff ¢ = ¢’), we have that ¢ €
Sat (ATL},) implies ¢ € Sat (ATL;‘sr) and ¢ € Sar (ATL;"gr). Thus, dually, Val (ATLZ,) C
Val(ATLy,) and Val(ATL; ) € Val(ATLy,). O

Proposition 16 Val(ATL;) € Val(ATL;,).

Proof We show this by presenting a validity for ATL;, which is not valid in ATL; ,. Consider
the formula that captures the right-to-left direction in the fixpoint characterization of ({(A)) Q¢
for single-agent teams and atomic propositions:

@1 =PV (a)O (a)op) — (ahOp

@ is Ir-valid (cf. Sect. 2.5). To see its invalidity in the i;r-semantics, consider model M
from Fig. 5. We recall that the story behind the model is as follows. A man wants to shoot
down a yellow rubber duck in a shooting gallery. The man knows that the duck is in one of
the two cells in front of him, but he does not know in which one. Moreover, this has been a
long party, and he is very tired, so he is only capable of using memoryless strategies at the
moment. Does he have a memoryless strategy which he knows will achieve the goal? No. He
can either decide to shoot to the left, or to the right, or reach out to the cells and look what
is in (note also that the cells close in the moment after being opened). In each of these cases
the man risks that he will fail (at least from his subjective point of view). Can he identify an
opening strategy that will guarantee his knowing how to shoot the duck in the next moment?
Yes. The opening strategy is to look; if the system proceeds to g4 then the second strategy is
to shoot to the left, otherwise the second strategy is to shoot to the right.

Indeed, for p = shot, we get M1, qo |=,, PV (a)O ()0op and My, qo ,, (a)op.
which formally concludes our proof. O

Proposition 17 Val(ATL;) € Val(ATL; ;).

Proof 1t is sufficient to show that ®; = (p Vv {a)O (a)Op) — (a)Op is invalid in the
ior-semantics. Take model M, in Fig. 13 and p = shot. Now we have that M, q(’) Eir
p Vv {a)O (a)Op because a has a uniform strategy that objectively achieves Op in go
(sa(q) = shooty, for every g) and another uniform strategy in g (s,(¢) = shootg for
every q). However, s, and s/, cannot be merged into a single uniform strategy, and indeed
M, q; =, {a)Op, which concludes the proof. O
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Fig. 13 Modified “poor duck” model M, with two agents a, b. This time, we explicitly represent the agent
(b) who puts the duck in one of the cells

Note that, for ATL; ,, formula & is valid in single-agent models, so we really needed to
add another agent to the picture.
The following theorems are straightforward consequences.

Theorem 7 Val(ATL;,) C Val(ATL;), Val(ATL,) C Val(ATL}), and Val(ATL},) C
Val(ATL},).

Theorem 8 Val(ATL;,,) C Val(ATL,), and similarly for ATL" and ATL*.
By Proposition 1 and Theorems 4, 7, and 8, we get the following corollary:

Corollary 1 Val(ATL;,) C Val(ATL;r) and Val(ATL;,,) < Val(ATLjr), and similarly for
ATL™ and ATL*.

5.4 Perfect versus imperfect information under perfect recall play (IR vs. iR)

First, we observe that for ATL; g versus ATL;z we can employ the same reasoning as for
ATL;,, versus ATL,,. Abilities under perfect information can be still seen as a special case
of imperfect information abilities, and we can use the same model M to invalidate the same
formula ®; in ATL;, z. Thus, analogously to Theorem 8 we get:

Theorem 9 Val(ATL; r) C Val(ATL), and similarly for ATLY and ATL*.

By the same reasoning as above, Val(ATL; g) € Val(ATLjg). To settle the other direction,
we need to use another counterexample, though.

Proposition 18 Val(ATLr) & Val(ATL;R).

Proof This time we consider the other direction of the fixpoint characterization for ((a))Op:
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Fig. 14 Variant of “poor duck”
after a particularly long party
(model M3)

shot

@2 = (a)0p — (p Vv (@)O(a)Op).

@, is [R-valid, but it is not valid in i;R. Consider a modification of the “poor duck model”
in Fig. 14 (the party goes on, and the man is not even able to reach out and look anymore;
the cells are open initially but they will close in a moment). Take p = shot. We have that
M3, q4 |5, (a)OP, but M3, q4 V=, , PV {a)O {a) ©Op, which concludes the proof. O

Theorem 10 Val(ATL; r) C Val(ATLR), and similarly for AT. L™ and ATL*.

5.5 Mixed setting: information versus memory (Ir vs. iR)

In this section we compare abilities if both dimensions change. For ATL we already know
the complete picture because ATLj and ATL; are the same logics, cf. Fig. 10b. For ATL*
it remains to compare ATLJ,, ATLi*O r» and ATL;"c -

To facilitate proofs, we define an additional temporal operator N (“now”) as Ny = ¢ U ¢.
Note that 9, & = Ng iff M, L = ¢ in the semantics of CTL* and any ATL-semantics that
we have discussed in this paper. Moreover, we note that the formula ((A))Ng expresses E ¢
(everybody in A knows that ¢) if ((A)) is interpreted according to the subjective semantics
for imperfect information (i.e., according to |=, , and =, ).

Theorem 11 The sets Val(ATLl’.‘SR) and Val(ATL},) are incomparable, and similarly for
ATL™.

Proof We prove incomparability for ATL™. From this, incomparability for ATL* follows
immediately.

1. Val(ATL},) € Val(ATLZR). Suppose that Val(ATL}) € Val(ATL;‘SR). This implies that
Val(ATL;) € Val(ATL; ) and by Theorem 4 Val(ATL;zr) € Val(ATL; ). But this
contradicts Theorem 10.
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2. Val(ATL;} p) & Val(ATLy,). For this case we consider the ATL*-formula

e = (Ag) O(AZNN(p1 A (Agt)Op2) — (Agt)(OP1 A OP2)

which is a validity of ATL;:R but not of ATL; . The latter fact can be shown by the same
counterexample as used in the proof of Proposition 10 (we have M5, qo &=, D).

It remains to show that ®¢ € Val (ATLZR). Suppose that M, g =, , (Agt)O(Agt) N(p1A
(Agt)Op2). That is, there is an iR-strategy sag¢ such that for all A € out(q, Spgt) there
isani > 0 and an iR-strategy sAgl such that for all A" € out™ (A[i], S:&xgt) we have that

A[0] = p1 and there is an iR-strategy sggl such that for all A" € out’s ('[0], sggt) it
holds that 9, 1" = Opo.

Because we have that {¢' | ¢’ ~ag Ali1} = {¢' | ¢’ ~ag 2'[0]}, we can take s‘&gt as
S&gt' Then, we have that 9, ¢ =, . ((Agt))(}((Agt))N(m A (Agt) Op2) iff there is an
iR-strategy sagt such that for‘all A € out'(q, spgt) there is an i > 0 and an iR-strategy
s‘&gt such that for all A" € out's (A[i], sl’&gt) we have that A'[0] = p1 and M, 1 = Opo.
Now, it is easy to see that we can combine sag and each Sz/&gt to a single strategy Sag
such that for all A € our’(q, Sagt) it holds that 90, A = Op1 A Op2. This shows that
M, g = (Agt)(Op1 A Op2). O

Apart from minor modifications, the next theorem, considering objective ability, is proven
along the same lines.

Theorem 12 The sets Val(ATL;“UR) and Val(ATL},) are incomparable, and similarly for
ATL™.

Proof Again, we prove incomparability for ATL*. From this, incomparability for ATL*
follows immediately.

1. Val(ATL}) & Val(ATLi’:R). Suppose that Val(ATL}) € Val(ATLZR). This implies
that Val(ATL;) € Val(ATL; g) and by Theorem 4 Val(ATL;z) € Val(ATL; g). But
this contradicts Theorem 9.

2. Val(ATL; ) Z Val(ATLj,). For this case we consider the ATL*-formula

@ = (Agt)O(P1 A (Agt)Op2) — (Agt)(OP1 A OP2)

which is a validity of ATLZ r but not of ATL} . The latter is shown by the same coun-
terexample as used in the proof of Proposition 10 (we have Ms, qo =, ¢).

Finally, it remains to show that ¢ € Val(ATL:-‘D r)- This part is proven following the
same idea as in the proof of Theorem 11. We observe that every strategy sagt of the
grand coalition generates a unigue path wrt. objective ability (because, in the objective
semantics, possible paths starting from epistemic alternatives are not considered). This
also means that uniformity of a strategy does not matter: there is no need to ever consider
epistemic alternatives along a path. Hence, the two strategies witnessing (Agt)O(p1 A
{(Agt)) Op2) can be combined to a single strategy witnessing (Agt)) (Op1 A Op2). ]

5.6 Between subjective and objective ability for imperfect information (i vs. i,)

Finally, we compare validity sets for the semantic variants of ATL that differ on the outcome
paths which are taken into account, i.e., whether only the paths representing the “objectively”
possible courses of action are considered, or all the executions that are “subjectively” possible
from the agents’ perspective.
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Proposition 19 Formula ®; = {(a)Op — pV {a)O (a)Op is valid in ATL; g and ATL; ,,
but invalid in ATL; g and ATL;,.

Proof We first prove validity of ®; in ATL; ., which implies also validity in ATL; r by
Proposition 11. Suppose that 9, g k=, . {a))Op, then there must be an ir-strategy s4 that
enforces Op for every execution starting from ¢. But then, if p is not the case right at the
beginning, s4 must lead to a next state from which it enforces ¢p.

For the second part, invalidity of ®, in ATL; g was already proved in Proposition 18.
Thus, by Proposition 13, &, is not valid in ATL; ,, too. O

In the next result we make use of the operator N introduced in Sect. 5.5.

Proposition 20 Formula

@5 = (@)N{c)hO (a)Op — (a, c)hOp
is valid in ATL; g and ATL; ,, but invalid in ATL; g and ATL; ;.

i()
Proof Analogously to Proposition 19, we prove the validity of ®g in ATL; ,, and its invalidity
in ATLioR-

First, let 9, ¢ =

strategy s¢ ' that enforces O {a)»Op from [¢']~.. By combining all these strategies into an

ir-strategy s. (we can do it since the strategies s "are successful for whole indistinguishability
classes of ¢), we have that s, enforces O (a))Op from every state in [q]~,,.,> regardless
of what the other players do (in particular, regardless of what a does). But then, for every
execution A of s. from [g]~i0eps @ will have a choice to enforce O p from [A[1]]~,. Again,
collecting these choices together yields an ir-strategy s, (we can fix the remaining choices
arbitrarily). By taking s(4.c} = (54, S¢), we get a strategy for {a, c} that enforces that p will
be true in two steps, from every state in [g]~,, ,. Hence, also 9, g =, . {(a, c)Op.

For the invalidity, consider the modified poor duck model M, from Fig. 13 augmented
with additional agent ¢ that has no choice (i.e., at each state, it has only a single irrelevant
action wait available). Let us denote the new iCGS by Mj, and let p = shot. It is easy to
see that M, g =, (c)O (a)Op, and hence also M3, ¢4 k=, x {(@)N{c)O (a)Op. On
the other hand, M}, q; =, , (a, ¢)Op, which concludes the proof. O

{apN{eHO (a)Op. Then, for every state ¢’ € [g]~,, ¢ has an ir-

igr

ioR
The following is an immediate consequence.

Theorem 13 Forevery y, z € (R, r}, the sets Val(ATL;,,) and Val(ATL, ;) are incompara-
ble, and similarly for ATLY and ATL*.

6 Conclusions

In this paper, we compare validity sets for different semantic variants of alternating-time
temporal logic. In other words, we compare the general properties of games induced by
different notions of ability. It is clear that changing the notions of strategy and success in
a game leads to a different game. The issue considered here is whether, given a class of
games, such a change leads to a different class of games, too. And, if so, what is the precise
relationship between the two classes.

A summary of the results is presented in Fig. 10. The first and most important conclusion
is that almost all the semantic variants discussed here are indeed different on the level of
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general properties they induce; before our study, it was by no means obvious. Moreover,
our results show a very strong pattern: perfect information is a special case of imperfect
information, perfect recall games are special case of memoryless games, and properties of
objective and subjective abilities of agents are incomparable.

The relationships seem very natural, but they were surprisingly nontrivial to prove. This is
best witnessed by Sect. 4 which comprises a third part of the paper only to construct appropri-
ate tree-like unfoldings, and prove their equivalence to the original models. While embedding
of perfect information in imperfect information is straightforward, the same cannot be said
about embedding perfect recall in memoryless semantics—except when we disallow nested
modalities. Consider e.g. the truth of formula ((a))0((a, b)) Op in a pointed iICGS (9, q). Let
s, be a’s strategy that enforces ((a, b)) Op to be always the case (suppose that such a strategy
exists). After a history &, agent a has different information when executing s, (because the
agent has collected observations along A from the root until now) than when we evaluate
{(a, b)) Op in the last state of & (here, the collecting of observations starts anew). In conse-
quence, the “straightforward” unfolding of (9, ¢) endows agents with too much information
when nested strategic formulas are evaluated, and the correctness of the construction is not
automatic. For objective abilities, we prove that the standard unfolding still works because
path formulae of ATL* (that can be seen as “winning conditions” in the corresponding game)
do not discern between the two epistemic positions. For subjective abilities, the unfolding
does not work, but it can be recovered by a technical construction with “hanging” subtrees
added to the basic tree. This construction is among the main contributions of this paper.

Technical subtleties aside, the most interesting contribution lies possibly in our non-
inclusion results. First, they show that the language of ATL is sufficiently expressive to
distinguish between the main notions of ability. Moreover, non-inclusion is demonstrated
on formulae encoding intuitive and well known properties, like fixpoint characterizations of
strategic/temporal modalities and the duality between necessary and obtainable outcomes.
It is important to see in which semantics the formulae hold, and in which they do not hold.
Finally, although the proofs of non-inclusion are very comprehensive (since they are based
on counterexamples), finding the counterexamples required expertise and was not straight-
forward either.

Another interesting outcome of the study is that the type of information has strictly more
impact on validities than the type of recall in the language of ATL but not in ATL*. In
particular the validity sets of ATLj, and ATL, are incomparable. This suggests that ATL*
allows to specify significantly subtler properties of strategic play than the more restricted
language of ATL.
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under projects S-GAMES—C08/1S/03 and GALOT—INTER/DFG/12/06.

7 Appendix: Proofs
7.1 Proofs of Sect. 4.2
The following Lemma is obvious by the definition of i,R-tree unfoldings. It states that that

nodes group indistinguishable in the tree unfolding are also group indistinguishable in the
model if interpreted as histories.
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Lemma 1 Let M be an iCGS, h| and hy two nodes in its i,R-tree unfolding, and A € Agt
a group of agents. If h; Ng”(sm’q) hy then hy =5 hy.

Moreover, we have that all histories indistinguishable in the model are also indistinguish-
able in the tree if only states reachable from the current state are considered.

Lemma 2 Let 9 be an iCGS, A C Agt and h a node in T,(ON, q). Then, for all hy, hy €
Agn(last(h)) we have that

if by AT ho then h(hi[1, 00]) ~ 0 h(ha[1, o0)).
Theorem 2 For every iCGS M, state q in M, and ATL*-formula ¢ we have:

M, q Eipp 9 TN, q). q = 9 TN, q). q =, ¢

Proof We show that, for every node 4 in T,(9, ¢), it holds that 90, last(h) =i,r ¢ iff
T,(M, q), h |=i,r ¢. Then, the claim follows by Propositions 4 and 5 and for i = g. The
proof is done by induction on the structure of ¢.

Base cases:

Propositional case: Straightforward.
Case: ¢ = ((A))y where y contains no nested strategic modalities.
“=": Suppose that 9, last (h) =,  (A)y. So, there is an i,R-strategy 54 such that

(x) YA € outgn(last(h), sa) : M, A =, V-

We construct the memoryless strategy s’ in T, (901, ¢) as follows: s, (hh') = sq(last (h)R)
T‘()

for every a € A and / such that i ~ A M9} For all other histories h” (which do not
have the form ih') we define s/ (h") arbitrarily but in a uniform way. It is easy to see
that s’; is uniform: For two histories /1| = W' and hy = h"h" with i’ ~£”(m’q) h and
W'~ D jand by ~L YD by we have s (h1) = 5, (ho); for, by~ PN hy
implies /| %%m hy (by Lemma 1) and thus s (last (h)h') = sa(last (h)h").

By construction of s/, we have that

last(h)q1q2 - - - € outon(last (h), sa) iff (h)(hq1)(hq1q2) - - - € outr,om,q)(h, sy).

Since the valuation of propositions does only depend on the final state of a history and
by (x) we have T,(M, ), h |=i,r (A)y.
«: Suppose we have T,(9M, q), h |=, . {A))y. So there is an i,r-strategy s4 such that

(*x) VX € OutTO(gm,q)(h, sa) T, q), X =ir V-

We construct a witnessing i,R-strategy s/, in 9t as follows: s, (h) = s,(hh') for every
a € Aand h such that last ()h' ~2% h and last (WK’ € ALY (last(h)). We define s
arbitrarily for all other histories with the condition to assign the same actions to indis-
tinguishable histories in 9. The definition of s/, does only take into account the subtree
starting at s. Then, by Lemma 2 we have that strategy s/, is uniform by construction.
Note, that it may differ from s4 but only for histories which are not realizable given that
the initial state is last(h).

By construction of s;‘, we also have

(h)(hq1)(hq1q2) - - - € outr,om,q)(h, sa) iff last (h)q1q2 - - - € outsn(last (h), s'y).

Since the valuation of propositions does only depend on the final state of a history and
by (x) we have 9, last(h) =i,r (A)y.
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Fig. 15 General setting of the m
proof of Proposition 7 m

Induction step:

Case: ¢ = Y1 A Y. Straightforward.

Case: ¢ = —¢. M, last(h) &, — iff not M, last(h) =, , ¥ iff (by induction
hypothesis) not 7,(9M, q), h =, ¥ iff T,(M, q), h =, —V.

Case: ¢ = ((A))y. By induction hypothesis we have for each history 4 in 7,,(9, ¢) and
each strict state-subformula ¢’ of y that 9, last(h) =i,z ¢ iff T,(M, q), h =i, ¢
For any maximal strict subformula ¢’ of ¢ we label all states k in T, (901, ¢) and states
last (h) in 9 with a new proposition p, iff ¢’ holds in this very state. Then, we replace
each ¢’ in ¢ with proposition p,. This yields a formula without nested modalities and
the claim follows by induction. O

7.2 Proofs of Sect. 4.3

In this section we give all details needed to prove Theorem 3. The structure of the proof is
shown in Fig. 9.

The following lemma is essential to show that truth in i;R-pando-like models is insensitive
to the type of available strategies (memoryless vs. perfect recall). The lemma is needed to
show that a uniform perfect recall strategy in the pando-like model gives rise to a uniform
memoryless strategy. Therefore, we have to show that two states which are indistinguishable
in the model give rise to indistinguishable histories.

Lemma 3 Let 9 be an igR-pando like iCGS and q, q1, 41, g2, G2 € St where q; is reachable
from i, i.e. p(Gi, qi) # €, fori = 1,2. Moreover, let ¢ NEﬁ g ~2 g for some b,c € A
and q| NZR q2. Then, we have that p(q1, q1) %:}m 0(q2, q2).

Proof The setting is illustrated in Fig. 15. In the following we consider all possibilities how
g, 41, 42, q1, and g2 can be located. We recall that poy, (¢') = ¢’ means that ¢’ is the root
node of model M. We assume that k, [, m € I where [ is the index set from Definition 16.

Case 1: g1 ~,q2. Letgq) € My and g, € My, k # L.
Case 1.1: pan, (1) = ¢q1. Thatis, g is the root node of Mix. We have g1 = g ~2ﬁ q.

Then, by Definition 16.5 |p(g2)| = |p(q2)| which implies g» = ¢». Hence, we have

pom, (41, q1) = q1 ¢ pam, (G2, q2) = 2 and are done.
Case 1.2 poy, (92) = g>. Analogously to Case 1.1.

Case 1.3 poy, (ql)é;mpgml (g2) and both g1 and ¢; are not root nodes.
Case 1.3.1 c}l&zﬁq. Let g € St,, withm # k.
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Case 1.3.1.1 pon, (¢1) = G1. Then, c}ﬁvan’ where g’ € St; is the root node
of 9. But then, by Definition 16.5 we have |p(q¢’)| = |p(g2)| and thus
po, (G2) = §o. This proves that pax, (1, q1) =2 pon, (G2, G2)-
Case 1.3.1.2 poy,, (9) = q. Again, by Definition 16.5 following the same
reasoning as in Case 1.3.1.1 we obtain pon,(G2) = §2. Showing that
P (G1. 1) =) powy (G2 G2)-
Case 1.3.1.3 pop, (ql)é?f‘pmm (¢) and neither g; nor ¢ are root nodes.
Then, we either have that [ = m and pgy, (z}z)%;m,ogml (g) which implies
that pox, (éhql)’%?lnpgml (g2, q2). Or, I # m and we have to distinguish
again two cases. If ¢; is the root node; then, it is connected with the root
q' € Sty of My by ~T. We have ¢/ ~T* g ~M ¢ ~2ﬁ g1 and by
Definition 16.5 it must be the case that |p(q’)| = |p(g1)|. Contradiction.
Hence, we can safely assume that g, is not a root. Then, poy, (512)%231
oo, (q) %Zﬁ oo, (¢1). So, all these states are on the same height level
which implies that pon, (G1, g1) 3¢ pan, (G2, q2)-

Case 1.3.2 qz&gj‘q. Analogously to Case 1.3.1.

Case 1.3.3 g NE,m" q or g NZR’ q. In each of these cases it means that either

q & Sty orq ¢ St; ask # 1. Case 1.3.1 or Case 1.3.2 applies.

Case 2: g1 ~§,m" q>. Then, by definition k = I and pgn, (q1) %Zn oo, (q2).

Case 2.1: g € Stx. We have | pan, (§1)] = |pon, (@) = |pon, (G2)| which follows from
My My A~ . ~ oM ~
» 4 ~c g2 hence also, pon, (41, 1)~ pon, (G2, q2)-
Case 2.2: g € St,,, m # k. Then, we have c}ﬁ«znq@?nc}z. Again we have to
distinguish the different cases how ¢ is connected to ¢; and g, respectively.

Case 2.1.1 pgn,, (¢) = g. That is, we assume that g is a root node. By Defini-

tion 16.5 we have [p(§1)| = |p(42)| and p(G1, g1) 2 p(G2, q2) follows.

A oMM NS¢
Case 2.1.2 pon,, (q) #q. We have pan, (G1)~, pon, (q) and pon, (G2)~." pom, (q)
which implies | pon, (§1)] = |pom,, (¢)| =1|pom, (42)| and hence pon, (G1, 1) ~7°
oo (G2, q2). O

the assumption g; ~

The next lemma analyses the structure of two indistinguishable nodes from subsequent
tree levels.

Lemmad Let 9 be aniCGS, q a state init, h| € Agn(q), hy € Agtl (q), and hy NZ‘ o)
hy for some i € Ng. Then, we have that lastr(hy) Ngn rel(h»>).

Proof By definition, we have that ref (h2) ~¢' ™ hy and lastr(ref (h2)) ~2 rel(hy).
Because ref (h) € Ay, (q) we also have rel(hy) %?,ﬁ rel(ref (h2)), and hence lastr(hy) NZR
lastr(ref (hy)). The claim follows because lastr(ref (h2)) ~2ﬁ rel(h;) and by the transitivity
of NZJ?. m]

The next lemma states that nodes which are indistinguishable for a group of agents must
be located on subsequent or the same level of the pando unfolding; moreover, it characterizes
the structure of these nodes.

Lemma 5 Let M be an iCGS, q a state in it, and A C Agt be a group of agents. Then, for

all h € Sty om ¢ there is an i € No such that for all b’ € Stt, o ¢) with h('v/];S(m’Q))*h’ we
have that h, h' € Agn(q) U Aim+l(q),' moreover, if k' € A'&l(q) h(’vgsmt’q))*h’ and there

isan h" € Ay (q) with h(~" "DV h" then rel(h') € Ston and jump(h') € A.
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Proof We write T for T;(9, ¢) and Al for A"gﬁ(q) and so on. We proceed by induction on
the length of the epistemic path A’ = hy ~g, - -+ ~q. ., hi41. We show the following: (i) if
hje Al forall j =1,...,1then iy € AT~V U AT U AP if this is not the case then (ii)
if hj e A'UA™ forall j =1,...,1 then h;4; € A" U A’ and foreach h; € AT we
have that rel(h ;) € St, jump(h;) € A, and ref (h;) € A.

Base case The case for h ~, h’ is clear by definition.

Induction step Suppose we have i’ = hy ~4 --- ~, h satisfying the assumption and
assume that h; ~g,,, h;y1. Firstly, assume that case (i) applies; that is, that all & ; € Al for
j =1,...,1. By definition h;;; € A'"' U A" U AIT!. Moreover, if h;11 € A then it
must have the required form h”aq’ by Definition 17(c).

We consider case (ii). Firstly, suppose that i; € AFland by = h'a;q’. We consider
hi ~ay,, his1. By definition a4 € A'UATTUAT2 If by € Al italso has the required
form. For the sake of contradiction, suppose that /1 € A2, Then, hyy| = h"a;419" for
some h” € At with b ~ar.; hi. In this case, h” does also have the form A" = h""a;q"”
and therewith ;1 = h"'4;q""a;,1q" contradicting h; 1 € A2 by definition of the sets
A,

Secondly, if h; € A we have that k1 € Ai"'AT U AT and that 47| has the required
form if h;, | € A™T! following the very same reasoning as in case (i). Moreover, it cannot be
the case that hj41 € A1 To see this, we observe that there is some h,withl <u <Il+1,
hy € A1 and h1+1(~£3)*hu. Now the reasoning of the previous case can be applied to
obtain a contradiction. m}

The next lemma states that the relevant parts (i.e. histories) of two states of the pando
unfolding are group indistinguishable in the model if the states are group indistinguishable
in the pando unfolding and are located within the same tree (i.e. share the same root node).

Lemma 6 Lethl(wg‘)*hz. Ifthereisani € Nowithhy, hy € Al then rel(hl)(wgﬁ)*rel(hz).

Proof The poof is done by induction on the number of epistemic steps between /1 and h;.
More precisely, we show that for all 2’ with & (NZX)*h’ we have that

(i) rel(h) (R rel(h) if ' € Al
(ii) ref(h’)('vﬁ" )*h1 and lam(h1)(~gﬁ)flaszr(ref(h’)) ifh e AL,
(iii) and rel(hy)(~F")*lastr(h') if ' € A1 (and i > 0).

The base cases are clear by definition. We assume that /1 (~£s)*h’, i > 0 and we show that
hy with h1(~§")*h/ ~£" hy for a € A satisfies the property of the lemma.

Case: h' € A’ and hy € Al. By definition rel(h') & rel(hy) and by induction
rel(hy) (=) *rel(h'); hence, rel(hy)(~%)*rel (hy).

Case: /' € Al and hy € A'*!. By induction, rel(hl)(%iﬂ)*rel(h’) and in particu-
lar, lastr(hy) ~% lastr(h’). By Lemma 4 lastr(h’) ~P rel(hy). This shows that,
lastr(hy)(~5Y)*rel(hy) ~2 lastr(ref (h2)).

Case: h’ € A’ and hy € A'~!. By definition /i, N/{S ref (h') and rel(h') ~% lastr(hy);
hence, rel(h’) € Ston. Thus, by induction rel(hl)(~%ﬁ)*rel(h’) and by Lemma 4
rel(h') ~2 lastr(hy). This shows that rel(hy)(~%")*lastr(h2).

Case: h' € A"~ and hy € A'~!. Follows immediately.

Case:h’ € A'"landhy € A'. Wehaverel(hy)(~%")*lastr(h'). By Lemma4 rel(h) ~2
lastr(h’) and hence rel(hl)('v%n)*rel(hz). The claim follows as rel(hy), rel(hy) € Stox.

Cases where i’ € A/ and hy € A* with |j — k| > 1 are not possible due to Lemma 5. O
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Lemma 7 Forall g in M andalli, j € Ng withi # j we have that A"m(q) N Aéﬁ(q) =0
Lemma 8 Let M be an iCGS, g a state in it, and a € Agt. Every relation NQTX(m’q) is an
equivalence relation.

Proof We write T for T (9, ¢). Reflexivity and symmetry of epistemic relations in T are
clear from the definition of i;R-pando unfoldings, but we need to prove transitivity. Suppose
that A NZS ho and hy NZS h3. We have to show that & NZ‘ h3. The proof is done by
induction on the level A’. The base case for A is clear from the transitivity of the standard
indistinguishability relation %gn By Lemma 5 (and the symmetry of ~7) it is sufficient to
consider the following cases (we assume that i > 0):

hi, hy, h3 € Al: Follows by the transitivity of ~2* (induction hypothesis).

hi,hy € Al hy € A From hy ~4 hy it follows that rel(hy) ~ rel(hs); and
from h; NZS hj3 that ref (h3) NZ‘ ho and lastr(ref (h3)) NZR rel(h3). Furthermore,
because ref (h3) € A’ we can deduce from the transitivity of NZ" (and by induction) that
ref (h3) ~I* h\ and hence h3 ~I* h| by definition.

hy € Al ha, hy € Ait!: We have that ref (ha) ~L hy and lastr(ref (h2)) ~E rel(h2)
and jump(hy) = a. Then, we also have that rel(h,) 25" rel(h3) and jump(h3) =
jump(hy) = a and ref (hy) NZS ref (h3) proving that also i NGTS h3 by induction.
hi,h3 € Al hy € AP+!: We have that ref (ha) ~L hy and lastr(ref (h2)) ~E rel(h»)
and jump(hs) = a and ref (h) ~% h3 and thus h ~2* h3 (by induction).

hi,h3 € A hy € Al: We have that ref (h1) ~2 hy and lastr(ref (h1)) ~E rel(hy)
and jump(h1) = a and ref (h3) ~2° ho lastr(ref (h3)) ~% rel(hs) and jump(h3) = a.
But then by induction ref (h1) ~5S ref (h3) and rel(hy) ~2” rel(h3) which shows that
h ’\',7;"' hs. [m}

Proposition 8 The isR-pando unfolding of a pointed iCGS is isR-pando-like.

Proof Let M be an iCGS and Ty its i;R-pando unfolding. For each h € St’ with |rel(h)| = 1
we define St;, as the set of states/histories in St’ reachable from 4, i.e. St;, = {h' € St |
pr, (h, h') # €}. Let My, denote the submodel of 7y which does only consist of states Sty
and in which the domain of all elements is restricted to St;,. Moreover, we take I = {h € St |
[rel(h)| = 1}.

Claim: We have that St = [4),.; Stj, and each 901, is i, R-tree-like.

Proof of claim: Clearly, all sets St;, are mutually disjoint and each & € St has to occur in
some Sty,. It is also obvious that each 9t has tree-structure. Now suppose &1, hy € St;, with
hi ~5" hy; then, by definition also 7 %Zﬁ ho.

We proceed with the main proof and define <, as the subset of NZS which exists between
sets St;, and St;, with h # h’. From Lemma 8 it follows that ~§" is transitive and that ~, is
symmetric. Moreover, by definition ~, N (S, x Sty,) = @ for all h € St'.

The fourth condition of Definition 16 is obvious from the definition of the isR-pando
unfolding. It remains to show the fifth condition of Definition 16. Suppose i1, i € Sty and
hi(~pg)*h}. Then,also by, b € A; for some i. From Lemma 6 we obtain that rel(h 1)(%‘%{;

)*rel (h’l), i.e. that both nodes reside on the same level. ]

The following two lemmata are needed to prove Theorem 3. The first lemma states that the
set of epistemic alternatives to any state is the same in the model and in the pando unfolding.
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Lemma 9 Let 9 be an iCGS and qq a state in it. Then, the following property holds: For
all A C Agt and all nodes h in T; (9N, qo) we have that {q | lastr(h) N? q, q € Stop} =

{lastr(h) | W’ Ni"(m’%) h, h' € Str,m,q0}-

Proof “C”: Suppose h = h'q’ € Aign(qo) and ¢’ ~3' g and i’ # e (the case for ' = €
is clear). Then, there is some a € A with ¢’ ~> g and thus h” := haq € A;;l(qo) C
Str, o g) With A ~2* 1 by definition of the AJ,’s. By Definition 17 also #” ~% 40 .
The claim follows as lastr(h") = q.

“2>7: Suppose &'~ T pand i’ € Sty o 4. The claim is clear if h, ' € AL (o).
According to Definition 17 the remaining case is when & € Agn(q) and ' € Aggl (g), or the
roles of h and &’ switched. Then, h’ = hégq, h ~L b for some a € Agt and lastr(h) ~M g
The claim follows as lastr(h’) = g and lastr(h) N%ﬁ q. ]

The next lemma is needed to show that the witnessing strategy which we shall construct
in the invariance Theorem 3 is uniform.

Lemma 10 Let M be an iCGS, q a state in it, Ty = T;(ON, q), h, fll, fzz e Str,, A C Agt,
and a € Agt. If by ~% h ~% ho and hy = ikl ~, hahl = ho with hT 1§ e Afi;
then, (rel(hy) =2 rel(ha), p(hy, hy) ~2 p(ha, ha) and |hf| = |hY)), or hf = h} = e.

Proof Suppose ﬁ1 ~ZS h NZ‘ fzz with b, ¢ € A. From Lemma 3 we obtain p(ﬁ1 ,hy) %Zn
p(hy, hy) by taking §; = h; and ¢; = h; and g = h fori = 1, 2.

To prove the lemma, we firstly assume that iy, hy € Al for some i € Ny. Then, by
definition rel(h1) »“\:Zﬁ rel(hy) and the claim follows.

Secondly, suppose w.l.o.g. iy € Al and hy € A'*! for some i € Ny. In this case
rel(hy) € St and thus h = € and p(ha, ha) = rel(ha) ~2 p(hy, hy). The latter implies
that|,o(f11,h1)| = landhencehf:e. ]

Theorem 3 For every iCGS 0, state q in M, and ATL*-formula ¢, it holds that
M, q = @it Ts(M, q), q E,p 9T TN, q), q =, ¢

Proof We show that for every node & in T := T (90, ¢) it holds that 9, lastr(h) =g ¢ iff
Ty (M, q), h |=i,r ¢. Then, the claim follows from Propositions 7 and 8 for 7 = g. The proof
is done by induction on the structure of ¢ and is similar to the proof given for Theorem 2.
Base cases:

Propositional case: Straightforward.
Case: ¢ = ((A))y where y contains no nested strategic modalities.
“=": Suppose we have M, lastr(h) =, ; (A)y and let s4 be an i R-strategy with

(*) VA € outgsﬁ(lastr(h), SA) i A E R V-

We construct the ir-strategy s’y in T (9, ) as follows: for allh € Str, with h ~§" h and
all hF e ALY (lastr(h)) we set

si(h(hF[1, 00))) := 54 (hT).

We note that we have to exclude the first state in h* because it is already contained in
h. For all other histories 2" (which do not have the prescribed form) we define s/, (h”)
arbitrarily but in a uniform way. The setting is illustrated in Fig. 16.
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Fig. 16 Setting of the proof of
Theorem 3

Clearly, we have that each fz(hF [1, 00]) is a valid state in 7y and by Lemma 10, s, is
well-defined: Suppose, there are h = lehf: and hy, = ﬁzhg with 1 = h,. Then, also
h1 ~& hy and by Lemma 10 ¥ = hf which shows that s/, (71) = s, (h2).

In the following we show that s/, is uniform. Let hj and h be two histories with /1 ~§' hy.

1. Assume that both nodes have the form from above, i.e. ] = lehf, h) = lehf and

h NZ;“' h Ng" hj. Then, uniformity follows from Lemma 10.
2. Choices for two histories 41 and &, where at least one does not have the required

form can be defined in a uniform way by definition because ~£
relation.

is an equivalence

Finally, we show that the sets of outcome paths are isomorphic wrt. both strategies. By
Lemma 9 we have that for all states go in 91 the following holds go Niﬁ lastr(h) iff there

is a history A’ with A’ ~§S h and lastr(h') = qo. We denote one of these histories 7’ by
h(qo). Then, by construction of s, we have that
Q09192+ € outgy (last (h), s5)
iff (W )(h'q)(W q1q2)--- € Om;'s(gm,q)(h, i)
for some b’ = h(qq).

Since the valuation of propositions does only depend on the final state of a history and
by (x) we have Ty (I, q), h = (A)y.

<«=: For the other direction, suppose we have T3 (9, ¢), h =
ir-strategy s4 such that

() V. € outff gn (1, 54) = T(M, @), 1 =i v

{A)y. So, there is an

isr

We construct a witnessing iR-strategy s;\ in 971 as follows: s/, (hf) = s, (ﬁ&hF ) for every
acAh ~£" h for k' e AT (¢") with ¢’ Niﬁ lastr(h) and arbitrary but in a uniform
way for all other histories. It is easy to verify that each strategy s, is uniform and well-
defined. Moreover, s;, yields an equivalent (apart from the notational differences) set of
outcome paths as above. We have 90, lastr(h) =i r (A)y.

Induction step:

Case: ¢ = Y1 A V. Straightforward.
Case: ¢ = —y. M, lastr(h) |, — iff not M, lastr(h) =, , ¥ iff (by induction
hypothesis) not Ty (9, ¢), b =, ¥ iff TsOR, q), h |=,, —r.
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Case: ¢ = ((A))y. By induction hypothesis we have for each history & in Ty (91, ¢) and
each strict state-subformula ¢’ of y that M, lastr(h) E;r ¢ iff T,(N, q), h Eir ¢
For any maximal strict state-subformula ¢’ we label all states 4 in Ty (901, ¢) and states
lastr(h) in 9 with a new proposition p, iff ¢’ holds in this very state. Then, we replace
each ¢’ in ¢ with proposition p, and the claim follows by induction. O
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