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Abstract. In this paper, we consider the design of normative multiagent systems
composed of both constitutive and regulative norms. We analyze the properties
of constitutive norms, in particular their lack of reflexivity, and the trade-off be-
tween constitutive and regulative norms in the design of normative systems. As
methodology we use the metaphor of describing social entities as agents and of
attributing them mental attitudes. In this agent metaphor, regulative norms ex-
pressing obligations and permissions are modelled as goals of social entities, and
constitutive norms expressing “counts-as” relations are their beliefs.

1 Introduction

Legal systems are often modelled using regulative norms, like obligations, prohibitions,
and permissions [1]. However, a large part of the legal code does not contain obligations,
prohibitions and permissions, but definitions for classifying the commonsense world
under legal categories, like contract, money, property, marriage. Regulative norms can
refer to this legal classification of reality.

Consider the consequences for the design of legal systems. For example, in [2]
we address the issue of designing obligations to achieve the objectives of the legal
system. However, the problem has not been studied of how to design legal systems
composed of both constitutive and regulative norms. For modelling constitutive norms,
specialized formalisms for counts-as conditionals have been introduced [3-5], but it
remains unclear how to relate them to regulative norms. In contrast, as Artais|3]
argue, for constitutive norms to be norms it is necessary that “their conditional nature
exhibits some basic properties enjoyed by the usual normative links”. Thus constitutive
and regulative norms should be more strictly related.

Obligations, prohibitions and permissions have a conditional nature. Their condi-
tions could directly refer to entities and facts of the commonsense world, but they can
rather refer to a legal and more abstract classification of the world, making them more
independent from the commonsense view. E.g., they refer to money instead of paper
sheets, to properties instead of houses and fields. This more natural and economical
way to model the relation between commonsense reality and legal reality uses “count-
as” conditionals, and allows regulative norms to refer to the legal classification of re-
ality. In this way, e.g., it is not necessary that each regulative norm refers to all the
conditions involved in the classification of paper as money or of houses and fields as
properties. Moreover, it is not necessary that regulative norms manage the exceptions in



the classification, e.g., that a fake bill is not money or that some field is not considered
as a property. Finally, by referring to the legal classification of reality only, regulative
norms are not sensitive anymore to changes in the classification: a new bill can be in-
troduced without changing the regulative norms concerning money, or a new form of
property or a new kind of marriage can be introduced without changing the relevant
norms.

However, the trade-off and equivalences between systems made purely of regulative
norms and those including also constitutive norms cannot be easily captured by special-
ized formalisms. They either consider only regulative norms, such as deontic logic, or
only constitutive norms, such as logics of counts-as conditionals, or, finally, with for-
malisms using very different formalizations for modelling the two kinds of norms. This
is a problem for the design of normative systems.

In [6], to model social reality, we have introduced constitutive norms in our norma-
tive multiagent systems. In this paper we use normative multiagent systems to model
the design of legal systems. In particular, the research questions of this paper are: What
properties have constitutive norms? In [6] we use rules satisfying the identity property,
thus making the “counts-as” relation reflexive. This is a undesired property if constitu-
tive norms provide a classification of reality in term of legal categories. In this paper
we remedy this by modelling “counts-as” as input/output conditionals. This is an alter-
native solution with respect to the one proposed by Arosil. [3]. Secondly, how can
regulative and constitutive norms be traded-off against each other in the design of legal
systems? If we replace constitutive norms in a legal system with regulative ones, then
we lose the abstraction provided by legal classification.

The main advantage of our approach in comparison with other accounts, is that we
combine constitutive and regulative norms in a single conceptual model. As method-
ology we use our model of normative multiagent systems introduced in Al and agent
theory to model social reality and agent organizations [7, 8]. The basic assumptions of
our model are that beliefs, goals and desires of an agent are represented by conditional
rules, and that, when an agent takes a decision, it recursively models [9] the other agents
interfering with it in order to predict their reaction to its decision as in a game. Most
importantly, the normative system itself can be conceptualized as an agent with whom it
is possible to play games to understand what will be its reaction to the agent’s decision:
to consider its behavior as a violation and to sanction it. In the model presented in [6],
regulative norms are represented by the goals of the normative system and constitutive
norms as its beliefs. In this paper we discuss the properties of counts-as relations re-
lating them to the properties of beliefs and how trade-off problem between constitutive
and regulative norms can be handled by as the trade-off between beliefs and goals of
the normative system. The cognitive motivations of the agent metaphor underlying our
framework are discussed in [10].

The paper is organized as follows. In Section 2 we describe the agent metaphor. In
Section 3 we introduce a logic which does not satisfy identity. In Section 4 we discuss
the relation between constitutive and regulative norms. In Section 5 we introduce a
formal model where we discuss the properties of constitutive norms and in Section 6
the trade-off with regulative ones. Comparison with related work and conclusion end
the paper.



2 Attributing mental attitudes

We start with a well known definition:Normative systemare sets of agents (human

or artificial) whose interactions can fruitfully be regarded as norm-governed; the norms
prescribe how the agents ideally should and should not behave [...]. Importantly, the
norms allow for the possibility that actual behaviour may at times deviate from the
ideal, i.e. that violations of obligations, or of agents rights, may occur” [1].

This definition of Carmo and Jones does not seem to require that the normative
system is autonomous, or that its behavior is driven by beliefs and desires.

In [6] we use the agent metaphor which attributes mental attitudes to normative
systems in order to explain normative reasoning in autonomous agents. The normative
system is considered as an agent with whom the bearer of the norms plays a game.
Henceforth, we can call it the normative agent.

Our motivation for using the agent metaphor is inspired by the interpretation of nor-
mative multiagentsystems as dynamic social orders. According to Castelfranchi [11],

a social order is a pattern of interactions among interfering agents “such that it allows
the satisfaction of the interests of some agent”. These interests can be a delegated goal,
a value that is good for everybody or for most of the members; for example, the interest
may be to avoid accidents. We say that agents attribute the mental attitude ‘goal’ to the
normative system, because all or some of the agents have socially delegated goals to the
normative system; these goals are the content of the obligations regulating it.

Moreover, social order requirecial contro] “an incessant local (micro) activity
of its units” [11], aimed at restoring the regularities prescribed by norms. Thus, the
agents attribute to the normative system, besides goals, also the ability to autonomously
enforce the conformity of the agents to the norms, because a dynamic social order re-
quires a continuous activity for ensuring that the normative system’s goals are achieved.
To achieve the normative goal the normative system forms the subgoals to consider as
a violation the behavior not conform to it and to sanction violations. Norms, however,
do not aim only at regulating behavior.

Searle argues that there are two types of norms: “Some rules regulate antecedently
existing forms of behaviour. For example, the rules of polite table behaviour regulate
eating, but eating exists independently of these rules. Some rules, on the other hand,
do not merely regulate an antecedently existing activity called playing chess; they, as
it were, create the possibility of or define that activity. The activity of playing chess is
constituted by action in accordance with these rules. Chess has no existence apart from
these rules. The institutions of marriage, money, and promising are like the institutions
of baseball and chess in that they are systems of such constitutive rules or conventions”
([22], p. 131).

According to Searle, institutional facts like marriage, money and private property
emerge from an independent ontology of “brute” natural facts through constitutive
norms of the form “such and such an X counts as Y in context C” where X is any
object satisfying certain conditions and Y is a label that qualifies X as being something
of an entirely new sort. Examples of constitutive norms are “X counts as a presiding
official in a wedding ceremony”, “this bit of paper counts as a five euro bill” and “this
piece of land counts as somebody'’s private property”.



In our model, we define constitutive norms in terms of the normative system’s belief
rules and the institutional facts as the consequences of these beliefs rules.

The propositions describing the world are distinguished in two categories: first, what
Searle calls “brute facts”: natural facts and events produced by the actions of the agents.
Second, “institutional facts™: a legal classification of brute facts; they belong only to
the beliefs of the normative system and have no direct counterpart in the world. Belief
rules connect beliefs representing the state of the world to other beliefs which are their
consequences. They have a conditional character and are represented in the same rule
based formalism as goals and desires. In the case of the normative system the belief
rules have as consequences not other beliefs about brute facts in the world (e.g., “if a
glass drops, it breaks”), but new legal, institutional facts whose existence is related only
to the normative system. These belief rules, moreover, can connect also institutional
facts to other institutional facts.

This type of belief rules expresses ttaunts-agelations which are at the basis of
constitutive norms. It is important that belief rules have a conditional character, since
they must reflect the conditional nature of the counts-as relation as proposed by Searle:
“such and such an X counts as Y in context C".

A fact p counts as an institutional fagt in contextC' for normative systerm
counts-asn(p, q | C), iff agentn believes thap A C hasg as a consequence.

The agent metaphor attributing mental attitudes to normative systems allows to un-
derstand how humans can conceive social reality by resorting to a better known domain.
In [10], we discuss the cognitive basis of our model. In this way we are able to ground
the ontology of social reality into a domain which can be modelled with the existing
formal instruments. Most approaches, in contrast see social entities as black boxes, of
which they describe the properties from an external point of view. In our model, instead,
we explain the properties of normative systems as stemming from its conceptualization
as an agent.

Mental attitudes of agents, however, have usually a private character: it is not pos-
sible to know which are the real goals and beliefs of an agent apart from inferring them
from its behavior. In contrast, norms have a public character, otherwise it would not be
possible to achieve a social order. When we map norms into beliefs and goals of the
normative agent, we do not mean that they get a private character. The normative agent
is only a socially constructed agent which exists only due to the collective acceptance
by all the agents of the normative multiagent system.

Another advantage of considering normative systems as agents is that agents can
play games with the normative system to understand whether they will be sanctioned.

The attribution of mental entities to normative systems is a methodology which
can be grounded in different formal models, among which modal logic [13]. However,
mental attitudes, as well as norms, are traditionally considered as conditional attitudes,
thus we resort to a specialized logic which has been developed for this purpose: the
Input/output logic.

We extend this approach advocated in [6] in two ways. First we give a logical anal-
ysis of counts-as, and we argue that it requires an identity free logic. Second we discuss
the trade-off between the two kinds of norms.



3 Input/output logic

A disadvantage of the approach in [6] is that given the reflexivity of counts-as we have
that “A counts as A”, which is in contrast with our intuition and with other approaches
(but see Section 7 for a discussion). In particular, since the counts-as relation classifies
brute facts in legal categories, a brute fact A cannot be also a legal category: they are
ontologically heterogeneous concepts, thus we keep them separate for the purpose of
legal classification. We therefore want to use an identity free logic, for which we take
a simplified version of the input/output logics introduced in [14, 15]. In this section we
explain how it works. A rule set is a set of ordered pdirs— ¢, whereP is a set of
propositional variables angla propositional variable. For each such pair, the b&dy
is thought of as an input, representing some condition or situation, and theshead
thought of as an output, representing what the rule tells us to be believed, desirable,
obligatory or whatever in that situation. Makinson and van der Torre Wite) to
distinguish input/output rules from conditionals defined in other logics, to emphasize
the property that input/output logic does not necessarily obey the identity rule. In this
paper we do not follow this convention.

In this paper, to keep the formal exposition simple, input and output are respectively
a set of literals and a literal. In input/output logics, the input and output can be arbitrary
propositional formulas, not just sets of literals and literal as we do here and additional
rules for conjunction of outputs and for weakening outputs are added.

Definition 1 (Input/output logic).

Let X be a set of propositional variables, the set of literals built fraf writ-
ten asLit(X), is X U {-z | = € X}, and the set of rules built fronX, written as
Rul(X) = 21%(X) x Lit(X), is the set of pairs of a set of literals built froii and
a literal built from X, written as{l4,...,l,} — I. We also writel; A ... Al, — I
and whenn = 0 we write T — [. For z € X we write~z for -z and ~(—z) for z.
Moreover, let) be a set of pointers to rules adD : @ — Rul(X) is a total function
from the pointers to the set of rules built frakh

LetS = MD(Q) be a set of rule{P, — q1,...,P, — ¢}, and consider the
following proof rules strengthening of the input (SI), disjunction of the input (OR),
cumulative transitivity (CT) and Identity (Id) defined as follows:

p—r ST p/\q_’ﬁp/\ﬁq_’?"OR P_’Q»p/\q_’TCT

pPAGg—T p—oT p—r p—p

Id

The following output operators are defined as closure operators on the ssing

the rules above.
outy: Sl (simple-minded outpututs: SI+CT (simple-minded reusable output)

outy: SI+OR (basic output)  out,: SI+OR+CT (basic reusable output)

Moreover, the following four throughput operators are defined as closure operators
on the setS. out;": out;+Id (throughput) We writeout(Q) for any of these output
operations andout™(Q) for any of these throughput operations. We also wiite
out(Q, L) iff L — 1 € out(Q), andl € out™(Q, L) iff L — [ € out™(Q).

A technical reason to distinguish pointers from rules is to facilitate the description
of the priority ordering we introduce in the following definition.



Example 1.Given MD(Q) = {a — x,x — z} the output ofQ containsz A a — z
using the ruleSI. Using also the”'T rule, the output containg — z. a — a follows
only if there is theld rule.

The notorious contrary-to-duty paradoxes such as Chisholm’s and Forrester’s para-
dox have led to the use of constraints in input/output logics [15]. The strategy is to adapt
a technique that is well known in the logic of belief change - cut back the set of norms
to just below the threshold of making the current situation inconsistent.

In input/output logics under constraints, a set of mental attitudes and an input does
not have a set of propositions as output, but a set of set of propositions. We can infer
a set of propositions by for example taking the join (credulous) or meet (sceptical), or
something more complicated. Besides, we can adopt an output constraint (the output
has to be consistent) or an input/output constraint (the output has to be consistent with
the input). In this paper we only consider the input/output constraints. The following
definition is inspired by [16] where we extend constraints with priorities:

Definition 2 (Constraints).

Let >: 29 x 29 be a transitive and reflexive partial relation on the powerset of
the pointers to rules containing at least the subset relation. Moreovegudebe an
input/output logic. We define:

— mazfamily(Q, P) is the set of.-maximal subset§’ of @ such thabut(Q’, P)UP
is consistent.

— preffamily(Q, P, >) is the set of>-maximal elements gfreffamily(Q, P).

— outfamily(Q, P,>) is the output under the elements ofazfamily, i.e.,
{out(Q', P) | Q" € preffamily(Q, P, >)}.

— P — z € outy(Q,>) iff x € Uoutfamily(Q, P, >)
P — x € outn(Q,>) iff z € Noutfamily(Q, P, >)

In case of contrary to duty obligations, the input represents something which is
inalterably true, and an agent has to ask himself which rules (output) this input gives
rise to: even if the input should have not come true, an agent has to “make the best out
of the sad circumstances” [17].

Example 2.Let MD({a,b,c}) = {a = (T — m),b = (p — n),c = (0 — —-m)},
{b,c} > {a,b} > {a,c}, where byA > B we mean as usual > B andB # A.
mazfamily(Q,{o}) = {{a, b}, {b, c}},

preﬂamily(Q, {O}a 2) = {{bv C}}’

outfamily(Q, {0}, >) = {{-m}}

Themazfamily includes the sets of applicable compatible pointers to rules together
with all non applicable ones: e.g., the output{af ¢} in the context{o} is not con-
sistent. Finally{a} is not in mazfamily since it is not maximal, we can add the non
applicable rule). Thenpreffamily is the preferred sefh, ¢} according to the ordering
on set of rules above. The seittfamily is composed by the consequences of applying
the rules{b, ¢} which are applicable in (c): —m.

Due to space limitations we have to be brief on details with respect to input/output
logics, see [14, 15] for the semantics of input/output logics, further details on its proof
theory, its possible translation to modal logic, alternative constraints, and examples.



4 Constitutive norms vs regulative norms

Why are constitutive norms needed in a normative system? In [6], we argue that, first,
regulative norms are not categorical, but conditional: they specify all their applicability
conditions. In case of complex and rapidly evolving systems new situations arise which
should be considered in the conditions of the norms. Thus, new regulative norms must
be introduced or existing ones revised each time the applicability conditions must be
extended to include new cases. In order to avoid changing existing norms or adding new
ones, it would be more economic that regulative norms could factor out particular cases
and refer, instead, to more abstract concepts only. Hence, the normative system should
include some mechanism to introduce new institutional categories of abstract entities for
classifying possible states of affairs. Norms could refer to this institutional classification
of reality rather than to the commonsense classification: changes to the conditions of the
norms would be reduced to changes to the institutional classification of reality. Second,
the dynamics of the social order which the normative system aims to achieve is due to
the evolution of the normative system over time, which introduces new norms, abrogates
outdated ones, and, as just noticed, changes its institutional classification of reality. So
the normative system must specify how the normative system itself can be changed
by introducing new regulative norms and new institutional categories, and specify by
whom the changes can be done. This second aspect has been addressed in [7].

In this paper we discuss how constitutive norms, even if they can be replaced by
regulative norms, allow to create a level of abstraction to which regulative norms can
refer to, making to less sensitive to the changes in the legal system. The cons of intro-
ducing constitutive norms is that new rules are necessary, so that a trade-off must be
found between the need of abstraction and the complexity of the normative system.

As a running example, consider a society where the fact that a field has been fenced
by an agent counts as the fact that the field is property of that agent. In our model this
relation is expressed as a belief attributed to the normative system. The fence is a phys-
ical “brute” fact, while the fact that it is a property of someone is only an institutional
fact attributed to the beliefs of the normative system.

Assume now that the normative system has as goals that if a field is fenced, no one
enters it and that if a fenced field is entered, this action is considered as a violation
and the violation is sanctioned. These goals form an obligation not to trespass a fenced
field. However, the same legal system could have been designed in a different way
using the constitutive norm above: a fenced field counts as property. The constitutive
norm introduces the legal category of property which an obligation not to trespass a
property can refer to: it is obligatory not to trespass property. The two legal systems
are equivalent in the sense that in the same situation, the same violations hold; on the
other hand, they are different since the latter introduce a legal classification of reality;
thus, the obligation has as condition the institutional fact that the field is a property: the
field being a property is an institutional fact believed by the normative system, while
entering the field is a brute fact.

Analogously, in the purely regulative legal system, a permission to enter a fenced
field if it is close to a river could be added. This permission is an exception to the
obligation not to trespass fenced fields. In the second legal system, the same purpose
can be reached by adding a constitutive norm which states that a field close to the river,



albeit fenced, is not a property. Note that this is different from saying that a field on the
river is a property that can be trespassed, a fact which is expressed by a permission to
enter a property close to the river.

The possibility that institutional facts appear as conditions in the goals of the norma-
tive system or as goals themselves explains the following puzzling assertion of Searle
[18]: “constitutive rules constitute (and also regulate) an activity the existence of which
is logically dependent on the rules” (p.34). How can constitutive ridgalatean ac-
tivity, if this is the role played by regulative rules? E.g., Hindriks [19] argues that con-
stitutive rules consist of also regulative ones.

In our model constitutive norms regulate a social activity since they create insti-
tutional facts that are conditions or objects of regulative norms. In our metaphorical
mapping regulative norms are goals, and goals base their applicability in a certain situ-
ation on the beliefs of the agent: if the beliefs change, the goals which the agent pursues
change too. Analogously, the institutional facts which are the consequences of consti-
tutive rules determine what is obligatory, since the institutional facts determine which
regulative rules are applicable. In the previous example, being a property indirectly reg-
ulates the behavior of agents, since entering a field is a violation only if it is a property;
if a field is not a property, the goal of considering trespassing a violation does not apply.

Searle [18] interprets the creation institutional facts also in terms of what he calls
“status functions”: “the form of the assignment of the new status function can be rep-
resented by the formula ‘X counts as Y in C'. This formula gives us a powerful tool
for understanding the form of the creation of the institutional fact, because the form of
the collective intentionality is to impose that status and its function, specified by the Y
term, on some phenomenon named by the X term”, p.46.

Where “the ascription of function ascribéfse use to which we intentionally put
these objects”, p.20. Functions are usually defined in relation to goals. In our model,
this teleological aspect of the notion of function depends on the fact that institutional
facts make conditional goals relevant as they appear in the conditions of regulative
norms or as goals themselves. The aim of fencing a field is to prevent trespassing:
the obligation defines the function of property, since it is defined in terms of goals of
the normative system. Hence, Searle’s assertion that “the institutions [...] are systems
of such constitutive rules” is partial: institutions are systems where constitutive (i.e.,
beliefs) and regulative (i.e., goals) rules interacts. In our model, they interplay in the
same way as goals and beliefs do in agents.

From a knowledge representation point of view, constitutive norms behalatas
abstractionin programming languages: types are gathered in new abstract data types;
new procedures are defined on the abstract data types to manipulate them. So it is pos-
sible to change the implementation of the abstract data type without modifying the
programs using those procedures. In our case, we have that regulative norms can be
defined on abstract institutional facts: it is possible to change the constitutive norms
defining the institutional facts without modifying the regulative norms which refer to
those institutional facts. This analogy supports also our decision not to require identity
as a property of counts-as. Data abstraction allows to hide the details concerning the
implementation of the data type. Analogously, if the institutional facts are abstractions
of the reality, they should hide the details consisting in the brute facts.



5 The formal model

The definition of the agents is inspired by the rule based BOID architecture [20], though
in our theory, and in contrast to the BOID architecture, obligations are not taken as
primitive concepts. Beliefs, desires and goals are represented by conditional rules rather
then in a modal framework. We use in our model only goals rather than intentions since
we consider only on decision step instead of having plans for the future moves.

We assume that the base language contains boolean variables and logical connec-
tives. The variables are eith@ecision variablesf an agent, which represent the agent’s
actions and whose truth value is directly determined by itpamameterswhich de-
scribe both the state of the world aimgtitutional facts and whose truth value can only
be determined indirectly. Our terminology is borrowed from Lahgl. [21].

Given the same set of mental attitudes, agents reason and act differently: when fac-
ing a conflict among their motivations and beliefs, different agents prefer to fulfill dif-
ferent goals and desires. We express these agent characteristics by a priority relation
on the mental attitudes which encode, as detailed in [20], how the agent resolves its
conflicts. The priority relation is defined on the powerset of the mental attitudes such
that a wide range of characteristics can be described, including social agents that take
the desires or goals of other agents into account. The priority relation contains at least
the subset-relation which expresses a kind of independence among the motivations.

Definition 3 (Agent set).An agent setis atupled, X, B, D, G, AD, >), where:

— the agentsA, propositional variablesX, agent beliefs3, desiresD and goalsG
are five finite disjoint sets.

— B, D, G are sets of pointers to rules. We wrild = D U G for the motivations
defined as the union of the desires and goals.

— an agent descriptiodl D : A — 2XYBUM g g total function that maps each agent
to sets of variables (its decision variables), beliefs, desires and goals, but that does
not necessarily assign each variable to at least one agent. For each agent,
we write X, for X N AD(b), and By, for BN AD(b), Dy, for DN AD(b), etc. We
write parametersP? = X \ Upec 4 Xp.

— a priority relation>: A — 2MVYB » 9MUB jg g function from agents to a transitive
and reflexive partial relation on the powerset of the motivations containing at least
the subset relation. We write,, for > (b).

Since goals have priority over desires we have that givesi C M, forall a € A,
S >, 8ifS\ S CGands’\ S CD.

Example 3.4 = {a}, Xo = {trespass}, P = {s,fenced}, Dy = {dy,ds},
>a={d2} > {d;}. There is a single agent, agentwvho can trespass a field. Moreover,

it can be sanctioned and the field can be fenced. It has two desires, one to trdgpass (
another one not to be sanctioned)( The second desire is more important.

In a multiagent system, beliefs, desires and goals are abstract concepts which are
described by rules built from literals.

Definition 4 (Multiagent system). A multiagent system is a tuple
(A, X,B,D,G,AD, MD, >), where(A, X, B, D,G, AD, >) is an agent set, and the



mental descriptionD : (B U M) — Rul(X) is a total function from the sets of
beliefs, desires and goals to the set of rules built ftimFor a set of mental attitudes
S C BUM,wewriteMD(S) ={MD(q) | q € S}.

Example 4(Continued).MD(dy) = T — trespass, MD(ds) = T — —s.

In the description of the normative system, we do not introduce norms explicitly,
but we represent several concepts which are illustrated in the following sections. Insti-
tutional facts () represent legal abstract categories which depend on the beliefs of the
normative system and have no direct counterpart in the wétle= X \ I are what
Searle calls “brute facts”: physical facts like the actions of the agents and their effects.
Va(z) represents the decision of agerthat recognizes as a violation by agent. The
goal distributionGD(a) C Gy, represents the goals of agenthe agenk is responsible
for.

Definition 5 (Normative system).A normative multiagent system, written &8/AS,
is a tuple (A, X,B,D,G,AD,MD,>n,I,V,GD) where the tuple
(A,X,B,D,G,AD, MD, >) is a multiagent system, and

— the normative system € A is an agent.
— the institutional factd C P are a subset of the parameters.
— the norm descriptio” : Lit(X) x A — X,, U P is a function from the literals and
the agents to the decision variables of the normative system and the parameters.
We writeV, (z) for V(z, a).
— the goal distributionGD : A — 2% is a function from the agents to the powerset
of the goals of the normative system, such thdt i~ | € MD(GD(a)), then
le Lit(XaUP).

Agentn is a normative system who has the goal that fenced fields are not trespassed.

Example 5(Continued)There is agenh, representing the normative system.

Xn = {s,Va(trespass)}, P = {fenced}, D, = Gn = {g1},
MD(gy) = {fenced — —trespass}, GD(a) = {g1 }.

Agentn can sanction ageat, because is no longer a parameter but a decision vari-
able.V, (trespass) represents the fact that the normative system considers a violation
the action ofa trespassing the field. It has the goal that fenced fields are not trespassed,
and it has distributed this goal to agent

In the following, we use an input/output logieut to define whether a desire or
goal implies another one and to define the application of a set of belief rules to a set of
literals; in both cases we use thets operation since it has the desired logical property
of not satisfying identity.

Regulative norms are conditional obligations with an associated sanction and con-
ditional permissions. The definition of obligation contains several clauses. The first and
central clause of our definition defines obligations of agents as goals of the normative
system, following the ‘your wish is my command’ metaphor. It says that the obligation
is implied by the desires of the normative systepimplied by the goals of agemt,
and it has been distributed by agerto the agent. The latter two steps are represented
by out(GD(a), >y).



The second and third clause can be read as “the absencéafonsidered as a
violation”. The association of obligations with violations is inspired by Anderson’s re-
duction of deontic logic to alethic logic [22]. The third clause says that the agent desires
that there are no violations, which is stronger than that it does not desire violations, as
would be expressed by — Vi (~z) € out(Dy, >n)-

The fourth and fifth clause relate violations to sanctions. The fourth clause says
that the normative system is motivated not to count behavior as a violation and apply
sanctions as long as their is no violation, because otherwise the norm would have no
effect. Finally, for the same reason the last clause says that the agent does not like the
sanction. The second and fourth clauses can be considered as instrumental norms [23]
contributing to the achievement of the main goal of the norm.

Definition 6 (Obligation). Let NMAS = (A, X,B,D,G,AD, MD,>,n,1,V, GD)
be a normative multiagent system. Agent € A is obliged to see to it that
x € Lit(X, U P) with sanctions € Lit(X, U P) in contextY” C Lit(X) in NMAS,
written asNMAS = Oan(z, s]Y), if and only if:

1. Y — x € out(Dn,>n) Nout(GD(a), >,): if Y then agenh desires and has as
a goal thatz, and this goal has been distributed to agant

2. YU {~z} = Va(~x) € out(Dn, >n) N out(Gn, >n): if Y and~z, then agenh
has the goal and the desifé (~x): to recognize it as a violation by ageat

3. T = =Va(~x) € out(Dy, >5): agentn desires that there are no violations.

4. Y U{Va(~2)} — s € out(Dpn,>n) N out(Gn, >n): If Y and agent decides
Va(~x), then agenh desires and has as a goal that it sanctions agent

5. Y — ~s € out(Dy, >y): if Y, then agenh desires not to sanction. This desire of
the normative system expresses that it only sanctions in case of violation.

6. Y —~s € out(Da,>,): if Y, then agentr desires~s, which expresses that it
does not like to be sanctioned.

The rules in the definition of obligation are only motivations, and not beliefs, because
a normative system may not recognize that a violation counts as such, or that it does
not sanction it: it is up to its decision. Both the recognition of the violation and the
application of the sanction are the result of autonomous decisions of the normative
system that is modelled as an agent.

The beliefs, desires and goals of the normative agent - defining the obligations -
are not private mental states of an agent. Rather they are collectively attributed by the
agents of the normative system to the normative agent: they have a public character,
and, thus, which are the obligations of the normative system is a public information.

Since conditions of obligations are sets of decision variables and parameters, insti-
tutional facts can be among them. In this way it is possible that regulative norms refer
to institutional abstractions of the reality rather than to physical facts only.

Example 6(Continued).Let: {g1, 92,94} = Gn, GnU{g3,95} = Dn, {01} = GD(a)

MD(g2) = {fenced, trespass} — Vau(trespass) MD(gs) = T — —Va(trespass)
MD(g4) = {fenced, Va(trespass)} — s MD(gs5) = fenced — ~s

NMAS |= Oan(—trespass, s | fenced), since:



. fenced — —trespass € out(Dy, >n) N out(GD(a),>y,)

. {fenced, trespass} — Vy(trespass) € out(Dy, >pn) N out(Gpn, >n)
. T — =Va(trespass) € out(Dy, >y)

. {fenced, Vy(trespass)} — s € out(Dyn, >n) N out(Gn, >n)

. fenced — ~s € out(Dn,>n)

. fenced — ~s € out(Da, >a)

OO WNPE

Permissions are defined as exceptions to obligations [16], and can be overridden by
obligations in turn. A permission to dois an exception to an obligation not to do
if agentn has the goal that is not considered as a violation under some condition.
The permission overrides the prohibition if the goal that something does not count as a
violation (' A z — =V, (z)) has higher priority in the ordering,, on goal and desire
rules with respect to the goal of a corresponding prohibition thigtconsidered as a
violation Y’ A x — V,(x)):

Definition 7 (Permission). Agenta € A is permitted by agenh to see to it that
x € Lit(Xa U P) under conditionY” C Lit(X), written asNMAS = Pan(z | Y),

iff Y U{x} — —Va(z) € out(Gn, >n): if Y andz then agent wants thatc is not
considered a violation by ageat

Example 7(Continued).Let P = {fenced, river}, {g¢} > {92},

MD(gs) = {fenced, river, trespass} —~Va(trespass)

Then{fenced, river, trespass} —~Vu(trespass) € out(Dy, >n) N out(Gn, >n)
Hence, NMAS |= Pan(trespass | fenced A river)

Constitutive norms introduce new abstract categories of existing facts and entities,
called institutional facts. We formalize the counts-as conditional as a belief rule of the
normative systenm. Since the conditiorn: of the belief rule is a variable it can be an
action of an agent, a brute fact or an institutional fact. So, the counts-as relation can be
iteratively applied.

Definition 8 (Counts-as relation). Let NMAS=(A, X, B, D,G,AD,MD,> n,I,
V, GD) be a normative multiagent system. A literak Lit(X) counts-agy € Lit(I)
in context C C Lit(X), NMAS = counts-asn(x,y|C), iff
CU{z} — y € out(By, >n): if agentn believes” andx then it believeg.

Example 8. P\ I = {fenced}, I = {property}, Xa = {trespass}, B, = {b}},
MD(b}) = fenced — property

ConsequentlyNMAS = counts-asy(fenced, property|T). This formalizes that
for the normative system a fenced field counts as the fact that the field is a property of
that agent. The presence of the fence is a physical “brute” fact, while being a property
is an institutional fact. In situatiol§ = {fenced}, given Bj, we have that the conse-
quences of the constitutive norms arg (B,,, S, >,) = {property}

As shown in the example, the logic of constitutive norms does not satisfy identity:
fenced is not a consequence, since it represents a brute fact and not an institutional
fact. Constitutive norms, in contrast, provide a legal classification of reality in terms of
institutional facts only.

The institutional facts can appear in the conditions of regulative norms as the fol-
lowing example shows.



Example 9(Continued). A regulative norm which forbids trespassing can refer to the
abstract concept of property rather than to fenced fi€ldg(—trespass, s | property).

Let: {91, 95,94} = Gr, GL U{g5,95} = Dy, {91} = GD(a)

MD(g1)=property — —trespass MD(g5)={property, trespass} — Va(trespass)
MD(g5) = T — —Va(trespass) MD(g)) = {property, Va(trespass)} — s

MD(gt) = property — ~s

Then:
1. property — —trespass € out(Dn, >n) N out(GD(a), >y)
2. {property, trespass} — Va(trespass) € out(Dpn, >n) N out(Gn, >n)
3. T — Va(trespass) € out(Dn, >n)
4. {property, Va(trespass)} — s € out(Dp, >n) N 0ut(Gn, >n)
5. property — ~s € out(Dyn, >n)
6. property — ~s € out(Da, >a)

As the system evolves, new cases can be added to the notion of property by means
of new constitutive norms, without changing the regulative norms about property. E.g.,
if a field is inherited, then it is property of the heirtherit — property € MD(By).

Since counts-as rules are beliefs and the logic is non-monotonic due to the priority
ordering on the beliefs, counts-as can be used to express exceptions to the classification
thus mirroring the relation between obligations and permissions as exceptions [2].

6 The trade-off between constitutive and regulative norms

In this section, we extend our scenario described in Example 8-9 to design a legal sys-
tem equivalent to the one of Example 6-7.

Example 10(Continued).B,, = {b5}, {b5} > {b}},
MD (b)) = fenced A river — —property.
out(B], = {b},b5}, >n) = {{fenced A river — —property}} since
maxfamily(BL,, S = {fenced, river}) = {{b} }, {b5}},
preffamily (B, S = {fenced, river}, >yn) = {{b5}},
outfamily(Bj, S = {fenced, river}, >n) = {{—property}}
Thus,NMAS = counts-asy(fenced, —property | river) and this belief overrides
the former one behin@dounts-asy (fenced, property | T). This formalizes that the
normative system does not consider as a property a fenced field if it is close to a river.

We show how a system containing constitutive and regulative norms like in Exam-
ple 8-10 can be interchanged with an equivalent system of regulative norms only like
the one of Example 6-7. By equivalence we mean that in the same state of the world the
same violations hold. Since it is possible to replace constitutive norms with regulative
norms only, a trade-off can be found between adding constitutive norms and achieving
a sufficient level of abstraction.

Even if input/output logic is an inference system on rules we cannot directly prove
the equivalence on the rules defining regulative and constitutive norms since they refer



to different sets of rules: goal rules and belief rules. We provide the equivalence in an
indirect way by considering the combined output of the rules.
Given the operation out, we define a combined output relation:
output(Q, Z, S, >n) = out(Z, out(Q,S,>n) U S,>,) whereQ C By, Z C M,
andS C Lit(X \ I). The institutional facts are the result of the reasoning of the nor-
mative system, so they cannot be present in the initial state composed of brute facts.
Note that we reintroduce the brute fa&sas the input of the output operation on
the motivationsZ since the output operation on beliefs does not satisfy identity. We
needsS since the conditions of regulative norms can refer to brute facts as well as to the
institutional facts which are the consequences of the constitutive norms. In this way we
distinguish between the legal classification of reality and the information concerning
commonsense, among which the brute facts which are the input to constitutive norms.
Even if we attribute belief rules to the normative system these must be distinguished
from the belief rules of agents: these belief rules concern the relation between brute facts
and constitute their commonsense view of the work. The normative system as agent,
in contrast, does not contain any knowledge of this kind. The relevant commonsense
inferences are performed by the real agents playing roles in the normative system.
In our examples we haveutput(By, Gn, S, >n) = output(Bl, G4, S, >n) for
anyS € Lit(X \ I).
Sketch of proof. We consider only the cases where the conditions of the goals and
beliefs are satisfied. First, the normative system made of regulative norms only:
output(Bn, Gn, S = {fenced, trespass}, >n) = out(Gy, out(Bpn, S, >n)US, >y,) =
{—trespass, Va(trespass), s}
from g1, g, g4, whereout(By, S, >,) = () sinceB, = 0.
In contrast:

output(Bn, Gn, S={fenced, river, trespass}, >n) =

out(Gp, out(Bn, S, >n) U S, >5) = {~trespass, = Va(trespass), ~s}

(from g1, g5, g) Where agairut(By, S, >5) = 0.

In case of the legal system of Example 8 made of both constitutive and regulative norms:
output(By, Gi,, S={fenced, trespass}, >y )=out(G,, out(BL, S, >n) U S, >y) =

{—trespass, Va(trespass), s}

(from g1, g4, g3) whereout(BL, S, >n) = {property} (from b}).

In contrast:
output (B, G, S={fenced, river, trespass}, >n) =

out(Gl, out(Bh, S, >n) U S, >n)={—trespass, = Va(trespass), ~s}

(from g1, g4, gt) whereout(BL, S, >n) = {—property} (from b}).

In summary, the trade-off between constitutive and regulative rules has to take into
considerations, first, how many regulative rules share the same conditions. The design
of the system of norms can be simplified by introducing abstractions representing the
overlapping conditions. Second how frequently the normative system is updated. In case
of dynamic situations, the preferred design of the system introduces constitutive rules
introducing institutional facts which are abstractions which hide the details concerning
the brute facts. In this way, new cases can be dealt with without changing the regulative
part of the system, but only revising what counts as an institutional fact.



7 Related work

While the formalization of regulative norms, like obligations, prohibitions and permis-
sions, is often based in deontic logic on modal operators representing what is obligatory,
forbidden or permitted, the formalization of constitutive norms is rather different. An
attempt to make the notion of constitutive norm more precise is Jones and Sergot [5]'s
formalization of the counts-as relation. For Jones and Sergot, the counts-as relation ex-
presses the fact that a state of affairs or an action of an agent “is a sufficient condition
to guarantee that the institution creates some (usually normative) state of affairs”. As
Jones and Sergot suggest, this relation can be considered as “constraints of (operative
in) [an] institution”, and they express these constraints as conditionals embedded in a
modal operator. Jones and Sergot formalize this introducing a conditional connective
=, to express the “counts-as” connection holding in the context of an institution
They characterise the logic fes; as a classical conditional logic plus the axioms:

(A=s B)IN(A=,C)) D (A=, (BAQ))
(A=s B)AN(C=sB)) D ((Av(C) =4 B)
(A= B)A(B=sC)) D (A=,0C)

In addition, Jones and Sergot’s analysis is integrated by introducing the normal
KD modality D, such thatD;A means thatd is “recognised by the institution s”.
Accordingly, it is adopted the schem@ = B) D Ds(A D B).

The limitation of this approach, according to Gelatial. [24], is that the conse-
quences of counts-as connections follow non-defeasibly (via the closure of the logic
for modality D, under logical implication), whereas defeasibility seems a key feature
of such connections. The classical example is that in an auction if a person raises one
hand, this may count as making a bid. However, this does not hold if he raises his hand
and scratches his own head.

Finally, the adoption of the transitivity for their logic is criticized by Artesial.[3].

Artosi et al.[3]'s characterisation of the counts-as adopts a different perspective. Rather
than introducing a logic for the counts-as connection, and then linking it with a
logic, they use one conditional operater to express any defeasible normative con-
nections in any institutions. They use the safeoperator as in [5] but they apply it

to the components of normative links, to relativise them to a particular institution. Any
institution can only state what normative situation holds for itself, given certain condi-
tions, but according to a general type of conditionality. On the basis tiey define a
relativised=>, operator(A =, B) =4¢y (A= Ds;B) A (DsA = DsB)

The connectives is characterised by reflexivity and cumulative transitivity, whose
combination does not prevent defeasibility. The system is completed by introducing a
restricted version of the detachment of the consequent. To avoid losing non-monotoni-
city, Artosi et al.[3] do not accept the strengthening of antecedent propstiyir( our
input/output logic), thus making their logic weaker.

In contrast, in our model we accept the strengthening of anteceféhtile and
the cumulative transitivity 7). We do not accept instead identityd)). First of all,
the adoption also ofd would make the system accepting also full transitivity. Non-
monotonicity is achieved via the constraint mechanism which uses also a priority or-
dering on the mental attitudes. Secondly, we do not acképecause we want to keep



separate brute facts and institutional facts “whose nature - as also Attals{3] ac-
cept - is conceptually distinct from that of the empirical facts”.

Our position is congruent also with Castelfranchi and Tummolini [25] who argue
that counts-as rules regulate a cognitive activity,the proper application of a concept:

A constitutive rule describes, albeit very abstractly, a recognition process.
[...] The application of a concept in fact can be represented in form of a rule
that associates a specific set of stimuli (“something such and such”) X with a
linguistic label .

Since the stimuli and the linguistic label Y are ontologically heterogeneous, the
“counts-as” relation cannot be reflexive.

Grossi and colleagues [26, 27] develop a notion of counts-as as a contextual clas-
sification in a modal logic setting, where for the classification aspect they use either
description logic [26] or plain propositional logic [27]. They end up with a very strong
logic for counts-as, satisfying rules not satisfied by Jones and Sergot’s logic or the logic
proposed in this paper, such as the identity rule (x counts-as x). They argue that the new
rules are explained by their particular concept of counts-as as a contextual classification.

8 Conclusions

In this paper we discuss the design of legal systems composed of constitutive and regu-
lative norms. We model legal systems as normative multiagent systems where the nor-
mative system is modelled as an agent using the agent metaphor: constitutive norms are
defined by the beliefs of the normative system and the regulative norms by its goals. The
characteristic of the counts-as relation is that it is not reflexive. The trade-off problem
between constitutive and regulative norms can be handled by as the trade-off between
beliefs and goals of the normative system. We show that constitutive norms, even if
they can be replaced by regulative norms, allow to create a level of abstraction to which
regulative norms can refer to, making it less sensitive to the changes in the legal system.

In [6] we extend this framework to model the problem of how the normative sys-
tem itself specifies who can change the normative system. This specification is made by
means of constitutive norms describe what facts count as the creation of new regulative
and constitutive norms in the normative system. This work is at the basis of the defini-
tion of contracts we make in [7]. Future work is, for example, elaborating the notion of
context to study which properties hold for it, and introducing hierarchies of normative
systems composed of both constitutive norms and regulative norms, as we do for obli-
gations and permissions in [16]. Moreover in [8] we discuss global policies about local
policies in secure knowledge management. However, it has still to be studied global
policies about constitutive rules.
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