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Abstract In this paper we claim that an efficient and read-

ily applicable means to improve privacy of Android applica-

tions is: 1) to perform runtime monitoring by instrumenting

the application bytecode and 2) in-vivo, i.e. directly on the

smartphone. We present a tool chain to do this and present

experimental results showing that this tool chain can run

on smartphones in a reasonable amount of time and with

a realistic effort. Our findings also identify challenges to

be addressed before running powerful runtime monitoring

and instrumentations directly on smartphones. We imple-

mented two use-cases leveraging the tool chain: BetterPer-

missions, a fine-grained user centric permission policy sys-

tem and AdRemover an advertisement remover. Both pro-

totypes improve the privacy of Android systems thanks to

in-vivo bytecode instrumentation.

Keywords: Android Security, Bytecode Manipulation, Pri-

vacy, Fine-grained permission policy

1 Introduction

Android is one of the most widespread mobile operating

system in the world accounting for more than 72% of the

market share [1]. More than 500 000 Android applications

available on dozens of application markets can be installed
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by end users. On the official market of Google (Google Play,

formerly AndroidMarket), more than 10 000 new applica-

tions are available every month.1 For the end user, down-

loading an application on her smartphone is similar to choos-

ing an apple on an apple tree: she only sees the surface and

has no evidence that there is no worm in it. Unfortunately

there are many worms of different kinds waiting to infect

smartphones such as malware leaking private data and ad-

ware calling premium-rate numbers.

In this paper we claim that an efficient and readily ap-

plicable means to improve privacy of Android applications

is to perform runtime monitoring and interception of the ap-

plication interactions with the Android stack by instrument-

ing the application bytecode directly on the smartphone (in-

vivo). Before further introducing our contribution let us de-

fend our key claim.

Why performing runtime monitoring and interception?

We want to allow or disallow behaviors of an application

at runtime. We use runtime monitoring as it consists of ob-

serving the behavior of an application during execution. It

collects certain metrics or intercepts all exchanges at the in-

terface between the application and the rest of the system.

In this paper, we discuss two case-studies involving runtime

monitoring and interception, including an implementation

of a fine-grained permission model on top of the Android

software stack as proposed in [2].

Why performing bytecode instrumentation? There are at

least two ways to perform runtime monitoring and intercep-

tion: modification of the Android software stack or byte-

code instrumentation. Modification of the software execu-

tion stack consists in altering the operating system or the

core libraries to intercept the required information. On An-

droid, it means changing the underlying kernel, the Dalvik

virtual machine or the Android framework. Unless convinc-

ing the Android consortium, this is rather limited in deploy-

ment since normal end-users have neither the rights (jailed

phones) nor the ability to do so. Also, this solution would

require users to change their firmware which is a non-trivial

task, further complicated by the so called fragmentation prob-

lem of the Android system as there is not a single Android

system but many different Android systems each customized

to run on a specific device (tablet, smartphone, . . . ). If the

operating system is modified, one would need to create a

custom instrumented version for every possible Android ver-

sion which is not easily doable in practice. Bytecode instru-

mentation however, is one of the lightest way to perform

runtime monitoring on top of execution platform that can not

be modified. In the context of a fine-grained policy enforce-

ment for improving privacy, we are able – thanks to byte-

code instrumentation – to enforce a fine-grained permission

model of already deployed applications on Android smart-

1 http://www.appbrain.com/stats/number-of-android-apps



phones without any modification of the Android software

stack.

Why performing in-vivo instrumentation directly on smart-

phones? Bytecode instrumentation could be done outside

the device for instance using a remote service on the Inter-

net. However, many countries forbid distributing binaries to

third-party services (e.g. France). Also, terms of service of

several markets (e.g. Google Play for Android) do not allow

this. Instrumenting applications directly on the device keeps

the application within the device.

To sum up, we believe that the most efficient and prac-

tical way for ensuring security and privacy on mobile de-

vices is to instrument the application bytecode directly on

the smartphone (in-vivo), the instrumentation being tailored

for a given security or privacy concern. Our main contribu-

tions are that:

– We have built a toolchain to automatically repackage

Android applications directly on an Android device;

– We have built a toolchain to automatically analyze An-

droid applications directly on an Android device;

– The toolchain has been tested by implementing two pro-

totypes which increase the end-user privacy. One removes

advertisement and the other gives the user total control

over the applications’ runtime permissions.

– The feasibility of such a tool chain has been evaluated.

Limitations and challenges have been pinpointed.

To the best of our knowledge, we were the first2 to present

a tool chain to automatically transform Android applications

directly on a device.

The paper is organized as follows: Section 2 provides

the reader with two scenarios motivating the need of byte-

code instrumentation of Android applications. Section 3 de-

scribes a tool chain for instrumenting Android applications

directly on Android devices (smartphones, tablets, ...). Sec-

tion 4 presents the design and implementation of valuable

bytecode instrumentations for the security and privacy of

smartphones. Section 5 demonstrates the feasibility of run-

ning the whole tool chain in a reasonable amount of time.

Section 6 discusses the related work and Section 7 concludes

the paper.

2 Use Cases of In-Vivo Instrumentation

There are different scenarios in which it would be beneficial

to manipulate and analyze Android applications’ bytecode

directly on smartphone devices (in vivo). In this Section we

present two valuable use cases: AdRemover and BetterPer-

missions.

Both of them improve the privacy for the user. AdRemover

hinders advertisement libraries to work and thus, at the same

2 we published a technical report in May 2012 [3]

time, prevents them from sending private information re-

lated to localization (GPS coordinates,...) or of the device it-

self such as the IMEI (International Mobile Equipment Iden-

tity). BetterPermissions gives users the power to enable or

disable applications’ permissions. In an extreme case where

the user would like no application to have access to her con-

tact list, she would remove the contact permission from all

applications on the phone. The result is a better privacy for

the user.

2.1 Advertisement Removal

Nearly half of the Android applications embeds third-party

code to handle in-app advertisement [4]. A significant pro-

portion of ad-supported apps include at least two advertising

libraries [5].

Furthermore, Android applications are distributed as self-

sufficient packages, bundling together both specifically de-

veloped code and the third-party libraries they may need,

such as binary-only advertisement modules.

Android enforces a per-application policy-based secu-

rity model: either all parts of an application benefit from a

given permission, or none of its parts. It means that when a

user grants permissions to an application, she actually grants

permissions to components potentially written by different

entities, including the ad libraries.

For example, a newspaper app may be allowed to send

its location back to the app publisher so that she is presented

with local news. However, from a privacy perspective the

embedded advertisement library should not be allowed to

send the location data to the ad companies. Currently, the

user faces a dilemma: she either has to reduce her privacy

level expectation, or refrain from using an otherwise valu-

able application.

A workaround of this limitation of the platform is to dis-

able the use of the ad library in-vivo.

This may have positive side-effects, since advertisement

libraries also have a significant impact on the battery usage.

According to a recent study [6], third-party advertisement

modules can be held responsible for up to 65%-75% of en-

ergy spent in free applications .

2.2 Fine-Grained Permission Policy

The Android framework relies on a permission-based model

and follows an “all or nothing” policy. At installation time,

users must either accept or reject all permissions requested

by the application. An application is installed only if all the

requested permissions are accepted. There is no way to ac-

cept only some permissions (such as accessing the localiza-

tion data) and not others (such as connecting to the Internet).
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Fig. 1 Our Process to Instrument Android Applications

Users are doomed to completely trust the application devel-

opers who write the list of permission. Enck et al. [7] have

pointed out that an application with several sensitive permis-

sions is a real security threat. For instance if an application

requests the permission to send SMS and a permission to

read the contact list, the contact list could potentially be sent

to a remote phone by sending it through SMS.

A fine-grained permission model consists in giving users

the ability to specify their own set of permissions to appli-

cations, according to their own usage. All sets of permis-

sions for all applications on the device constitutes the secu-

rity policy. The underlying permission-based system would

then enforce this user-defined policy.

Running such user-level security policy is impossible on

a unmodified Android platform with unmodified application

code. However, as we show later, it is indeed possible by

manipulating the application bytecode at installation time,

in-vivo.

3 Toolchain for In-vivo Bytecode Instrumentation

This section presents our proposal for performing bytecode

instrumentation of Android applications in vivo, i.e. directly

on smartphones.

3.1 Android Apps in a Nutshell

Android applications are written in Java, compiled into Java

bytecode and finally converted to Dalvik bytecode, a byte-

code format optimized for embedded devices. An Android

application is a signed zip file (called apk or AndroidPacK-

age file) containing the Dalvik executable, the Android

Manifest.xml (application metadata), data (e.g. images),

and the public key needed to check the provided signatures

of all files.

Applications are made of four different components (soft-

ware abstractions): Activity for the user interfaces, Service

for background operations, Content Provider to save data

and Broadcast Receiver to receive messages from the sys-

tem. The bytecode of an Android application interacts with

the Android system through the Android framework (also

referred to as the Android API). Some methods of the API

are protected by permissions because they access system re-

sources such as GPS coordinates or the contact list. Only

an application with the right permission(s) can access a pro-

tected resource.

3.2 Requirements

Instrumenting and repackaging a fully-runnable Android ap-

plication is not straightforward. It consists of extracting the

executable code from the application code, analyzing and

instrumenting it, rebuilding a new working android applica-

tion and signing it again, since the OS requires applications

to be signed.

Our toolchain has the following requirements:

1. The Android OS must be unmodified (for the sake of a

broad applicability as presented in Section 1);

2. The Dalvik virtual machine that runs Android applica-

tions must be unmodified, in particular in terms of con-

figuration values such as the maximum heap size (for the

sake of a broad applicability, see Section 1);

3. The hardware that is used to instrument bytecode must

be representative of common smartphones on the mar-

ket.

3.3 Toolchain

The bytecode instrumentation process features the following

steps: 1) Extract code from Android application apk files;

2) Modify the extracted code with bytecode manipulation

tools; 3) Rebuild a new Android application containing the

modified code.

Those three steps can be broken down into five elemen-

tary steps, as shown in Figure 1: i) Extracting and converting

the Dalvik bytecode into Java bytecode (step a-b), ii) Manip-

ulating the bytecode (steps b-c), iii) Translating this repre-

sentation back to Dalvik bytecode (step c-d), iv) Rebuilding

a new apk file (step d-e) and v) Finally signing all files with

a new private key (step e-f). Let us now discuss the tools that

are used in each step.

i) Extracting the Dalvik Bytecode The first step, as shown

in Fig. 1.(a-b), is to extract the classes.dex file from the

apk file and convert it to Java bytecode classes which can be

analyzed with standard unmodified Java bytecode analysis

toolkits. For this step, we use the tool dex2jar3.

3 available at http://code.google.com/p/dex2jar/

http://code.google.com/p/dex2jar/


ii) Instrumenting the Bytecode In this step, we experiment

with two different tools which manipulate bytecode. Recall

that bytecode manipulation is the step from (b) to (c) at illus-

trated in Figure 1. Using different tools gives us the oppor-

tunity to measure the difference in terms of execution time

and memory consumption between them and decide which

one is more appropriate to manipulate bytecode in a memory

constrained system.

ii.a) Soot. Classes are transformed to Jimple with the

Soot analysis toolkit. Soot [8] is an open-source analysis

toolkit for Java programs. It operates either on Java source

code or bytecode. It allows developers to analyze and trans-

form programs. For instance, an intra-procedural flow anal-

ysis could determine if a variable can be null at some point

in the code. Soot can also perform different call-graph an-

alyzes, useful for specific bytecode instrumentation. Most

analyses and transformations in Soot use an internal repre-

sentation called Jimple. Jimple is a simple stack-less repre-

sentation of Java bytecode. We ported Soot on the Android

system by converting its Java bytecode to Dalvik and creat-

ing a wrapper Android application. To our knowledge there

is no previous work which represent Android bytecode as

an abstraction on which on could perform static analysis di-

rectly on the smartphone.

ii.b) ASM. We experienced that Soot is sometimes slow

and requires a lot of resources (especially memory). Thus,

we also run ASM for bytecode instrumentation. ASM [9] is

a Java bytecode engineering library. One of its characteris-

tics is that it is lightweight hence more suitable for running

on systems constrained in term of memory or processing

resource. It is primarily designed to manipulate and trans-

form bytecode although it can also be used to perform some

program analysis. It features a core API to perform simple

transformations as well as a tree API to perform more com-

plex bytecode transformations (which requires more CPU

processing and memory space).

iii) Translating the Modified Bytecode back to Dalvik Byte-

code Once the classes are analyzed and modified by the

analysis toolkit, they are transformed back into Dalvik byte-

code using dx4 which generates the classes.dex file

from Java class files. This step is illustrated in Fig. 1 as the

edge c-d.

iv) Rebuilding Application As presented in Fig. 1.(d-e), af-

ter the fourth step, a new Andoid application is built. The

newly generated classes.dex, the data and the Android

manifest from the original application are all inserted in a

new zip5 file.

4 using com.android.dx.command.Main from the Android

SDK
5 using the java.util.zip library

v) Signing the Modified Application Android requires appli-

cations to be cryptographically signed. Hence, all files of the

generated zip file are signed using a newly created couple of

public/private keys (not represented on the figure), The new

public key is added to the zip (not represented on the figure).

We used the keytool and jarsigner Java programs to

sign applications (Fig. 1.(e-f)).

Signing applications with new keys may cause compat-

ibility problems between applications. For instance two or

more applications signed with the same key can share the

same process. In order for this feature to continue working a

one-to-one mapping between old keys and new ones needs

to be maintained in order to sign two transformed applica-

tions (originally signed with the same keys) with the same

new generated keys. Maintaining this mapping and handling

such compatibility between applications is out of scope of

this paper.

We have devised a bytecode manipulation process on An-

droid using standard tools. The following presents the de-

sign and implementation of two concrete bytecode instru-

mentation prototypes.

4 Use-case Design and Implementation

Any use-case leveraging the toolchain presented in Section

3 analyzes or modifies the bytecode of an application. Ana-

lyzing or modifying the bytecode is represented by step (b-c)

in Figure 1. We now present how we have implemented and

evaluated the two use-cases of Section 2. Thy both modify

the bytecode of applications. AdRemover modifies the byte-

code to remove advertisement. BetterPermissions modifies

the bytecode to enable a fine-grained permission policy sys-

tem for the user.

4.1 Implementation of AdRemover

We focus on two widely used Android advertisement mod-

ules: AdMob and AdSense. Advertisement is not part of the

Android system but is present in the application’s bytecode.

Thus, applications do not share ad library code. However,

they each have a copy of the library code. Disabling adver-

tisement requires to instrument every application containing

an ad library.

Advertisement requires I/O operations for fetching the

ad data. An Android application developer using an ad li-

brary do not want her app to crash because of the ad library.

This is the reason why developers of ad libraries take spe-

cial care of exceptions when designing the ad library. They

expect I/O operations to fail on a regular basis, depending

on unpredictable contexts. For example, an exception can

be thrown if the device has no network coverage anymore.



Building on this observation, we make the assumption

that I/O code has been placed by ad developers inside a Try/-

Catch block to recover for exceptions raised by I/O failures.

Our tool leverages this assumption and inhibits every Try/-

Catch section of the ad packages of the application. For ev-

ery Try/Catch block it encounters, our tool extracts the type

of the handled I/O exception, creates such an exception ob-

ject, and inserts an instruction that throws this exception at

the very beginning of the try block.

For this, we collected the Java package names used by

these libraries and we configured AdRemover to operate only

on classes that are part of those packages. We wrote two im-

plementations of AdRemover: One using Soot and one using

ASM.

4.2 BetterPermissions: A Fine-grained Permission Policy

Management

In this context a fine-grained policy is a file in which the user

specifies which permissions are granted to applications. In

the real world users are only familiar with permissions and

applications, so it makes perfect sense to limit policies at the

level of applications and not a lower level (such as Android

component or Java methods). However, for explanatory pur-

poses the policies in this Section contain a mapping between

Java methods and permissions.

For a user-centric policy to exist, we need to instrument

the bytecode of every application one wishes to control. Re-

call from Section 3.1 that Android applications communi-

cate to the Android system through the Android API. The in-

strumentation detects all API calls protected by one or more

permissions and redirected every of those calls to a policy

service. The policy service is a Android service component

part of independent Android application. Base on the user

defined policy it authorizes or not the application to call the

protected method.

When the instrumented application runs, the user-defined

policy is enforced by the policy service. Indeed, for every

instrumented method, the running instrumented application

calls the policy service and the policy is checked. If the pol-

icy allows the original API method call, the API call is per-

formed. Otherwise, a fake implementation is executed and

returns a fake default value.

Our prototype tool enforces a user-defined policy at the

user level (also called application level). It allows users who

previously could not modify the system policy to enforce

their own policy for a set of applications. Modifying code to

insert security check is known as Inline Reference Monitor-

ing (IRM) and has been first introduced by Erlingsson et al.

and Evans et al. [10, 11, 12].

Instrumenting the Application To control or limit an appli-

cation’s permission it’s bytecode has to be instrumented.

This is illustrated in Figure 2 where applicationNewsReader

is represented as a graph of method calls starting from node

s. All method calls that require one or more permissions [13,

14] are wrapped with code which in order:

1. asks the policy service if the application is authorized to

call the method

2. according to the answer from the policy service either

invokes the original method or the fake method.

For instance, the getLocation(p1) method invoca-

tion of node 7 (which requires permission GPS) has been

wrapped in the figure by a call to the policy service. If the

policy approves this call, the original getLocation(p1)

is executed, otherwise a fake method is invoked, returning a

fake default value.

In total, there are N instrumentations where N is the

number of API calls under consideration present in the ap-

plication bytecode.

Defining the Policy The next step, as shown in Figure 3, is

to define the policy regarding the instrumented applications.

The user defines a set of allowed permissions for each ap-

plication. Behind the scene, the policy generates a list of all

Java methods which require the enabled permissions. Those

methods are set as authorized. In Figure 3, only method

getLocation() is allowed for application Instrumented

NewsReader.

Note that this step could be performed first to instrument

only method calls which are not authorized by the policy.

However, instrumenting every API method calls which re-

quires one or more permissions makes it possible to change

the policy at runtime.

Policy Service Finally, when the instrumented application

runs, the policy is enforced by the Policy service as shown

in Figure 4. For every instrumented method (here the origi-

nal/instrumented method is getLocation and its associ-

ated permission GPS) the running application calls policy

Accepts() (step A) and the policy is checked by calling

policyHas() (step B). MethodpolicyAccepts() re-

turns true if the policy allows the original method or false

if it does not. If the original method is allowed in the pol-

icy, the original method is called (this is the case in Figure

4, since step C returns true). Otherwise, the stub method

corresponding to the original method is executed. Here, the

stub handling method getLocation is not executed. We

implemented the policy service as an Android service and

the instrumentation code as a plugin for the static analysis

tool Soot.

4.3 Evaluation

We now check whether our use-case implementations work.

For both of them, we run the instrumentation against a real-
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world application and runs the resulting modified applica-

tion.

AdRemover We test that our tool is functional by selecting

a random application on the Android Market. We make sure

that the test application uses one of the two advertisement

modules currently handled by AdRemover.

First we run the unmodified test application on an An-

droid devices, and make sure that it is a working application,

and that it actually displays advertisements.

We then send this application to our toolchain (with the

Soot implementation) running on a PC. The modified ap-

plication is still functional, and no more advertisements are

displayed. We monitor the network connection during the

test and found out that it the application does not send any

ad request anymore.

Finally, we process the unmodified application again,

this time running the bytecode manipulation directly on the

smartphone. Running the modified application yielded the

same results as with the application modified on a standard

PC.

BetterPermissions For evaluating the fine-grain policy, we

select another random application and instrument it to wrap

every permission sensitive API call related to the GPS. The

application is instrumented and then repackaged into a new

signed application. We run the instrumented application on

an Android device, and test it with different policies. The

user-defined policy is enforced as expected.

To sum up, the two bytecode transformations result in ap-

plications that correctly runs. Those first results are impor-

tant as the two use cases illustrate what can be achieved us-

ing the bytecode instrumentation toolchain. What also mat-

ters for us is to know whether the toolchain under consid-

eration can be run in vivo on a large dataset of Android ap-

plications given the memory and CPU limitations of current

smartphones. The next section answers to this questions by

measuring execution time and memory consumption of in

vivo instrumentation.

5 Performance of In-Vivo Instrumentation

In this section we present the results of applying the instru-

mentation process presented in Section 3 and summarized

in Fig. 1. The goal is to know: 1) whether it is possible to

manipulate bytecode on smartphones given the restricted re-

sources of the hardware. 2) whether it takes a reasonable

amount of time.

5.1 Measures

We measure the execution time of the five steps of the in-

strumentation process on a set of 130 Android applications.

This set is described in Section 5.3. We run the instrumenta-

tion process on three different Android smartphones whose

configurations are presented in Section 5.2.

The feasibility of the whole process is measured by the

time to pass every step of the toolchain (1: dex2jar, 2:

Soot/ASM , 3: dx, 4: customZip, 5: signature). The time

to run each step and the number of applications that success-

fully go through each step are measured as well.

For the second step of the process (Step: Instrumenting

the bytecode), we evaluate both ASM and Soot. For ASM ,

we measure the time required to instrument Java bytecode



Name Processor Memory Android Heap Size

smartphone1 ARM 800MHz, 1 core 512MiB 2.2 24MiB

smarthpone2 ARM 1.2GHz, 2 cores 768MiB 2.3.4 32MiB

tablet1 ARM 1.4GHz, 4 cores 1GiB 4.0.3 48MiB

Table 1 The Hardware used in our Experiment

on the AdRemover case study. The AdRemover transfor-

mation leverages the ASM tree API to perform the try/-

catch block manipulation described in 4.1. Soot is evaluated

by measuring the time required to generate Java classes for

both AdRemover and BetterPermissions case studies (Ad-

Remover is implemented with ASM and Soot).

5.2 Experimental Material

We conduct the experiment on three Android-based smart-

phone devices. Their configuration is detailed in Table 1.

The main differences are the processor clock speed (0.8, 1.2

and 1.4 GHz), the total amount of main memory (512, 768

and 1024 MiB), the Android version (2.2, 2.3.4 and 4.0.3)

and the maximum heap size of the Dalvik virtual machine

(24, 32 and 48). Since the heap size controls the maximum

memory that can be allocated by a single process it also con-

trols the maximum number of objects that can be allocated

simultaneously.

The number of cores also differs. However, we do not

take advantage of multiple cores during the experiments.

This hardware complies with requirement #3 mentioned in

3.2.

5.3 Dataset

We apply the whole experimental protocol on a set of 130

Android applications randomly selected among the top 500

applications from the Android market6. They span various

domains such as finance, games, communications, multime-

dia, system or news. This dataset is not artificial as it only

consists of real world applications.

To give a better overview on these applications, Figure 5

shows the key application metrics as boxplots. They indicate

that most (75%) of Android applications have less than 614

KiB of Dalvik bytecode, less than 602 classes, an average

method degree smaller than 3. Haft of the applications have

more than 30 calls to a method of the Android API which

require a permission.

5.4 Dalvik to Java Bytecode Conversion

The conversion time from the Dalvik executable code to

Java bytecode using dex2jar is shown in Fig. 6.

6 http://play.google.com
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Fig. 5 Descriptive Statistics of the 130 Applications of our Dataset
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Fig. 6 Performance of Dalvik to In-Vivo Java Bytecode Conversion.

Observation 1 The time to convert dex files to jar does not

exceed 60 seconds on smartphone2 and tablet1 for 75% of

the applications. The conversion time does not exceed 250

seconds on our dataset of Android applications.

Observation 2 The application with the biggest Dalvik byte-

code file (4000 KiB) is successfully converted both on smart-

phone2 and on tablet1.

Observation 3 We notice that the conversion time is linear

with the size of the dex file (of the form a·X+b) for a Dalvik

bytecode size less than 4000 KiB. Using linear regression,

we find that for smartphone2 a equals 0.069 and b equals

0.3. For tablet1 we have, 0.049 and -0.4. The linear rela-

tion between the conversion time and the size of the Dalvik

bytecode enables us to theoretically predict the necessary

amount of time to convert any size of Dalvik bytecode (if

we extrapolate for size bigger than 4000 KiB). For instance,

the time to process the Android application with 10 MiB of

Dalvik bytecode would be 700 seconds for smartphone2 and

500 seconds for tablet1.

Conclusion 1 Converting Dalvik bytecode to Java bytecode

in-vivo is feasible within minutes.

http://play.google.com
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Fig. 7 Transformation Time of In-Vivo Java Bytecode Manipulation

with ASM

Limitations: smartphone1 is unable to process any dex

file. Also, when using smartphone2 and tablet1, 26 and 11

dex files, respectively, cause the conversion Android appli-

cation dex2jar to crash. This crash is either an OutOfMemory

or a StackOverflow exception.

Result of smartphone1 is explained by the hard-coded

maximum heap size of Android (32 MiB or 48 MiB). For the

two other devices, crashes are to be attributed to the default

8 KiB stack size. In total, 104 (80%) Android applications

were successfully converted to a jar file on smartphone2 and

119 (91%) on tablet1.

However, since Android devices become more and more

powerful the default heap size of the Android system grows.

Indeed, in Android 2.2 the heap size is 24 MiB, in Android

2.3.4 32 MiB and in Android 3.0 48 MiB. This continued

growth would allow our tool chain to convert Android ap-

plications which have bigger Dalvik bytecode size.

Also, some applications may be obfuscated to prevent

Dex2jar to convert Dalvik bytecode to Java classes. We did

not encounter any obfuscation during the experiment. Our

toolchain relies on independent components. Thus, if Dex2jar

cannot handle some obfuscation techniques it could easily

be replaced by an equivalent component which handles them.

5.5 Performance of Bytecode Manipulation

This section presents our performance measures of in-vivo

bytecode manipulation using two different instrumentation

libraries: ASM and Soot.

5.5.1 Manipulation With ASM

Transformation time of Java bytecode using ASM is repre-

sented in Figure 7. In this experiment the AdRemover trans-

formation described in 2.1 is implemented using ASM.

Observation 4 All 104 applications successfully transformed

with dex2jar on smartphone2 are successfully processed by

ASM in-vivo. It processes every jar (up to 4MiB in size) in

less than 600 seconds.

Observation 5 We notice that the transformation time is lin-

ear with the size of the jar files (of the form a · X + b) for

a Dalvik bytecode size less than 4000 KiB. Using linear re-

gression, we find that for smartphone2 a equals 0.146. For

tablet1 we have, 0.025.

Conclusion 2 Manipulating bytecode on smartphones using

ASM is feasible. Given our transformation and our dataset,

ASM does not have specific memory or CPU requirements

that are incompatible with smartphone resources.

5.5.2 Manipulation With Soot

We now consider the Soot implementation of the AdRemover

transformation. Out of the 130 Android applications, only

3/130 are correctly processed on smartphone2 and 19/130

are correctly processed on tablet1.

Observation 6 Only the smallest applications (in terms of

Dalvik bytecode) can be converted. For instance, it takes less

than 30 seconds to convert any jar which size is less or equal

to 20 KiB on smartphone2. However, larger, yet small appli-

cations (in the 25% quartile), take up to 18 minutes for being

instrumented with Soot.

Conclusion 3 Using Soot in-vivo is feasible only for the

smallest applications. We assume that the heap size is the

main blocking factor of using Soot in-vivo. To check this

assumption, we conducted an experiment on a desktop com-

puter consisting of analyzing our dataset of Android appli-

cations with different maximal heap sizes (from 5 Mib to

50 Mib by steps of 5 Mib). Results are presented Fig. 8.

Soot was able to process 67 applications with a heap size

of 50 Mib. Those results clearly indicate that maximum half

of the Android applications could be processed with a heap

size of 50 MiB. Under the assumption that the heap usage

(hence the maximum required size) is similar on the Java

and Dalvik virtual machines, it means that the memory is

actually the main blocking factor of using Soot on Android.

5.6 Java Bytecode to Dalvik Conversion

Once an application has been instrumented at the Java byte-

code level, it has to be transformed back into Dalvik byte-

code. Conversion time from Java classes to the dex file using

the dx tool is shown in Fig. 9.
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Fig. 9 Conversion Time of In-Vivo Java Bytecode to Dalvik Transla-

tion.

Observation 7 Java bytecode of 33/130 on smartphone2

and and 39/130 applications on tablet1, respectively, have

been successfully converted to Dalvik bytecode.

Observation 8 Conversion time for jar files ranging from 20

to 400 KiB does not exceed 80 seconds.

Conclusion 4 The Dx tool is a bottleneck of the tool chain.

It can only correctly process 25 to 30% of the applications.

The reason is that it puts every Java class in memory and

suffers from the memory limitation of in-vivo processing,

similarly to Soot. This tool is used off the shelf and could be

optimized to run on devices where resources are limited, by

processing class after class to limit memory consumption. .

5.7 Creating a New apk File

The time taken to create an apk file from the instrumented

Dalvik bytecode is shown in Fig. 10. Note that for this step,

the input set is not the output of the previous step. We only
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Fig. 10 Creation Time of a New apk File In-Vivo

have 39/130 applications that have been correctly processed

in the previous steps. At every step, some applications failed.

For the remaining 91/130 applications where the final instru-

mented Dalvik bytecode could not be computed, we take as

input the original Dalvik dex file of the application. In this

way, the problems of the previous step do not interfere with

the results of this fourth step.

Observation 9 121/130 inputs were successfully processed.

There is no clear relation between the size of the previous

apk file and the creation time of the new apk. Only 9/130

applications generate an exception because their size is too

big and can thus not be processed by the zip utility.

Observation 10 For 95% of the applications it takes less

than five seconds regardless of the device and of the size of

the original apk file.

Conclusion 5 It is feasible to create apk files on smart-

phones. The time to create a new apk file is negligible com-

pared to the time to convert bytecode or to manipulate byte-

code with Soot.

There is no linear relation with the Dalvik size as it is

the case in Fig. 6 and 9. This is probably due to the fact

that when generating apk files, others factors than the byte-

code size come into play, such as handling the media files

(images, sound, etc.), which sometimes dominate the Dalvik

bytecode size.

5.8 Signing the Generated apk File

Signing time of applications is represented in Figure 11.

Observation 11 120/130 Android applications were suc-

cessfully signed on tablet1. There is no clear relation be-

tween the size of the apk file and the signature time of the

apk file. 14/130 applications generate an exception because
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File

their size is too big and can thus not be processed (14 on

smartphone2 and 10 on tablet1).

Observation 12 For 95% of the applications a maximum of

12 seconds is required to sign the application regardless of

the device and the size of the apk file.

Conclusion 6 It is feasible to sign apk files on smartphones.

Similarly to the apk file creation step, the computation time

is negligible. The difference observed between smartphone1

and smartphone2 reflects the difference in their CPU clock

frequencies.

5.9 Conclusion

We now recapitulate the results of our experiments of in-

vivo modification of Android applications.

5.9.1 Feasibility

Table 3 summarizes all the experiments for smartphone2

and highlights the feasibility of the whole approach.

Total execution times for all steps of the toolchain are

computed for the Soot and ASM version. For an ASM-based

instrumentation it takes a median time of 120 seconds, that

is 2 minutes, to process an application. We think that users

would agree with waiting 2 minutes before starting using

an application, if they are provided more guarantees with

this instrumentation process enabling better privacy. During

those 2 minutes the phone is still usable since only once

core is used (most smartphones feature multi-core CPUs)

and only the maximum amount of heap memory allowed by

the virtual machine can be used (and not all memory).

Those experiments show that it is feasible to manipu-

late bytecode directly on Android devices. The most expen-

sive steps of the process are the conversion of Dalvik to Java

bytecode and vice versa, and the Soot bytecode manipula-

tion step.

5.9.2 How to Improve Performance of In-Vivo

Instrumentation?

According to our analysis, the main blocking factor is the

memory. The maximum heap size required to analyze and

transform applications is an issue for many transformation

steps. We think that this issue can easily be solved by 1)

the next generation of more powerful hardware and 2) the

upcoming versions of the Android OS and virtual machines

which will likely have a significantly higher maximum heap

size (e.g. Android 4 heap size is set to 48 MiB).

Dalvik to Java conversion and Java to Dalvik conversion

are two very time expensive steps. They use unmodified ver-

sions of Dex2jar and dx. There are two ways to overcome

those resource-hungry tools.

First, those tools were never optimized to run on plat-

forms with limited resources. We believe that there are many

optimization opportunities in terms of CPU and memory

consumption.

Second, one could replace those tools by better alter-

natives. For instance, an ASM-like library for manipulat-

ing Dalvik bytecode would allow to skip Dalvik-to-Java and

Java-to-Dalvik conversion. Such tools are emerging such as

ASMdex7. Another solution would consist of performing bi-

directional transformations directly from Dalvik bytecode to

Jimple bytecode which are both register based. We are in-

deed working on a Dalvik to Jimple translation prototype

called Dexpler [15].

To sum up, our results show that we can reasonably imag-

ine to manipulate the bytecode on 100% of our dataset ap-

plications within at most 5 minutes.

5.9.3 Threats to Validity

Let us now discuss the threats to validity of our experimental

results.

Implementation Bug: Our results hold as far as there is no

serious bug in the implementation of any of the five pro-

grams involved in the five steps, as well as in the glue

and measurement code we wrote.

Dataset Generalizability: Our dataset may not be represen-

tative of the Android applications used in the real-world.

Linear Extrapolation: The linear relations we establish for

the Dalvik to Java and the Java to Dalvik conversions

holds for bytecode size less or equal to 300 KiB. It may

not hold for bytecode whose size is bigger. In the pres-

ence of non-linear singularities, it may not be possible

to analyze large applications.

7 See http://asm.ow2.org/asmdex-index.html

http://asm.ow2.org/asmdex-index.html


Step Name Min. Time

(s)

Avg. Time

(s)

Median

Time (s)

Max. Time

(s)

App. Feasibility

Conversion .dex to .jar (a-b) 0.22 43.76 28.9 250.2 104/130 (80%) ⋆⋆⋆

Analyzing .jar with Soot(b-c) 25.8 76 26 187.7 3/130 (2.3%)

Analyzing .jar with ASM(b-c) 1.55 90.45 65.1 594.67 129/130 (99.2%) ⋆⋆⋆⋆

Conversion class to dex (c-d) 0.09 28.07 22.8 71 39/130 (30%) ⋆⋆

Creating new .apk (d-e) 0.06 1.89 0.87 15.1 119/130 (91.5%) ⋆⋆⋆⋆

Signing new .apk (e-f) 0.71 3.85 3.0 21.67 116/130 (89.2%) ⋆⋆⋆⋆

All Steps with Soot (a-b-c-d-e-f) 26.88 153.57 81.57 545.67 3/130 (2.3%) ⋆

All Steps with ASM (a-b-c-d-e-f) 2.63 168.02 120.67 952.64 39/130 (30%) ⋆⋆⋆

Table 2 Summary Metrics of Our In-Vivo Instrumentation Process for Smartphone2. There are problematic steps but the overall process is feasible.

Step Name Min. Time

(s)

Avg. Time

(s)

Median

Time (s)

Max. Time

(s)

App. Feasibility

Conversion .dex to .jar (a-b) 0.19 25.6 17.85 158.9 119/130 (91.5%) ⋆⋆⋆

Analyzing .jar with Soot(b-c) 24.2 76 352 1054 19/130 (14.6%) ⋆

Analyzing .jar with ASM(b-c) 1.55 11.3 7.06 65.5 119/130 (91.5%) ⋆⋆⋆⋆

Conversion class to dex (c-d) 0.09 29.5 20.2 80.2 33/130 (25.3%) ⋆⋆

Creating new .apk (d-e) 0.03 1.6 0.5 20.9 121/130 (93.1%) ⋆⋆⋆⋆

Signing new .apk (e-f) 0.4 3.4 1.91 27.3 120/130 (92.3%) ⋆⋆⋆⋆

All Steps with Soot (a-b-c-d-e-f) 24.91 136.1 392.46 1341.3 19/130 (14.6%) ⋆

All Steps with ASM (a-b-c-d-e-f) 2.26 71.4 47.52 352.8 33/130 (25.3%) ⋆⋆⋆

Table 3 Summary Metrics of Our In-Vivo Instrumentation Process for (for Tablet1)

Bytecode Manipulation Time: Our results on the bytecode

manipulation time were obtained with relatively simple

transformations. It may be the case that complex trans-

formations are not of the same order of magnitude and

consume much more memory. However, for the use cases

presented in Section 2, the instrumentation only consists

in monitoring and proxying Java methods.

6 Related Work

Monitoring Applications Monitoring smartphone applica-

tions at runtime is an idea which recently emerged, due to

the explosion of “mobile” malware and the increasing so-

phistication of mobile OS.

Bose et al. [16] aimed at detecting malware based on

their behavior at runtime. For this, they added hooks in the

Symbian OS emulator to track OS and API calls. In other

words, malware detection is only achieved in the emulator,

in vitro. On the contrary, we aim malware detection in live

user environments, in vivo and showed in this paper that is

it is feasible in the mid-term.

Enck et al. [17] presented a runtime monitoring frame-

work called TaintDroid, which allows taint tracking and anal-

ysis to track privacy leaks in Android. Their prototype is

based on a modified version of the Dalvik virtual machine

which runs Android applications. Similarly, Costa et al. [18]

extends the Java virtual machine for mobile devices (Java

ME) for adding runtime monitoring capabilities. On the con-

trary, our feasibility study indicates that it is possible to achieve

runtime monitoring in an unmodified Android system.

Recently, Burgera et al. [19] presented an approach to

detect malware based on collected operating system calls.

Runtime monitoring can be done at different granularity lev-

els. While the approach described by Burgera et al. is at the

OS call level, we aim at providing runtime monitoring at the

API call level, i.e. much more fine-grained and closer to the

application domain of mobile applications.

Davis et al. [20] presented an Android Application rewrit-

ing framework prototype, and discussed its use for monitor-

ing an application, and for implementing fine-grained Ac-

cess Control.

Finally, Shabtai et al. detects malware based on the col-

lection and analysis of various system metrics, such as CPU

usage, number of packets sent through the Wi-Fi, etc. This

is an indirect way of detecting malware behavior. Again, by

monitoring API calls, we observe the application behavior

directly. The empirical results presented in this paper shows

that this is actually possible.

Advertisement Permissions Separation Shekhar et al. [5]

proposed a new Android advertisement system that would

allow to have an application and its advertisement module

to run in different processes, and hence have a different per-

mission set. This new system has to be manually inserted

into the application during the development phase, since no

automated application modification is provided.



Pearce et al. [4] made the case for an advertisement frame-

work that would be integrated inside the Android platform.

Every developer would be able to use the custom-built API

that would be available on Android devices. This approach

requires a modification of the Android framework, and that

a given user has a device with a Android version embeding

this advertisement system.

Permission Policy Erlingsson et al. and Evans et al. [10,

11, 12] were the first to manipulate bytecode to weave a se-

curity policy directly in a Java programs. Their Inline Ref-

erence Monitor (IRM) technique allows (1) to completely

separate the program development from the policy defini-

tion and (2) to have a policy mechanism independent of the

Java Virtual Machine on which the program is running. We

also weave the security policy directly in Android applica-

tions, obtaining robust Android applications whose security

policy is independent of the Android system on which they

are running.

Closest to our work are two Dalvik bytecode manipu-

lation systems: I-Arm Droid [21] and Mr. Hide [22]. The

main difference is that our approach runs in-vivo whereas

theirs does not.

In-vivo bytecode manipulation is also achieved by App-

Guard [23, 24]. However, the approach is based on dexlib a

bytecode manipulation library which does not offer an ab-

stract representation like Jimple with Soot. Thus, more ad-

vanced reasoning on the bytecode (on graphs for instance)

is difficult with their approach.

Redirecting methods of interest to a monitor is the basic

of IRM. Von Styp-Rekowsky et al. present a novel approach

by modifying the equivalent of Dalvik function pointers at

runtime [25]. Such an approach reduces the overhead and

could easily be adopted by our fine-grained permission sys-

tem.

Xu et al. present Aurasium [26], another permission man-

agement system. It does operate at the level of C libraries

and redirect low level functions of interest to the monitor.

Operating at this low level makes it difficult to inject fake

values and to differentiate between normal and Java-level

security relevant operations.

Reddy et al. [27] claim that security of the Android plat-

form would be improved by creating “application-centric

permissions” i.e. permissions expressing what an applica-

tion can do rather than current Android permissions that ex-

press what resource an application can use. They wrote a li-

brary that allows the ‘application-centric permissions” to be

managed. In addition, they started developing a tool called

“redexer” whose aim is to automatically rewrite existing ap-

plications in order for them to use these new permissions.

Nauman et al. [28] extended the Android policy-based

security model so that it can enforce constraints at runtime.

The tool they created, called Apex, allows a user to express

limits imposed to an application’s use of any permission:

For example, it becomes possible with Apex to grant the

SEND_SMS permission to any given application while en-

suring that this application will not be able to send more than

a user-defined amount a text message each day. The user

also has the possibility to change her mind, and to totally

prevent the application from sending short messages; This

is an important improvement over the stock Android OS be-

cause it allows users to specify a much finer-grained policy,

instead of having to choose between either granting an ap-

plication every permission it may request at installation time

or not installing this application. However, this approach re-

quires modifications deep inside the Android framework,

and hence would need to be backed by Google and inte-

grated into future versions of Android if it was to be widely

used.

7 Conclusion

The toolchain we propose and evaluate in this paper is a

milestone that respond to the recent claim of Stravou et al.

[2] about the urgent need for bytecode analysis to perform

in-vivo security checks on mobile phones. We have 1) pro-

posed a tool chain allowing the manipulation, instrumenta-

tion and analysis of Android bytecode and 2) shown that it

is possible to run the tool chain in a reasonable amount of

time directly on unmodified smartphones with unmodified

Android software stack. Concretely, our experiment shows

that with ASM, 39 (30%) applications of our dataset can be

instrumented in less than 952 seconds (with a median time

of 120s). Moreover, we discuss specific limitations that we

observed, such as the hard-coded heap size of Android sys-

tems.

We believe that those various limitations could be quickly

overcome, at least for two main reasons. First, we used off-

the-shelf Java tools that are not optimized to run on envi-

ronments where resources (memory/CPU) are limited, and

there may be possibilities of significant optimization. Sec-

ond, the hardware and OS evolution of smartphones will

make it possible to process ever bigger Android applications

(for instance, on Android 4, the default size of the heap is

twice as large as in the previous version).

We are currently working on other use cases. In partic-

ular, we are implementing a behavioral malware detection

approach that is set up and run on the smartphone. This ap-

proach involves instrumenting the bytecode to redirect API

method calls to stubs responsible for detecting malicious be-

havior.
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