RETALIS LANGUAGE FOR INFORMATION
ENGINEERING IN AUTONOMOUS ROBOT SOFTWARE

POUYAN ZIAFATI®"* MEHDI DASTANI?, JOHN-JULES MEYER?,
LEENDERT VAN DER TORRE®“ AND HOLGER V00s®
@Centre for Security, Reliability and Trust (SnT), University of Luxembourg
b Intelligent Systems Group, Utrecht University
¢Computer Science and Communications Research Unit, University of Luzembourg
{Pouyan.Ziafati, Leon.Vandertorre, Holger.Voos}@uni.lu
{M.M.Dastani, J.J.C.Meyer}@uu.nl

Abstract

Robotic information engineering is the processing and management of data
to create knowledge of the robot’s environment. It is an essential robotic tech-
nique to apply AI methods such as situation awareness, task-level planning and
knowledge-intensive task execution. Consequently, information engineering has
been identified as a major challenge to make robotic systems more responsive
to real-world situations. The Retalis language integrates EFLE and SLR, two
logic-based languages. Retalis is used to develop information engineering com-
ponents of autonomous robots. In such a component, ELE is used for temporal
and logical reasoning, and data transformation in flows of data. SLR is used
to implement a knowledge base maintaining a history of events. SLR supports
state-based representation of knowledge built upon discrete sensory data, man-
agement of sensory data in active memories and synchronization of queries over
asynchronous sensory data. In this paper, we introduce eight requirements for
robotic information engineering, and we show how Retalis unifies and advances
the state-of-the-art research on robotic information engineering. Moreover, we
evaluate the efficiency of Retalis by implementing an application for a NAO
robot. Retalis receives events about the positions of objects with respect to the
top camera of NAO robot, the transformation among the coordinate frames of

We would like to thank three anonymous reviewers for their valuable comments and suggestions to
improve the quality of this paper. We would like to thank also Yehia El Rakaiby, Sergio Sousa, and
Marc van Zee for their contributions in implementation or preparing the previous presentations of
this work.

*Sponsored by Fonds National de la Recherche Luzembourg (FNR).

Vol. 2 No. 2 2015
IFCoLog Journal of Logic and its Applications



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

NAO robot, and the location of the NAO robot in the environment. About
one thousand and nine hundreds events per second are processed in real-time
to calculate the positions of objects in the environment.

1 Introduction

Robotic information engineering is the processing and management of data to create
knowledge of the robot’s environment. In artificial intelligence (AI), knowledge of
the environment is typically represented in symbolic form. Symbolic representation
of knowledge is essential for robots with Al capabilities such as situation aware-
ness, task-level planning, knowledge-intensive task execution and human interac-
tion [66, 14}, [8T) [72, 50]. Challenges of robotic information engineering include the
processing and management of incremental, discrete and asynchronous sensory data
such as recognized faceq| [25], objects?] [9], gestures [69] and behaviors [59]. Data
processing includes applying logical, temporal, spatial and probabilistic reasoning
techniques |71}, 41, 16, 50, 46, 30} ©65].

Both on-demand and on-flow processing of sensory data are necessary for a
timely extraction and dissemination of information in robot software. On-demand
processing is the modeling and management of data in different memory profiles
such as short, episodic and semantic memories [79, 80l 65 [70]. Memory profiles are
accessed and processed when required. For example, a plan execution component
requests the location of a previously observed object in order to find it. On-flow
processing is the processing of sensory data on the fly in order to extract information
about the environment. An example is the monitoring of smoke and temperature
sensor readings in order to detect fire. A fire alarm should be generated if there is
smoke and the temperature is high, observed by sensors in close proximity within
a given time interval. A notification about fire detection is sent, for instance, to a
plan execution component to react on it. We refer to receivers of the notifications
as consumers.

On-demand processing includes the following requirements.

1. Memorizing: data should be recorded selectively to avoid overloading memory.

2. Forgetting: outdated data should be pruned to bound the amount of recorded
data in memory.

3. Active memory: memory should notify consumers when it is updated with
relevant information. In this way, consumers can access the information at
their time of convenience.

"http://wiki.ROS.org/face_recognition
Zhttp://wiki.ROS.org/object_ recognition



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

4. State-based representation: knowledge about the state of the robot’s environ-
ment should be derived from discrete observations.

On-flow processing includes the following requirements.

1. Even-driven and incremental processing: on-flow processing requires a real-
time event-driven processing model. Relevant information should be derived
as soon as it can be inferred from the sensory data received so far. Therefore,
sensory data should be processed and reasoned about as soon as they are
received by the system. Moreover, real-time processing of sensory data requires
incremental processing techniques.

2. Temporal pattern detection and transformation: on-flow processing requires
detecting temporal patterns in flow of data and transforming data into suit-
able representations. The detection and transformation of data patterns are
required to correlate and aggregate sensory data and detect high-level events
occurring in the robot’s environment.

3. Subscription: information derived from on-flow processing of data should be
disseminated selectively. This is needed, for instance, not to overload a plan
execution component with irrelevant events.

4. Garbage collection: records of data should be kept as far as they can contribute
to derive relevant information and pruned afterwards. In the fire alarm ex-
ample, a detection of smoke needs to be kept for a specified time period. If a
relevant sensor detects a high temperature during this period, a fire alarm is
generated. The record of the detected smoke is disregarded afterwards.

The aim of this paper is to support robotic information engineering. A key
concern to develop affordable, maintainable and reliable robot software is the sup-
port of re-usability in development [19, 20} 35]. Support of information engineering
includes identifying the requirements and providing re-usable solutions to require-
ments. Re-usability advances robot software by reducing development, maintenance
and benchmarking costs [35], 54}, 55 [42] [13], B7]. A robotic language should support
information engineering as follows. First, it should support implementation at a
suitable level of abstraction. This includes a qualitative representation of temporal
relations among events as opposed to specifying such relations by occurrence times
of events. Second, it should support efficient implementation, because an incre-
mental processing and management of sensory data requires specialized algorithms
and implementation care. Third, it should have clear semantics to support the cor-
rectness of implementation. In particular, the language semantics should take the
asynchronicity of data into account. Fourth, it should support Al reasoning tech-
niques as its built-in functionalities or by integration of relevant tools and libraries.
For instance, logical and spatial reasoning capabilities are often necessary to rea-



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

son about the domain and common-sense knowledge, and spatial relations among
objects.

Current systems do not support both on-flow and on-demand processing. The
following examples illustrate the need to combine on-flow and on-demand processing.
First, active memories generate events when the contents of their memories change.
It is desirable that a consumer is able to subscribe for notification when a pattern of
such changes occurs [80]. This requires an on-flow processing mechanism to process
the memory events to detect relevant patterns of memory updates. Second, on-flow
processing is needed for transforming data to a compact and suitable representation
before recording it in memory. Third, simpler and more efficient implementation of
some on-flow processing tasks can be achieved by mixing on-flow pattern recognition
with on-demand querying of data in memory. In addition, on-flow and on-demand
processing support of existing systems is limited. Open-source robotic software
such as ROS [61] only facilitate flows of data among components. A state-of-the-art
system is DyKnow [42},38], which integrates multiple tools such as C-SPARQL [12] to
support on-flow processing [27), 144} 39]. C-SPARQL does not support the expression
of qualitative temporal relations among data or the filtering of data patterns based
on their durations. Such capabilities are desirable, if not necessary, to capture
complex data patterns [4]. In addition, on-flow processing in DyKnow requires
semantic annotation of flows of data. Such semantic annotation is not provided
in ROS software, widely used by the community, inducing programming overhead.
Moreover, DyKnow is not available as open-source. Current on-demand processing
systems often support either logical reasoning or active memory, but not both. An
exception is the logic-based knowledge management system ORO [50, 49]. ORO
supports active memory, but its support for the following on-demand requirements
are limited. First, ORO does not support selectively memorizing data. All input
data is recorded. Second, forgetting is limited to fixed memory profiles. It is not
possible to specify forgetting policies based on types of data. Third, due to the
open world assumption, representing and reasoning about dynamics of the robot’s
environment is difficult in ORO.

This paper introduces Retalis (ETAL[5E| [6, 5l B] for Robotics) to supports on-
flow and on-demand logical and temporal reasoning over sensory data and the state
of robot’s environment. Retalis is open sourceﬁ and has been integrated in ROS.
Retalis integrates the Etalis language for events (ELE)H for on-flow and develops
the Synchronized Logical Reasoning language (SLR) [83] for on-demand processing.

3Event TrAnsaction Logic Inference System, http://code.google.com/p/etalis/

“https://github.com/procrob/Retalis

SETALIS provides also the Event Processing SPARQL language (EP-SPARQL) [4] for event
processing in Semantic Web applications.



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

By a seamless integration of these languages, Retalis supports the implementation
of both on-flow and on-demand functionalities in one program.

The remainder of this paper is organized as follows. Section 2 presents a running
example. Section 3 gives an overview of Retalis. Section 4 discusses on-flow pro-
cessing requirements and describes ELE. Section 5 discusses on-demand processing
requirements and presents SLR. Section 6 provides an evaluation of Retalis. Finally,
Section 7 presents future work and concludes the paper.

2 Running Example

This section presents an example to illustrate the concepts and functionalities of
Retalis. A robot is situated in a dynamic environment informing a person about
the objects around it. The environment is described by a set of entities eg,eo, ....
These include the moving base of the robot, the pan-tilt 3D camera cam of the robot
mounted on the base, a set of tables tablei, tables, ..., a set of objects 01, 09, ..., a set
of people f1, fa, ..., a set of attributes and a reference coordination frame rcf.

Figure [I] presents the robot’s software components and their interactions. This
figure should be read as follows. Directed arrows visualize asynchronous flows of
data and two-way arrows represents request-response service calls. Asynchronous
communications among the components are in the form of events. An event is a
time-stamped piece of data formally defined in Section

IEC faceRec

baseCtrl

mainCitrl camCitrl stateRec

Figure 1: Robot’s software components

The robot software includes the following components.

faceRec component: processes images from the camera, outputting face(f;, p;)*
events. A face(f;, p;)! event represents the recognition of the face of f; with
confidence value p; in a picture taken at time t.




ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

segRec component: uses a real-time algorithm to process images from the camera
into 3D point cloud data segments corresponding to individual objects. Such
an algorithm is presented by Uckermann et al. [74]. The segRec component
outputs seg(o;, ¢, P, lg,pclh)t events. Such an event represents the recognition
of object o;, with color ¢;, with probability p, with relative position [, to the
cam, with the 3D point cloud data segment pcl;, recognized from a picture
taken at time t. For events of the recognition of the same object segment over
time, a unique identifier o; is assigned using an anchoring and data association
algorithm. Such an algorithm is presented by Elfring et al. [30].

objRec component: processes 3D point cloud data segments, outputting events of
the form obj(0;,0tj, pr)’. Such an event represents the recognition of object
type ot; with probability pj, for object o; recognized from a picture taken at
time ¢.

stateRec component: localizes the robot. It outputs two types of events. A
tf(rcf,base, I )t event represents the relative position between the reference co-
ordination frame and the robot base at time t. A tf(base,cam, ;) event rep-
resents the relative position between the robot base and its camera at time .

camCtrl and baseCtrl components: receive events of type pos_ goal(l), each con-
taining a position [ to point the camera toward [ or move the robot base to [,
respectively.

IEC component: processes and manages events from faceRec, segRec, stateRec
components. It detects reliable recognition of faces and objects and their
movements to inform the mainCtrl component. Moreover, it positions objects
in the reference coordination frame. In addition, it sends point cloud data of
some objects to the objRec components to have their types recognized. The
IEC component receives recognized types of objects from objRec as events
and maintains the history of recognized faces and objects. It also controls the
camera’s position to follow a specific entity by sending perceived positions of
the entity to camCtri.

mainCtrl component: is responsible for interacting with the user. It moves the
robot base by sending commands to the baseCtrl component. It receives events
from IEC about the movements of objects to inform the user. The mainCtrl
component queries ITEC to answer the questions of the user.



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

3 Architectural Overview of Retalis

Retalis is a language for implementing Information Engineering Components (IECS)
of autonomous robot systems. IECs are software components implementing a vari-
ety of information processing and management functionalities. IEC's are distributed
independent components operating with other software components in parallel. Re-
talis does not impose any restriction on how components are structured in robot
software.

Retalis represents and manipulates data as events. Events are time-stamped dis-
crete pieces of data whose syntax is the same as Prolog ground terms [23] 53]. Events
contain perceptual information such as a robot’s position at a time or recognized
objects in a picture. The meaning of events is domain-specific. The time-stamp of
an event is a time point or a time interval referring to the occurrence time of the
event. Events are time-stamped by the components generating them. E] For exam-
ple, the event face(‘Neda’,70)*® could mean a recognition of Neda’s face with 70%
confidence in a picture taken at time 28 and the event observed(‘Neda’){?49) could
mean a frequent recognition of Neda’s face in pictures taken during time interval
[28,49]. An event containing information from processing of sensory data is usually
time-stamped with the time at which the sensory data is acquired. This is usually
different from the time point when the processing of the data is finished. A compos-
ite event generated from an occurrence of a pattern of other events is time-stamped
based on the occurrence times of its composing events.

Retalis comprises two logic-based languages. The FLE language [6, [, 3] sup-
ports on-flow processing and the SLR language [83] supports on-demand processing
of data. In the Retalis program of an IEC, ELE generates composite events by
detecting event patterns of interest in the input flow of events to the IEC. SLR is
used to implement a knowledge base maintaining the history of some events. The
knowledge base contains domain knowledge, including rules to reason about the
recorded history. The flow of events processed by the IFC includes its input events
and the composite events it generates. This means that composite events can in turn
be used to detect other events. The robot software presented in Figure [1| includes
one IEC component. Robot software can include a number of IEC' components in
order to modularize different information engineering tasks and to use distributed
and parallel computing resources.

Figure [2| depicts the architecture of an IEC, including its logical components im-
plemented in Retalis. This figure must be read as follows. Directed arrows visualize

5We assume all components share a central clock which is usually the clock of the computer
running the components. If there is a network of computers running the components, time should
be synchronized among them.



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

IEC

Provider 1

Consumer 1

/

) Etalis f< .
Consumer m / Q]Je[ry Provider n

AN SLR

<i\f_()‘ﬁ ng. :";’

Figure 2: IEC architecture

asynchronous flows of events. Two-way arrows represent queries to SLR by ELE
and external components.

Retalis supports the implementation of both synchronous and asynchronous in-
terfaces among IECs and other components. Asynchronous interaction is realized
as follows. The IEC subscribes to events provided by provider 1, .., provider n.
Moreover, consumer 1, .., consumer n subscribe to the IEC for types of events. The
Retalis execution is event-driven. Input events are processed as they are received by
the IEC to derive new events. When an event is processed, the event and resulting
composite events are sent to interested consumers. The history of the input and de-
rived events is also recorded in memory according to the SLR specification. Retalis
specifications can be reconfigured at runtime. This includes the composite events to
be detected, the producers the IEC is subscribed to, the subscriptions of consumers
to the IEC, and the history of events maintained in memory.

Synchronous interactions between the ITEC and other components are as follows.
Components can query the domain knowledge and history of events in the SLR
knowledge base. Retalis provides a request-response service to query SLR. SLR is
a Prolog-based language, presented in Section . The evaluation of a SLR query
determines whether the query can be inferred from the knowledge base. The query
evaluation may result in a variable substitution. The IEC can also access the func-
tionalities of other software libraries or components. Function calls are supported
both when answering queries and detecting composite events. To integrate external
functionalities in Retalis, the corresponding software libraries should be interfaced
with Prolog.

The interactions between ELE and SLR are as follows. On the one hand, ELE
generates composite events. These events constitute the input flow of events to




© 00 J O U B W N =

RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

SLR. SLR selectively records these events in its knowledge base. On the other
hand, changes in the SLR knowledge base trigger corresponding input events for
ELE. ELE can be used, for instance, to detect a pattern of such changes to inform
the interested components. In addition, the specification of event patterns of interest
in FLE can include queries to SLR. Queries are used to reason about the domain
knowledge and history of events in SLR.

An FELFE program, described in Section contains two types of rules. The
rules that include the < symbol are event rules, specifying patterns of events to
derive new events. The rules that include the :- symbol are static rules, constituting
a Prolog program. The specification of the pattern of events in an event rule can
include a query to the Prolog program defined by the static rules. Retalis programs
are similar to ELFE programs. The main difference is that the static rules in Retalis
are SLR rules, constituting a SLR program which can be queries from the event
rules.

Listing [I] presents an example of how FLE and SLR are used together in a
Retalis program. This program records the position of the object segment 01 when-
ever the position is changed by more than a meter. This program is read as fol-
lows. Capital letters represent variables. The body of the first and third rules
are executed when the program is initialized. ¢_mem(my,loc(o1,L),00,00) is a SLR
clause creating memory mj recording the history of loc(o1,L)" events. The second
rule is an ELFE clause querying SLR, as written in its WHERE clause. For each
seg(o1,C,P,L,PCL)T input event, the prev clause queries memory container m; for
the last position of 01 before time T'. If the position has changed by more than a me-
ter, the corresponding loc(o1,L) event is generated and recorded in memory m;. In
addition, consumer mowving objects is notified by the corresponding event obj(o; )T .
This is specified by the third rule, which is read as follows. The subscription s;
subscribes consumer moving _objects to loc(O,L) events with the output template
0bj(0) from time 0. Details of the ELE and SLR languages are given in Sections

KT and 511

onProgramStart :— ¢ _mem(my ,loc (o1,L)7 ,00,00).

loc (o1,L)T <~ seg(o01,C,P,L,PCL)T
WHERE(
prev (my ,loc (o1 ,Lprev)TP’“ev ,T)
dist (L, Lpres ,D) ,
D>1
).




ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

10 onProgramStart :— sub(s;,moving_objects,loc (O,L),0bj(0),0).

Listing 1: Retalis Program Example

A Retalis program is parsed and executed by a Prolog execution system and
is provided a C++ interface for communication with external components. This
makes the Retalis language framework-independent, because its core depends only
on a Prolog execution system. We use S WI—Prolong] [78] as the Retalis execution
system and use the SWI-Prolog C++ interface{ﬂ to interface the SWI-Prolog with
C++. Retalis can be interfaced with existing robotic frameworks mapping its syn-
chronous and asynchronous interfaces to their service-based and publish-subscribe
communication mechanisms.

We have developed an interface to integrate Retalis with the ROS framework [61],
the current de-facto standard in open-source robotics. In the ROS architecture, each
IEC isa ROS componen‘ﬂ [61]. Asynchronous and synchronous communications in
ROS are realized using topics and services, respectively. By subscribing to a topic,
a component receives the messages other components publish on that topic. A
component invokes a service by sending a request message and receiving a response
message.

Figure [3| presents an IEC in a ROS architecture. IEC is subscribed to Topics I;
and [, receiving messages published by the components Cy and C3. IEC publishes
events on topics O1 and Oy to which other components are subscribed.

To subscribe an IEC to a topic, the Retalis-ROS interface requires the name and
message type of the topic. This is set in an XML configuration file, as in line 4-6
of Listing 2l The Retalis-ROS interface offers a number of services to reconfigure
the IEC at runtime. These include services to subscribe the IEC to a topic, to un-
subscribe from a topic and to subscribe a topic to events from the IEC. To publish
an event on a ROS topic, the Retalis- ROS interface needs to know the message type
of that topic. This can be set by the program, as in lines 7-9 of Listing [2 or at
runtime.

"http://www.swi-prolog.org
8http:/ /www.swi-prolog.org/pldoc/package/pl2cpp.html
“http://wiki.ROS.org/Nodes



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

" C1 — C2 —‘\
/”Ei TN
[ \ / \

i\Topic Ol.jl | Topic I1 |
\\ \ /

~ IEC N
7N TN
Topic Oz | Topic 12
N4 N

Cs

Figure 3: An IEC in ROS architecture

1|<?’XML version="1.0"7>

2|<publish_subscribe>

3

4| <subscribe to name="/ar_pose_marker"

5 msg_type="ar_ pose/ARMarkers"

6| />

7|  <publish_to name="robot__marker_pos"

8 msg_type="geometry_msgs/Transform"
9 />

10| <publish_to name="gazeControl"

11 msg_ type="headTurn/GazeControl"
12 />

13

14|</publish_subscribe>

Listing 2: Retalis-ROS XML configuration file

The conversion among ROS messages and Retalis events is performed automati-
cally by the Retalis-ROS interface. This may be described by an example. Table [T}
consisting of five columns, depicts five standard ROS message types. The first row
in each column is the name of a unique message type. The other rows presents the
fields of data that the message type contains. Each field of a message contains a sin-
gle datum or a list of data, whose type is a basic type such as Integer, Float, String,
or it is a ROS message type. For example, a geometry_msgs/Point message contains
three float values and a geometry msgs/Pose message has a geometry__msgs/Point
message as its first field of data.




ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

geometry_msgs/PoseStamped std__msgs/Header

std__msgs/Header header | uint32 seq

geometry__msgs/Pose pose | time stamp
string frame id

geometry_msgs/Pose
geometry__msgs/Point p
geometry_msgs/Quaternion o

geometry msgs/Point geometry msgs/Quaternion
float64 x | Hloat64 X
float64 y | float64 y
float64 z | float64 z
float64 w

Table 1: ROS message examples

Listing |3| presents the conversion of the geometry msgs/PoseStamped ROS mes-
sage type to its corresponding Retalis event. The conversion maps each ROS message
to a Prolog compound term where the functor symbol of the term is the name of
the message type and its arguments are the data fields of the message. Data of
basic types such as Integer and Floats are represented by their values. Strings are
wrapped by single quotes represented as Prolog Strings. Lists of data are represented
as Prolog lists. Time in ROS is a basic data type expressed by two Integer values
represented in a Retalis event as a list of two numbers.

When converting a ROS message to a Retalis event, the event is time-stamped
with the time-stamp of the header of the message. If the message does not have a
header, the event is time-stamped with the system current time. When converting a
Retalis event to a ROS message, the time-stamp of the event is ignored. However, the
Retalis language provides direct references to time-stamp of events. This can be used
to set the stamp in the std_msgs header(seq,stamp,frame__id) argument of an
event and hence in the header of its corresponding ROS message. ROS messages
from different topics can be of the same type and need to be distinguished. Therefore,
we encode topic names as main functor symbols of corresponding Retalis events.
For example, if the event p,(t1,..,t,)* is received from the topic x, the event is
represented as z(pp (t1, .., tn))*.



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

1| geometry_msgs ___ PoseStamped (

2 std_msgs____Header(seq ,stamp , frame_id),

3 geometry msgs  Pose(

4 geometry_msgs __ Point(x,y,z),

5 geometry msgs _ Quaternion(x,y
7 W)

6 )

7 ) stamp

Listing 3: Retalis event format corresponding to geometry msgs/PoseStamped
ROS message type

4 On-Flow Information Processing

This section discusses on-flow processing requirements of robotic information engi-
neering. It suggests the information flow processing systems [26], and in particular
the FLE event-processing language [0, [5 3], as suitable technologies to address the
requirements. On-flow processing of data is widespread in large areas of robot soft-
ware. As examples, we discuss in this section four robotic situations where on-flow
processing of data is very useful.

The first situation is decoupling components interacting in robot software. This
is usually supported by a publish-subscribe communication mechanism [31] based
on an indirect addressing style [20} [80} [61) [42]. The publish-subscribe mechanism
organizes robot software in a data-driven manner where components continuously
process data generated by the other components. However, due to limited resources
of a robot, sensory data needs to be processed selectively. This requires filtering
of data passed among components. Data should be filtered based on the robot’s
operational context, such as its focus of attention. One way to support the filtering
of data is to write complex software components whose processes can be reconfigured
at runtime. However, such a reconfiguration might not be supported by the available
components. The publish-subscribe support in most existing robotic frameworks is
limited to topic-based interactions. Providers publish data items on topics, which
are received by subscribers to those topics. In these frameworks, a component is
usually subscribed to a fixed set of topics. More flexible and context-dependent
interaction requires subscribers being able to specify their data of interest based
on data patterns and policies [80, 42, 54]. Consider a robot looking for reliable
recognition of yellow objects. The object segments sent to the object recognition
component should be filtered to include only the yellow and reliably recognized
object segments. Another example is the selective processing of new perceptions



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

of object segments by the object recognition component. A new perception of an
object should be processed only when the object was perceived at a new location
and this location did not change for a given time period.

The second situation is anchoring [24], creating symbolic representation of ob-
jects perceived from sensory data. The symbols and the data continuously sensed
about the objects should be correlated. In an anchoring process, sensory data is in-
terpreted into a set of hypotheses about recognized objects. For example, in a traffic
monitoring scenario [42], images from color and thermal cameras are processed into
a set of hypotheses about objects. The object hypotheses need to be correlated over
time to deal with the data association problem [I1]. There may be false positive
and negative percepts, temporal occlusions of objects and visually similar objects in
the environment. One can reason also about the hypotheses based on, for instance,
the normative characteristics of the physical objects they represent [40, [30]. For ex-
ample, in the traffic monitoring scenario, one can consider the positions and speeds
of objects perceived over time and the layout of the road network. This can be used
to reason about stationary and moving objects and their types. For instance, when
a car is observed again after a temporary occlusion, it should be assigned the same
symbol which was assigned to it previously.

The third situation pertains to flexible plan execution and monitoring in noisy
and dynamic environments. The execution of actions/plans are to be driven, mon-
itored and controlled by various conditions [76} 29, 8I]. Conditions are monitored
by low-level implementations of actions/behaviors to detect their success or failure.
However, control and monitoring of plan execution via observation of various con-
ditions at system-level is necessary. The advantages of system level plan execution
control and monitoring are to use data provided by different perception components
to achieve system’s goals, to avoid complicating implementation of actions and to
avoid duplicating monitoring functionalities. Depending on an application, condi-
tions to be monitored can be as simple as monitoring an object for being attached
to the manipulator. They can be also complex logical, temporal and numerical
conditions.

The fourth situation is high-level event recognition to recognize and react in real-
time to situations in the environment. One example is detecting traffic violations
such as reckless driving by observing qualitative spatial relations among cars [43].
Another example is detecting situations and events such as “successful pass”, “suc-
cessful tackle” and “goal scoring” in football simulation or “washing hand before
examination” and “basic clinical examinations carried out in time” in hospital simu-
lations from lower level events [62]. The last example is recognizing human activities
such as “cooking”, “eating” and “watching TV” in smart homes [58, [66]. Detecting
such situations of the environment requires correlating and aggregating sensory data



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

about changes of the environment based on their temporal and logical relations.

What all these situations have in common is a need for processing sensory data
flow to extract new knowledge as soon as the relevant data becomes available with-
out requiring persistent storage of data. Supporting on-flow processing requires an
expressive and efficient language for real-time processing of data flows based on
complex relations among the data items within the flows. On-flow processing is an
important requirement in various application domains [26]. In environment moni-
toring, sensory data is processed to acquire information about the observed world,
detect anomalies, or predict disasters. Financial applications analyze stock data to
identify trends. Banking fraud detection and network intrusion detection require
continuous processing of credit card transactions and network traffic, respectively.
RFID-based inventory management requires continuous analysis of RFID readings.
Manufacturing control systems often require observing system behavior to detect
anomalies. As the result of many years of research from different research commu-
nities on such application domains, a large number of “information flow processing
systems” have been developed to support on-flow processing of data [26].

An extensive survey of information flow processing systems [26] shows that the
functionalities of these systems are converging to a set of operations and processing
policies for on-flow filtering, combining and transformation of data, indicating uni-
versal usability of such functionalities for on-flow processing of data. This makes
the existing information flow processing systems amenable to support on-flow infor-
mation processing in robot software.

Current information flow processing research has led to two competing classes
of systems [26], Data Stream Management Systems (DSMSs) and Complex Event-
Processing Systems” (CEPSs). DSMSs functionalities resemble database manage-
ment systems. They process generic flow of data through a sequence of transforma-
tions based on common SQL operators like selections, aggregates and joins. Being
an extension of database systems, DSMSs focus on producing query answers, which
are continuously updated to adapt to the constantly changing contents of their input
data. In contrast, CEPSs see flowing data items as notification of events happening
in the external world. These events should be filtered and combined to detect oc-
currences of particular patterns of events representing higher level events. CEPSs
are rooted in publish-subscribe model. They increase the expressive power of sub-
scribing language in traditional publish-subscribe systems with the ability to specify
complex event patterns.

Both DSMSs and CEPSs have their own merits and the recent proposals at-
tempt to combine the best of both classes of systems [26]. However, at this stage,
the CEPSs are more suitable to support robotic on-flow processing due to the fol-
lowing reasons. First, the semantics given in CEPSSs to data items as being event



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

notifications naturally corresponds to time-stamped sensory data being observa-
tions of the environment by the robot perception components. Second, CEPSs put
great emphasis on detection and notification of complex patterns of events involving
sequence and ordering relations which constitutes a large number of robotic on-
flow information engineering problems which is usually out of the scope of DSMSs.
The rest of this section introduces ELFE, a state-of-the-art CEPS, and discusses its
suitability for robotic on-flow information engineering through its comparison with
related work.

4.1 [ETALIS Language for Events (ELE)

ELE{T_U] [6, B, B] is an expressive and efficient language with formal declarative se-
mantics for realizing complex event-processing functionalities. FLFE advances the
state-of-the-art CEPSs by allowing logical reasoning about domain knowledge in
the specification of complex event patterns. Logical reasoning can be used to relate
events, accomplish complex filtering and classification of events and enrich events
on the fly with relevant background knowledge.

Event-processing functionalities in the FLE language are implemented by pro-
gramming a set of static rules, encoding the domain knowledge and a set of event
rules, specifying event patterns of interest to be detected in flow of data. The de-
tected events can themselves match other event patterns, providing a flexible way
of composing events in various steps of a hierarchy.

Definition 1 (ELE Signature [6]). A signature (C,V, F,, Ps, PS) for ELE lan-
guage consists of:

e The set C of constant symbols.

The set V' of variables.

For n € N sets F), of function symbols of arity n.

For n € N sets PJ of static predicate symbols of arity n.

For n € N sets Py, of event predicate symbols of arity n with typical elements pf,,
disjoint from P;.

Based on the ELFE signature, the following notions are defined.

Definition 2 (Term [6]). A term ¢t :=c | v | fu(t1, ..oy tn) | DE(E1, ooy tn).

Definition 3 (Atom [6]). An static/event atom a ::= pf/e(tl, ...tn) where pf/e is
a static/event predicate symbol and t¢1, ..., %, are terms.

Ohttp://code.google.com/p/etalis/



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

For example, the face(F;,P;j) event atom is a template for observations of people’s
faces generated by the faceRec component.

Definition 4 (Event [6]). An event is a ground event atom time-stamped with an
occurrence time.

e An atomic event refers to an instantaneous occurrence of interest.
e A complex event refers to an occurrence with duration.

For example, the occurrence time of the atomic event face(’Neda’,70)?® is time 28
and the occurrence time of the complex event observed(’Neda’){?349)
(28, 49].

is time interval

Definition 5 (ELE Rule [6]). An ELFE rule is a static rule r* or an event rule r°.

e A static rule is a Horn clause a :- aq, ..., a, where a, a1, ..., a, are static atoms.
Static rules are used to encode the static knowledge of a domain.

e An event rule is a formula of the type p®(t1,..,t,) < cp where cp is an event
pattern containing all variables occurring in p®(t1, .., t,). An event rule specifies
a complex event to be detected based on a temporal pattern of the occurrence
of other events and the static knowledge.

Definition 6 (Event Pattern [6]). The language P of event patterns is
P :=p(t1,..,tn) | P WHERE t | q | (P).q | P BIN P | not(P).|P,P]

where p€ is an n-array event predicate, t; denote terms, ¢ is a term of type boolean,
q is a non-negative rational number, and BIN is one of the binary operators SEQ,
AND, PAR, OR, EQUALS, MEETS, DURING, STARTS, or FINISHES.

4.2 ELE Semantics

As opposed to most CEPSs, ELE has formal declarative semantics. The input to
an FLE program is modeled as an event stream, a flow of events. The input event
stream specifies that each atomic event occurs at a specific instance of time.

Definition 7 (Event Stream [6]). An event stream € : Ground® — 22" is a map-
ping from ground event atoms to sets of non-negative rational numbers.

For example, e(obj(o,c,p)) = {1, 3} means among all events received by ELE as its
input over its lifetime, the time points at which the event objRec(o, ¢, p) occurs are
1 and 3.



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

P1
P2
P3

Pz AND P3

[
Il
I

(Pl) 3 I —

P1SEQ P3

P1PAR P2 s

P2 OR P3 —

P3 STARTS P1

NOT(P3).[P1,P1]

P3 FINISHES P2
P2 MEETS P3 —
0o 1 2

Figure 4: ELFE event-processing operator examples, re-produced from [6]

Definition 8 (ELE semantics [6]). Given an ELE program with a set R of ELE
rules, an event stream €, an event atom a and two non-negative rational numbers
q1 and ¢o, the ELE semantics determines whether an event a{?-92) representing
the occurrence of a with the duration [¢1,¢2], can be inferred from R and € (i.e.

e R = aliae)).

Figure [ informally introduces the ELE semantics. It provides examples of
how ELE operators are used to specify complex events in terms of simpler ones.
The first three lines show occurrences of the instances of events P;, P» and P
during time interval [0,10]. The vertical dashed lines represent units of system time
and horizontal bars represent detected complex events for the given patterns. The
presented patterns are read as follows:

1. P, AND Ps: occurrence of both P, and Ps.
2. (P1).3 : occurrence of P; within an interval of length 3 time units.
3. P, SEQ Ps : occurrence of Pj after occurrence of Pj.

4. Py PAR P;: occurrence of both P; and P, with non-zero overlap.




RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

5. P» OR Ps: occurrence of P, or occurrence of P3
6. P DURING (1 seq 6): occurrence of P; during time interval [1,6]

7. P3 STARTS Pp: occurrence of P3 and P; both starting at the same time and
P5 ending earlier than P;.

8. P, EQUALS Ps: occurrence of P, and P3 both at the same time interval

9. not(Ps3).[P1, Pi] : occurrence of P; after occurrence of another P; where there
is no occurrence of P3 in between, during the end of the first P, and before
the start of the second P;.

10. P3 FINISHES Ps: occurrence of P3 and P, both ending at the same time and
Pj5 starting later than Ps.

11. P, MEETS Pj5: occurrence of P, and P3, P3 starting at the exact time P» is
ending.

For an example, consider the detection of fire from smoke and high temperature
sensor readings. This task is implemented using the following FLFE rule.

fireAlam
smoke(S1) AN D high__temperature(S2)
WHERE ( nearby(S1,52) ).

This rule is read as follows. S1 and S2 are variables. When smoke is detected by
a sensor S7 and high temprature is detected by a sensor S2, a fire alarm event is
generated, if these sensors are located nearby. If P2 and P3 in figure [ represent
smoke and high-temperature events from sensors located nearby, then a fire alarm
is generated four times during the time interval [0,10].

The static atom nearby(S1,52) presents an example of logical reasoning in ELF.
Given an ontology of sensors and their locations, this term specifies whether the
sensors are located in the same area. Static atoms can be used to implement arbi-
trary functionalities in Prolog. In addition, they can be used as interface to foreign
languages, for instance, to integrate libraries for spatial reasoning. In Retalis, ELE
static terms are replaced by SLR queries to, in addition, reason about histories of
events.

Complex events are time stamped based on the temporal patterns they represent.
For example in Figure [4] the occurrence times of the first instances of P2 and P3
events are the intervals [1,3] and [3,4], respectively. According to ELE semantics, a



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

fire alarm detected from these events is time stamped with time interval [1,4]. The
time stamp of detected patterns can be used to filter the patterns. For example, a
fire alarm should be generated, only if both smoke and high temperature are detected
within 300 seconds. This condition is added to the fire alarm pattern as follows.

fireAlam

(
smoke(S1) AN D high__temperature(S2)

WHERE ( nearby(S1,52) )
).300.

Filters on time intervals of event patterns are important for garbage collection. If the
fire alarm pattern does not contain the timing condition, a detection of smoke should
be recorded forever in order to generate an alarm whenever a high-temperature is
sensed. When the pattern includes the timing condition, the record is deleted after
300 seconds. After this time, the detection of smoke is no longer relevant, even if a
high temperature is detected. Irrelevant records of events are automatically deleted
by ELFE garbage collection mechanisms.

ELFE is free of operational side-effects, including the order among event rules and
delayed or out of order arrival of input events. For example, the sequence pattern
in Figure [4] detects three events during the time interval [0,10], no matter the order
in which ELF receives P1 and P3 events.

Listing [ presents an ELE program to illustrate the modeling capabilities of
the FLF language. In this program, the robot detects an event whenever a person
moves an object. Such an event is detected when a person’s face is observed while
the object is moved.

The program is read piece by piece. The first clause generates a see(f) event for
every two immediate consecutive recognitions of a face f, occurring with confidence
values over fifty within half a second. The variable F'is used to group the recognitions
of faces in the event pattern and to pass information to generated events. The
rule also explicitly encodes the start and end times of the sequence in content of
the generated event by Ty and T, Variablesﬂ The second clause detects reliable
recognition of objects, when recognized three times within half a second with average
confidence value over sixty. pos_awvg is a static atom computing position of the object
by averaging from its perceived positions. The third clause detects cases when an
object is moved over five centimetres within a second. The fourth clause combines

"' This is implemented by adding the C HECK (¢t1(Ts), t2(T.)) clause which, for brevity, has been
omitted.



© 00 N O Ut B W N =

W W N NN DN DN DN DN NN DN = = = e e
— O © 00 N O U kW N O © 00 3 O Ut i W N = O

RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

each two overlapping movement events of an object into a new one with a longer
occurrence time. The fifth clause combines two time periods of observing a person
if they occur within three seconds after each other. Finally, the last clause detects
when an object is moved during the time period a person is being observed.

see (F,Ts,Te) <—
(
NOT(face (F,P3)) .[face (F,P1), face(F,P2)]
WHERE(P1 > 50, P2 > 50)
).0.5s.

relSeg (O,L) <—
(
seg (0,C,P1,L1,X1) SEQ seg(0,C,P2,1L2,X2)
SEQ seg(0,C,P3,L3,X3)
WHERE( pos_ avg ([L1,L2,L3],L), avg([P1,P2,P3],P), P>60)
).0.5s.

mov(O,L1,L2,Ts,Te) <—
(
relSeg (O,L1) AND relSeg(0O,L2)
WHERE( dist ([L_2,L 1],L), L>0.05)
). 1ls.

mov (O, L1,L4,T1,T4) <—
mov(0,L1,L2,T1,T2) PAR mov(O,L3,L4,T3,T4)
WHERE( T3>T1) .

see (F,T1,T4) <
(see(F,T1,T2) SEQ see(F,T3,T4))
OR
(see(F,T1,T2) MEETS see(F,T3,T4))
WHERE( T3-T2<3) .

movBy (O,F,L2,T2) <—
mov (O,L1,L2,T1,T2) DURING see(F,T1,T2).

Listing 4: An ELFE program for monitoring objects moved by humans




ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

Assume an object has moved while the robot was seeing a face of a person.
If the robot continues to see the face, the above rules generate more and more
events indicating the person has moved the object, but one of such events might be
sufficient for an application. Each time a new event occurs, the event along with
the past events can match the pattern of a rule in several ways.

The ELFE language offers various consumption policies to filter our repetitive
rule firings. These includes policies to select a particular pattern among possible
matches and to limit the use of an event to fire a rule more than once. While such
policies are not aligned with declarative semantics of FLE, they are widely adopted
in CEPSs for practical reasons. ELFE also supports adding or deleting FLFE rules at
runtime allowing flexible reconfiguration of event-processing functionalities.

4.3 Runtime Subscription in Retalis

The FELFE interface facilitates programming a fixed set of output channels to deliver
certain types of events to consumers. Retalis extends this functionality enabling
robot software components to subscribe to Retalis for their events of interest at
run-time. The events are sent to subscribers asynchronously as soon as they are
processed by Retalis.

A component subscribes to Retalis by sending a subscription request using a
ROS service that the Retalis interface provides. A subscription is of the form
subscribe(Topic, Q, Tmpl, Ts,T.). The process of the request by Retalis results in
subscribing Topic to events matching the query pattern @Q that have occurred during
time interval [Ts,T.]. A query pattern @ is a tuple (e, Cond), where e is an event
atom and Cond is a set of conditions on variables which are arguments of e. An
event P matches a query pattern Q when there is a substitution which can unify p
and e and makes the conditions in Cond true (i.e. 30(p = qp)).

When a subscription is registered, every event matching the subscription is asyn-
chronously sent to the corresponding topic as the event is read from the Retalis input
or generated by ELFE rules. Events are first converted to the template form Tmpl be-
fore being sent to the topic. If a component does not know in advance the end time of
its subscription, it can subscribe to its events of interest using sub(Id, C, Q, Tmpl, T;)
and unsubscribe from them at any time using unsub(Id, T¢). Id is a unique identifier
of such a subscription.

Example 1. When the robot is asked to follow the object segment segll, the
control component sets the target location for the Gaze component to the loca-
tion of segll by sending the following subscription command to the Information-



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

Engineering Component.
sub(100, ‘camCtrl’, (relObj(‘segll’, L), ()), pos_goal(L), ‘now’)

Consequently, every time IEC processes an event relObj(‘segll’, L), it sends the
location L of segll to the Gaze in the pos_goal(L) format. To unsubscribe, the
control component sends the unsub(100, ‘now’) command to IEC.

4.4 Discussion

Previous robotic research is concerned with on-flow processing for specific research
tasks such as component interaction, anchoring, monitoring and event-recognition.
The consequence is the narrow scope of related robotic research reducing the commu-
nity collaboration in supporting on-flow processing in robotic software. For instance,
on-flow processing support of open-source robotic software such as ROS is limited
to fixed publish-subscribe flow of data among components.

In parallel to this research, the DyKnow [42], B8] framework has been extended
with a number of tools that are relevant to on-flow processing [27), [44] [39]. The main
feature of the work is the annotation of data streams and transformation processes
with semantic descriptions. The semantic descriptions are used for automatic con-
struction of streams of data. The C-SPARQL [12] language has been integrated to
support the querying of flows of data. C-SPARQL belongs to the DSMSs category
of on-flow processing systems. The advantages of ELE over C-SPARQL is its sup-
port for capturing complex data patterns. In contrast, the Retalis does not support
an automatic discovery of flows of data, for instance, required to detect a complex
event. The input and output subscriptions of Information-Engineering Components
and the event patterns they process are reconfigurable at runtime. However, such
reconfigurations are not made automatic.

The literature does not contain a comparison between the expressive power of
information flow processing systems. ELFE is one of the most expressive systems as
it supports most of the existing information flow processing operations listed in [26].
In particular, FLE supports the representation of all possible thirteen temporal
relations between time interval occurrence times of two events as defined in Allen’s
interval algebra [2], non-occurrence of an event between the occurrence of two other
events, and iterative and aggregating patterns. Furthermore, arbitrary processes can
be applied on events through the use of static atoms in FLFE syntax, provided that
such processes are interfaced with the Prolog language. An example is interfacing
spatial reasoning functionalities with Prolog presented in [72].



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

Logic-based approaches such as Chronicle Recognition [33] and FEvent Calcu-
lus [47, [67] have received considerable attention for event representation and recog-
nition due to their merits, including expressiveness, formal and declarative semantics
and being supported by machine learning tools to automate the construction and
refinement of event recognition rules [8, [6]. However, the query-response execution
mode and scalability of classic logic-based systems limits their usability for on-flow
information processing. The query-response execution means detecting an event
at runtime requires frequently querying the system for that event. Moreover, the
event is detected only when the next time the system is queried for that event. In
addition, efficient evaluation of such queries requires caching mechanisms not to re-
evaluate queries over all historic data [22]. ELE bridges the gap between CEPSSs
and logic-based event-recognition systems by offering a logic-based CEPS with an
event-driven, incremental and efficient execution model.

The IDA [80, 55] and CAST [37,136] are robotic frameworks supporting the sub-
scription of components to their events of interest based on the type and content
of events. Using XML data format in IDA, a subscriber can register for informa-
tion items containing specific field of data. IDA also provides few types of event
filters such as the Frequency filter, which outputs only every n-th received notifi-
cation. Retalis provides a general framework to address a much wider variety of
event processing requirements, including temporal and spatial reasoning over events
to detect complex event patterns. Moreover, the subscription mechanisms of IDA
and CAST are tightly built over their underlying middleware. In contrast, Retalis
is framework-independent and has been interfaced with ROS which is widely used
by robotic community.

The use of CEPSs for detecting high-level events in agent research has been
proposed before. Buford et al. [22] extend the BDI architecture with situation
management components for event correlation in distributed large-scale systems.
Ranathunga et al. [23] utilize the ESPER[T_ZI event-processing language to detect high-
level events in second life virtual environments[”] However this work is not concerned
with the robotic on-flow information-processing problem, it does not provide a formal
account of event processing and does not support run-time subscription. Other
related work includes various approaches for high-level event recognition, anchoring
and monitoring, for instance, using Chronicle recognition, constraint satisfaction or
variants of temporal logic [42), 58, 43| 28]. Such approaches do not satisfy all on-
flow information processing requirements. For instance, the Chronicle recognition
or constrained satisfaction approaches based on simple temporal networks cannot

2Esper Reference, Esper Team and EsperTech Inc, accessible at
http://esper.codehaus.org/esper-4.9.0/doc/reference/en-US /html single/
Bhttp://secondlife.com



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

express atemporal constraints, and temporal logic based approaches do not support
transformation of information.

5 On-Demand Information Processing

On-demand information processing corresponds to managing data in memory or
knowledge base to be queried and reasoned upon on request. This section presents
the SLR languager] to address on-demand processing requirements related to dis-
creteness, asynchronicity and continuity of robotic sensory data that are not sat-
isfactorily supported by existing systems. After a short introduction of these re-
quirements, the SLR syntax and semantics are presented and the usability of the
language and its relation with existing works is discussed.

Building robot knowledge based on discrete observations is not always a straight-
forward task, since events contain various information types that should be rep-
resented and treated differently. For example, to accurately calculate the robot
position at a time point, one needs to interpolate its value based on the discrete
observations of its value in time. Omne also needs to deal with the persistence of
knowledge and its temporal validity. For example, it might be reasonable to assume
that the color of an object remains the same until a new observation is made in-
dicating the change of color. In some other cases, it may not be safe to infer an
information, such as the location of an object, based on an observation that is made
in distant past. Building robot knowledge of its environment upon sensory events
requires language support to simplify reasoning about the state of the environment
at a time based on discrete observations of the environment.

A network of distributed and parallel components process robot sensory data
and send the resulting events to the knowledge base. Due to processing times of the
perception components and possible network delay, the knowledge base may receive
the events with some delays and not necessarily in the order of their occurrence. For
example, the event indicating the recognition of an object in a 3D image is generated
by the object recognition component sometime after the actual time at which the
object is observed, because of object recognition processing time. Another example
is when data is generated or needs to be verified by an external source with arbitrary
operating time. Therefore, when the knowledge base is queried, correct evaluation
of the query may require waiting for the perception components to finish processing
of sensory data to ensure that all data necessary to evaluate the query is present in
the knowledge base. For example, the query, “how many cups are on the table at
time t?7” should not be answered immediately at time ¢, but answering the query

1 An earlier version of SLR is appeared in a technical report before [83].



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

should be delayed until after completing the processing of pictures of the table by the
object recognition component and the reception of the results by the knowledge base.
Dealing with asynchronicity of sensory data requires supporting the implementation
of synchronization mechanisms to assure evaluating queries when relevant data to
queries are available in the knowledge base.

Robot perception components continuously send their observations to the knowl-
edge base, leading to a growth of memory required to store and maintain the robot
knowledge. The unlimited growth of the event history leads to a degradation of the
efficiency of query evaluation and may even lead to memory exhaustion. Bounding
the growth of memory requires supporting the implementation of mechanisms to
prune outdated data.

5.1 SLR Language for Event Management and Querying

Synchronized Logical Reasoning language (SLR) is a knowledge management and
querying language for robotic software enabling the high-level representation, query-
ing and maintenance of robot knowledge. In particular, SLR aims at simplifying
the representation of robot knowledge based on its discrete and asynchronous ob-
servations and improving efficiency and accuracy of query evaluation by providing
synchronization and event-history management mechanisms. These mechanisms fa-
cilitate ensuring that all data necessary to answer a query is gathered before the
query is answered and that outdated and unnecessary data is removed from mem-
ory.

In an Information-Engineering Component programmed in Retalis, the input to
SLR is the stream of events processed by ELFE. This consists of the input stream
of events to the IEC, time-stamped by the perception components and the events
generated and time-stamped by FLE. The SLR language bears close resemblance
to logic programming and is both in syntax and semantics very similar to Prolog.
Therefore, we first review the main elements of Prolog upon which we define the
SLR language.

In Prolog syntax, a term is an expression of the form p(ty,...,t,), where p is a
functor symbol and t1,...,t, are constants, variables or terms. A term is ground if
it contains no variables. A Horn clause is of the form a; A ... A a, — a, where
a is a term called the Head of the clause, and a1, ..., ay is called the Body where a;
are terms or negation of terms. a < true is called a fact and usually written as a.
A Prolog program P is a finite set of Horn clauses.

One executes a logic program by asking it a query. Prolog employs the SLDNF
resolution method [7] to determine whether or not a query follows from the program.
Given a goal, SLDNF tries to prove the goal using the rules and facts of the program.



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

A goal is proved if there is a variable substitution by applying which the goal matches
a fact, or matches the head of a rule and the goals in body of the rule can be proved
from left to right. Goals are resolved by trying the facts and rules in the order they
appear in the program. A query may result in a substitution of free variables. We

use P Fgsrpnr Q0 to denote a query (Q on a program P, resulting in a substitution
0.

5.1.1 SLR Syntax

An SLR signature includes constant symbols, Floating-point numbers, variables,
time points, and two types of functor symbols. Some functor symbols are ordinary
Prolog functor symbols called static functor symbols, while the others are called
event functor symbols.

Definition 9 (SLR Signature). A signature S = (C,R,V, Z, P%, P¢) for SLR lan-
guage consists of:

o A set C of constant symbols.

o A set R C R of real numbers.

A set V of variables.

A set Z C Ry>o UV of time points

P?, a set of PS of static functor symbols of arity n for n € N.

P¢, a set of P of event functor symbols of arity n for n € N,,>9, disjoint with P}.

Definition 10 (Term). A static/event term is of the form

tu=p5(t, ey tn) /D5 (t1, ...y t—a, 21, 22) where p$ € P35 and pS, € PS are static/event
functor symbols, t; are constant symbols, real numbers, variables or terms themselves
and z1, z9 are time points such that z; < zs.

For the sake of readability, an event term is denoted as py(t1,. .. ,tn_g)[zl’z2]. More-
over, an event term whose z; and zy are identical is denoted as py(t1,...,th—2)%.

Definition 11 (Event). An event is a ground event term py(t1, ...t,)?1?2l where
z1 is called the start time of the event and z9 is called its end time. The functor
symbol p, of an event is called its event typeF_gl

We introduce two types of static terms, next and prev which respectively refer to
occurrence of an event of a certain type observed right after and right before a time

5The representation of events in SLR and ELE is similar, but the SLR signature is defined in
a way to be close to Prolog.



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

point, if such an event exists. In the next section we provide the semantics. In this
section, we restrict ourselves to the syntax of SLR.

Definition 12 (Next Term). Given a signature S, a next term of the form
next(pp(t1, ...tn)[zl"z?}, Zs, Ze) has an py (t1, ...tn)[zl’zﬂ event term and two time points
Zs, Ze Tepresenting a time interval [zg, z.| as its arguments.

Definition 13 (Previous Term). Given a signature S, a previous term of the
form prev(py(t1, ...tn)#%2), 2,) has an event term py, (1, ...t,)?1*2 and a time point
Zg as its arguments.

Definition 14 (SLR Program). Given a signature S, an SLR program D consists
of a finite set of Horn clauses of the form a; A ... A a, — a built from the signature
S, where next and prev terms can only appear in the body of rules and the program
excludes event facts (i.e. events).

5.1.2 SLR Operational Semantics

An SLR knowledge base is modeled as an SLR program and an input stream of
events. In order to limit the scope of queries on a SLR knowledge base, we introduce
a notion of an event stream view, which contains all events occurring up to a certain
time point.

Definition 15 (Event Stream). An event stream € is a (possibly infinite) set of
events.

Definition 16 (Event Stream View). An event stream view €(z) is the maxi-
mum subset of event stream e such that events in €(z) have their end time before or
at time point z, i.e. €(2) = {pn(t1, ..., tno)P? € €] 2 < 2}.

Definition 17 (Knowledge Base). Given a signature S, a knowledge base k is a
tuple (D, e) where D is an SLR program and € is an event stream defined upon S.

Definition 18 (SLR Query). Given a signature S, an SLR query (@, z) on an
SLR knowledge base k consists of a regular Prolog query () built from the signature
S and a time point z. We write k Fgpr (@, 2)0 to denote an SLR query (@, z) on a
knowledge base k, resulting in a substitution 6.

The operational semantics of SLR for query evaluation follows the standard
Prolog operational semantics (i.e. unification, resolution and backtracking) [7] as
follows: The evaluation of a query (@, z) given an SLR knowledge base k = (D, ¢)



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

consists in performing a depth-first search to find a variable binding that enables
derivation of @) from the rules and static facts in D, and events in €. The result is a
set of substitutions (i.e. variable bindings) 6 such that D Ue Fgrpyr Q6 under the
condition that event terms which are not arguments of next and prev terms can be
unified with events that belonging to €(z).

The event stream models observations made by robot perception components.
Events are added to the SLR knowledge base in the form of facts when new obser-
vations are made. The z parameter of a query sets the scope of the query to set
of observations made up until time z. This means that the query (@, z) cannot be
evaluated before time z, since SLR would not have received the robot’s observations
necessary to evaluate ) and the query can be evaluated as soon as all observa-
tions up to time z is in place. The only exceptions are the prev and next clauses
whose evaluation might need observations made after time z. A query (Q,z) can
be posted to SLR long after time z, in which case the SLR knowledge base contains
observations made after time z. In order to have a clear semantics of queries, SLR
evaluates a query (@, z) by only taking into account the event facts in €(z). Regard-
less of the z parameters of queries, the next or prev clauses are evaluated based on
their declarative definitions as follows.

Definition 19 (Previous Term Semantics). A prev(p,(ty,...t,)*%2, z,) term
unifies pp (ty, ...t,) 0% with an event p,, (¢, ...t,)1#2! in e(z,) such that there is no
other such event in €(z,) that has its end time later than z4. If such a unification is
found, the prev clause succeeds and fails otherwise.

0 3pn( /1, t;l)[zivzé] c €(Zs)|
30((pa(tr, - t) 0 22)g = (pu(t], 17, F172])g)
A Bpn(t'1, .. 470)ET 1272 € ¢(2,))]
prev(pn (b, ) 20, 24) 279 > 2y A
37((pn(t1, ...tn)[zhzz]) A
(P (71, ...t ET0272) )

fails otherwise

By definition, the variable zs should be already instantiated when a prev clause is
evaluated and an error is generated otherwise. It is also worth noting that a prev
clause can be evaluated only after time z; when all relevant events with end time
earlier or equal to z; have been received by and stored in the SLR knowledge base.

Definition 20 (Next Term Semantics). A next(py(t1,..tn)F0%2) 2, 2.) term
unifies py (1, ...t ) 2022 with an event py, (£, ...t )F1%2) in e(2,) such that z, < 25 < 2
and there is no other such event in € that has its end time earlier than z5. If such a



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

unification is found, the next clause succeeds and fails otherwise.

0 Tpalth, .t € e(z)]
25 > 2z
30((pn (b1, )20 g = (p (], ... )EH75]))
A Bpu(t'1, .. 701272 € ¢(2,)]
zs < 2" < 2N
37((pn(t1, ...tn)[zhzz]) X
(P (71, ...t ET 1272 )

next(pr (t1, ...tn)[zl’zﬂ ) Zsy Ze)

fails otherwise

By definition, the variables z; and z. should be instantiated when a next clause is
evaluated and an error is generated otherwise. A next clause can only be evaluated
after time z, when all relevant events with end time earlier or equal to z, have been
received and stored in the SLR knowledge base. However, if we assume that events
of the same type (i.e. with same functor symbol and arity) are received by SLR
in the order of their end times, the next clause can be evaluated as soon as SLR
receives the first event with the end time equal or later than z; which is unifiable
with py,(t1, ...t,)?1%2 not to unnecessarily postpone queries.

The next and prev clauses can be implemented by the following two Prolog rules
in which the — symbol represents Negation as failure. However, we take advantage
of the fact that SLR usually receives events of the same type in the order of their
end times. SLR maintains the sorted list of events of each type ordered by their
end times whose maintenance usually only requiring the assertion of events by the
asserta Prolog built-in predicate. In this way, finding a previous/next event of a type
occurring before/after a time point requires examining only a part of the history of
those events.

prev(pp (t1, . tn)F072) 20 (b1, ) P07 2 < 2,
(P17 et 207 <2 207 > 29). (1)
next(pp (t1, ...tn)[zl’22],zs, ze)-pn(t1, ...tn)[zl’zﬂ, zs < 29 < 2,
—(pn(t1”, ...tn”)[’zlﬁ’zﬂ, 2s < 29" < zey 29”7 < 22). (2)

5.1.3 State-Based Knowledge Representation

SLR aims at simplifying the transformation of events into a state-based represen-
tation of knowledge, using derived facts. The following paragraphs presents some
typical cases where a state-based representation is more suitable and how it is real-
ized in SLR.



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

Persistent Knowledge Persistent knowledge refers to information that is as-
sumed not to change over time.

Example 2. The following rule specifies that the color of an object at a time T is
the color that the object was perceived to have at its last observation.

color(0, C)T:- prev(obj(O, C)Z,T). (3)

Persistence with Temporal Validity The temporal validity of persistence refers
to the period when it is assumed that information derived from an observation
remains valid.

Example 3. To pick up an object O, its location should be determined and sent to
a planner to produce a trajectory for the manipulator to perform the action. This
task can be naively presented as the sequence of actions: determine the object’s
location L, compute a manipulation trajectory 7Trj, and perform the manipulation.
However, due to environment dynamics and interleaving in task execution, the robot
needs to check that the object’s location has not been changed and the computed
trajectory is still valid before executing the actual manipulation task. The following
three rules can be used to determine the location of an object and its validity as
follows. If the last observation of the object is within the last five seconds, the
object location is set to the location at which the object was seen last time. If the
last observation was made longer than five seconds ago, the second rule specifies
that the location is outdated. The third rule sets the location to “never-observed”,
if the robot has never observed such an object. The symbol ! represents Prolog cut
operator and locations are assumed to be absolute.

location(O, L) :- prev(seg(O, LY, T), T — Z < 5,1. (4)
location(O, “outdated”)T - prev(seg(O,L)?,T), T — Z > 5,\. (5)
location(O, “never-observed”) . (6)

Continuous Knowledge Continuous knowledge refers to information from a con-
tinuous domain.

Example 4. The following rule calculates the camera to base relative position L at
a time T'. It interpolates from the last observation L, before T to the first observation
Lo after T. est is a user defined term performing the actual interpolation.
tf(cam, base, L)T - prev(tf( cam, base, L), T),
next(tf( cam, base, L), [T, 00)), est([L, T), [L1, Ti], [L2, To]). (7)



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

The following rule similarly interpolates the base to world relative position L at
a time T. However, if the position is not observed within a second after time T,
the position is assumed without change and is set to its last observed value. The —
symbol represents Prolog “If-Then-Else” choice operator.

tf(base, ref, L) :- prev(tf(base, rcf, L), T),
(next(tf(base, ref, L) 2, T, T + 1) — est([L, T), [L1, Lo, [L2,T5]) ; Lis Ly). (8)

The following FLFE rule concerns recognition of an object O at a position L,_.
relative to the camera at a time 7. It generates a corresponding segR event. It
calculates the object position in the reference coordination frame by querying the
SLR knowledge base. The camera to base and base to world relative positions at
time T" are estimated by rules (7) and (8).

segR(O, L) + seg(O, Lo_.)T WHERE( tf(cam, base, L._y)",

tf( base, rcf, Lb_rcf)T,
mUZ( [L07Ca L.y, Lb—rcf]v L) ) (9)

5.1.4 Active Memory

SLR supports selective recording and maintenance of data in knowledge bases using
memory instances.

Definition 21 (Memory Instance). A memory instance with an id Id, a query
@ and a policy (L, N) keeps the record of a subset of input events to SLR: the
events that match the query @) such that at each time 7T, the memory instance only
contains the events which have their end times within the last L seconds and only
includes the recent N number of such events ordered by their end time. An id is
a ground term and a query is of the form (e, Cond), where e is an event atom and
Cond is a set of conditions on variables that are arguments of e. An event P matches
a query pattern () when there is a substitution that can unify p and e and makes
the conditions in Cond true (i.e. 30(p = qp)).

Memory instances are created by executing queries of the form ¢ _mem(Id,Q,N,L)
on the SLR knowledge base in initialization of the SLR program. They can also be
created at runtime by ELFE rules or by external components using a ROS service
the IEC provides. Similarly, memory instances are deleted at runtime by executing
queries of the form d_mem(Id) each deleting all memory instances whose id; match
the term Id (i.e. 30(id = Idp)).



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

Example 5. The ¢ mem(tf, (tf(X,Y,Z),()),00,300) query creates a memory in-
stance to keep the history of tf(X,Y,Z)" events from the stateRec component for 300
seconds. In the rule (9), we saw that the SLR knowledge base is queried to position
object segments in the reference coordination frame. If we assume that the TEC
receives data of object segments within 300 seconds since they appear in front of the
camera, then we only need to keep the history of ¢f events for 300 seconds. In another
example, for each object o; in segR(O,L) events, the ELE rule (10) generates a mem-
ory instance with the corresponding id of 0bj(0;). A memory instance is generated,
if it does not already exist. This is checked using the —exist_mem(monitor(O))
clause. Each memory instance obj(o;) keeps the last occurrence of segR(0;, L) events
at which o; is located on the floor, checked by the onFloor Prolog term implementing
the required spatial inference. The use of DO clause is another way of performing
SLR queries in FLFE syntax.

Do(c_mem(obj(O), (segR(X, L), (X == O,onFloor(L))),1,00))
segR(O, L)W HERE (—exist_mem(obj(0))). (10)

The histories of events maintained in memory instances are accessed in the SLR
program using the following static terms.

Definition 22 (Memory Term Semantics). A mem(I/d, X) term unifies X with
an event py (1, ..,tn_g)[ﬂ’ﬂ] that belongs to a memory instance whose id matches
the term Id (i.e. 30(id = Idp)). When backtracking over a mem(Id,X) term in
evaluating an SLR query, the possible unification of X is checked against all events
recorded in all such memory instances.

Definition 23 (Previous_ Memory Term Semantics). A term of the form
prev(ld, X, Zs), where Id is a ground term, unifies X with an event which has the
latest occurrence time among the events that belong to the memory instance Id, are
unifiable with X and have their end time before or equal to Zs;. The term fails if
such a unification is not found.

Definition 24 (Next__Memory Term Semantics). A next(Id, X, zs, z.) term,
where Id is a ground term, unifies X with an event which has the earliest occurrence
time among the events that belong to the memory instance Id, are unifiable with
X and have their end time within time interval [Zs, Z.]. The term fails if such a
unification is not found.

Example 6. The rule (11) re-writes the rule (8) by querying the previous event of
the form tf (base,rcf,L) occurring before T" and the next tf (base,rcf, L) event occurring



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

during [T,T + 1] from the memory instance tf, defined in the previous example
to keep the history of tf events for 300 seconds. Another example is the query
findAll(X, mem(obj(0),X), List) which queries all 0bj(O) memory instances created
by the rule (10) for their records of segR(X, L) events using the mem(obj(O), X)
template and put the list of results in the variable List.

tf(base, ref, L)L :- prev(tf, tf(base, rcf, L), T),
(next(tf, tf(base, rcf, L) 2, T, T 4+ 1) —
est([L, T],[Ll,LQ],[LQ,TQ]) 5 L is Ll). (11)

SLR generates events when memory instances are created, deleted or updated.
Memory events are fed to ELFE as input. Consequently, patterns of memory events
can be captured by ELE to notify external components with information about
changes of memory. Memory events are also used internally to keep track of the
latest update time of memory instances. This mechanism is used to synchronized
queries, discussed in Section 5.1.5.

This mechanism can be used to generate all sorts of events related to changes
of the memory such as the addition or deletion of memory instances or even the
addition or deletion of events to/from memory instances.

5.1.5 Synchronizing Queries over Asynchronous Events

SLR supports the synchronization of queries to deal with the delayed and out of
order reception of sensory data to the knowledge base.

Definition 25 (Event Process Time). The process time (i.e. t,(e)) of an event
e is the time at which the event is received by and added to the SLR knowledge
base (i.e. processed by IEC).

Definition 26 (Event Delay Time). The delay time (¢4(e)) of an event e is the
difference between its process time and its end time (i.e. tg(plFh#2) = t,(pl#1*2) —
22).

A query should be evaluated after all events relevant to the query have been
already received by the SLR knowledge base. The parameter z of a query (goal, z)
limits the scope of the query to observations made up until time z. To evaluate the
goal, a number of memory instances are queried. Therefore, all relevant events to
these memory instances occurring up to time z should have been received by SLR
before performing the query.



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

Definition 27 (History Availability). The history of events of a type p, up to
a time z is available at a time ¢ when at this time the SLR has received all events
of type p, occurring by time z (having end time earlier or equal to z).

Moreover, all previous and next memory terms should be correctly evaluated accord-
ing to their definitions. Finding the previous event of type py,(t1, .., t,) occurring up
to time zs requires having received all p,(t1,..,t,) events occurring up until time
zs. If we assume events of each type are received by SLR in the order of their end
times, then finding the next event of type p,(t1, .., t,) occurring within time interval
[zs, ze] requires having received the first p,(t1,..,t,) event which has its end time
equal or more than zg, or make sure that no p,(¢1,..,t,) event has occurred during
[2s, 2ze]. SLR postpones an individual query[l;gl when necessary until it is achievable,
as defined below.

Definition 28 (Dynamic Goal Set of Query). The dynamic goal set of a query
(goal, z) for an SLR program D is the set of all mem(Id,X), prev(ld,Zs) and
next(Id, Zs, Z.) predicates that can possibly be queried when evaluating the goal
on the knowledge base. The dynamic goal set can be determined by going through
all rules in D using which the goal could be possibly proven and gathering all
mem(Id, X), prev(ld, Zs) and next(Id, Zs, Z.) terms appearing in bodies of those
rules.

Definition 29 (Query Achievability). A query (goal, z) is achievable when three
conditions are met. First, the histories of all relevant events to memory instances
in dynamic goal set of the query are available up to time z. Second, for each
prev(ld, Zs) term in the dynamic goal set of the query, the history of all relevant
events up to time Z is available. Third, for each next(Id, Zs, Z.) term in the
dynamic goal set of the query, a relevant event has been received or the history of
all relevant events up to time z. is available.

To determine when the history of events of a type p, up to a time z is available,
SLR can be programmed in two complementary ways. One way is to set a maximum
delay time (i.e. 4, . ) for events of each type. When the system time passes ¢4, (pn)
seconds after z, SLR assumes that the history of events of type p, up to time z
is available. The maximum delay times of events depends on the runtime of the
components generating them and need to be approximated. The maximum delay
times can be set the system developer. It can also be approximated by SLR as
follows. Whenever an event of type p, is processed, SLR checks its delay, the

6Postponing one query does not delay the others.



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

difference between its end time and the current system time, and sets the ¢q4,,,.(pn)
to the maximum delay time of p,, events encountered so far. When smaller maximum
delay times of events are assumed, queries are evaluated sooner and hence the overall
system works in more real-time fashion, but there is more chance of answering a
query when the complete history of events asked by the query is not in place yet.
When larger maximum delay times of events are assumed, there is a higher chance
to have all sensory data up to the time specified by the query already processed by
the corresponding components and their results received by SLR when the query is
evaluated. However, queries are performed with more delays.

The other way that SLR can ensure to have received the full history of events of
a type p, up to a time z in its knowledge base is by being told so by a component
generating such events using special updated(p,,)* events. Whenever SLR receives
such an event, it assumes that the history of events of the type p, up to time z is
available.

The query synchronization is often required for a query that interpolates the
value of an attribute at a given time using next and prev term. The value can be
interpolated as soon as the first relevant event after that time is received. SLR
monitors memory events, discussed in Section 5.1.4, and evaluates the postponed
queries as soon as necessary events are received.

Example 7. When the position of an object O in the world coordination frame
at a time 7T is queried by the rule (9), the query can be answered as soon as
both camera to base and base to world relative positions at time T can be eval-
uated by rules (7) and (8). The former can be evaluated (i.e. interpolated) as
soon as SLR receives the first tf(‘cam’, ‘base’, P) event with a start time equal or
later than 7. The latter can be evaluated as soon as the SLR receives the first
tf(‘base’, ‘world’, P) event with the start time equal or later than 7', or when it can
ensure that no ¢f(‘base’, ‘world’, P) event has occurred within [T, T'+1]. If we assume
tdma. (tf(‘base’, ‘world’, P)) is set to 0.5 second, SLR has to wait 1.5 second after T’
to ensure this.

Example 8. The robot is asked about the objects it sees on tablel. To answer the
question, the robot takes a number of pictures from the table starting at time ¢;
and finishing by time t2 and then the SLR knowledge base is queried by (goal,t2)
where the goal is



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

findall(obj (O, Type, L),
( mem(obj(0), segR(O, L)T*), t; < T, < to, prev(obj(O, Type, P)Tv, t5) ),
List) (12)

The query result is the list List of terms of the form 0bj(O, Type,L) matching
the template specified by the second argument of the findall term. This includes all
object segments recorded as segR(0,L)"* events in 0bj(O) memory instances recog-
nized during [t1,t2]. The type of each object segment o; is recognized by querying
the last obj(o;, Type,P) event occurring before or at time to. To list all the objects,
SLR makes sure to evaluate the query after the histories of both segR(O,L) and
0bj(O, Type,L) events up to time t9 are available. A signaling mechanism to realize
this is as follows. After finishing the processing of each image taken at a time ¢
and outputting the recognized object segments, the segRec component sends out
the event updated(segR)'. The IEC receives these events sending object segments
whose type is not known and the updated(segR)! events to the objRec component.
We assume events of each type are communicated among the components in order.
The objRec component receives some object segments recognized at a time ¢, pro-
cesses them in the order it receives them and sends the recognized types back to
the IEC. Whenever the objRec processes an updated(segR)t event, it realizes that it
has finished processing of the object segments recognized up to time t and generates
an updated(obj)t event. Receiving updated(segR)! and updated(obj)! events, SLR is
notified when the histories of both types of events up to time 9 are available and
then evaluates the query.

5.2 Discussion

The use of memory in existing research includes collecting data from various sources
and in time, mediating as a shared resource for component interaction (i.e. black-
board architectural pattern [77]), refining data by various processes, and integrating
various reasoning capabilities to maintain and query the robot’s knowledge of the
environment for task execution, human interaction and learning [13 [80} [65] 37 [36]
71,172, 50, 1491 52, [56]. A large set of on-demand information processing requirements
have been discussed elsewhere [49] [80].

A main concern in supporting on-demand information processing is the choice
of language for representing and storing data. The choice of language and its execu-
tion system largely determines the extent to which various on-demand information
processing requirements along data, process, memory and access dimensions are



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

supported, perhaps the most important ones being knowledge modelling and rea-
soning. The advantage of non logic-based data representations, for example, using
programming data structures in CAST [36], [71] and GSM [56], is the flexibility and
efficiency in the representation and manipulation of amodal data such as image data
and probability distributions. However the expressiveness of queries for information
maintained by such systems is limited. An interesting approach is the XML data
representation by IDA [8(, [65] supporting Xpath queries [15], for example, to re-
trieve data of objects recognized with confidence of more than a threshold. The
data representation in non-logic based systems is usually tightly related to the data
representation used in their underlying framework and does not support logical rea-
soning. In Retalis, binary data is represented as String. This requires encoding
binary data to the Prolog String format when importing a ROS message to Retalis
and decoding it when the data is sent back to ROS, which is time consuming. How-
ever, one can maintain the actual binary objects in c¢++ and manipulate handlers
to the objects in Retalis.

A recent survey of existing robotic information management systems [49] shows
that most systems rely on logical formalisms, mainly including declarative languages
such as the OW[M language [57] based on Description logics [10] and/or rule-based
languages such as the S WRIE language [45] for rule-based reasoning in OWL and
Prolog. In particular, OWL is a popular choice to define ontologies of various types
of knowledge such as knowledge of space, objects, actions and robot capabilities
used, for instance, in ORO [50, 49], KnowRob [(2, [71] and OUR-K [52]. Defining
ontologies are necessary to integrate various sources of knowledge such as the domain
and common sense knowledge as performed by the aforementioned systems and for
sharing robots’ knowledge, for instance, in the cloud [73]. While we did not address
modeling of knowledge, existing ontologies can be directly used in Retalis as OWL
ontologies can be represented and reasoned upon in Prolog. For example, KnowRob
offers one of the most comprehensive robotic ontologies and uses the Prolog Semantic
Web Lz’bmrﬂ [60] for loading and storing RDF@ [21] triples and the T, heﬂ OWL
parser library [75] for OWL reasoning on top of this representation.

The use of Prolog as the underlying technology for maintaining robotic OWL
knowledge has a few practical advantages for inference compared to the use of ex-
isting description logic reasoners such as the Pelle@ reasoner [68] used in ORO.

"http:/ /www.w3.org/TR/2004/REC-owl-ref-20040210/
Bhttp://www.w3.org/Submission/SWRL/
Yhttp://www.swi-prolog.org/pldoc/package/semweb.html
http:/ /www.w3.org/RDF/

http:/ /www.semanticweb.gr /thea/

http:/ /clarkparsia.com/pellet/



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

Those reasoners keep a classified version of the knowledge base in memory specify-
ing each individual belonging to which classes. Therefore continuous changes of the
knowledge base through acquiring sensory data requires frequent re-classification of
the whole knowledge which can be costly [72]. This problem can be partially ad-
dressed by optimizing this operation using an incremental updating technique [34].
The more important advantage is related to the open world assumption in Descrip-
tion Logics versus the closed world assumption in Prolog, and the monotonicity of
description logics versus supporting a form of non-monotonicity in Prolog by the
negation as failure inference rule within the closed world assumption. In the closed
world assumption, representations can be more compact as ‘a fact not being true’
does not need to be described but it can be inferred by not being able to prove
the fact. Moreover, the open world assumption and monotonicity of Description
Logic makes the representation and reasoning on dynamics of the environment (i.e.
changes and actions) difficult requiring to handle such aspects externally [84] [49],
but, for instance, KnowRob implements a predicate to return an object’s location
at a time by searching for the last observation of the object’s location before that
time. Reasoning about changes and actions has been extensively studied in various
knowledge formalisms such as Situation Calculus [51] and Event Calculus [AT, [67].
The SLR language provides a practical and efficient solution for representing robot
knowledge based on discrete observations, providing a means to deal with the tem-
poral validity of data and representation of continuous domains which is not the
focus of such formalisms. Compared to the KnowRob approach of, for instance, im-
plementing a predicate to represent an object’s location at a time, SLR simplifies the
definition of such predicates in general and increases the efficiency of their computa-
tions by maintaining the sorted list of events based on their occurrence times. Prolog
provides a flexible support for access to external data or reasoning functionalities
while reasoning on knowledge through procedural attachments to the Prolog terms.
This feature is used in KnowRob, for instance, to compute spatial relations between
objects and in Retalis to integrate OpenGL Mathematz’cs{g_g] (GLM) for arithmetic
operations.

To the best of our knowledge the SLR support for synchronization of queries on
knowledge built upon asynchronous data is not presented elsewhere. However, sim-
ilar synchronization mechanisms as found in SLR are implemented in other robotic
software in a more limited context. One example is the DyKnow framework [3§]
that synchronizes data received from streams of data based on different policies to
generate new ones. Another example is the tf library [32] widely used in ROS for
querying position transformation between robot’s coordination frames over time.

Zhttp://glm.g-truc.net,/0.9.5/index.html



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

When a relative position at a time is queried, the query is not answered until re-
ceiving the first observation of that position at or after that time. The tf library
only supports interpolation of data similar to the SLR rule (7). Therefore, even
if a position is constant in time, its value needs to be continuously published to
ROS consuming the network bandwidth. Moreover, sometimes a component such
as AMCL in ROS provides updates in a slow rate but they are precise enough to be
used until the next update is made available. In order to not delay the processing
of data until availability of the next update, this component stamps its updates in
the futureF_Z] Apart from being semantically confusing, time stamping updates in
future can result in using old data even if new data is already available. With the
SLR extrapolation approach, for instance, implemented by the rule (8), if a position
transformation is static, its value does not need to be published being extrapolated
from its last observed value. In addition, the time bound of the next predicate in
SLR allows to specify how long SLR needs to wait to see whether a value has been
changed, assuming after each relevant change a notification is received.

Except a few, most information management systems leave pruning data from
the memory to external components. In ORO, knowledge is stored in different
memory profiles, each keeping data for a certain period of time. In IDA, scripts
are activated periodically or in response to events of memory changes to perform
garbage collection. In SLR, flexible garbage collection functionalities are blended
in the syntax of the language. In addition, a subtle difference between SLR and
other systems is that in the existing systems, external components store the data
in memory. In SLR, memory instances are declaratively defined which selectively
store data from the input flow of events to the SLR. The storage of data in SLR is
similar to active memories such as the ones of IDA and CAST as data is recorded in
memory instances with unique identifiers, however SLR supports logical reasoning
over the contents of memory instances. This approach supports having different
memory profiles for different pieces of data and a flexible way of selecting the data
that are to be reasoned about as a whole, thus allowing to reason about a part of
knowledge that could be inconsistent with other part of the knowledge maintained
in the memory. Furthermore, active memories allow external components to update
the contents of memory instances. As such, suitable error handling and locking
mechanisms are necessary to synchronize the parallel access to memory. In contrast,
the modeling of the input as a stream of events and clear semantics of memory
instances in SLR removes much of the problems related to the parallel access of
data. For an example, consider two components processing object segment events
to recognize the orientation and type of objects. In our approach, this can be

http:/ /wiki.ros.org/tf/FAQ



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

implemented as follows: an object segment event is sent to both components, these
components perform their processes and generate their uniquely typed events. Then
an ELFE rule receives events from these components, synchronizes them based on
their object identifiers and occurrence times and produces new events of recognized
objects with their types and orientations. In a naive approach, object segments
are recorded in the memory and are processed and updated by both components in
parallel which could re-write each other results.

SLR supports notifying external components when memory instances are added
or deleted to the memory. This can be easily extended to also generate corresponding
notifications when events are added or deleted from memory instances. However,
the input flow of events to SLR is processed by ELE. Therefore external components
can subscribe to Retalis to be notified when the data of interest is being fed to SLR.
While notifying changes of the memory is a main functionality in active memories,
it is less common in logic-based knowledge management systems. An exception is
ORO to which one can subscribe to receive a notification, whenever a fact can be
inferred by the ORO knowledge base. However it is not described whether or not
this includes the knowledge that can be derived by SWRL rules. Moreover, it not
described whether this functionality is implemented by continuously querying the
knowledge base for such a fact, or it is efficiently realized by an incremental and
event-driven algorithm such as backward chaining rules in ELE [6, 5l 3].

6 Evaluation

This section evaluates the performance of Retalis by demonstrating the implemen-
tation of an application for a NAO robot. NAO is a small programmable humanoid
robot offered by Aldebaran Roboticﬂ equipped with advanced sensors such as cam-
eras, touch sensors and microphones. In the application, NAO observes objects in
the environment, perceiving their relative positions to its camera, and computes the
position of objects in the environment. Figure |5| presents software Component@ of
the NAO application, operating as follows. The NAO nodeﬁ component provides
an interface to acquire sensory data and to command the NAO robot. It publishes
images generated by the top camera of the robot. It also publishes events about the
transformation among the robot’s coordinate frames. Each of these events contains
a set of transformations where each transformation specifies the relative position

*http://www.aldebaran.com/en
26The software includes also a face recognition component which is not discussed for brevity.
2Thttp:/ /wiki.ros.org/nao_ robot



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

localizer ar_pose Images

NAO

Location nodes

‘\%i nts

Retalis-ROS coordinate frame
IEC ransformations
interface

abjects rviz
events

objects

Figure 5: NAQ’s software components

among two coordinate frames. The ar_pos@ component processes the images to
recognize objects and calculates the position of objects with respect to the camera.
Each event from ar_pose contains data of a set of observed objects. The local-
izer component calculates the robot’s position in the world. The IEC' component
is subscribed to information about objects’ positions, robot’s location and coordi-
nate transformations. It calculates the position of objects in the world from the
transformation among the following pairs of coordinate frames, (world, base_link),
(base__link, torso), (torso, neck), (neck, camera) and (camera, object). The arith-
metic operations are performed using the OpenGL Mathematic@ (GLM) library
which has been integrated in Retalis. The rviﬁ component visualizes the objects
in the environment. The IEC communication with other nodes is realized by the
Retalis-ROS interface component. This component converts ROS messages to Re-
talis events and vice versa. The IEC and the Retalis-ROS interface components are
implemented in Retalis.

6.1 Basic setup

For a first test implementation, all software components run remotely on an XPS
Intel Core i7 CPUQ 2.1 GHz x 4 laptop running ubuntu 12.04 LTS, connected to
the NAO robot. After the evaluation phase, the software will be implemented in the
NAO robot itself. NAO comes with an Intel Atom CPU@1.6 GHz running Linux.
The performance is evaluated by measuring the CPU time, the amount of time of a
CPU of the computer that is used by the Retalis program. We measure the CPU time

Zhttp://wiki.ros.org/ar_pose
http://glm.g-truc.net/0.9.5 /index.html
3Ohttp:/ /wiki.ros.org/rviz




RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

as the percentage of the CPU’s capacity (i.e. CPU usage percentage) computed by

the operating system. In the following graphs, the vertical axis represents the CPU

usage percentage and the horizontal axis represents the running time in seconds.

The CPU time is logged every second and is plotted using "gnuplot smooth bezier".
The NAO application includes the following tasks:

e On-flow processing: events from ar_pose and NAO nodes are split into re-
spective events such that each event contains data of a single object or the
transformation among a single pair of coordinate frames. The transformation
data among pairs of coordinate frames are published with frequencies from 8
to 50 hertz. There are in average 7 objects perceived per second. In total,
Retalis processes about 1900 events per second.

e Memorizing and forgetting: there are 5 memory instances observing the events.
They record and maintain the last 30 seconds histories of the transformation
among the pairs of coordination frames used to calculate the transformation
among world and camera.

e Querying memory instances: for each observed object, SLR is queried for the
world-to-camera transformation. The transformation among a pair of coor-
dinate frames at a time is calculated by interpolation, as performed by the
rule (11). Each interpolation requires accessing a memory instance twice, once
using a prev term and once using a next term. To calculate the position of all
objects, memory instances are accessed 70 times per second.

e Synchronization: a query is delayed in case any of the necessary transforma-
tions can not be interpolated from the data received so far. Retalis monitors
the incoming events and performs the delayed queries as soon as all data nec-
essary for their evaluations are available.

e Subscription: there are 8 distinct objects in the environment and consequently
8 subscriptions to publish recognized objects to distinct ROS topics. The rviz
component is subscribed to these topics to visualize the position of objects.

Figure [6] shows the CPU time used by the Retalis and Retalis- ROS-converter
nodes when running the NAO application. The Retalis node calculates the position
of objects in real-time. It processes about 1900 events, memorizes 130 new events
and prunes 130 outdated events per second. It also queries memory instances, 70
times per second. These tasks are performed using about 18 percent of the CPU
time. In this experience, the Retalis node has been directly subscribed to ROS
messages containing information about coordinate transformations and recognized



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

NAD Example, retalis node
W E NAD Example, ros-retalis converter node

10 =

CPU Time

o 20 40 2] 80 100 120

Figure 6: NAO application

objects. The Retalis- ROS-converter, consuming about 5 percent of CPU time, only
subscribes Retalis to the recognized faces and converts and publishes events about
objects’ positions to ROS topics.

As we saw in Section 3, Retalis provides an easy way to subscribe to ROS topics
and automatically convert ROS messages to events. This is implemented by the
Retalis- ROS-converter node. The implementation is in Python and is realized by
inspecting classes and objects at runtime and therefore is expensive. Figure [7|shows
the CPU time used by the Retalis and Retalis- ROS-converter nodes for the NAO
application, when the Retalis-ROS-converter is used to convert all ROS messages
to Retalis events. In the previous configuration, the conversion from ROS messages,
containing information about coordinate transformations and recognized objects, to
events was performed by a manually written c¢++ code, rather than using the Re-
talis automatic conversion functionality written in Python. We observe that in the
new configuration, the Retalis node consumes a few percent less, but the Retalis-
ROS-converter node consumes about forty percent more CPU time, comparing to
the previous configuration. These results show that while the automatic conversion
among messages and events are desirable in a prototyping phase, the final applica-
tion should implement it in C++ for performance reasons. We will investigate the
possibility to optimize and re-implement the Retalis- ROS-converter node in C++.

Metric evaluation of languages and systems like Retalis, in general, is challenging
for the following reasons[49, 48, [56]. Experiments often involve many other mod-
ules running in parallel and building repeatable experiments for robots in dynamic
environments is challenging. In addition, very few existing systems report metric
evaluations and the lack of standard APIs and differences in functionalities makes
it hard to compare these systems. The rest of this section evaluates main Retalis
functionalities. We report a number of experiments using data from the NAO ap-
plication, recorded by rosbagE-] Using rosbag, data can be played in a simulation,
as if it is played in real-time. While single performance results in the following ex-

3http:/ /wiki.ros.org/rosbag




RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

rwW

30 - MAD Example, retalis node
NAD Example, ros-retalis converter node

CPU Time

o 1 1 L L L
o 20 40 [ &0 100 120

Figure 7: NAO application with automatic conversion of messages and events

periments depend on the NAO application, a series of experiments is presented for
each functionality, allowing us to make a number of general observations about the
performance of Retalis functionalities.

6.2 Forgetting and Memorizing

This section evaluates the performance of the memorizing and forgetting function-
alities. We measure the CPU time for various runs of the NAO application where
the numbers and types of memory instances are varied. We discuss the performance
of memory instances by comparing the CPU time usages in different runs.

When an event is processed, updating memory instances includes the following
costs:

e Unification: finding which memory instances match the event.

e Assertion: asserting the event in the database for each matched memory in-
stance.

e Retraction: retracting old events from memory instances that reached their
size limit.

Figure [§] shows the CPU time for a number of runs where up to 160 mem-
ory instances are added to the NAO application. These memory instances record
a(X,Y,Z,W) events. Among the events processed by Retalis, there are no such
events. The results show that the increase in CPU time is negligible. This shows
that a memory instance consumes CPU time only if the input stream of events con-
tains events whose type matches the type of events the memory instance records.

In Figure [9] the green and blue lines show the CPU time for cases where 20
memory instances of type tf(X,Y,V,Q) are added to the NAO application. These




ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

T

MAD Example
NAD Example + 20 x at¥,¥,¥,00 Hemory Instances
NAD Example + 40 x aCx, ¥, ¥.0) Memory Instances
NAd Example + 30 x ath, ¥, 00 Memory Instances
NAD Example + 160 x atx,V.¥,0) Memory Instances

CPU Time

20 _ —

Figure 8: Irrelevant memory instances

memory instances match all tf events, about 1900 of such is processed every second.
The size of memory instances for the green line is 2500. These memory instances
reach their size limit in two seconds. After this time, the CPU time usage is constant
over time and includes the costs of unification, assertion and retraction for updating
20 memory instances with 1900 events per second. The size of memory instances
for the blue line is 150,000. It takes about 80 seconds for this memory instances to
reach their size limit. Consequently, the CPU time before the time 80 only includes
the costs of unification and assertion, but not the costs of retraction. After the time
100, the CPU usages of both runs are equal. This shows that the cost of a memory
instance does not depend on its size.

The purple line shows the CPU time for the case where similarly there are 20
memory instances of type tf(X,Y,V,Q). However, these memory instances record
events until they reach their size limit. We added a condition for these memory
instances such that after reaching their size limit, they perform no operation when
receiving new events. After the time 100, the CPU time is constant about 23 percent,
being 5 percent more than the CPU time of the NAO application, represented by
the red line. This 5 percent increase represents the unification cost. This also shows
that the costs of about 38000 assertions and 38000 retractions per second is about
30 percent of CPU time. In other words, 2500 memory updates (i.e. assertions or
retractions) are processed using one percent of CPU time.

Figure shows the CPU time for a number of runs where up to 40 memory
instances of type tf(X,Y,Z,W) and size 2500 are added to the NAO application. The
red line at the bottom shows the CPU time for the NAO application. We make the
following observations. Adding first 10 memory instances to the NAO application
increases the CPU time about 20 percent. After that, adding each set of 10 memory
instances increases the CPU time about 13 percents. This shows that the cost grows
less than linearly. The implementation of memory instances is in a way that the
cost of an assertion or a retraction can be assumed constant. This means that the
unification cost for the first set of memory instances is the highest. In other words,




RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

70
NAD Example ——
NAD Example + 20 x LFCX,Y,V,0) memory instances of size 2,500 ——
NAD Example + 20 x tFCX,Y,V,0) menory instances of size 150,000 ——
g0 F MAD Example + 20 x tFO0Y,Y,0) memory instances of size 150,000, only 150,000 meworization ——
v
=
s 50
B
z
&
40
3 F
20 }L_—V—m,_;
1w E
5 L L L 1 1
o 20 a0 60 80 100
Figure 9: tf(X,Y,V,Q) memory instances (1)
100 T T T T
NAD Example
NAD Example + 1 x &£ 3 Memory Instances
MNAO Example + 2 x bFOX ) Memory Instances
- NAD Example + 3 x bFCX ) Memory Instances

S,
S
SN
NAD Example + 4 x tFOX,Y¥,V.0) Memory Instances
NAD Example + 5 x LFOXYV.0) Memory Instances
S,
S,
SN
WA

) Memory Instances

NAD Example + 10 x tF(2
NAD Example + 20 x tF(2 ) Memory Instances
8o b MAD Example + 30 x L (8 ) Memory Instances

NAD Example + 40 x LF (X, igtances

[
Q
Q
0
0
0
[
Q

CPU Time
o
2
E

o I 1 1 1 1
o 20 40 [ a0 100 120

Figure 10: tf(X,Y,V,Q) memory instances (2)

the unification cost per memory instance decreases when the number of memory
instances are increased. The reason relates to the way that the underlying SWI-
Prolog engine searches and unifies terms which is not investigated here.

Figure [11] shows the CPU time for a number of runs where up to 640 memory
instances of type tf(head,camera,Z,W) and size 2500 are added to the NAO applica-




ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

NAD Exanple
70 E WA Example + 10 x tF(head,camera,¥, 00 Memory Instances
NAD Example + d0 x tfthead,camera,, 0} Menory Instances
NAD Example + 80 x tfthead, camera,y, 00 Memory Instances
NAD Example + 180 x tfihead,camera,y.0) Memory Instances
a0 E NAD Example + 320 x tfthead,camera,, 03 Hemory Instances
NAD Example + 620 x Lfthead camera, . 03 Memory Instances

CPU Time

o L L I I I
o 20 40 2] 80 100 120

Figure 11: tf(head,cam,V,Q) memory instances

tion. The events matching these memory instances are received with the frequency
of 50 Hz. We make the following observations. First, it takes 50 seconds for these
memory instances to reach their size limit. After 50 seconds, these memory instances
reach their maximum CPU usages, as the costs of retraction is added. Second, each
memory instance filters 1900 events per second recording about two percent of them.
The cost of 640 memory instances is about 35 percent of CPU time. Third, the unifi-
cation cost per memory instance is decreased when the number of memory instances
are increased.

Figure [12] compares the costs of different types of memory instances. The purple
line shows the CPU time for the case where there are 10 memory instances of type
tf(X,Y,V,Q). The green line shows the CPU time for the case where there are 320
memory instances of type tf(head,cam,V,Q). We observe that the costs of both cases
are equal. The memory instances in the former case record 19,000 events per second
(i.e. 10*1900). The memory instances in the latter case filter 1900 events per seconds
for tf(head,cam,V,Q) events, recording 16000 events per second (i.e. 320*50). The
results show the efficiency of the filtering mechanism.

The brown line shows the CPU time for the case where there are 10 memory
instances of type tf(X,Y,V,Q) and 320 memory instances of type tf(head,cam,V,Q).
Comparing it with the green and purple lines shows that the CPU time usage of
these memory instances is less than sum of the CPU usages by 10 tf(X,Y,V,Q)
memory instances and 320 tf(head,cam,V,Q) memory instances. This shows that
the unification cost per memory instance is decreased when the number of memory
instances are increased, even when the memory instances are not of the same type.




RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

NAD Example ——

NAO Example + 320 x tfchead.camera,¥, Q) Memory Instances ——

NAD Example + 620 x tfihead,camera, ¥, 0) Memory Instances ——

a0 F NAD Example + 10 x tFOLY, W00 Menory Instances ——
NAD Example + 20 x tFOLY, W00 Menory Instances

NAO Example + + 10 x tFCLY W00 Memory Instances + 320 x tfchead,camera, ¥ 0) Memory Instances ———

NAD Example + + 20 x LFCLY,W 00 Memory Instances + 320 x tfchead.camera, ¥, Q) Memory Instances

CPU Time
o
2

o L L I I L L I L
o 20 40 2] a0 100 120 140 180 130

Figure 12: Memory instances of different types

These experiments show that Retalis is able to maintain a history of a large vol-
ume of data. Memorizing and forgetting functionalities of SLR have been optimized
as follows. A memory instance memorizes an event by creating an event record
containing the event and the identifier of the memory instance. The event record is
asserted as the top fact in the database. This operation takes a constant time. Event
records of a memory instance are numbered in order of the event occurrence times.
SLR generates a hash key for each event record, based on the respective identifier
and the record number. Event records are indexed on their hash keys. Consequently,
accessing an event record takes a constant time SLR keeps track of the number of the
oldest event record of each memory instance. Therefore, forgetting takes a constant
time, irrelevant of the size of memory instances.

6.3 Querying

Retalis queries are Prolog-like queries executed by the SWI-Prolog system. The
following evaluates the performance of next and prev terms and the synchronization
mechanism which are specific to Retalis. The performance of next and prev terms
are important because the sensory data recorded by Retalis is queries using these
terms. Not only does Retalis extend the Prolog language with these built-in terms
to provide easier syntax for querying history of data, but also to make querying of
data more efficient.




ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

70
[
a0

30

® WWWMW'JM
NAO Example

NAD Example + 7000 x next on memory of size 126 ——
10 NAD Example + 7000 prev per second on memory of size 176 ——
NAD Example + 14000 next per second on memory of size 128 ——

CPU Time

o L L 1
0o a0 A0 150 200 250 G0

Figure 13: Next and prev terms (1)

Querying Memory Instances

This section evaluates the performance of prev and next terms used to access event
records in memory instances. Retalis optimizes the evaluation of these terms as
follows. It keeps track of the number of event records in each memory instance. The
prev and next terms are evaluated by a binary search on event records. An access to
an event record by its number takes a constant time. Consequently, the evaluation
of prev and next is done in logarithmic time on the size of the respective memory
instance. In Figures and [15] below, the red line visualizes the CPU time of
the NAO application.

The green line in Figure visualizes the CPU time of the NAO application
adapted as follows. There is an additional tf(head,cam,V,Q) memory instance of
size 128. This memory instance is queried by 1000 next terms for each recognition
of an object. In average, 7000 next terms are evaluated per second. The blue line
visualize the CPU time of a similar program in which 7000 prev terms are evaluated
per seconds. The figure shows that the costs of the evaluations of prev and next
terms are similar. The purple line shows the CPU time of the case where 14,000
next terms are evaluated per second. We observe that the cost grows linearly.

The blue line in Figure [14] visualizes the CPU time of the case where 7000 next
terms are evaluated per second. The green line visualizes the CPU time of the case
where there are 320 tf(head,cam,V,Q) memory instances added to the NAO appli-
cation. The purple line visualizes the CPU time of the case where 7000 next terms
are evaluated per second and there are 320 tf(head,cam,V,Q) memory instances. We
observe that the cost of accessing a memory instance does not depend on existence




RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

CPU Time

NAD Example
10 F NAD Example + 320 x tFthead,canera,V,0) memory instances

NAD Example + 7000 next per second on memory of size 128 ——
NAD Example + 7000 next per second on memory of size 128 + 320 x tFthead,canera,V,0) memory instances

o 1 L 1
o 50 dod 150 200 250 G0

Figure 14: Next and prev terms (2)

CPU Time
o
2

z0 b ﬂ M
NAD Exanple

10 - NAO Example + 7000 next per second on memory of size 128 ——
NAD Example + 7000 pext per gecond on memory of size 16384 ——

o 1 1 1
o 100 200 300 400 5o BO0

Figure 15: Next and prev terms (3)

of other memory instances.

The green line in Figure visualizes the CPU time of evaluating 7000 next
terms per second on a memory instance of size 128. The blue linevisualizes the CPU
time of evaluating 7000 next terms per second on a memory instance of size 16384.
The size of the memory instance in the latter case is the power of two of the size of
the memory instance in the former case. The increase in the CPU time for the latter
case, with respect to the NAO application, is less than two times of the increase in
the CPU time for the former case.

The prev and next terms provide efficient ways of accessing records of events.
Otherwise, all event records should be read, for instance, to find the latest position
of an object. For example, an experiment is reported for the KnowRob knowledge




ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

CPU Time

S VNGV

10 E HAD Example + 1000 (next and new event)
NAD Example + 1000 synchronized ¢next and new event) with no delay

o L L I I L I
o 50 106 150 200 250 300 350

Figure 16: Synchronization with no delay

base where there are 65,000 records of events about the location of an object. It
takes 11 seconds to find the latest location [72].

Synchronization

The synchronization mechanism is implemented as follows. Before evaluating a
query, memory instances are checked whether they are up-to-date with respect to
the query (i.e. the query is achievable as defined in Section ??). If the query cannot
be evaluated, it is recorded as a postponed query. For each postponed query, Retalis
generates a set of monitors. Monitors observe memory update events. As soon as
all necessary events are in place in memory instances, the query is performed. The
implementation of monitors are similar to the implementation of memory instances.

The red line in Figure [16| visualizes the CPU time of the NAO application where
in each second, 1000 next queries on a memory instance of size 2500 are evaluated.
In addition, for each next query, a new event is generated. The green line visualizes
the CPU time of a similar case where the next queries are synchronized. This
experiment is conducted in a way that no query needs to be delayed. Comparing
these two cases shows that when queries are not delayed, the synchronization cost
is negligible.

Figure[I7]shows the CPU time of four cases. In all these cases, 1000 synchronized
next queries are evaluated and 1000 events are generated in each second. The red
line visualizes the case where no query is delayed. The green line visualizes the case
where queries are delayed for 5 seconds. In this case, the memory instance queried by
a next term has not yet received the data necessary to evaluate the query. The query
is performed as soon as the memory instance is updated with relevant information.
There are 1000 queries per seconds, each delayed for 5 seconds. This means there
exist 5000 monitors at each time. These monitors observe 1900 events processed by
Retalis per second. We observe that for such a large number of monitors observing
such a high-frequency input stream of events, the increase in CPU time is less than
30 percent.




RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

100

' NAD ElxamplE + 1000 synlchmmzed (nest, and new event with no delay ——
NAD Example + Uhchrofized (next and new event) with delay of 5 seconds ——
NAD Example 000 synchronizéd (next and new event) with delay of 10 seconds ———
MA & + 1000 sunchronizedy (next and new event) with delay of 15 seconds ——

CPU Time

o L 1 1 1 1 1
o 50 0 150 200 250 300 350

Figure 17: Synchronization with delays

6.4 On-Flow Processing

On-flow processing functionalities in Retalis are implemented using ELFE. ELE exe-
cution model is based on decomposition of complex event patterns into intermediate
binary event patterns (goals) and the compilation of goals into goal-directed event-
driven Prolog rules. As relevant events occur, these rules are executed deriving
corresponding goals progressing toward detecting complex event patterns.

Information flow processing systems such as ELE are designed for applications
that require a real-time processing of a large volume of data flow. We refer the reader
to the evaluation of the performance of ELFE presented elsewhere [6,[3]. While the ex-
ecution system of FLE is Prolog, the evaluation shows that in terms of performance,
ELFE is competitive with respect to the state-of-the-art information processing sys-
tems.

6.5 Subscription

The implementation of the subscriptions is similar to the implementation of memory
instances. The only difference is that an event matching a memory instance is as-
serted to the knowledge base for that memory instance, and an old event is retracted
if the memory instance is full, but an event matching a subscription is delivered to




ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

the respective subscriber. Consequently, the costs of subscriptions include the uni-
fication cost, discussed in section and the costs to publish events to subscribed
ROS topics. The latter comprises the costs for converting events to ROS messages
and the costs of message transportation within the ROS framework.

7 Conclusion

Retalis is introduced in this paper to develop information engineering components
of autonomous robots. Consequently it is used for the processing and management
of data to create knowledge about the robot’s environment. Information engineering
is an essential robotic technique to apply Al methods such as situation awareness,
task-level planning and knowledge-intensive task execution. Consequently, Retalis
addresses a major challenge to make robotic systems more responsive to real-world
situations.

The Retalis language integrates ELE and SLR, two logic-based languages for on-
demand and on-flow processing, respectively. FLE is used for temporal and logical
reasoning, and data transformation in flow of data. SLR is used to implement
a knowledge base maintaining history of some events. SLR supports state-based
representation of knowledge built upon discrete sensory data, management of sensory
data in active memories and synchronization of queries over asynchronous sensory
data.

Retalis addresses all eight requirements discussed in the introduction. In partic-
ular, FLE addresses the requirements of on-flow processing, like event-driven and
incremental processing, temporal pattern detection and transformation, subscription
and garbage collection. SLR addresses the requirements of on-demand processing
like memorizing, forgetting, active memory and state-based representation. In this
way, Retalis unifies and advances the state-of-the-art research on robotic information
engineering.

The contribution of this paper is threefold. The first contribution is the de-
velopment of SLR language. SLR advances the state-of-the-art robotic on-demand
processing systems by providing an active logic-based knowledge base. It combines
the benefits of both knowledge base and active memory systems. SLR provides
programming constructs to facilitate a high-level and efficient implementation of
robotic on-demand processing functionalities. However, SLR, is a logic-based lan-
guage based on Prolog. Therefore, a knowledge of Prolog is necessary to use SLR.

The second contribution is the integration of the ELE and SLR languages con-
cerning three issues. The first issue is to process flows of sensory data on the fly by
ELFE to extract relevant knowledge for its compact storage in SLR. The second issue



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

is to query SLR for the knowledge built upon sensory data while processing flows
of data. The third issue is to process events of changes of SLR memory by ELE to
notify external components with patterns of changes that are of their interest.

The third contribution of the declarative Retalis language is a semantics based
on a model of sensory data taking into account their occurrence times. This may
be contrasted to alternative semantics based on processing times. In this way, the
model captures and handles various issues related to asynchronous processing of
data in robot software.

Moreover, Retalis is an open-source and framework-independent software library.
Therefore, it can be used to empower the existing robotic frameworks with its wide
range of functionalities as opposed to, for instance, robotic active memories which
are usually tightly integrated with specific robotic frameworks. Retalis has been
integrated in ROS and used to implement few proof-of-concept tasks for NAO robot,
including data transformation, runtime subscription and high-level event detection.

A future work is to apply the machinery developed in this paper to support
Al-based robotics. For example, Al research on task-level planning has developed
a number of agent programming languages [I7] to support the implementation of
autonomous behavior based on the BDI (Belief-Desire-Intention) model of practical
reasoning [I8, [64], 63]. However, these languages do not support event-driven and
incremental reasoning on their input data. Therefore, the sensory input process-
ing support of these languages is not suitable for on-flow processing of data [82].
The lack of on-flow processing support reduces the reactivity and limits the appli-
cation of these languages in robotics [82 8I]. Moreover, there are concerns about
the performance of these languages in robotic applications. For instance, there is a
performance issue caused by the repetition of queries on knowledge base. An ap-
proach to increase performance is to cache query results [I]. By caching, a query
is re-evaluated only if the knowledge base has been updated with relevant facts.
To implement such a caching mechanism when the agent and the knowledge base
components are separated, active memory functionalities are required to inform the
agent program about the changes of the knowledge base.

Other future work is to further support on-flow and on-demand processing. A
work is to support the representation and reasoning about uncertain data. Very
few current information engineering systems address uncertainty. This can be due
to scalability issues and the training time required to learn the transition proba-
bilities of a domain. Another work is to extend consumption, and memorizing and
forgetting policies in on-flow and on-demand processing, respectively. Another work
is to further support reasoning on temporally qualified knowledge. Supporting the
implementation of episodic-like memories [70] is another direction of research.



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

References

1]

Natasha Alechina, Tristan Behrens, Mehdi Dastani, Koen Hindriks, Koen Hub-
ner, Fred Jomi, Brian Logan, Hai H. Nguyen, and Marc van Zee. Multi-cycle

query caching in agent programming. In Twenty-Seventh AAAI Conference on
Artificial Intelligence (AAAI-13), July 2013.

James F. Allen. Maintaining knowledge about temporal intervals. Communi-
cations of the ACM, 26(11):832-843, November 1983.

Darko Anicic. Event Processing and Stream Reasoning with ETALIS. PhD
Thesis, Karlsruher Institute of Technology, 2011.

Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. Ep-
sparql: A unified language for event processing and stream reasoning. In Pro-
ceedings of the 20th International Conference on World Wide Web, WWW 11,
pages 635—644, New York, NY, USA, 2011. ACM.

Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stithmer, Nenad Sto-
janovic, and Rudi Studer. A Rule-Based Language for Complex Event Process-
ing and Reasoning. In Pascal Hitzler and Thomas Lukasiewicz, editors, Web
Reasoning and Rule Systems SE - 5, volume 6333 of Lecture Notes in Computer
Science, pages 42-57. Springer Berlin Heidelberg, 2010.

Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic. Real-
time complex event recognition and reasoning - a logic programming approach.

Applied Artificial Intelligence, 26(1-2):6-57, 2012.

Krzysztof R Apt and M H van Emden. Contributions to the Theory of Logic
Programming. J. ACM, 29(3):841-862, July 1982.

Alexander Artikis, Georgios Paliouras, Francois Portet, and Anastasios Skar-
latidis. Logic-based representation, reasoning and machine learning for event
recognition. In Proceedings of the Fourth ACM International Conference on
Distributed Event-Based Systems - DEBS ’10, page 282, New York, New York,
USA, 2010. ACM Press.

Carlos Astua, Ramon Barber, Jonathan Crespo, and Alberto Jardon. Object
detection techniques applied on mobile robot semantic navigation. Sensors,
14(4):6734-6757, 2014.

Franz Baader, Ian Horrocks, and Ulrike Sattler. Handbook of Knowledge Rep-
resentation, volume 3 of Foundations of Artificial Intelligence. Elsevier, 2008.



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

[11]

[12]

[13]

[14]

[20]

[21]

Yaakov Bar-Shalom and Thomas E. Fortmann. Tracking and Data Association.
Academic Press Professional, Inc, 1988.

Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle,
and Michael Grossniklaus. Querying rdf streams with c-sparql. SIGMOD Rec.,
39(1):20-26, September 2010.

C. Bauckhage, S. Wachsmuth, M. Hanheide, S. Wrede, G. Sagerer, G. Hei-
demann, and H. Ritter. The visual active memory perspective on integrated
recognition systems. Image and Vision Computing, 26(1):5-14, January 2008.

Michael Beetz, Lorenz Mosenlechner, and Moritz Tenorth. CRAM - A Cognitive
Robot Abstract Machine for everyday manipulation in human environments. In
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1012-1017. IEEE, October 2010.

Mark Birbeck. Professional XML. Wrox Press, 2001.

Nico Blodow, Dominik Jain, Zoltan-Csaba Marton, and Michael Beetz. Per-
ception and probabilistic anchoring for dynamic world state logging. 2010 10th
IEEE-RAS International Conference on Humanoid Robots, pages 160166, De-
cember 2010.

Rafael H Bordini, Lars Braubach, Jorge J Gomez-sanz, Gregory O Hare,
Alexander Pokahr, and Alessandro Ricci. A survey of programming languages
and platforms for multi-agent systems. INFORMATICA, 30:33-44, 2006.

Michael E Bratman. Intention, Plans, and Practical Reason. Cambridge Uni-
versity Press, March 1999.

Davide Brugali and Patrizia Scandurra. Component-based Robotic Engineering
Part I : Reusable building blocks. IEEE ROBOTICS AND AUTOMATION
MAGAZINE, XX (4):1-12, 2009.

Davide Brugali and Azamat Shakhimardanov. Component-based Robotic Engi-
neering Part II : Systems and Models. IEEE ROBOTICS AND AUTOMATION
MAGAZINE, XX(1):1-12, 2010.

K. Selguk Candan, Huan Liu, and Reshma Suvarna. Resource description frame-
work: Metadata and its applications. SIGKDD Explor. Newsl., 3(1):6-19, July
2001.



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

[22]

[23]

[31]

32]

L. Chittaro and A. Montanari. Efficient temporal reasoning in the cached event
calculus. Computational Intelligence, 12(3):359-382, August 1996.

W. F. Clocksin and C. S. Mellish. Programming in Prolog. Berlin-New York:
Springer-Verlag, 2003.

Silvia Coradeschi and Alessandro Saffiotti. An introduction to the anchoring
problem. Robotics and Autonomous Systems, 43(2-3):85-96, May 2003.

Claudia Cruz, Luis Enrique Sucar, and Eduardo F Morales. Real-time face
recognition for human-robot interaction. In Automatic Face & Gesture Recog-
nition, 2008. FG’08. 8th IEEE International Conference on, pages 1-6. IEEE,
2008.

Gianpaolo Cugola and Alessandro Margara. Processing flows of information:

From data stream to complex event processing. ACM Computing Surveys
(CSUR), V(i):1-70, 2012.

Daniel de Leng and Fredrik Heintz. Towards on-demand semantic event pro-
cessing for stream reasoning. In Information Fusion (FUSION), 2014 17th
International Conference on, pages 1-8. IEEE, 2014.

Patrick Doherty, Fredrik Heintz, and Jonas Kvarnstrom. Robotics, Temporal
Logic and Stream Reasoning. International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning (LPAR-19), pages 42-51, 2014.

Patrick Doherty, Jonas Kvarnstrom, and Fredrik Heintz. A temporal logic-based
planning and execution monitoring framework for unmanned aircraft systems.
Autonomous Agents and Multi-Agent Systems, 19(3):332-377, February 2009.

J. Elfring, S. van den Dries, M.J.G. van de Molengraft, and M. Steinbuch.
Semantic world modeling using probabilistic multiple hypothesis anchoring.
Robotics and Autonomous Systems, 61(2):95-105, December 2012.

Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Computing Surveys,
35(2):114-131, June 2003.

Tully Foote. tf: The transform library. In Technologies for Practical Robot
Applications (TePRA), 2013 IEEE International Conference on, Open-Source
Software workshop, pages 1-6, April 2013.



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

33]

[34]

Malik Ghallab. On Chronicles: Representation, On-line Recognition and Learn-
ing. In Proceedings of the Fifth International Conference on Principles of
Knowledge Representation and Reasoning (KR’96), pages 597—606, 1996.

Christian Halashek-Wiener, Bijan Parsia, and Evren Sirin. Description Logic
Reasoning with Syntactic Updates. In Robert Meersman and Zahir Tari, edi-
tors, On the Move to Meaningful Internet Systems 2006: CooplS, DOA, GADA,
and ODBASE, volume 4275 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006.

Nick Hawes. Building for the Future: Architectures for the Next Generation
of Intelligent Robots. Proceedings of a Symposium held in Honour of Aaron
Sloman, 2011.

Nick Hawes, Aaron Sloman, and Jeremy Wyatt. Towards an integrated robot
with multiple cognitive functions. Proceedings of the Twenty-Second AAAI
Conference on Artificial Intelligence (AAAI 2008), AAAI Press, pages 1548
1553, 2008.

Nick Hawes and Jeremy Wyatt. Engineering intelligent information-processing
systems with CAST. Advanced Engineering Informatics, 24(1):27-39, 2010.

Fredrik Heintz. DyKnow: A Stream-Based Knowledge Processing Middleware
Framework. PhD thesis, Linképing Studies in Science and Technology. Disser-
tations #1240. Link6ping University Electronic Press. 258 Pages., 2009.

Fredrik Heintz. Semantically grounded stream reasoning integrated with ROS.
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Confer-
ence on, pages 5935-5942, 2013.

Fredrik Heintz, J Kvarnstrom, and Patrick Doherty. Stream-Based Reasoning
Support for Autonomous Systems. Furopean Conference on Artificial Intelli-
gence (ECAI), 2010.

Fredrik Heintz, Jonas Kvarnstrom, and Patrick Doherty. A stream-based hier-
archical anchoring framework. In 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 5254-5260. IEEE, October 2009.

Fredrik Heintz, Jonas Kvarnstrom, and Patrick Doherty. Bridging the sense-
reasoning gap: DyKnow - Stream-based middleware for knowledge processing.
Advanced Engineering Informatics, 24(1):14-26, January 2010.



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

[43]

[44]

[47]

[48]

[49]

Fredrik Heintz, Jonas Kvarnstrom, and Patrick Doherty. Stream-Based Hierar-
chical Anchoring. KT - Kiinstliche Intelligenz, 27(2):119-128, March 2013.

Fredrik Heintz and D De Leng. Semantic information integration with transfor-
mations for stream reasoning. International Conference on Information Fusion

(FUSION 2013), 2013.

Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. SWRL: A Semantic Web Rule Language Combining
OWL and RuleML. Technical report, W3C, 2004.

Dominik Jain, Lorenz Mosenlechner, and Michael Beetz. Equipping robot con-
trol programs with first-order probabilistic reasoning capabilities. In 2009 IEEE
International Conference on Robotics and Automation, pages 3626-3631. IEEE,
May 2009.

Robert Kowalski and Marek Sergot. A logic-based calculus of events. In Foun-
dations of knowledge base management, pages 23-55. Springer, 1989.

Pat Langley, John E. Laird, and Seth Rogers. Cognitive architectures: Research
issues and challenges. Cognitive Systems Research, 10(2):141-160, June 2009.

Séverin Lemaignan. Grounding the Interaction: Knowledge Management for
Interactive Robots. PhD Thesis, Laboratoire d’Analyse et d’Architecture des
Systéemes (CNRS) - Technische Universitit Minchen, 2012.

Séverin Lemaignan, Raquel Ros, E. Akin Sisbot, Rachid Alami, and Michael
Beetz. Grounding the Interaction: Anchoring Situated Discourse in Everyday

Human-Robot Interaction. International Journal of Social Robotics, 4(2):181—
199, November 2011.

Hector Levesque, Fiora Pirri, and Ray Reiter. Foundations for the situation
calculus. Linkdping FElectronic Articles in Computer and Information Science,
3(18), 1998.

Gi Hyun Lim, Il Hong Suh, and Hyowon Suh. Ontology-Based Unified Robot
Knowledge for Service Robots in Indoor Environments. IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans, 41(3):492-509,
May 2011.

J. W. Lloyd. Foundations of logic programming. Springer-Verlag New York,
Inc. New York, NY, USA, November 1984.



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

[54]

[58]

[62]

I Litkebohle. Facilitating re-use by design: A filtering, transformation, and
selection architecture for robotic software systems. ICRA’09 Workshop on Soft-
ware Engineering for Robotics IV, (section I1I), 2009.

I Liitkebohle, R Philippsen, V Pradeep, EE Marder-Eppstein, and S Wachsmuth.
Generic middleware support for coordinating robot software components: The
Task-State-Pattern. Journal of Software Engineering for Robotics (JOSER),
2(1):20-39.

Nikolaos Mavridis and Deb Roy. Grounded Situation Models for Robots: Where
words and percepts meet. In 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4690-4697. IEEE, October 2006.

Sean Bechhofer Frank van Harmelen James Hendler Ian Horrocks Deborah L.
McGuinness Peter F. Patel-Schneider Mike Dean, Guus Schreiber and Lynn An-
drea Stein. OWL Web Ontology Language Reference. Technical report, W3C,
2004.

Federico Pecora, Marcello Cirillo, Francesca Dell Osa, Jonas Ullberg, and
Alessandro Saffiotti. A constraint-based approach for proactive, context-aware
human support. Journal of Ambient Intelligence and Smart Environments,
4:347-367, 2012.

Christian Peters, Thomas Hermann, and Sven Wachsmuth. User Behavior
Recognition For An Automatic Prompting System - A Structured Approach
based on Task Analysis. Proceedings of the 1st Int. Conf. on Pattern Recogni-
tion Applications and Methods (ICPRAM), 2:171, 2012.

Axel Polleres, David Pearce, Stijn Heymans, and Edna Ruckhaus, editors. Pro-
ceedings of the ICLP’07 Workshop on Applications of Logic Programming to
the Web, Semantic Web and Semantic Web Services, ALPSWS 2007, Porto,
Portugal, September 13th, 2007, volume 287 of CEUR Workshop Proceedings.
CEUR-WS.org, 2007.

Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open-source robot operating
system. Open Source Software Workshop of IEEE International Conference on
Robotics and Automation (ICRA), 2009, 2009.

Surangika Ranathunga, Stephen Cranefield, and Martin Purvis. Identifying
Events Taking Place in Second Life Virtual Environments. Applied Artificial
Intelligence, 26(1-2):137-181, January 2012.



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

[63]

Anand S Rao and Michael P Georgeff. Modeling Rational Agents within a
BDI-Architecture. In James Allen, Richard Fikes, and Erik Sandewall, edi-
tors, Proceedings of the 2nd International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’91), pages 473-484. Morgan Kaufmann
publishers Inc.: San Mateo, CA, USA, 1991.

Anand S. Rao and Michael P. Georgeff. BDI agents: From theory to prac-
tice. In Proceedings of the first international conference on multi-agent systems
(ICMAS-95), pages 312-319, 1995.

C Bauckhage S. Wrede, M. Hanheide, Sagerer, and G. An active memory as a
model for information fusion. International Conference on Information Fusion,
Stockholm, Sweden, 1:198-205, 2004.

L. Sabri, A. Chibani, Y. Amirat, and G. P. Zarri. Narrative reasoning for cog-
nitive ubiquitous robots. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2011), 2011.

Murray Shanahan. The event calculus explained. In Artificial intelligence today,
pages 409-430. Springer, 1999.

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical OWL-DL reasoner. J. Web Sem., 5(2):51-53,
2007.

Yale Song, David Demirdjian, and Randall Davis. Continuous body and hand
gesture recognition for natural human-computer interaction. ACM Transactions
on Interactive Intelligent Systems, 2(1):1-28, March 2012.

Dennis Stachowicz and Geert-Jan M Kruijff. Episodic-Like Memory for Cogni-
tive Robots. IEEE Transactions on Autonomous Mental Development, 4(1):1-
16, March 2012.

Mori Tenorth and Michael Beetz. KNOWROB - knowledge processing for au-
tonomous personal robots. In 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4261-4266. IEEE, October 2009.

Moritz Tenorth and Michael Beetz. Knowledge Processing for Autonomous
Robot Control. Proceedings of the AAAI Spring Symposium on Designing In-
telligent Robots: Reintegrating Al. Stanford, CA: AAAI Press, 2012, 2012.



RETALIS LANGUAGE FOR ROBOTIC INFORMATION ENGINEERING

73]

[83]

Moritz Tenorth, Alexander Clifford Perzylo, Reinhard Lafrenz, and Michael
Beetz. The RoboEarth language: Representing and exchanging knowledge
about actions, objects, and environments. 2012 IEEE International Confer-
ence on Robotics and Automation, (3):1284-1289, May 2012.

André Uckermann, Robert Haschke, and Helge Ritter. Real-Time 3D Seg-
mentation of Cluttered Scenes for Robot Grasping. IFEE-RAS International
Conference on Humanoid Robots (Humanoids 2012), Osaka, Japan, 2012.

Vangelis Vassiliadis, Jan Wielemaker, and Chris Mungall. Processing OWL2
ontologies using Thea: An application of logic programming. In OWLED,
volume 529, 2009.

V Verma and A Jonsson. Universal executive and PLEXIL: Engine and language
for robust spacecraft control and operations. American Institute of Aeronautics
and Astronautics Space Conference, pages 1-19, 2006.

David E. Watson. Book review: Blackboard Architectures and Applications
Edited by V. Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum (Aca-
demic Press). ACM SIGART Bulletin, 1(3):19-20, October 1990.

Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjorn Lager. SWI-
Prolog. Theory and Practice of Logic Programming, 12(1-2):67-96, 2012.

R. Wood, P. Baxter, and T. Belpaeme. A review of long-term memory in natural
and synthetic systems. Adaptive Behavior, 20(2):81-103, December 2011.

S Wrede. An information-driven architecture for cognitive systems research.
Ph.D. dissertation, Faculty of Technology - Bielefeld University, 2009.

Pouyan Ziafati, Mehdi Dastani, John-Jules Meyer, and Leendert van der Torre.
Agent Programming Languages Requirements for Programming Autonomous
Robots. ProMAS 2012, Springer, Heidelberg, LNAT 7837:35-53, 2013.

Pouyan Ziafati, Mehdi Dastani, John-Jules Meyer, and Leendert van der Torre.
Event-Processing in Autonomous Robot Programming. Proceedings of the
12th International Conference on Autonomous Agents and Multiagent Systems,
pages 95-102, 2013.

Pouyan Ziafati, Yehia Elrakaiby, Mehdi Dastani, Leendert van der Torre, Marc
van Zee, John-Jules Meyer, and Holger Voos. Reasoning on Robot Knowledge
from Discrete and Asynchronous Observations. AAAI Spring Symposium on
Knowledge Representation and Reasoning in Robotics, Stanford, 2014, 2014.



ZIAFATI, DASTANI, MEYER, VAN DER TORRE AND VO0OS

[84] Pouyan Ziafati, Fulvio Mastrogiovanni, and Antonio Sgorbissa. Fast Proto-
typing and Deployment of Context-Aware Smart Outdoor Environments. 2011
Seventh International Conference on Intelligent Environments, pages 206—213,
July 2011.



	Introduction
	Running Example
	Architectural Overview of Retalis
	On-Flow Information Processing
	ETALIS Language for Events (ELE)
	ELE Semantics
	Runtime Subscription in Retalis
	Discussion

	On-Demand Information Processing
	SLR Language for Event Management and Querying
	SLR Syntax
	SLR Operational Semantics
	State-Based Knowledge Representation
	Active Memory
	Synchronizing Queries over Asynchronous Events

	Discussion

	Evaluation
	Basic setup
	Forgetting and Memorizing
	Querying
	On-Flow Processing
	Subscription

	Conclusion

