3D Crack Detection Using an XFEM Variant and Global Optimizaion Algorithms

K. Agathos¹ E. Chatzi² S. P. A. Bordas^{1,3,4}

¹Research Unit in Engineering Science Luxembourg University

²Institute of Structural Engineering ETH Zürich

³Institute of Theoretical, Applied and Computational Mechanics Cardiff University

⁴Adjunct Professor, Intelligent Systems for Medicine Laboratory, The University of Western Australia

June 1, 2016

K. Agathos et al.

XFEM based crack detection

1/6/2016 1 / 21

- 1 Inverse problem formulation
- 2 Global enrichment XFEM
- 3 Parametrization and constraints
- 4 Numerical examples

Background

Nondestructive evaluation (NDE)

Methods used to examine an object, material or system without impairing its future usefulness

 Available Techniques: impedance tomography, radiography, ultrasounds, acoustic emission SHM - Damage Detection: Monitor changes in the dynamic properties of a structure

- $\rightarrow\,$ Detection of cracks in existing structures
- \rightarrow Measurements are available
- $\rightarrow\,$ A computational model is employed
- $\rightarrow\,$ The difference between the two is minimized
- $\rightarrow\,$ Information regarding the cracks is obtained

Inverse problem

Mathematical formulation:

Find β_i such that $\mathcal{F}(r(\beta_i)) \rightarrow \min$

where

- β_i Parameters describing the crack geometry
- $r(\cdot)$ Norm of the difference between measurements and computed values
 - ${\mathcal F}$ Some function of the residual

The CMA-ES algorithm is employed to solve the problem.

Solution process:

- \rightarrow Generation of initial population (β_i) with CMA-ES
- \rightarrow Fitness function ($\mathcal{F}(r(\beta_i))$) evaluation using XFEM and measurements
- $\rightarrow\,$ Population is updated with CMA-ES
- $\rightarrow~$ The procedure is repeated until convergence

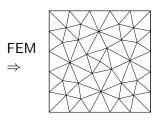
During the optimization proccess:

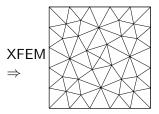
- A large number of crack geometries is tested
- The computational model is solved several times
- An efficient and robust method is required

XFEM

FEM vs XFEM for fracture:

No crack





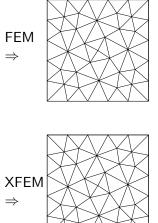
イロト イヨト イヨト イヨ

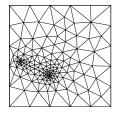
XFEM

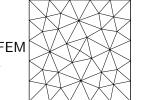
FEM vs XFEM for fracture:

• No crack

• Crack 1







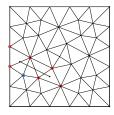


Image: Image:

K. Agathos et al.

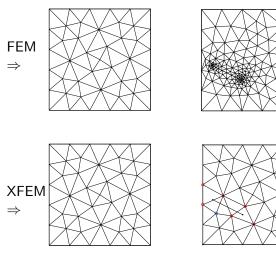
(4) (3) (4) (4) (4)

XFEM

FEM vs XFEM for fracture:

No crack

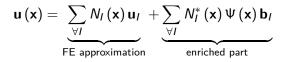
• Crack 1



Ma Co

XFEM approximation

XFEM approximation:



where:

 $N_{I}(\mathbf{x})$ are the FE shape functions

 \mathbf{u}_l are the nodal displacements

 $N_{I}^{*}(\mathbf{x})$ are functions forming a PU

 $\Psi(\mathbf{x})$ are the enrichment functions

b₁ are the enriched dofs

Jump enrichment functions:

$$egin{aligned} \mathcal{H}(\phi) = \left\{egin{aligned} & 1 & ext{for } \phi > 0 \ & - & 1 & ext{for } \phi < 0 \end{aligned}
ight. \end{aligned}$$

Tip enrichment functions:

$$F_j(r,\theta) = \left[\sqrt{r}\sin\frac{\theta}{2}, \sqrt{r}\cos\frac{\theta}{2}, \sqrt{r}\sin\frac{\theta}{2}\sin\theta, \sqrt{r}\cos\frac{\theta}{2}\sin\theta\right]$$

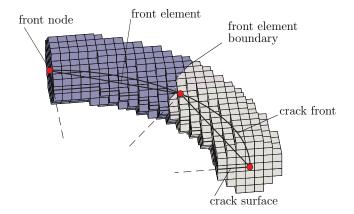
Some drawbacks of XFEM:

- The use of tip enrichment in a fixed area around the crack front (geometrical enrichment) is required for optimal convergence
- The use of geometrical enrichment causes conditioning problems
- Blending problems the enriched and the standard part of the approximation

An XFEM variant is employed which:

- Enables the application of geometrical enrichment to 3D
- Employs weight function blending
- Employs enrichment function shifting

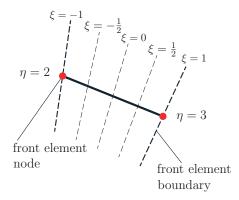
Special front elements are introduced:



∃ ▶ ∢

Global enrichment XFEM

Front element shape functions:



$$\mathbf{N}^{g}\left(\xi\right) = \begin{bmatrix} \frac{1-\xi}{2} & \frac{1+\xi}{2} \end{bmatrix}$$

Global enrichment XFEM

Displacement approximation:

$$\mathbf{u}(\mathbf{x}) = \sum_{I \in \mathcal{N}} N_{I}(\mathbf{x}) \mathbf{u}_{I} + \bar{\varphi}(\mathbf{x}) \sum_{J \in \mathcal{N}^{j}} N_{J}(\mathbf{x}) (H(\mathbf{x}) - H_{J}) \mathbf{b}_{J} + \varphi(\mathbf{x}) \left(\sum_{K \in \mathcal{N}^{s}} N_{K}^{g}(\mathbf{x}) \sum_{j} F_{j}(\mathbf{x}) - \sum_{T \in \mathcal{N}^{t}} N_{T}(\mathbf{x}) \sum_{K \in \mathcal{N}^{s}} N_{K}^{g}(\mathbf{x}_{T}) \sum_{j} F_{j}(\mathbf{x}_{T}) \right) \mathbf{c}_{Kj}$$

where:

$\bar{\varphi}, \varphi$ are weight functions

 N_{K}^{g} are front element shape functions

 H_J, F_j are nodal values of the enrichment functions

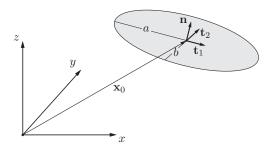
K. Agathos et al

XFEM based crack detection

1/6/2016 15 / 21

Problem parametrization

Elliptical cracks are considered:



Parameters:

- Coordinates of center
 point x₀ ({x₀, y₀, z₀})
- Rotation about the three axes θ_x, θ_y and θ_z
- Lengths *a* and *b*

Scaling of parameters:

$$p_{i} = \frac{p_{i_{1}} + p_{i_{2}}}{2} + \frac{p_{i_{2}} - p_{i_{1}}}{2} \sin\left(\frac{\beta_{i}}{10} \cdot \frac{\pi}{2}\right)$$

where:

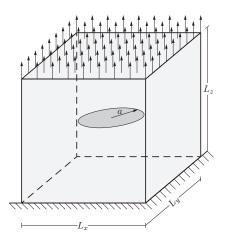
 β_i are design variables

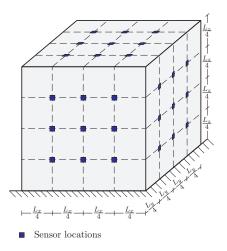
 p_i are geometrical parameters of the crack

 p_{i_1}, p_{i_2} are lower and upper values for the parameters

Penny crack in a cube

Geometry and sensors:

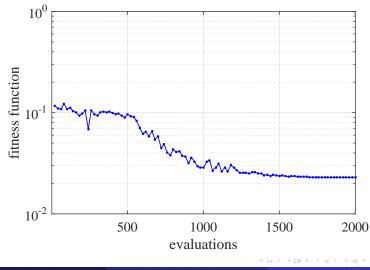




★ ∃ ►

Penny crack in a cube

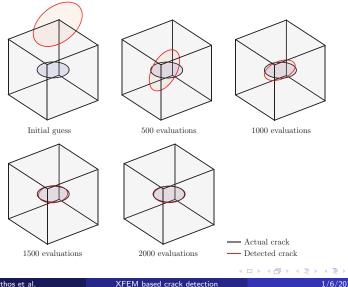
Optimization problem convergence:



1/6/2016 19 / 21

Penny crack in a cube

Best solution after different numbers of iterations



- $\rightarrow\,$ A 3D crack detection scheme was presented
- \rightarrow Promising results were obtained
- $\rightarrow\,$ Extension to practical problems would increase computational cost
- $\rightarrow\,$ Computational cost of forward problem solutions should be reduced