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Abstract—In this paper, we address sparsity-based spectrum
sensing for Cognitive Radio (CR) applications. Motivated by the
sparsity described by the low spectral occupancy of the licensed
radios, the proposed approach utilizes the novel Compressive
Sensing (CS) technique to alleviate the sampling burden in
CR when processing very wide bandwidth. Instead of detecting
underutilized subbands of the radio spectrum, this paper propose
a feature-based strategy to detect the licensed holder activity
from compressive measurements. The procedure follows the
framework of correlation matching, changing the traditional
single frequency scan to a spectral scan with the a priori known
spectral shape of the licensed holder. In addition to the frequency-
location estimate, the proposed technique is able to provide a
power-level estimate and an estimation of the angle-of-arrival
(AoA) of the primary users by circumventing the complex non-
linear CS reconstruction.

I. INTRODUCTION

The most critical design problem among the implementa-
tion challenges specific to spectrum sensing is the need to
process a very wide bandwidth [1]. Moreover, with the cur-
rent analog-to-digital converters (ADC) technology, wideband
radio frequency signal digitising is a quite demanding task.
Compressive Sensing (CS) is a recently proposed technique
for data acquisition which offers the possibility of reducing
the strong requirements of the ADCs based on the premise
that the signal is sparse. The sparsity of the spectrum is often
considered in the cognitive radio literature [2], [3] based on
the low percentage of spectrum occupancy by active radios.
In this paper, the sampling bottleneck is overcome using a
particular CS technique called Multi-Coset (MC) sampling [4].
Unlike other sub-Nyquist sampling techniques, MC applies a
periodic non-uniform sampling which preserves the structure
needed for the computation of the compressed auto-correlation
function. The correlation of compressive sampled data has also
been considered in [5], [6] for finding underutilized bandwidth
in crowded spectrum. Here, instead of detecting underutilized
subbands of the radio spectrum, we propose a feature-based
strategy to detect the licensed holder activity. The basic
strategy is to compare the a priori known spectral shape of the
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primary user with the power spectral density of the received
signal. Spectral feature detection with no data compression and
no presence of interferent has been considered in [7]. Here,
the comparison is made in a correlation matching framework
since we do not have access to the power spectral density of
the compressed signal. Furthermore, the correlation matching
framework circumvents the non-linear l1-minimization based
CS reconstruction, which relies on a threshold or a regu-
larization parameter that has to be appropriately optimized.
Unlike [5], [6], this paper considers a multi-antenna receiver.
The use of an antenna array allows us to obtain, besides a
frequency-location and a power-level estimate, an estimation
of the angle-of-arrival (AoA) of the primary users. The use
of multi-antenna technologies is of great interest in CR since
it allows to multiplex different users into the same channel at
the same time in same geographical areas. Thus, the secondary
nodes can use the AoA measurements to attain its transmission
directivity and therefore increase the overall system capacity
and reduce cochannel interference. This work extends previous
authors’ publications [8]–[10] to the case of compressive
sensing and multiple receive antennas.

This paper is organized as follows. Section II states the
signal model. Section III describes the compressive spectral
detection scheme. Supporting results based on simulated data
are provided in Section IV. Conclusions are drawn in Section
V.

II. COMPRESSED SIGNAL MODEL

The basic idea of CR is spectral reusing or spectrum
sharing, which allows the unlicensed users to communicate
over licensed spectrum when the licensed holders are not fully
utilizing it. Thus, we consider the received signal consists on
the superposition of multiple primary and secondary (inter-
ference) services. The analytic representation of the received
signal in a cognitive radio network can be expressed as,

r(t) =
K∑

k=1

ak(t)e
j(w0+wk)t + n(t) (1)

where ak(t) indicates the complex envelope of the source
and wk denotes the baseband frequency of the source with
respect to the center frequency of the band under scrutiny w0.
A standard assumption in the literature is that n(t) is AWGN.

Assuming a Nyquist-rate sampling T , each k-th source can
be denoted by bk,m meaning a m-th block of L-length Nyquist
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samples. To denote the m-th block of all the K sources present
in the scenario we use Bm ∈ C

K×L defined as,

Bm =
[
b1,m · · · bk,m · · · bK,m

]T
(2)

The proposed spectrum sensing will be computed using
multiple snapshots of measurements from a uniformly spaced
linear array (ULA). According to (2), the complex snapshot
of the received RF signal can be written as,

Zm = DBm =
[
z1,m · · · zn,m · · · zN,m

]T
(3)

where N is the number of antennas. Matrix D ∈ C
N×K is

defined as,

D =
[
d1 · · · dk · · · dK

]
(4)

where

dk =
[
1 ejw0

d
c sin(θk) . . . ejw0(N−1) d

c sin(θk)
]T

(5)

Here, d is the distance between two consecutive array ele-
ments, c is the speed of the light and θk is the angle of arrival
of the k source. Note that (3) assumes the narrowband model,
i.e, negligible group delay (w0 >> wk).

Throughout this paper, we will assume that the secondary
users are independent of the noise and primary signal, and its
spectral shape is different from that of the primary.

MC periodic non-uniform sampling is considered as acqui-
sition technique. In MC sampling, we first pick a suitable
sampling period. The inverse of this period will determine
the base frequency of the system, being at least equal to the
Nyquist rate so that sampling at ensures no aliasing. In general,
this period is set equal to the Nyquist-period (T ).

The MC sampling is applied at each antenna separately.
Thus, towards the objective of fast data acquisition and as-
suming that wireless signals in open-spectrum networks are
typically sparse in the frequency domain, consider the classical
linear measurement model for each of the above antenna
received signal,

yn,m = Φzn,m (6)

Matrix Φ has dimension p× L and is known as compressive
matrix. According to MC, Φ must be a matrix that randomly
selects p samples of each zn,m, where p < L. This matrix Φ is
given by randomly selecting p rows of the identity matrix IL.
CS theory suggests that a low coherence between Φ and the
basis where the signal becomes sparse (Fourier in our case) is
desirable in order to ensure mutually independent matrices and
therefore better compressive sampling [11]. In our example,
the maximal incoherence associated to the Fourier basis is
given by the canonical or spike basis, which is exactly the
basis defined by the identity matrix.

The process of sampling described in (6) can be viewed
as first sampling the signal at the Nyquist sampling rate
(T ) and then discarding all but p samples in every block
of L samples periodically. Therefore, matrix Φ applies a
non-uniform periodic sampling. Although MC sampling can
be casted into a CS framework, its implementation becomes

much more simpler: while usually CS considers an Analog
to Information Converter (AIC), in the MC approach only a
limited number of parallel ADCs operating at low sampling
rate are needed [6].

Defining the compressive snapshot as,

Ym =
[
y1,m · · · yn,m · · · yN,m

]T
(7)

the estimated data autocorrelation matrix can be obtained as
follows,

R̂y =
1

M

M∑
m=1

vec(Ym)vecH(Ym) (8)

where vec(Ym) is C
pN×1 and denotes the concatenation of

the p snapshots contained in Ym.

III. COMPRESSIVE SPECTRAL FEATURED DETECTION

The aim of this study is to approach the primary user
detection problem from the feature-based detector perspective.
More specifically, the traditional pure frequency line scanning
is replaced by a scanning performed in terms of predefined
spectral shape which corresponds to the spectral signature of
the primary user that we aim to label. From the candidate
spectral shape (that is how the baseband spectral shape of
the licensed holder is labeled henceforth), the corresponding
candidate autocorrelation matrix defined in base band (Rb) can
be easily obtained.

In order to explore the frequency dimension, the candidate
base band autocorrelation matrix Rb is modulated by a rank-
one matrix formed by the scanning frequency vector at the
sensed frequency w as follows,

Rc(w) =
[
Rb � e(w)eH(w)

]
(9)

where � denotes the elementwise product of two matrices,
e(w) =

[
1 ejw . . . ej(L−1)w

]T
. The resulting matrix has

dimension L× L.
The compressive version of (9) is given by,

R̃c(w) = ΦRc(w)Φ
T (10)

An extended candidate correlation matrix must be built
to cope with the angle of arrival dependency. The angle-
dependent candidate correlation matrix can be obtained as
follows,

R̃cm(w, θ) = SθR̃c(w)S
H
θ (11)

where matrix Sθ is defined as Sθ = Ip ⊗ sθd, with
Ip being the identity matrix of dimension p, sθd =[
1 ejw0

d
c sin(θ) . . . ejw0(N−1) d

c sin(θ)
]T

and ⊗ denoting
the Kronecker product. The dimensions of the general can-
didate correlation matrix are R̃cm(w, θ) ∈ C

pN×pN .
According to this notation, the corresponding model for the

data autocorrelation matrix defined in (8) is given by,

R̃y =

Nx∑
i=1

γ(wi)SθiΦ
[
Rb � e(wi)e

H(wi)
]
ΦT SH

θi + R̃n

=

Nx∑
i=1

γ(wi)R̃cm(wi, θi) + R̃n (12)
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where Nx indicates the number of primary sources present in
the scenario, γ(wi) is the power level at the source frequency
wi and R̃n is the compressed version of the noise plus
interference.

Based on the previous assumptions, an estimate of the power
level γ can be formulated as,

min
γ

Ψ
(

R̂y, γR̃cm(w, θ)
)

(13)

where Ψ(·, ·) is an error function between the two matrices.
The suitable similarity function must work in low SNR sce-
narios, it must be robust to the presence of strong interference
that secondary users may cause, and must operate with a low
number of data records to guarantee short sensing time. Note
that the solution to (13) will be clearly a function of the
steering frequency and a function of the steering angle.

The different estimates result from the proper choice of the
aforementioned error function. Three different error functions
were discussed by the authors in [8]–[10]. The first one, which
is based on the Euclidean distance, can be discarded due to
the lack of interference rejection. In this work we focus on
the other two methods: the one based on the geodesic distance
and the one based on the positive semidefinite character of the
autocorrelation matrices.

A. Spectrum Detector Based on the Geodesic Distance

The geodesic distance between R̂y and γR̃cm(w, θ) is given
by,

d2geo(R̂y, γR̃cm(w, θ)) =

Q∑
q=1

(ln(lq))
2 (14)

where

1

γ
(R̃cm(w, θ))−1R̂yeq = lqeq for q = 1, . . . , Q (15)

Minimizing (14) with respect to γ, we obtain the power level
estimate (16a) and the resulting minimum geodesic distance
(16b).

γG =

(
Q∏

q=1

λq

) 1
Q

(16a)

d2geo,min =

Q∑
q=1

|ln (λq/γG)|2 (16b)

where λq (q = 1, . . . , Q) denotes the eigenvalues of
(R̃cm(w, θ))−1R̂y .

B. Spectrum Detector Based on the Minimum Eigenvalue

A second detector can be derived by forcing a positive
semidefinite difference between the two matrices. The problem
can be formulated as

max
γ≥0

γ

s.t. R̂y − γR̃cm(w, θ) � 0
(17)

TABLE I
SCENARIO CHARACTERISTICS

Primary User Interference

Modulation BPSK Pure Tone

Normalized Frequency(*) 0.2 0.3

AoA (degrees) 30 60

SNR (dB) 10 10

(*) The bandwidth under scrutiny is 10MHz.

If R̂y − γR̃cm(w, θ) must be positive semidefinite, I −
γR̂

−1

y R̃cm(w, θ) must be too. Thus, using the EigenDecom-

position of R̂
−1

y R̃cm(w, θ) defined by UΛUH ,

I − γUΛUH � 0 ⇒ I − γΛ � 0 ⇒ Λ−1 − γI � 0 (18)

where Λ−1 is a diagonal matrix whose diagonal ele-
ments are the corresponding eigenvalues of the matrix
(R̃cm(w, θ))−1R̂y . In the worst case we assume that the
minimum eigenvalue of (Λ−1 − γI) is equal to zero,

λmin((R̃cm(w, θ))−1R̂y)− γ = 0 (19)

Thus, the solution to (17) is given by the minimum eigenvalue
of (R̃cm(w, θ))−1R̂y , that is,

γM = λmin

(
(R̃cm(w, θ))−1R̂y

)
(20)

IV. SIMULATION RESULTS

This section is divided in two parts. The first part concen-
trates on the general performance of the proposed method,
where high SNR is used for the sake of figure clarity. The
second part gives the ROC results for low SNR scenarios.

A. High SNR Scenario

To test the ability of the two proposed methods we first
consider a scenario with a primary user with binary phase shift
keying (BPSK) using rectangular pulse shape (4 samples per
symbol) and a pure tone interference plus AWGN. The spectral
occupancy (set of frequencies where the Fourier transform
does not vanish) for this particular example is about 0.25.
According to [12], the signal admits perfect reconstruction
from periodic nonuniform sampling at rates approaching Lan-
daus lower bound [13] equal to the measure of the spectral
occupancy. Thus, if the spectral occupancy is 0.25, we can
discard three of every fourth Nyquist samples. The array is
composed of N = 6 antennas with an antenna separation equal
to λ/2. The scenario characteristics have been summarized in
Table I.

The size of the observed blocks is L = 33 samples. The
sampling rates of Ym and Zm are related through the compres-
sion rate ρ = p

L . In order to force the size of the compressed
observations to be the same for any compression rate (to ensure
the quality of the autocorrelation matrix estimation), we set
M = 2Lερ−1, where ε is a constant (in the following results
ε = 30). Thus, for a high compression rate, the estimator takes
samples for a larger period of time.
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Fig. 1. Minimum Eigenvalue detector: γM for (a) ρ=1, (b) ρ=0.76, (c)
ρ=0.52, (d) ρ=0.24.
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Fig. 2. Geodesic distance detector:: d−1
geo,min for (a) ρ=1, (b) ρ=0.76, (c)

ρ=0.52, (d) ρ=0.24.

Fig. 1 shows the performance of the Minimum Eigenvalue
method (20) for different compression rates. The resulting
estimate γM provides a clear estimate of the frequency and
angle location, and produces a power level close to 10 dB,
which coincides with the SNR. The interfering tone has
disappeared due to the feature-based nature of the estimate.
Although the compression affects the detection capabilities
(the pick becomes wider in frequency axis), is interesting to
note that the frequency, AoA and power level estimates do not
suffer from the compression.

Fig. 2 and Fig. 3 shows the performance of the geodesic
distance based detector. The independence of γG with respect
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Fig. 3. Geodesic distance detector: power level γG for (a) ρ=1, (b) ρ=0.76,
(c) ρ=0.52, (d) ρ=0.24.
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Fig. 4. RMSE for ρ = 0.24: (a) power level estimate, (b) AoA estimate and
(c) frequency estimate.

to the carrier frequency could be observed in Fig. 3, where the
value of γG only depends on the angle of arrival. The inverse
of the geodesic distance is shown in Fig. 2. It shows higher
robustness against the compression compared with γM , while
providing an accurate estimation of the frequency and angle
location.

Both methods achieve similar performance when multiple
primary users are present, however, the results are not shown
here for space reasons.

For the evaluation of the frequency, AoA and power estima-
tion accuracy, an scenario with one active primary user with
binary phase shift keying (BPSK) using a rectangular pulse
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Fig. 5. Geodesic distance detector ROC: (a) SNR=-14dB, (b) SNR=-16dB.

shape (with 4 samples per symbol) and AWGN is considered.
The frequency and angle location are chosen randomly in
each of the 200 iterations. Here ε is equal to 10 and the grid
resolution is 0.0078 and 1.4 degrees.

Fig. 4 show the normalized Root Mean Squared Error
(RMSE) of the estimated power level (this is the RMSE
divided by the SNR), the RMSE of the AoA estimation, and
the RMSE of the estimated frequency location, respectively,
using the Geodesic detector (blue) and the Minimum Eigen-
value detector (black) for ρ = 0.24. The results displayed
in Fig. 4 show that the power level accuracy obtained with
the Minimum eigenvalue detector is very similar to the one
obtained with the Geodesic-based detector. Similarly, the AoA
estimation accuracy remains almost constant for both detec-
tors. However, is clear form Fig. 4(c) that γG provides better
results than γM whatever the SNR used. This loss in frequency
accuracy together with the preservation of the AoA accuracy
agrees with the fact that the peak provided by γM becomes
wider in the frequency axis as ρ decreases.

B. Low SNR Scenario

This section evaluates the performance in low SNR scenar-
ios by means of the ROC curves. To evaluate the probability
of false alarm versus the probability of detection we have run
200 simulations considering the presence of the primary user
(Hypothesis H1), and 200 records of the same length without
the primary user (Hypothesis H0). The primary user is located
at ws equal to 0.2 and angle of arrival equal to 30 degrees.

Again, the primary user is a BPSK (4 samples per symbol).
No interference is considered here. Fig. 5(a) shows the ROC of
d−1
geo,min for SNR=-14dB and Fig. 5(b) the ROC of d−1

geo,min

for SNR=-16dB for different compression rates. As it was
expected, the general performance of the Geodesic-based
detector is deteriorated as the compression rate decreases.

Fig. 6 shows the ROCs for the Minimum Eigenvalue detec-
tor for (a) SNR=-16dB and (b) SNR=-22dB. The superiority
of γM is clear from the comparison of Fig. 6 with Fig. 5,
where the robustness of the γM is observed as the resulting
plots for the geodesic-based detector are worse with respect
to those obtained by the minimum eigenvalue detector.

V. CONCLUSION

A spectral feature detector for spectrum sensing based on
periodic non-uniform sampling has been proposed in this
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Fig. 6. Minimum eigenvalue detector ROC: (a) SNR=-16dB, (b) SNR=-22dB.

paper. The basic strategy is to use the correlation matching
with a predetermined spectral shape, which has to be known
a priori. Two different techniques are studied: The first one,
which is based on the geodesic distance, works well in terms
of interference rejection and also provides good accuracy but
the robustness against noise is quite poor. The second method,
which is based on the positive semidefinite difference between
matrices, provides the most compliant performance, offering
acceptable accuracy of the estimated parameters and better
robustness against noise.
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