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ABSTRACT
Existing approaches to Compressive Sensing (CS) of sparse
spectrum has thus far assumed models contaminated with
noise (either bounded noise or Gaussian with known power).
In practical Cognitive Radio (CR) networks, primary users
must be detected even in the presence of low-regulated trans-
missions from unlicensed systems, which cannot be taken into
account in the CS model because of their non-regulated na-
ture. In [1], the authors proposed an overcomplete dictio-
nary that contains tuned spectral shapes of the primary user
to sparsely represent the primary users’ spectral support, thus
allowing all frequency location hypothesis to be jointly eval-
uated in a global unified optimization framework. Extraction
of the primary user frequency locations is then performed
based on sparse signal recovery algorithms. Here, we com-
pare different sparse reconstruction strategies and we show
through simulation results the link between the interference
rejection capabilities and the positive semidefinite character
of the residual autocorrelation matrix.

Index Terms— Spectrum Sensing, Compressive Sensing,
Interference Mitigation, Cognitive Radio

1. INTRODUCTION TO THE SPECTRUM SENSING
PROBLEM

The basic idea of Cognitive Radio (CR) is spectral reusing or
spectrum sharing, which allows the unlicensed users to com-
municate over licensed spectrum when the licensed holders
are not fully utilizing it [2]. In this context, the main goal of
spectrum sensing is to decide whether a given frequency band
is occupied by a primary user or not based on the observation
of the received signal [3]. Let us denote x(t) the wideband
signal representing the superposition of different primary sys-
tems in a CR network. Signal x(t) is assumed to be sparse
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multiband signal, i.e, a bandlimited, continuous-time, squared
integrable signal that has all of its energy concentrated in a
small number of disjoint frequency bands. In other words, its
spectral support has Lebesgue measure small relative to the
overall signal bandwidth [4]. Denoting the Fourier transform
of x(t) as X(f), the spectral support of the multiband signal
x(t), denoted as F ⊂ [0, fmax], namely X(f) = 0, f /∈ F ,
is restricted to have its signal energy distributed on no more
than Nb disjoint bands in F :

F =

Nb⋃
i=1

[ai, bi) (1)

where [ai, bi), i = 1, . . . , Nb, represent the edges of each
band. The spectral occupancy Ω is defined as,

Ω =
λ(F )

fmax
0 ≤ Ω ≤ 1 (2)

where λ(F ) is the Lebesgue measure of the frequency set F ,
which, in this particular case, is equal to

∑Nb

i=1 (bi − ai). In
the spectrum sensing framework, the spectral support F is
unknown but the total bandwidth under study is assumed to
be sparse, i.e., Ω 6 1.

The received signal y(t) consists on the superposition of
multiple primary and secondary (interference) services. The
non-regulated activity of the spectrum will be denoted as i(t)
and henceforth is considered interference. The problem of
determining whether a given frequency is occupied or not by
a licensed radio can be modeled into a binary hypothesis test,

y(t) =

{
i(t) + η(t) (H0)

x(t) + i(t) + η(t) (H1)
(3)

where (H0) stands for the absence of primary signal and (H1)
represents the presence of a primary signal in the frequency
channel under study. η(t) is AWGN, N (0, σ2

η). The interfer-
ence i(t) is independent of the noise and primary signal, and
we assume that its spectral shape is different from that of the
primary. In practice, the secondary user is rarely going to use
the same modulation as the primary. Moreover, the secondary



user generally transmits at a lower rate than the primary in or-
der to not disturb the quality of service of the primary user.
Therefore, and as a baseline, it is assumed throughout this
section that the interference has smaller bandwidth than that
of the primary. The presence of unknown interference, which
has not been addressed in conventional spectrum sensing pub-
lications, adds additional challenges to the spectrum sensing
problem. Note that information on primary users activity may
potentially be used by the three relevant cognitive paradigms,
namely interweave, underlay and overlay [5].

Let B denote the set of possible primary users’ frequency
locations and let {ωm}M−1

m=0 denote a grid that covers B. As-
suming that the true location of the primary users lie on the
grid, the received signal y(t) can be rewritten as,

y(t) =

M−1∑
m=0

x(t, ωm) + i(t) + η(t) (4)

where x(t, ωm) denotes the analytic representation of the pri-
mary user corresponding to ωm, which is given by,

x(t, ωm) = am(t)ejωmt (5)

where am(t) indicates the complex envelope of the source at
ωm. Note that only a few am(t) are different from zero. For
the sake of simple notation, we are assuming linear propaga-
tion channel with no distortion1.

2. COMPRESSIVE SAMPLING

The Compressive Sensing (CS) based candidate detector pre-
sented by the authors in [1] makes the assumption that only a
small number of primary users exists and therefore only few
grid points are occupied, i.e., denoting K the number of pri-
mary users present in y(t), K << M . As the value of M
increases with respect to K, B is more and more sparse. CS
theory states that a sparsely representable signal can be recon-
structed using very few number of measurements [7]. In [1],
the multi-coset (MC) sampling was proposed for compressive
data acquisition. Given the received signal y(t), the MC sam-
ples are obtained at the time instants,

ti(n) = (nL+ ci)T (6)

where L > 0 is a suitable integer, i = 1, 2, . . . , κ and
n ∈ Z. The set {ci} contains κ distinct integers chosen from
{0, 1, . . . , L− 1}. The MC sampling process can be viewed
as a classical Nyquist sampling followed by a block that dis-
cards all but κ samples in every block of L samples period-
ically. Thus, a sequence or coset of equally-spaced samples
is obtained for each ci. The period of each one of these se-
quences is equal to LT . Therefore, one possible implemen-
tation consists of κ parallel ADCs, each working uniformly
with period LT .

1The robustness in front of a frequency selective channel, instead of flat
fading, have been studied in [6]

The complete observation consists of a data record of Nf
blocks of κ non-uniform samples noted as yf . In order to
relate the acquired samples yf with the original Nyquist-
sampled signal, let us consider zf as the f -th block of L uni-
form Nyquist samples of y(t),

zf =
[
y(tf1 ) . . . y(tfL)

]T
(7)

where tfn = (fL + n)T . Thus, the relation between the
Nyquist samples and the sub-Nyquist samples is given by,

yf = Φzf (8)

where Φ is a matrix that randomly selects κ samples of zf
(κ < L). This matrix Φ is known as sampling matrix and is
given by randomly selecting κ rows of the identity matrix IL.

3. CS-BASED SPECTRUM SENSING VIA SPECTRAL
SHAPE FEATURE DETECTION

This section reviews the CS-based spectral shape detector
proposed in [1]. It is assumed that the primary signal x(t)
is unknown, i.e., the transmitted symbols are not known a
priori. For such a case, it is appropriate to define a second-
order based detector. To do so, the spectrum characteristics
of the primary signals, which can be obtained by identifying
its transmission technologies, are used as features. The basic
strategy of the candidate detector is to compare the a priori
known spectral shape of the primary user with the power spec-
tral density of the received signal. To avoid the power spectral
density computation of the received signal, the comparison is
made in terms of autocorrelation by means of a correlation
matching. The diagram of the CR receiver is sketched in Fig.
1.

   Sub−Nyquist
     Sampling

  Correlation
  Estimation

         CS−based
  correlation matching

Fig. 1. Block diagram of the cognitive receiver

Firstly, taking advantage of the sparsity of the primary
user’s signal spectrum, a sub-Nyquist sampling is used to
overcome the problem of high sampling rate. Then, the com-
pressed samples are processed in the autocorrelation estima-
tion stage and finally, the correlation-matching based spec-
trum sensing is performed using a predetermined spectral
shape, which has to be known a priori. Following the no-
tation of (8), the sample autocorrelation matrix R̂y ∈ Cκ×κ
can be obtained as,

R̂y =
1

Nf

Nf∑
f=1

yfyHf (9)



For the purpose of the present work, let us define Rb as base-
band candidate autocorrelation of the primary system. The
expression of Rb is linked to the PSD of the primary sys-
tem, which, for linearly modulated signals, depends mainly
on the transmission rate and the modulation pulse. The afore-
mentioned characteristics can be analytically extracted from
physical layer standardization of primary services. In order
to obtain the frequency location of each primary user, Rb is
modulated by a rank-one matrix formed by the steering fre-
quency vector at the sensed frequency ωm as follows,

Rc(ωm) =
[
Rb � e(ωm)eH(ωm)

]
(10)

where� denotes the elementwise product of two matrices and
e(ωm) =

[
1 ejωm . . . ej(L−1)ωm

]T
is the steering vec-

tor.
According to this notation, the corresponding model for the

sample autocorrelation matrix defined in (9) is given by,

R̂y =

M−1∑
m=0

γ(ωm)ΦRc(ωm)ΦH + Rε (11)

where Rε represents the contribution of the sub-Nyquist-
sampled interference and noise autocorrelation matrices and
γ(ωm) is the power level at frequency ωm.

The model in (11) can be conveniently rewritten into a
sparse notation as follows,

r̂y = kron(Φ,Φ)BSp + rε = Ap + rε (12)

where kron(·, ·) denotes the Kronecker product. Vector r̂y ∈
κ2 × 1 is formed by the concatenation of the columns of
R̂y . From now on, to clarify notation, the concatenation of
columns will be denoted with the operator vec(·). Therefore,
r̂y = vec(R̂y). B contains the spectral information of the pri-
mary signals and is defined as diag(rb) where rb = vec(Rb).
Matrix S defines the frequency scanning grid,

S =
[
s(ω0) s(ω1) · · · s(ωM−1)

]
(13)

where s(ωm) = vec(e(ωm)eH(ωm)). The variable rε en-
compasses interference and noise contribution. Vector p =[
p(ω0) p(ω1) · · · p(ωM−1)

]T
can be viewed as the out-

put of an indicator function, whose elements different from
zero correspond to the frequencies where the reference is
present. Moreover, the values different from zero correspond
to the power of each primary user that is present. This is,

p(ωm) =

{
γ(ωk) if ωm = ωk (H1)

0 otherwise (H0)
(14)

4. SPARSE RECONSTRUCTION STRATEGIES

The previous sparse formulation begs for the use of well-
known sparse reconstruction strategies. The aim of this pa-
per is to compare different sparse reconstruction methods to
recover the true primary users’ frequency location, i.e., the
sparse vector p.

4.1. Conventional l1-norm minimization

Conventional l1-norm optimization can be applied to the re-
duced number of observations to recover the positions of pri-
mary users,

min
p(ωm)≥0

‖r̂y − Ap‖l2 + λ ‖p‖l1 (CONV)

where ‖p‖l1 =
∑
m |p(ωm)| and λ is the regularization pa-

rameter that essentially controls the trade-off between the
sparsity of the solution and its fidelity to the measurements.
How to calculate the optimal λ is still an open problem. The
l1-minimization is a convex problem and can be solved using
convex optimization techniques [8]. One important drawback
of (CONV) is the difficulty on rejecting interference. The in-
terference immunity is not achieved only using a dictionary
of candidates because, although the primary signals’ spectral
shape are assumed to be of different nature than that of the
interference, they might not be orthogonal.

4.2. Weighted l1-norm minimization

Recently, the l1-norm has been shown to penalize large coef-
ficients to the detriment of smaller coefficients [9]. Weighted
l1-norm have been proposed to democratically penalize
nonzero entries. A novel weighted l1-norm minimization was
recently introduced by the authors in [1] to monitor the pri-
mary user spectrum activity in CR. The proposed weights
{wm}M−1

m=0 were derived based on the positive-semidefinite
character of the residual error matrix Rε. Those weights were
given by the maximum eigenvalue of R̂

−1

y (ΦRc(ωm)ΦH).
Therefore, all the hypothesis {ωm}M−1

m=0 can be evaluated in
a global unified convex optimization by solving the following
problem,

min
p(ωm)≥0

‖r̂y − Ap‖l2 + λ ‖Wp‖l1 (P0)

where W is the diagonal matrix with the weights {wm}M−1
m=0

on the diagonal and zeros elsewhere.
The problem (P0) was solved in [1] using CS-based itera-

tive reconstruction methods. Finding robust stopping criteria
in iterative CS reconstruction algorithms is a long standing
problem for which a solution does not exist for CS models
corrupted by unknown interference. This problem is skipped
in [1] by running the algorithm until an heuristically chosen
stopping criterion is met. In so doing, the algorithm is forced
to stop before any interference signal is included in the re-
constructed data. In general, the existing CS algorithms are
classified into two sorts: those based on greedy search, and
those based on convex optimization. The latter, although gen-
erally with higher computational complexity, does not require
the user to find robust stopping criteria. Therefore, in order to
skip the tough stopping criteria of the iterative greedy algo-
rithms, the optimization problem (P0) is solved here using
LP.



4.3. Weighted and Constrained l1-norm minimization

It was mentioned that preserving the positive-semidefinite
character of the residual error matrix Rε significantly im-
proves the interference rejection capabilities of the CS-based
spectral shape detector. However, we will show on the simu-
lations section that the weighted formulation of the 11-norm
minimization is not enough to not include the interference on
the solution. For comparison purposes, let us consider the fol-
lowing unweighted and weighted l1-norm minimization prob-
lems,

min
p(ωm)≥0

‖r̂y − Ap‖l2 + λ ‖p‖l1

s.t. R̂y −
M−1∑
m=1

γ(ωm)ΦRc(ωm)ΦH � 0
(P1)

min
p(ωm)≥0

‖r̂y − Ap‖l2 + λ ‖Wp‖l1

s.t. R̂y −
M−1∑
m=1

γ(ωm)ΦRc(ωm)ΦH � 0
(P2)

where a restriction on the positive semi-definite character of
the residual error matrix has been imposed.

5. SIMULATION RESULTS

In this section, we evaluate the performance of the different
sparsity-based reconstruction algorithms using synthesized
data. The spectral band under scrutiny has bandwidth equal
to fmax = 20 MHz. The size of the observation zf is L = 33
samples. The sampling rates of yf and zf are related through
the compression rate ρ = κ

L . To strictly focus on the per-
formance behavior due to compression and remove the effect
of insufficient data records, the size of the compressed ob-
servations is forced to be the same for any compression rate.
Therefore, we set M = 2Lδρ−1 where δ is a constant (in the
following results δ = 10). Thus, for a high compression rate,
the estimator takes samples for a larger period of time. Note
that the value of M determines the grid density of the spec-
trum to be scanned. Increasing M makes the grid finer, but
it also increases the computational complexity. On the other
hand, making the grid too rough might introduce substantial
bias into the estimates. The grid resolution for this section is
∆ω = 100 kHz. The l1-norm minimizations are solved with
the convex optimization program CVX [10].

To test the ability of the reconstruction techniques to prop-
erly label licensed users, we have run 1000 Monte Carlo itera-
tions (based on the noise randomness) of a scenario with one
primary user in the presence of noise and interference. The
interference is included as a 10 dB pure tone at normalized
frequency 0.75, whereas the primary user is assumed to be
a BPSK signal with a rectangular pulse shape and 8 samples
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Fig. 2. CVX figures for ρ = 0.52: (a) CONV, (b) P0, (c) P1,
and (d) P2.

per symbol. The SNR of the desired user is 10 dB and its nor-
malized carrier frequency is 0.25. The spectral occupancy for
this particular example is Ω = 0.25 (the primary user is using
one quarter of the available spectrum). According to Lan-
dau’s lower bound [4], the minimum average sampling rate
for most signals is given by the Nyquist rate multiplied by the
spectral occupancy, which is often much lower than the corre-
sponding Nyquist rate. For this particular example, Landau’s
lower bound is telling us than 3 of every 4 Nyquist samples
can be thrown away without affecting the signal reconstruc-
tion. The results shown next consider λ = 1 and ρ = 0.52,
which corresponds to κ = 17 and M = 1281.

Fig. 2 shows the average performance of the different CS-
based reconstruction strategies presented in the previous sec-
tion after 1000 Monte Carlo runs. Fig. 2(a) displays the con-
ventional l1-norm minimization, which is not robust to the
strong interference. The use of the proposed weights helps in
reducing the interference contribution, as shown in Fig. 2(b),
but is not enough to discern between the primary user and
the interference signal. The advantage of imposing positive
semi-definite residual correlation matrix is evident from Figs.
2(c) and 2(d), where the difference between the peak corre-
sponding to the true primary user and the peak corresponding
to the interference has been significantly increased compared
to Figs. 2(a) and 2(b). Moreover, we see from Fig. 2(d)
a marked improvement over the unweighted l1-norm recon-
struction: the use of weights helps in reducing the interfer-
ence level in 3dB.

We would like to confirm the advantages of the weighted
and constrained l1-norm minimization (P2) over its competi-
tors for compressible spectrum sensing. To do so, let us now
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Fig. 3. Theoretical and empirical distributions of H1 and H0
for interference’s SNR = 7.5 dB and ρ = 0.52.

evaluate the probability of detection (Pd) versus SNR of the
interference for the same scenario as before but with the pri-
mary user transmitting at SNR = 0dB.

Theoretical derivation of a detection threshold to meet the
required Pfa requires the statistical distribution of both H1
and H0, which is a difficult task, especially for functions re-
sulting from optimization problems. To find an approximate
distribution of H1 and H0, we recorded 4.000 Monte Carlo
simulations, keeping the peak value of the true primary user
frequency location (H1) and keeping the peak value corre-
sponding to the interference (H0). Fig. 3 shows the normal-
ized distributions of H0 and H1 for a particular example with
interference’s SNR = 7.5 dB and ρ = 0.52 solving (P2). The
approximated probability density function computed using a
kernel smoothing method is also plotted in Fig. 3 and it is
seen that both distributions closely match the nonparametric
approximation. In view of the results, we decided to adopt
nonparametric density estimates for the computation of prob-
ability figures.

Fig. 4 shows the Pd versus SNR results of the different CS-
based reconstruction strategies for a fixed probability of false
alarm Pfa = 10−3 and ρ = 0.52. As predicted from Fig.
2, the weighted l1-norm minimization together with the re-
striction of keeping the positive semi-definite character of the
residual error matrix provides the best detection capabilities.
We see from Fig. 4 that solving (P2) provides a Pd = 0.99
for interference’s SNR = 7dB, while the other strategies fail
in rejecting such strong interference.

6. CONCLUSION

This paper compares different CS-based reconstruction strate-
gies for extraction of primary user frequency location in CR.
Unlike other works, the proposed model considers the exis-
tence of interferences emanating from low-regulated trans-
missions, which cannot be taken into account in the CS model
because of their non-regulated nature. From the results above,
we conclude that keeping the positive semi-definite character
of the residual correlation matrix together with forcing spar-
sity is fundamental when dealing with CS models corrupted
by unknown interference.
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Fig. 4. Probability of detection versus SNR for Pfa = 10−3.
The scenario considers a BPSK primary signal (rectangular
pulse shape, 8 samples per symbol) with SNR = 0dB, located
at normalized frequency 0.25. There is a pure tone interfer-
ence located at normalized frequency 0.75.
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