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Abstract

In preference-based argumentation theory, an argument may be preferred to another one when, for example, it is more
specific, its beliefs have a higher probability or certainty, or it promotes a higher value. In this paper we generalize Bench-
Capon’s value-based argumentation theory such that arguments can promote multiple values, and preferences among
values or arguments can be specified in various ways. We assume in addition that there is default knowledge about the
preferences over the arguments, and we use an algorithm to derive the most likely preference order. In particular, we show
how to use non-monotonic preference reasoning to compute preferences among arguments, and subsequently the accept-
able arguments, from preferences among values. We show also how the preference ordering can be used to optimize the
algorithm to construct the grounded extension by proceeding from most to least preferred arguments.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Dung’s theory of abstract argumentation [14] is based only on a set and a binary relation defined over the
set. Due to this abstract representation, it can and has been used in several ways, for example as a general
framework for non-monotonic reasoning, as a framework for argumentation, and as a component in agent
communication, dialogue, or decision making. Dung called the elements of his set arguments and elements
of his relation represent that an argument atzacks another argument. In this paper we follow the common con-
vention in preference-based argumentation (see below) and say that in the abstract theory an argument defeats
another argument.

* This paper is an extended and revised version of the workshop paper: S. Kaci, L. van der Torre, Preference Reasoning for
argumentation: Non-monotonicity and algorithms, in: Proceedings of the 11th International Workshop on Non-Monotonic Reasoning, pp.
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Simari and Loui [21] introduce preference relations over arguments, and various proposals have been made
how to compute these preferences. Prakken and Sartor [20], among others [22], consider arguments composed
of defeasible rules, and use the argument structure to compute preference relations among arguments, since
being more specific about the evidence makes an argument stronger. Alternatively, several authors [9,2,1] build
arguments from beliefs pervaded with explicit priorities, such as certainty levels. The arguments using more
certain beliefs are stronger than arguments using less certain beliefs. Other authors argued that arguments
can also be related to values they promote [19,12]. In particular Bench-Capon [5] does not consider the struc-
ture of arguments, but derives a preference ordering over arguments from a preference ordering over the val-
ues they promote. Since in his theory arguments promote only a single value, an argument is preferred to
another one if and only if the value promoted by the former argument is preferred to the value promoted
by the latter one.

In this paper we introduce a generalization of Bench-Capon’s value-based argumentation theory [5] in
which arguments can promote multiple values and preferences among values or arguments can be represented
in various ways. Moreover we assume in addition that we have default knowledge about the preferences over
the arguments, and use algorithms to derive the most likely preference order.

In particular, we represent preferences among values by distinguishing various kinds of preferences in the
preference specification, and to reason about ordered values we use insights from the non-monotonic logic of
preferences. When value v; is promoted by the arguments 44, ..., 4,, and value v, is promoted by arguments
Bi,...,B,, then “value v, is preferred to value v,” means that the set of arguments 44, ..., 4, is preferred to
the set of arguments By, ..., B,. In other words, the problem of reducing ordered values to a preference rela-
tion among arguments comes down to reducing a preference relation over sets of arguments to a preference
relation over single arguments. We use both minimal and maximal specificity principles to define the prefer-
ence relation. To calculate the acceptable arguments we combine algorithms for reasoning about preferences
with algorithms developed in argumentation theory.

The layout of this paper is as follows. In Section 2 we summarize the work on abstract argumentation, pref-
erence and value as far as relevant for this paper, and in Section 3 we present our extensions to Bench-Capon’s
value-based argumentation framework. In Section 4 we discuss non-monotonic reasoning with the prefer-
ences, we introduce algorithms for directly computing the set of acceptable arguments using grounded seman-
tics, and we show how the algorithm can be optimized when proceeding from most to least preferred
arguments. We present also an algorithm for ordering the arguments following a pessimistic way of reasoning.
In Section 5 we discuss the case of inconsistent preferences over values in our approach. Finally we discuss
related work and conclude.

2. Argument, preference and value

In this section we summarize the work on abstract argumentation, preference and value as far as rel-
evant for this paper. We start with some common definitions on preference relations. Let = (respectively
>) be a binary relation on a finite set Z = {x,,z,...} such that x > y (respectively x > y) means that x is
at least as preferred as (respectively strictly preferred to) y. x ~ y means that both x > y and y = x hold,
i.e. x and y are equally preferred. Lastly x ~ y means that neither x > y nor y > x holds, i.e. x and y are
incomparable. = is a pre-order on 2 iff > is reflexive (x = x) and transitive (if x > y and y > z then
x = z). A pre-order > on Z is said to be total if and only if all pairs are comparable ie. Vx,y € Z,
we have x =y or y = x. A strict order > may be defined from a pre-order > as x>y if x > y holds
but y = x does not.

The set of the best (respectively worst) elements of 4 with respect to = , denoted max(4, =) (respectively
min(4, )), is defined by:

max(Z,>) ={x|xeZ, Ay € X,y > x}
(respectively min(Z, =) = {x|x € Z, Ay € Z,x = y})

where > is the strict order associated to > .
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Definition 1 illustrates how a total pre-order on Z can also be represented in an equivalent way by a well
ordered partition of Z'. This equivalent representation as an ordered partition makes some definitions easier to
read.

Definition 1 (Ordered partition). A sequence of subsets of 2" of the form (Ey, ..., E,) is an ordered partition of
Z if and only if each subset is non-empty, E; # () for i =0...n, the union of the subsets is the set %,
EyU---UE, = %, and the subsets are disjoint, £; N E; = () for i # j.

An ordered partition (Ey,...,E,) of Z is associated with total pre-order > on % if and only if

Vx,x' € 2 with x € E; and X’ € E; we have i < j if and only if x > x’

2.1. Dung’s abstract argumentation framework

Argumentation is a reasoning model based on constructing arguments, determining potential conflicts
between arguments and determining acceptable arguments.

Dung’s framework [14] is based on a binary defeat relation among arguments (called the attack relation by
Dung). In Dung’s framework, an argument is an abstract entity whose role is determined only by its relation
to other arguments. Its structure and its origin are not known.

We restrict ourselves to finite argumentation frameworks, i.e., in which the set of arguments .o7 is finite.

Definition 2 (Argumentation framework). An argumentation framework is a tuple (<7, Z) where .« is a finite
set of arguments and & is a binary defeat relation defined on .o/ x .o7.

The various semantics of an argumentation framework are all based on the notion of defence. A set of argu-
ments . defends an argument 4 when for each defeater B of A, there is an argument in % that defeats B.

Definition 3 (Defence). Let (</,Z) be an argumentation framework. Let & C o/. & defends A4 if VB € o/
such that B Z 4, 3C € ¢ such that C & B.

A semantics of an argumentation theory consists of a conflict-free set of arguments, i.e., a set of arguments
that does not contain an argument defeating another argument in the set.

Definition 4 (Conflict-free). Let (o7, 2) be an argumentation framework. The set ¥ C .o/ is conflict-free if and
only if there are no 4, B € .% such that AZB.

The following definition summarizes the most widely used acceptability semantics of arguments given in the
literature.

Definition 5 (Acceptability semantics). Let # = (</, ) be an argumentation framework. Let & C .o/.

e & is an admissible extension if and only if it is conflict-free and defends all its elements.

e & is a complete extension if and only if it is conflict-free and it contains precisely all the elements it defends,
S ={4 |9 defends 4}.

o ¥ is a grounded extension of % if and only if % is the smallest (for set inclusion) complete extension of & .

o Yisapreferredextension of # if and onlyif ¥ is maximal (for set inclusion) among admissible extensions of % .

e % is a stable extension of 7 if and only if ¥ is conflict-free and defeats all arguments of .7 \ .

Which semantics is most appropriate in which circumstances depends on the application domain of the
argumentation theory. The grounded semantics is the most basic one, in the sense that its conclusions are
not controversial, each argumentation framework has a grounded extension (it may be the empty set), and
this extension is unique. Grounded extensions therefore play an important role in the remainder of this paper.
Preferred semantics is more credulous than the grounded semantics. There always exists at least one preferred
extension but it does not have to be unique. Stable semantics have an intuitive appeal, but its drawbacks are
that extensions do not have to be unique and do not have to exist. Stable semantics are used, for example, in
answer set programming.
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The output of (o7, &) is derived from the set of selected acceptable arguments with respect to some accept-
ability semantics.

2.2. Preference-based argumentation framework

Preference-based argumentation theory can either be seen as an extension or as an instantiation of Dung’s
argumentation theory. In the former case there is besides the binary defeat relation also a preference ordering
on the arguments, and the defeat and preference relation together are used to define new notions of acceptable
arguments. In the latter case there is another binary relation — typically called the attack relation in preference-
based argumentation — and a preference ordering from which Dung’s defeat relation is derived. For example,
Amgoud and Cayrol [1] define a preference relation on the set of arguments on the basis of the evaluation of
arguments, and say that an argument A4 defeats an argument B if and only if A4 attacks B and B is not preferred
to A with respect to the preference relation. In this paper we follow the latter approach.

Definition 6 (Preference-based argumentation framework). A preference-based argumentation framework is a
triplet (o7, #, =) where ./ is a set of arguments, Z is a binary attack relation defined on .o/ x o/ and * is a
(total or partial) pre-order (preference relation) defined on .7 x .o7.

A preference-based argumentation framework can represent an argumentation framework.
Definition 7. A preference-based argumentation framework (.o/, , =) represents (<7, Z) if and only if

VA,B € of, we have AZB if and only if AZB and it is not the case that B > 4

There are always preference-based argumentation frameworks representing an argumentation framework
and vice versa.

Lemma 1. For each preference-based argumentation framework (/| R, =) there is an argumentation framework
(o, D) it represents, and for each argumentation framework (of, D) there is a preference-based argumentation
Sframework {o/ | R, ) that represents it.

All proofs are given in the Appendix.

On the one hand each preference-based argumentation framework represents only one argumentation
framework, but on the other hand each argumentation framework can be represented by various prefer-
ence-based argumentation frameworks.

Lemma 2. If preference-based argumentation framework (s/,R,=) represents argumentation framework
(o, 9D1) and argumentation framework (</,95), then we have 9\ = 9.

Note however that if both (o7, #;, =) and (<7, #,, =,) represent (.o/, ), then we do not necessarily have
that #) = #, and = = =,. Let (/, Z) be an argumentation framework such that .« = {4, B} and AZB. Let
<.}?{,9?1, t1> and <JZ{7%27 t2> with A,@lB, A’Z]B, A%zB, B%z/‘l and A>—2B. Both <{$%, ,%1, t1> and <,,Q{,%2, t2>
represent (.o/, 7).

Summarizing, each preference-based argumentation framework represents precisely one argumentation
framework, and each argumentation framework is represented by at least one but usually several prefer-
ence-based argumentation frameworks.

Theorem 1. For each preference-based argumentation framework (</ , R, =) there is precisely one argumentation
Sframework (<f, D) it represents, and for each argumentation framework (<f, D) there is at least one preference-
based argumentation framework (<f , R, =) that represents it.

The following example illustrates how to compute an argumentation framework that represents a prefer-
ence-based argumentation framework. We use this example as a running example in this paper, and extend
it later on with values and value specifications.

Example 1. Let (o/,%,>) be a preference-based argumentation framework visualized in Fig. 1 with
of ={Ay,...,A7} be a set of arguments, read as follows:
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Ag: “The soccer game is going to be very interesting, many people will watch the game because it is Bar-
celona against Arsenal,”

Ay: “One should not always do the same as ones friends, but also develop an idea oneself what is good

to do,”

A,: “I have to watch the game, because Barcelona has not been in the final for six years,”

Az: “You better not watch the game, you have an exam tomorrow and you have to prepare it,”

Ag: ‘T have to watch the game, because I want to discuss it tomorrow with my friends,”

As: ““You are not going to watch television tonight, because you have been looking television for three eve-

nings in a row, and television is unhealthy, dumb and uninspiring,”

Ag: “The soccer game is going to be boring, because the first half was already won by 6-0,”

A7: “Children must go to school. Education is important because it gives more options later on.”

Moreover, let > be a total pre-order defined as follows:
Ay~ Az = A ~ Ay ~ Ay ~ As = Ag ~ A7

and let Z be an attack relation defined by: 4y and A4 attack each other, 4> and 45 attack each other, 4, and 45
attack each other, 4; and 4, attack each other, 44, and A5 attack each other. The preference-based argumen-
tation framework is visualized in Fig. 1. This figure should be read as follows. An arrow from one argument to
another visualizes that the former argument attacks the latter one.
An argument is preferred to another argument if the former argument is higher than the latter one.
Assume that (o7, Z, =) represents (.o7, ), then we have 40Z A4, because Ag#A¢ and 4¢ = Ay does not hold.
Similarly we have 4394,, A9 As, AsDAy, A3DAs, A4ZDAs and AsZ A4, and no other defeat relations hold.

The semantics of a preference-based argumentation framework is simply the semantics of the unique argu-
mentation framework it represents. Due to the representation, we do not need to define new semantic notions.

Definition 8. A set of arguments is an admissible, grounded, preferred, or stable extension of a preference-
based argumentation framework (.o, Z, =) if it is such an extension of the argumentation framework (.o/, &)
represented by (o7, #, ).

The semantics is illustrated in our running example.

Example 2 (Continued from Example 1). The grounded extension of argumentation framework (.7, ) and
therefore of preference-based argumentation framework (.7, %, =) is 96 = {4y, A1,A43,As,A47}.

2.3. Value-based argumentation framework

Bench-Capon [5] notices that in some situations, e.g., for persuasion dialogues, preferences over arguments
are derived from points of views, called values, they promote. Atkinson et al. [4] discuss an example from polit-
ical debate, where several arguments to invade Iraq are related to values such as respect for life, human rights,
good world relations, and so on. If an argument promoting respect for life attacks an argument promoting good
world relations then the attack succeeds only if good world relations is not preferred to respect for life.

Bench-Capon’s value-based argumentation framework allows to compare abstract arguments without
referring to their internal structure, which is an advantage if such information is not available. A set of

Ay Az

RN

Ay Ay As

Ay

As Az

Fig. 1. Example 1: An arrow visualizes an attack, and higher arguments are preferred to lower ones. The represented defeat relation is:
A();.@'A(), A39A2, A29A5, A5=@Az, A39A4, A4=.@A5 and A5@A4. The grounded extension is 46 = {A07A17A3,A5,A7}.
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audiences is introduced, following Perelman [18], where each audience corresponds to a preference ordering on
values.

Definition 9 [5]. A value-based argumentation framework is a 5-tuple VAF = (o7, #, V,val, ?), where o/ is a
finite set of arguments, Z is an irreflexive binary relation on .oZ, V'is a non-empty set of values, val is a function
which maps elements of .7 to elements of " and £ is the set of possible audiences. An audience specific
argumentation framework is a tuple VAF, = (<7, #, V ,val, >,), where a € 2 is an audience and >, is a partial
order on V.

Whereas Bench-Capon is primarily interested in the notion of value-based argumentation framework, in
this paper we consider only the notion of audience specific argumentation frameworks.

Definition 10. (<7, 2,V ,val, >,) represents (<7, %, =) if and only if (V4,B € </, we have 4 = B if and only if
val(4)>4val(B) or val(4) = val(B)).

Concerning existence of audience specific value-based argumentation frameworks representing a prefer-
ence-based argumentation framework, the situation is the same as between preference-based argumentation
frameworks and argumentation frameworks. So there exist audience specific value-based argumentation
frameworks representing each preference-based argumentation framework and vice versa.

Lemma 3. For each audience specific value-based argumentation framework (<f,R,V,val,>,) there is a
preference-based argumentation framework (of , R, =) it represents, and for each preference-based argumentation
Sframework (<f , R, =) there is an audience specific value-based argumentation framework {</, R,V ,val,>,) that
represents it.

On the one hand each audience specific value-based argumentation framework represents only one prefer-
ence-based argumentation framework, but on the other hand each preference-based argumentation frame-
work can be represented by various audience specific value-based argumentation frameworks. However,
each of these audience specific value-based argumentation frameworks has the same topology, that is, each
of them is a renaming of the others.

Lemma 4. If (o/,R,V,val,>,) represents (o, R,=1) and (A, R, =), then ==y If both
(L, R,V 1,0al1,>41) and (L, R, Va,valy, >,2) represent (of, R, =), then we have:

(1) for all A,B € of we have val,(A) = val|(B) if and only if we have val,(A) = val,(B)
(2) for all A,B € o/ we have val\(A)>,val,(B) if and only if we have val,(4)>,,valy(B).

Summarizing, each audience specific value-based argumentation framework represents precisely one pref-
erence-based argumentation framework, and each preference-based argumentation framework is represented
by an equivalence class of alphabetic variants of audience specific value-based argumentation frameworks.

Theorem 2. For each audience specific value-based argumentation framework (<, R,V ,val, >,) there is precisely
one preference-based argumentation framework (</,R,=) it represents, and for each preference-based
argumentation framework {s/, R, =) there is a set of audience specific value-based argumentation frameworks
(A, R,V ,val,>,) that represents it, satisfying the property in Lemma 4.

The relation between the three kinds of argumentation frameworks shown in Theorems 1 and 2 is visualized
in Fig. 2. An argumentation framework can be represented by various preference-based argumentation frame-
works, which can again be represented by various audience specific value-based argumentation frameworks.
Given an audience specific value-based argumentation framework, there is a unique preference-based argu-
mentation framework it represents, and a unique argumentation framework it represents.

The semantics of an audience specific value-based argumentation framework is again simply the semantics
of the unique preference-based argumentation framework it represents.

Definition 11. A set of arguments is an admissible, grounded, preferred or stable extension of an audience
specific value-based argumentation framework (.o/, Z,V,val,>,) if it is such an extension of the preference-
based argumentation framework (.</, #, =) represented by (<Z, Z,V,val,>,).
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Argumentation
Framework

Preference-based
Argumentation
Frameworks

Frameworks

Fig. 2. Hierarchy of representation relations.

The semantics is illustrated in our running example. It is important to note that £ is independent of val, in
the sense that two arguments promoting the same value may conflict.

Example 3 (Continued from Example 2). Let (</, R,V ,val, >,) be a value-based argumentation theory with .o/
and # as before, and V = {red,yellow,blue}, val(dy) = val(43) =red, val(4,) = val(4;) = val(4s) =
val(As) = yellow and val(Ag) = val(A7) = blue, and red>,yellow>,blue. We leave it to the reader that this
value-based argumentation theory is represented by the preference-based argumentation theory (o7, #, =) in
Example 1.

The grounded extension of (o/, %,V val,>,) is the grounded extension of (<7, #, =) and therefore, as
shown in Example 2, 98 = {4y, 41,43, A4s5,A7}.

Moreover, Bench-Capon defines the notions of objective acceptance for all possible audiences and subjec-
tive acceptance for a particular audience. The main insight from the theory is that some arguments can be
objectively acceptable regardless of the preference ordering of the audiences, simply due to the structure of
the values. These cases are formally characterized in [5].

2.4. Total pre-orders

In this paper we are in particular interested in preference-based argumentation frameworks in which the
preference relation is a total pre-order, i.e., in which the preference relation is connected. In such a case it
immediately follows from Definition 7 that we have 4 & B if and only if 4 # B and 4 = B. At a given stage
of the reasoning, >, may be expressed as a partial order, since it is not necessary to commit to all preferences.
However, if arguments need to be compared, >, must be a total order in the sense that commitment must be
made, the audience becomes more specific. A total order on values corresponds directly to a total pre-order on
arguments, since an argument is preferred to another one if the value promoted by the former is preferred to
the value promoted by the latter argument, and the two arguments are equally preferred if they promote the
same value.

A natural question to ask now is what happens with the representation results in Theorems 1 and 2 as visu-
alized in Fig. 2 when we consider total pre-orders only. For example, elsewhere we have shown that the the-
orems no longer hold when we consider only symmetric attack relations [16] (The attack relation is symmetric
in the running example, but obviously this is not necessarily always the case). The question can thus be raised
whether the same consequence holds for the restriction to total pre-orders. However, the following two the-
orems show that this is not the case.

Theorem 3. For each preference-based argumentation framework {<f , R, =) with = a total pre-order there is
precisely one argumentation framework (</,9) it represents, and for each argumentation framework {<f, %)
there is at least one preference-based argumentation framework (<f/,R,>) with > a total pre-order that
represents it.
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Theorem 4. For each audience specific value-based argumentation framework with >, a total order there is pre-
cisely one preference-based argumentation framework with > a total pre-order it represents, and for each prefer-
ence-based argumentation framework with = a total pre-order there is a set of audience specific value-based
argumentation frameworks with >, a total order that represents it, satisfying the property in Lemma 4.

Summarizing, the restriction to total pre-orders is not a limitation of the expressive power of audience spe-
cific value-based argumentation, in the sense that the same class of argumentation frameworks can be repre-
sented. Moreover, audience specific value-based argumentation frameworks as defined by Bench-Capon may
be seen as an equivalent representation as preference-based argumentation frameworks, as each preference-
based argumentation framework is represented by precisely one audience specific value-based argumentation
framework (under renaming of the values). We emphasize that this property holds only for audience specific
argumentation frameworks, and there is no analogue to the general value-based argumentation frameworks
defined by Bench-Capon in preference-based argumentation theory (and therefore no analogue to objective
and subjective acceptance).

3. A new value-based argumentation theory and value specification

We introduce two extensions for value-based argumentation: arguments promoting multiple values, and
various kinds of preferences among values.

3.1. Arguments promoting multiple values

To represent that arguments can promote multiple values, we replace the val function in Definition 9 by the
arg function in Definition 12 below.

Definition 12 (Value-based argumentation framework). An audience specific value-based argumentation
framework in which arguments can promote multiple values is a 5-tuple (</, %,V ,arg, >,) where o is a
set of arguments, Z is an attack relation on .o/ x .o, V'is a set of values, arg is a function from ¥V to 27 such
that arg(v) is the set of arguments promoting the value v, and >, is a partial order on V.

Note that, in contrast to Bench-Capon’s framework, it may be the case that an argument does not promote
any value.

The following example illustrates that we can no longer say that an argument 4 defeats an argument B if
and only if argument A4 attacks argument B and the value promoted by argument B is not preferred to the
value promoted by argument A, as follows from Definitions 7 and 10, since there may be several values pro-
moted by argument 4 and B.

Example 4. We first consider an example of Bench-Capon [5] where each argument promotes exactly one
value. Let .o/ = {4,B,C}, V = {red, blue} with val(4) = red and val(B) = val(C) = blue. In our value-based
argumentation framework, we have arg(red) = {4} and arg(blue) = {B, C}. Let A%ZB and BZC, as visualized
in Fig. 3a and b. If red > blue, then AZB and BZC and the grounded extension is {4, C}. If blue > red, as
visualized in Fig. 3b, then BZC and the grounded extension is {4, B}. Note that A4 is always in the grounded

A:red C : blue
A:red B :blue —— C : blue

/ \ B : blue,red B : blue,red
B :blue — C' : blue A:red \ /

C : blue A:red

a. red > blue b. blue > red c. red > blue d. blue > red
GE ={A,C} GE = {A, B} GE =? GE =?

Fig. 3. Example 4.
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extension, regardless of the value ordering. It is objectively accepted in Bench-Capon’s theory, because he does
not consider cases in which values are incomparable or equally preferred.

Now consider the case in which arg(red) = {4, B}, and moreover that argument B attacks argument 4, as
visualized in Fig. 3¢ and d, such that argument B promotes both values. Do we have that argument A4 is in all
grounded extensions? Then the question is how to define the defeat relation since argument B promotes both
red and blue. Should we give a preference to argument B since its promotes both values while argument 4
promotes only one value?

The problem is that the ordering on values is now an ordering on sets of arguments. There are many ad hoc
solutions to the problem, such as taking the preferred value promoted by an argument. Before we consider our
solution to this problem, we first consider another generalization of Bench-Capon’s theory.

3.2. Preference specification

Since most languages for preferences and non-monotonic reasoning algorithms are based on total pre-
orders, from here on we restrict ourselves to total pre-orders. As shown in Theorems 3 and 4, this does not
restrict the expressive power of preference-based argumentation in the sense that still all argumentation frame-
works can be represented. Instead of a partial order > on values we use a relation > which is neither neces-
sarily transitive nor irreflexive. We therefore call it a preference specification rather than a preference relation.
> is to be seen as a set of preference statements of the kind v, > v, for value v; is preferred to value v,. In
Bench-Capon’s framework, a preference of a value v, over a value v, implicitly means that each argument pro-
moting v; is preferred to each argument promoting v,. However, this is not the only way to compare argu-
ments promoting v; and arguments promoting v,. For example, an agent may be satisfied if at least one
argument promoting human rights is preferred to all arguments promoting good world relations, or if at least
one argument promoting respect for life is preferred to at least one argument promoting good world relations.
The following definition presents three kinds of preference discussed in the literature [17,8,10,7].

Definition 13 (Preference types). Let (o/, %, >) be a preference-based argumentation framework, ¥ a set of
values, arg a function from values to sets of arguments, and v; and v, two values.

o - satisfies v; >, 2, v; is minmax preferred to v, if and only if V4 € min(arg(v;), =), VB € max(arg(v;), )
we have 4 > B.

e = satisfies vy >/ v2, v is maxmax preferred to vy, if and only if V4 € max(arg(v), >), VB € max(arg(vy), *)
we have 4 > B.

e = satisfies v; >, v2, 01 is minmin preferred to v, if and only if V4 € min(arg(vy), =), VB € min(arg(v,), *)
we have 4 > B.

Definition 14 (Preference consistency). A set of preferences > is consistent only if there is a total pre-order >
which satisfies each v; > v; in >, with > € {mM, MM ,mm}. > is a model of > if and only if > satisfies each
v S>p v In >,

In natural language, the above preferences are interpreted as follows:

o > satisfies v; >, v; if and only if each argument in vy is preferred to each argument in v, with respect to >,

e > satisfies v; > v, if and only if at least one argument in v; is preferred to each argument in v, with
respect to =~ ,

e > satisfies v; >,, v; if and only if each argument in v, is preferred to at least one argument in v, with
respect to > .

We do not consider maxmin preferences of the form v; >, v,, defined in the obvious way, since we are
interested in distinguished total pre-orders on .o/ according to the specificity principle (see the next section),
and thus far no extensions of the specificity principle have been proposed which cover preferences of the type
Uy > um U2 (see [15] for a discussion).

Minmax preferences can be reduced to either only maxmax or only minmin preferences.
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Lemma 5. Assume without loss of generality that for each argument A there is a value v with arg(v) = {4}, which
we call vy. We have that = satisfies v| > 02 if and only if for each A € arg(vy) (4 € arg(v2)), = satisfies
Va > mm V2 (U1 > mm Va).

> is interpreted as a compact specification of > , and we therefore call our framework a value-specification
argumentation framework. Since minmax preferences can be reduced into either maxmax or minmin prefer-
ences, we focus on maxmax and minmin preferences. They may be interpreted as two audiences in Bench-
capon’s framework, though we do not further discuss this interpretation in this paper, because we do not
consider notions like objective and subjective acceptance.

Definition 15 (Value-specification). A value-specification argumentation framework is a 5-tuple (.of, 2,
V,arg,>r) where o/ is a set of arguments, Z is an attack relation on o/ x .o, V'is a set of values, arg is a
function from V to 2, and > C V x V is a set of preference statements over V with > € {MM, mm}.

We now address the problem discussed in Example 4, that we can no longer say that an argument A defeats
an argument B if and only if 4 attacks B and the value promoted by B is not preferred to the value promoted
by argument 4. Our framework requires to first order the set of all arguments before we determine the defeat
relation. We construct a total pre-order on .o/ given a set of preferences over values using the minimal/max-
imal specificity principle [23].

Definition 16 (Minimal/ Maximal specificity principle). Let == (Ey,...,E,) and =" = (Ej, ... ,E') be two total
pre-orders on .o/. > is less specific than or equally specific as =’, written as = £ >, if and only if V4 € .«Z, if
A€ E;and 4 EE} then i < j.

> belongs to the set of the least (respectively most) specific pre-orders among a set of pre-orders ¢ if there is
no =’ in O such that ='C > (respectively = £>'), i.e., =’ C = holds but = = >’ does not (respectively = C >’
holds but =’ C > does not).

It is well known that there exists a unique least specific model for maxmax preferences and a unique most
specific model for minmin preferences [17,7]. A unique most (respectively least) specific model for the former
(respectively latter) does not necessarily exist.

We use a value-specification argumentation framework to represent a preference-based argumentation
framework rather than a value-based argumentation framework, because of the close relationship between
preference-based and value-based argumentation as shown in Theorems 2 and 4. Note that the following def-
inition consists of two steps. First we define when a preference-based argumentation framework satisfies a
value-specification argumentation framework. Second, for a value-based argumentation framework, we define
the represented preference-based argumentation framework as the most specific one among the ones that sat-
isfy the value-based argumentation framework.

Definition 17. (<7, %,>) satisfies (</, %,V ,arg,>>r) if and only if > satisfies each v; >p v; in >p.
(oA, R, V,arg,>>) represents (o7, R, =) if and only if > = MM (> = mm) and > is the least (most) specific
relation among the =’ such that (7, %, =') satisfies (/, R,V arg,>>).

Concerning existence of value-specification argumentation frameworks representing a preference-based
argumentation framework, the situation is different from before. There exist value-specification argumentation
frameworks representing each preference-based argumentation framework, but not necessarily vice versa.

Lemma 6. For each preference-based argumentation framework there is a value-specification argumentation
framework that represents it.

There are value-specification argumentation frameworks without a preference-based argumentation frame-
work it represents. Any value-specification argumentation framework with an inconsistent set of preferences
cannot be represented by a preference-based argumentation framework.

As before, on the one hand each value-specification argumentation framework represents at most one pref-
erence-based argumentation framework, but on the other hand each preference-based argumentation frame-
work can be represented by various value-specification argumentation frameworks.

Lemma 7. If (/, R, V,arg,>>) represents {(of , R, =) and {(o/, R, =>), then we have =, = =».
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Note that if both (o7, 2, V,arg,, > ) and (o, R, V1, arg,, > ) represent (<7, #, ), then we do not nec-
essarily have that the property of Lemma 4 holds. Consider the set of preferences {{4, B} >y {C}} and the
set of preferences {{4} >y {C}, {B} >y {C}}. They have the same minimal model, and therefore they rep-
resent the same preference-based argumentation theory.

Summarizing, each value-specification argumentation framework represents at most one preference-based
argumentation framework, whereas each preference-based argumentation framework is represented by at least
one but usually several value-specification argumentation frameworks. These value-specification argumenta-
tion frameworks are not necessarily renamings of each other.

Theorem 5. For each value-specification argumentation framework there is at most one preference-based
argumentation framework it represents, and for each preference-based argumentation framework there is at least
one value-specification argumentation framework that represents it.

In other words, the hierarchy of representation relations in Fig. 2 also holds for value specification.

Example 5 (Continued from Example 3). Let the tuple (<7, Z,V,arg,>>) be a value-specification argumen-
tation framework defined by the set of arguments .o/ = {4y, 41,42, A3, A4, As,As, A7}, and the attack relation 2
given in Example 1, V = {v;,vy,v3,0v4,0s,06} = {health,short term pleasure, education, enjoy, socialalone}
with —arg(v1) = {ds}, arg(v2) ={4e, 47}, arg(vs) ={43,47}, arg(va) = {42, 4}, arg(vs) = {Ao, s},
arg(ve) = {A1,4s}, and >y = {v1 > v2, 03 >ur Vay Us a6 b

Let > be a total pre-order on .o/ defined by

Ao §A3 >A1 EAZ 2A4 ":A5 >A6 2A7

We can check that > satisfies each preference in >> 473, Then (o7, 2, ) satisfies (.o/, Z,V,arg, >>ns). We can
also check that > is the least specific relation among >’ such that (o7, Z, >') satisfies (o7, %,V ,arg, >yu) SO
(A, R,V ,arg, >y represents (o/, &, >).

Note that a value-specification argumentation framework that represents a preference-based argumentation
framework exists only if > is consistent.

The semantics of a value-specification argumentation framework is simply the semantics of the unique pref-
erence-based argumentation framework it represents, if such a framework exists. Otherwise its semantics is
discussed in Section 5.

Definition 18. A set of arguments is an admissible, grounded, preferred or stable extension of a value-
specification argumentation framework (o7, Z,V arg, >p) if it is such an extension of the preference-based
argumentation framework represented by (o/, Z,V, arg, >p).

The new theory is illustrated in the following section using new algorithms for the framework.
4. Algorithms

We can compute the grounded extension of a value-specification argumentation framework in the following
two steps. Given a value-specification argumentation framework, in the first step we compute the preference-
based argumentation framework it represents using algorithms for minimal and maximal specificity developed
in non-monotonic logic (Definition 17). Since the existence of a preference-based argumentation framework
that is represented by a value-specification argumentation framework requires the consistency of >, we sup-
pose that > is consistent. We discuss the case of inconsistent > in Section 5.

Given the preference-based argumentation framework, in the second step we compute the represented argu-
mentation framework using Definition 7. Finally we can compute the grounded extension of the argumenta-
tion framework. In the remainder of this paper we study whether this process can be optimized.

Let us analyze how least and most specific models are computed. Let v; > v,. The least specific model
associated with {v; > v2} is == (E|, Ey) with E; = o/ \ arg(v,) and E, = arg(v,). The most specific model
associated with {vy >, v2} is =" = (E|,E,) with E} = arg(v) and E, = </ \ arg(v,). Both models prefer
arg(vy) over arg(v;). However they treat irrelevant arguments with respect to these preferences, i.e.
o/ \ (arg(vy) Uarg(v,)), in an opposite way. The least specific model prefers such arguments to arg(v,); this
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is an optimistic way of reasoning, while the most specific models considers that such arguments cannot be put
in the same level as preferred arguments, i.e. arg(v;), so they are put in the same level as arg(v,); this is a pes-
simistic way of reasoning.

In general, given a set of preferences, in the least specific model each argument is put in the highest possible
rank while in the most specific model each argument is put in the lowest possible rank in the pre-order. It is
worth noticing that optimistic and pessimistic adjectives refer to the way the total pre-orders are computed
and by no way mean that the most specific pre-order (corresponding to a pessimistic reasoning) gives less out-
put than the least specific pre-order (corresponding to an optimistic reasoning). This is shown in the following
example.

Example 6. Let o/ = {4,B,C}, V = {v1,v2,v3} with arg(v)) = {4}, arg(v2) = {B} and arg(v;) = {C}. Let
C#B and B#C. Let v > v;. Following the optimistic reasoning the least specific pre-order satisfying
{v1 >um 12} is == ({4, C},{B}), as visualized in Fig. 4a. We can check that each argument is put in the
highest possible rank in > such that v; >>,n, v, is satisfied. So we have CZB. The grounded extension is
{4,C}. Now following the pessimistic reasoning the most specific pre-order satisfying {v| >, v2} is
=" = ({4},{B, C}), as visualized in Fig. 4b. Here also we can check that each argument is put in the lowest
possible rank in >’ such that vy >, v; is satisfied. In this case we have BZC and C%ZB. The grounded
extension is {4}.

In addition to the above attack relations we give AZC and CZA. The optimistic reasoning gives an empty
grounded extension, as visualized in Fig. 4c, while the pessimistic reasoning gives {4, B}, as visualized in
Fig. 4d.

Let us now consider the following attack relations AZC and C#A only. Then the grounded extension
following the optimistic reasoning is {B}, as visualized in Fig. 4e, while the grounded extension following the
pessimistic reasoning is {4, B}, as visualized in Fig. 4f.

Thus, the two kinds of reasonings are incomparable, in the sense that in some cases optimistic reasoning
gives a larger grounded extension, in other cases it gives a smaller extension.

4.1. Grounded extension in optimistic reasoning

Algorithms of optimistic reasoning obey System Z [17] and compute the total pre-order > starting from the
best arguments with respect to = . This is a very nice property as it allows to compute incrementally the
grounded extension during the computation of this pre-order. Let == (E, ..., E,). We first compute Ey. Then
some arguments of £, will belong to the grounded extension and the remaining arguments of £, will not.

Lemma 8. Let 96 be the grounded extension of (<of, R,V ,arg,>yu), and let == (Eo,...,E,) be the least
specific model of > yur.

(1) VA € Ey if BB € Ey such that BRA then A € 96.

(2) Let Sy be a subset of 9&. VA € Ey, if AB € Ey such that B#A4 and A is defended by S| then 4 € 96.

(3) Let S, C %96 be the minimal subset of Eq satisfying the conditions in items 1 and 2. Then VA € E, \ Sa,
AEYGE.

A:vy C:us A:vy A:ivg +~—C:us A:vy Aivg~—C:v3 A:v
B : v, Bivge—> C:v3 B:uy B:vg +—C :v3 B:vy B:vyC:ug

a. optimistic b. pessimistic  ¢. optimistic d. pessimistic  e. optimistic f. pessimistic
GE={A,C} GE={A} GE=¢ GE={AB} GE={B} GE={A B}

Fig. 4. Example 6.
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Item 1 requires that ¥& contains all arguments of £, that are non-attacked at all. It also puts in 44 arguments
of Ey which are attacked only by arguments from .7 \ Ey. Such attacks do not succeed since the attackers are
strictly less preferred than the attacked arguments, that is, these attackers are not defeaters in the represented
argumentation theory. S| corresponds to Safe(E,) in Algorithm 1; ¥ = @) for E,. It is computed in line 4.

Item 2 requires that 44 contains elements of E, that are attacked by elements of E, but defended by accept-
able arguments of E, those already put in ¥¢& following item 1. This is done in loop 6 where Acceptable 4 (Ey)
computes the set of arguments of E, defended by acceptable arguments; X = () for E,.

Finally, item 3 states that arguments of £y, which are defeated and not defended do not belong to 44 and
can be removed from .o/. This is treated in line 7 of Algorithm 1.

Lemma 9 states that arguments of .o/ \ E, attacked by arguments of ¥& do not belong to the grounded
extension. This is treated in line 8.

Lemma 9. Let (o/, R,V ,arg,>uy) be a value-specification argumentation framework and $& be its grounded
extension. Let == (Ey, ... ,E,) be the least specific model of >> . Then,

VA € o/ \ Ey, if 3B € 9& such that BRA then A ¢ 96

Following Pearl’s algorithm [17], once .« updated we remove satisfied preferences. v; >, v, is satisfied if
at least one argument in arg(v,) belongs to E,. This is treated in line 9.

The next step is to compute the set of immediately preferred arguments in > , i.e., E;. We repeat the same
steps as for E,. The only difference is that the set X may be non-empty. In the first loop of the algorithm (after
computing E, in line 2), X is composed of arguments of Ey which do not belong to 4&. Suppose now that
we computed E; and are looking to which arguments of E; will belong to 4&. Since Safe(E;) is the set of
arguments of E; which are not defeated, we should check whether some arguments of E, attack arguments
of E,. If it is the case, then Acceptable,,(E,) determines which arguments of E; are defended by the current
grounded extension. X is computed in line 10 of the algorithm. The role of X is illustrated in the following
example.

Example 7. Let o7 = {4,B,C,D} and v; > v2 with arg(v)) = {4,B,C} and arg(v2) = {D}. Let B#ZC, C#B
and BZD. We have Ey = {4,B,C}. A belongs to the grounded extension while B and C do not (since they
defeat each other). Following the algorithm we update o7 and get .o/ = {D}. At this stage it is important to
keep B and Cin a set, let’s say 2. The reason is that in the second iteration of the algorithm we should not put
D in the grounded extension just because it is not defeated by A. In fact D is defeated by B and not defended
by A. This justifies why we consider E; U X when computing Safe(E;) and Acceptabley,(E)).

The above reasoning is repeated until the set of arguments is empty.

Lemma 10. Let (o/, R,V ,arg, >muu) be a value-specification argumentation framework and 96 be its grounded
extension.

For each Ey, (k # 0):

Let o/ be the set of arguments after iteration k — 1 and X = (EqU - -- UEg_1) \ 9&. Then,

e VA CE, if AB € (E,UZX) such that BRA then A € 9&.

o Let Sy be a subset of 9&. VA € Ey, if 3B € (E; U X) such that BRA and A is defended by S, then A € 9&.
o Let Sy C 9& be the minimal subset of E, computed following items 1 and 2. Then VA € E;\ S», A & 96.

o VA € o/ \ Ey, if AB € 96 such that BRA then A & 9&.

Algorithm 1 gives a formal description of our procedure to compute progressively the grounded extension.
If we ignore items 4, 5 (except # = E;), 6, 8§ and 10 in Algorithm 1, then we recover Pearl’s algorithm [17] to
compute the least specific model of >, Let

o Safe(E;) = {B : B € E,; such that AB' € (£, U X) with B'#B},
e Acceptable,,(E;) = {B : B € E,, for each B’ € (E; U X) such that B#B,3C € %& such that C%ZB'},
e non-Safeys(</) = {B : B € .o/ such that 3B’ € ¥& with B’ #B}.
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Algorithm 1. Interleaved computation of the grounded extension in optimistic reasoning.

Data: <%,%, V, arg, >>MM>a >Sum = {U,‘ > um Uj}.
Result: The grounded extension.

begin
1.1=0,96=0,2=10
while .o/ # () do
2.E,={B:B € o, Yv; >y v;,B & arg(v;)}
3.if £, = () then
Stop (inconsistent preferences)
4. 96 =96 U Safe(E))
5.9 = E], E] = E] \Safe(E,), x=1
6. while £, # ) and x=1 do
- %98 =98 U Acceptable . (E/)
if Acceptable,,(E;) = () then x =0
— E; = E; \ Acceptable,,(E))
7. of =<t \ B,
8. of = o/ \ non-Safe (L)
9. remove v; >y v; Where arg(v;) N % # ()
10. Z=XU(#\%96),
IL.I1=1+1.
return 4¢&
end

Example 8 (Continued from Example 5). Let (<7, R,V ,arg,>> ) as before. We have Ey = {4y, 43}. Both E,
and Ej; are attacked by arguments of .« \ E, (strictly less preferred). So both belong to 94, i.e. {4y, 43} C 96
following item 1 of Lemma 8. Now A4,, 44 and A4 are attacked by 4, and 4;. So they do not belong to 4¢&
following Lemma 9. Then .« = {4;,A4s,4,}. We remove education >y, enjoy and social >, alone since
they are satisfied. Now E; = {4;,4s}. 4 and A4s are not defeated so they are added to %¢& i.e.
{dy,43,41,4s} CGE. of ={A7}. health >y, short term pleasure is satisfied; it is removed. Lastly
E, = {47}. 47 is not attacked so it is added to 4. In sum ¥& = {Ao, 41, A43,45,47}.

Theorem 6. Let & = (o/, R,V arg,>>uy) be a value-specification argumentation framework. Algorithm 1 com-
putes the grounded extension of F .

The algorithm is an anytime algorithm, in the sense that when it is stopped in the middle of the execution, it
has built part of the grounded extension. The computation of the grounded extension following Algorithm 1 is
achieved in a polynomial time in the number of arguments and preferences in >>,,,,. So there is no extra cost
when using our approach with respect to Dung’s framework in which the computation of the grounded exten-
sion is also polynomial [13].

4.2. Grounded extension in pessimistic reasoning

In this section the argumentation framework is defined by (.«/, #, V', arg, >,.). A particularity of pessimis-
tic reasoning is that it computes the most specific model of >, starting from the lowest rank-ordered argu-
ments in this model. Indeed it is no longer possible to compute progressively the grounded extension. So we
have to compute the most specific model of >>,,,, let’s say >, then to define defeat relations on the basis of >’
and Z and lastly to compute the grounded extension. Algorithm 2 computes the most specific model of >>,,,,.

Algorithm 2. Pessimistic reasoning — A model of >,,,

Data: (o, Z,V,arg,>um)s >mm = {0 >um ;}.
Result: The most specific model of >,,,.
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begin
=0
while o7 £ () do
E, ={B:B € o v >, v;,B & arg(v;)}
ifE; = () then
Stop (inconsistent preferences)
- = \E
— Remove v; >, v; where arg(v;) NE; # ()
—l=1+1.
return =" = (Ej,... . E; ) with V 0<h<I—1,E, =E_;_,
end

Example 9 (Continued from Example 8). We have Ey = {A,,4,,4¢} and E, = {4y, A43,As,As,47}. Indeed
tl: ({Ao,Ag,A4,A5,A7},{A17A27A(,}). We have Ao@Aé,A3@A2,A5@A2,A39A4,A49A3,A4@A5 and A5@A4.
Then 96 = {Ao,A17A7}.

Here also the computation of the total pre-order following Algorithm 2 is achieved in a polynomial time.
Once defeat relations are computed, we know from [13] that the computation of the grounded extension is
polynomial in time.

As said before, the grounded extension in pessimistic reasoning cannot be computed progressively as in the
optimistic reasoning. Nevertheless we can ensure in some cases whether an argument will belong to %& or not.
Let us consider our running example. Following Algorithm 2, the worst arguments are 4, A, and 4¢. At this
stage we can ensure that 4, belongs to 44 since it is not attacked. We can also ensure that 4 does not belong to
% & since its defeater A, is not attacked and, indeed, will belong to ¥&. However we cannot say anything about
A, since its defeaters A3 and As are attacked by 4,4. At this stage the order over 45, 44 and 45 is not stated yet.

Lemma 11. Let (o/, R,V arg,>>.) be an argumentation framework and 9& be its associated grounded
extension.

o If A € E; such that 3B € o/ with BRA then A € 96.
o If A € E; such that 3B € o/ with BRA and AC € <of with CAB then A ¢ 96.

Note that in both optimistic and pessimistic reasonings, Algorithms 1 and 2 consider a// arguments of .o/
when computing £,. The set > is used to order arguments and to determine defeat relations later. Indeed in
our approach an argument does not necessarily promote a value. This is intuitively meaningful since it is pos-
sible to use arguments, in a persuasion dialogue for example, which their only role is to attack other arguments
without promoting any value.

5. Value-specification argumentation framework with inconsistent preferences

In the previous sections we focused on consistent preferences. The consistency of > is a necessary condi-
tion to compute a preference-based argumentation framework that is represented by the value-specification
argumentation framework.

The consistency of a set of preferences > in our framework means that there exists a total pre-order >
satisfying each preference v; > v; in . Otherwise > is inconsistent.

Example 10. Let (o/, %,V arg, >uu) be a value-specification argumentation framework with .o/ = {4, 41,
AQ,A3,A4,A5,A6,A7}, V= {01,02,1)3,1)4,1)5,06}, arg(vl) = {A],Ag,}, arg(vz) = {A6,A7}, arg(U3) = {A3,A5},
arg(vs) = {Ao, 41,42}, arg(vs) = {Ao, 41} and arg(ve) = {43,A44,45}. R is the attack relation given in
Example 1. Let >>yn = {v1 > v2, 03 >umr 04, 05 > V6 }. Given >y, we would like to compute a total
pre-order == (Ey, ..., E,) satisfying each preference in >>;,. Following the minimal specificity principle E is
composed of arguments not falsifying any preference in > ,,3,. However Eg = () which means that >, is
inconsistent.
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In such a case we propose to put all arguments in the same equivalence class and reduce
(L, R,V arg,>) to a preference-based argumentation framework (o7, Z,>) with == (Ey) = (/) which
is Dung’s argumentation framework (o7, ) with Z = A.

Note however that we do not associate == (Ej) = (.o/) to >>» as soon as > is inconsistent. In some cases,
a more refined total pre-order can be computed when some preferences are not responsible of inconsistency.
We take our inspiration from the algorithm computing the least specific model of > ;.

Example 11 Example 10continued. We consider the argumentation framework given in the previous example
with the following set of preferences >y = {v2 > v1, v3 > Vs, Us >amr Ve )

We have Ey = {4¢,47}. We remove v; >, v1. The remaining preferences are inconsistent. So == (Ey, E;)
with Ey = {A67A7} and E| = Qf\EO

Algorithm 3 gives a total pre-order associated with an inconsistent set of preferences >3, Algorithm 2

can also be extended to treat inconsistent preferences by adding E;, = .o/ to If box.

Algorithm 3. A total pre-order associated with >/,

Data: <=%,%, V, arg, >>MM>; >Sum = {U,' > um Uj}.
Result: == (E,...,E,).

begin
=0
while o7 # () do
E, ={B:B¢€ o Yo, >y v;,B &arg(v;)}

if E; = () then
inconsistent preferences,
E[ - Jf
o =\ E
I=1+1
return == (Eo,...,E; 1)

end

As we already said, once > is computed, (o7, Z,V,arg,>p) is reduced to (<7, Z,>). Of course we cannot
say that (o, R,V ,arg,>) represents (o7, Z,>) since > is inconsistent and > does not satisfy all prefer-
ences of . In the best case > is composed of more than one equivalence class, in which case it satisfies some
preferences of >>.. Such a way to treat inconsistent preferences is in accordance with our basic idea, namely to
use a specificity principle. Clearly one can imagine other ways to tackle this problem as suggested by the fol-
lowing example.

Example 12. Let (</, %,V ,arg,>>n) be a value-specification argumentation framework such that
o ={A1,42,43}, V = {v1,02,03} with arg(v)) = {41,42}, arg(vz) = {41,453} and arg(v3) = {42,43}. Let
preferences be specified by >>yn = {v1 >>amr 02, V2 a3, 01 >amr v3} and # be defined by: 41 #43, A2 RA3,
A3RA| and A3 ARA; (see Fig. 5).

At first sight we may think that preferences of >>,,,, are not conflicting since we have vy >>yns v2 > 03.
However following our approach, we use minimal specificity principle to reduce v; >y v2 >>3as v3 to a total
pre-order == (Ey,...,E,) on o/. Ey is composed of arguments that do not appear in any right-hand side of

Ay

A

Az

Fig. 5. Example 12.
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any preference. £y is empty which means that there is no total pre-order which satisfies >>a, 1.€. > 727 18
inconsistent.

We reduce (o, R, V,arg, >ynr) to (Z, R, =) with == ({A41,42,43}). Then 4, and A5 defeat each other, 4,
and A3 defeat each other. The grounded extension is empty. Let us now compute preferred extensions. We
have S| = {41,4,} and S, = {43}. Then we may prefer to accept S; but not S, since the former promote v,
while the latter promotes v, and v;3 which are less preferred than v;. However this way (satisfactory and
intuitive in the above value-specification argumentation framework) may be debatable in some cases. First we
have to determine which values are promoted by a set of arguments. Does S| promote v, only or vy, v, and v53?
Intuitively we would say v; only because the whole set S is accepted so we should look for values promoted by
all arguments of S;. However comparing sets of arguments on the basis of values they promote may lead to an
extreme situation where each preferred extension promotes an empty set of values; which leads to
incomparable preferred extensions. Moreover as an argument does not necessarily promote a value, this way
to compare preferred extensions cannot be used in our approach.

The above examples suggest that dealing with inconsistent preferences is an interesting issue that should be
further discussed and explored. This is left for further research.

6. Related work

Concerning the extensive work of Amgoud and colleagues on preference-based argumentation theory, our
value-based argumentation theory seems closest to the argumentation framework based on contextual prefer-
ences given in [3]. A context may be an agent, a criterion, a viewpoint, etc., and they are ordered. For example,
in law earlier arguments are preferred to later ones, arguments of a higher authority are preferred to arguments
of a lower authority, more specific arguments are preferred over more general arguments, and these three rules
are ordered themselves too. However our approach is more general since we compare sets of arguments.

Specificity principle has been also used in much other work [20-22]. However in that work, the preference
relation over arguments is defined on the basis of specificity of their internal structure. In our framework spec-
ificity concerns abstract arguments without referring to their internal structure. The use of specificity principle
in our framework suggests that we have default knowledge about preferences over the arguments and use algo-
rithms to derive the most likely preference order on arguments.

7. Summary

We distinguish three kinds of argumentation frameworks in the literature, as far as relevant for the new
theory developed in this paper:

Dung’s abstract argumentation framework is a tuple (o7, ) where .« is a finite set of arguments and Z is a
binary defeat relation defined on .7 x /.

Amgoud and Cayrol’s preference-based argumentation framework is a triplet (<7, 2, >) where ./ is a set of
arguments, Z is a binary attack relation defined on ./ x .o/ and > is a (total or partial) pre-order (preference
relation) defined on .o/ x .o7.

Bench-Capon’s value-based argumentation framework is a 5-tuple VAF = (o7, R,V ,val, #), where o/ is a
finite set of arguments, Z is an irreflexive binary relation on .«Z, V'is a non-empty set of values, val is a function
which maps from elements of .o/ to elements of V" and £ is the set of possible audiences. An audience specific
argumentation framework is a tuple VAF, = (</, R,V ,val, >,), where a € Z is an audience and >, is a partial
order on V.

Dung’s semantics for argumentation frameworks can be used for preference-based argumentation and
audience specific value-based argumentation frameworks too, using the following relations between the
frameworks:

(o, R, =) represents {o/, Z) if and only if (VA, B € o/, we have AZB if and only if AZB and it is not the case
that B >~ 4), and

(oA, R,V ,arg,>,) represents (A, R,>) if and only if (VA,B € o/, we have 4 = B if and only if
val(4)>,val(B) or val(A) = val(B)).
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Composing both relations we define also what it means for an audience specific value-based argumentation
framework to represent an argumentation framework. We show that an argumentation framework is repre-
sented by a set of preference-based argumentation frameworks, and that a preference-based argumentation
framework is represented by a set of audience specific value-based argumentation frameworks, though the latter
are renamings of each other. We show also that these relations hold when we restrict ourselves to total pre-orders.

In this paper we consider a generalization of Bench-Capon’s audience specific value-based argumentation
framework, in which arguments can promote multiple values, and various kinds of preferences among values
can be expressed. We call our structure a value-specification argumentation framework. To calculate the pref-
erence-based argumentation theory represented by the value-specification framework, we use techniques from
non-monotonic reasoning about preferences.

An audience specific value-based argumentation framework is a 5-tuple (<7, R,V ,arg,>,) where </ is a set of
arguments, Z is an attack relation on .7 x .o/, V'is a set of values, arg is a function from V to 2% such that
arg(v) is the set of arguments promoting the value v, and >, is a partial order on V.

A value-specification argumentation framework is a 5-tuple (o7, R,V arg,>>) where o is a set of argu-
ments, # is an attack relation on .o/ x o/, V is a set of values, arg is a function from V to 27, and
>r CV x V is a set of preferences over V with > € {MM,mm}.

The problem of reducing ordered values to a preference relation comes down to reducing a preference rela-
tion over sets of arguments to a preference relation over single arguments. To reason about ordered values and
to compute the preference relation over arguments, we are inspired by insights from the non-monotonic logic
of preference known as minimal specificity, System Z, gravitation to normality, and otherwise, and we use
both so-called optimistic and pessimistic ways to define the preference relation.

(A, R, V,arg,>v) represents (</, R, =) if and only if > = MM (> = mm) and = is the least (most) specific
relation among the >’ such that (</,,=') satisfies (o/, R,V arg,>>r), where (o/, %, =) satisfies
(L, R,V ,arg,>) if and only if > satisfies each v; >p v; in >

We have that a preference-based argumentation framework can be represented by several value-specifica-
tion frameworks, but in this case we do not have that the value-specification frameworks are renamings of
each other. This illustrates one aspect in which our way of reasoning with values is distinct from the way val-
ues are treated in Bench-Capon’s framework.

The set of acceptable arguments can be calculated by combining algorithms from non-monotonic reasoning
with algorithms for calculating extensions in argumentation theory. We introduce an algorithm for Dung’s
grounded semantics. It shows that the computation of the set of acceptable arguments can be combined with
the optimistic reasoning to incrementally define the set of acceptable arguments, because in this construction
for each equivalence class we can deduce which arguments are not attacked by other arguments. This property
does not hold for pessimistic reasoning.

The present work can be extended in various ways, for example:

e The elicitation of preference specification >.. For example, Bench-Capon et al. [6] define an ordering on
values through a dialogue between two players. The basic item in this dialogue are arguments that an agent
likes to see accepted and others to be rejected,

e To study the case where both maxmax and minmin preferences are provided at the same time i.e.
> U >0 A possible solution would be to compute acceptable arguments with respect to >/, and
>.m given individually and then use the notions of objective and subjective acceptance as in [5],

¢ To study the reinforcement among different arguments promoting the same value [5],

e A theory of value-based extension of Bochman’s generalization of Dung’s theory called collective argumen-
tation [11], where the attack relation is defined over sets of arguments instead of single arguments. It seems
natural to develop a unified framework where both attack and preference relations are defined over sets of
arguments.
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Proof of Lemma 1. For each preference-based argumentation framework (.o/, #Z, ») there is an argumentation
framework (.o/, &) it represents. By construction.

For each argumentation framework (</,%) there is a preference-based argumentation framework
(o, R, ) that represents it. Take Z = 2 and > is the universal relation.

Proof of Lemma 2. If (.o/, %, ) represents (<7, %) and (o7, %,), then ¥, = Z,. By construction.
Proof of Theorem 1. Follows directly from Lemmas 1 and 2.

Proof of Lemma 3. For each audience specific value-based argumentation framework there is a preference-
based argumentation framework it represents. By construction. For each preference-based argumentation
framework (.o, %, ) there is an audience specific value-based argumentation framework (.7, #,V, val, >,)
that represents it. Assume a unique value for each equivalence class of > , and let va/(4) be this unique value
for argument A. Then val(4)>,val(B) if A = B and val(4) = val(B) if 4 ~ B.

Proof of Lemma 4. Suppose that (o/, #,V, val,>,) represents (<7, R, =) and (<, R, >,). By definition this
means that (V4,B € «/, we have A= B iff val(4)>,val(B) or val(A) = val(B)) and (VA4,B € </, we have
A=,B Mt val(4)>,val(B) or val(4) =wval(B)). Indeed VA,B € o/ we have A= B iff val(4)>,val(B) or
val(4) = val(B) iff A=,B. Indeed = = =, since = and =, are defined in the same way.

Suppose that (o7, #, V1, valy, >, 1) and (o, R, V2, vals, >,2) represent (<7, #, =). By definition the first hypo-
thesis means that VA4,B € o/ we have 4 = B iff val|(4)>, 1val|(B) or val,(4) =val,(B) (*). Also (/, R,V ,val,
>,2) represents (o7, %, >) means that VA4, B € .o/ we have A > B iff vals(4)>,2val2(B) or valy(4) =valy(B) (*%).

(1) Suppose that val,(4) = val,(B). Following hypothesis (*) this means that 4 = B. Moreover, following
hypothesis (*¥*) we have (valy(4)>,2valy(B) or valy(A) = valy(B)). Now vali(4) = val,(B) also implies
valy(B) = val,(4) due to symmetry. Then we have B > 4 following hypothesis (*). Following hypothesis
(**) we also have (valy(B)>,,valy(B) or valy(B) = val,(4)). Indeed we have val,(4) = val,(B). Similar
reasoning when val,(4) = val,(B).

(2) Suppose that val;(4)>, val;(B). This means that 4 = B following hypothesis (*). 4 > B is equivalent to
valy(A)>4oval,(B) or valy(A) = val,(B) following hypothesis (**). Suppose that we have val(4) =
valy(B). This implies val,(B) = val,(A). Then we have B > 4 following hypothesis (*#*) which is equivalent
to val,(B)>, val (A4) or val,(4) = val,(B). Contradiction. Similar reasoning when val,(A4)>,,val(B).

Proof of Theorem 2. Follows directly from Lemmas 3 and 4.
Proof of Theorem 3. Analogous to the proof of Theorem 1.
Proof of Theorem 4. Analogous to the proof of Theorem 2.

Proof of Lemma 5. Let v; >, v, be a minmax preference and > be a total pre-order on .o such that > sat-
1sfies vy >, 2.
Assume that for each argument A there is a value v with arg(v) = {4}, which we call v,.

(1) Let us first prove that > satisfies v; >, v, if and only if for each 4 € arg(v,), = satisfies vy s V2.
— = If = satisfies v; >, v, then for each 4 € arg(v)), = satisfies vy >y va.

Suppose that > satisfies vy >, v;. Following Definition 13 this means that each argument 4 in
arg(vy) is preferred to each argument B in arg(v,) with respect to = . So the argument 4 in v, is pre-
ferred to each argument B in arg(v,). Since arg(v,) is composed of 4 and no other arguments, we have
max(arg(vy), =) = {A}. Then = satisfies vy >>yns v2.

— <« If for each 4 € arg(vy), = satisfies vy > v2 then = satisfies v; >, v2.
Suppose that V4 € arg(v;). We have that > satisfies vy >/ v. Since arg(v4) is composed of argu-
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ment 4 and no other arguments, we have max(arg(vy), =) = {4}. Indeed VA4 € arg(v,), > satisfies

v4 >y U2 means that for each 4 in arg(v,) we have 4 > B, VB € max(arg(v,), =). So the least pre-

ferred argument in arg(v,) with respect to = is preferred to B, and we have VB € max(arg(vy), ).

Indeed VA € min(arg(v:), =), VB € max(arg(v,), =) we have 4 > B which is equivalent to state that

= satisfies v| >, >.

(2) We now prove that = satisfies v; >, v, if and only if for each 4 € arg(v,), = satisfies v >, v4.
= If = satisfies v; >,/ v, then V4 € arg(v,), = satisfies v; >, v4.

Suppose that > satisfies v; >, v2. Following Definition 13 this means that each argument in arg(v;)
is preferred to each argument in arg(v;) with respect to > . Formally VB € min(arg(v,),>),
VA € max(arg(v;),>) we have B> A. Then VB € min(arg(v;),>), VA4 € min(arg(v,),>=) we have
B > A since min(arg(vy), =) = {4} (Recall that arg(v,) is composed of only one argument namely 4).
Indeed > satisfies v >, v, for each 4 € arg(v,).

«<: If V4 € arg(v,), = satisfies v; >, v, then > satisfies v; >, v;.

Suppose that VA4 € arg(v,), > satisfies vy >, v4. This means that VB € min(arg(v),*>),
VA4 € min(arg(vy), =) we have B = 4. Note that arg(vy) = {4} so min(arg(vs), =) = {4}. Indeed each
argument Bin arg(v) is preferred to each argument A in arg(v,) with respect to = i.e. = satisfies v; >, 2.

Proof of Lemma 6. The proof is given by construction from Definition 10. Given (.«/, %, >), we associate a
value to each argument in .o/ such that VA4, B € </, val(4) = val(B) iff 4 ~ B. Then we define >, as follows:
VA,B € </, we have val(4)>,val(B) iff 4 - B.

Proof of Lemma 7. If (o/, %,V arg,>>,) represents (o/,#,=) and (o/,%R,=,), then »=; =>»,. By
construction.

Proof of Theorem 5. follows directly from Lemmas 6 and 7.

Proof of Lemma 8. Let (o7, %,V arg,>>y) be a value-specification argumentation framework and
== (Ey,...,E,) be the least specific model of >> ;4.

(1) Let 4 € E,y. Suppose that AB € E, such that B#4. We distinguish two cases:

Case 1: thereisno Cin E; U ---E, such that C#A. This means that A4 is not attacked at all and then not
defeated. So it belongs to the grounded extension.

Case 2: A is attacked by an argument B from E, U - - - U E,,. This attack does not succeed since 4 belongs
to Ey so it is strictly preferred to B. Then A is not defeated and should belong to the grounded
extension.

(2) Let S| be a subset of ¥&. Let A and B be two arguments of £, such that B#A4 and A4 is defended by S;.
Note that S| is a subset of %4 so it is composed of acceptable arguments. Following the definition of the
grounded extension, each argument defended by acceptable arguments also belongs to ¥&. So we have
Ac 9.

(3) Let S; C %6 be the minimal subset of £, computed following items 1 and 2. This means that S, is com-
posed of arguments in E, which are not defeated and all arguments of E, which are defeated but
defended by acceptable arguments. So each argument A of E, outside S, is defeated and non-defended
by arguments already put in 4&. So A does not belong to 4&.

Proof of Lemma 9. By definition of the grounded extension each argument defeated by acceptable arguments
(those already put in the grounded extension) does not belong to ¥&. So once the subset of ¥4 computed in
the first iteration of the algorithm (when computing £,), each argument outside £, and defeated by ¥& does
not belong to ¥%6.

Proof of Lemma 10. Let (<7, %,V arg,>>)n,) be a value-specification argumentation framework. For each
k # 0, let .o be the set of arguments after iteration k£ — 1. Moreover, let ¥ = (Eq U ---UE;_;) \ 96. Note that
2 is composed of arguments of Ey U --- U E;_; that do not belong to the grounded extension.
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(1) Let 4 € E;. Suppose that AB € (E;, U X) such that B#A4. We distinguish two cases:

Case 1: A is attacked by an argument in Eg U - - - U E;_;. Since we have that ¥ = Ey U --- U Ey_; \ %6, this
means that A4 is defeated by an argument in the current %4 then it should has been removed from
</ in earlier iteration, line 8. Indeed 4 belongs to %¢&.

Case 2: A is attacked by an argument in £, U --- U E,. This attack does not succeed since A4 is strictly
preferred to its attackers. Then 4 is not defeated and then belongs to 4¢&.

(2) The proof is similar to the one of item 2, Lemma 8. 4 belongs to 44 as soon as it is defended by accept-
able arguments.
(3) The proofs of item (3) and (4) are similar to the ones of item (3) and Lemma 9 respectively.

Proof of Theorem 6. By definition the grounded extension is composed of non-defeated arguments, defeated
arguments but defended by the current grounded extension and so on until we reach a fixpoint. Note that at
each iteration the algorithm puts in ¥& arguments that are not defeated (line 4). This is stated in item 1 of
Lemmas 8 and 9. So each argument which is not defeated belongs to the grounded extension. Then following
item 2 of Lemmas 8 and 9, at each iteration of the algorithm defeated arguments that are defended by argu-
ments already accepted (i.e. already put in the grounded extension) belong also to the grounded extension.
Following Algorithm 1 this reasoning is repeated until all arguments are treated. Indeed Algorithm 1 com-
putes the grounded extension of (o7, Z,V,arg, ).

Proof of Lemma 11. Let (.</, %,V arg,>>,,) be a value-specification argumentation framework and ¢& be its
grounded extension. Let == (Ey,...,E,) be the most specific pre-order satisfying >>,,,.

(1) Supposethat4 € E; suchthat AB € o7 with B#A. This means that Bis not defeated. Then it belongs to 44
(2) Suppose that 4 € E; such that 3B € .o with B#4 and AC € .o/ with C#B. This means that 4 is defeated
and its defeater is not attacked at all. So 4 is not defended. Then 4 does not belong to ¥&.
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