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Abstract—In this paper, a centralized Power Control (PC)
scheme aided by interference channel gain learning is proposed
to allow a Cognitive Radio (CR) network to access the frequency
band of a Primary User (PU) operating based on an Adaptive
Coding and Modulation (ACM) protocol. The main idea is the
CR network to constantly probe the band of the PU with
intelligently designed aggregated interference and sense whether
the Modulation and Coding scheme (MCS) of the PU changes in
order to learn the interference channel gains. The coordinated
probing is engineered by the Cognitive Base Station (CBS),
which assigns appropriate CR power levels in a binary search
way. Subsequently, each CR applies a Modulation and Coding
Classification (MCC) technique and sends the sensing information
through a control channel to the CBS, where all the MCC
information is combined using a fusion rule to acquire an MCS
estimate of higher accuracy and monitor the probing impact to
the PU MCS. After learning the normalized interference channel
gains towards the PU, the CBS selects the CR power levels to
maximize total CR network throughput while preserving the
PU MCS and thus its QoS. The effectiveness of the proposed
technique is demonstrated through numerical simulations.

Keywords—Cognitive Radio, Centralized Power Control, Spec-
trum Sensing, Cooperative Modulation and Coding Classification,
Adaptive Coding and Modulation

I. INTRODUCTION

Radio Spectrum is well known to be a limited resource.
Ever since its first commercial usage, regulations for limiting
services to specific frequency bands have been enforced.
This rulemaking process assumes that a static assignment of
services to frequency bands not only facilitates the financial
exploitation of the Radio Spectrum, but also limits interference
and supports the construction of cheap and less complicated
transceivers, a major technological restraint.

Nowadays though, the burst in service demand has led us
to rethink the static nature of this architecture. Taking into
account also the fact that some frequency bands are being
underutilized and that others accommodate services resilient
to interference, the research community proposed the idea
of the Dynamic Spectrum Access (DSA) [1]. Some DSA
techniques suggest the use of frequency bands by unlicensed
users, also called Secondary Users (SUs), when the licensed
ones (PUs) are absent or even their coexistence as long as the
received interference by PUs is below a certain threshold. This
flexible structure enables us to exploit the Radio Spectrum
resource more efficiently. A candidate technology to reach
this objective and enhance the operation of the SUs is the

Cognitive Radio (CR) [2]. The main functionalities of the CR
are the Spectrum Sensing (SS), which consists of methods
detecting the existence or type of licensed primary signal, and
the PC, the adaptive adjustment of transmit power. Unlicensed
SUs equipped with these CR mechanisms can apply DSA
techniques and help us resolve both Radio Spectrum under-
utilization and congestion.

One important SS mechanism is the identification of the PU
signal type. An interesting approach to address this problem
could be the classification of the modulation and coding
scheme (MCC) [3], [4]. As far as the modulation classification
is concerned, features like the signal cumulants of 2nd, 3rd,
4th, 6th and 8th order which have distinctive theoretical
values among different modulation schemes [5] are estimated
and then fed into a powerful classification tool, the Support
Vector Machine (SVM) [6]. For the coding identification part,
the exploited statistical features are the log-likelihood ratios
(LLRs) of the received symbol samples [7], [8]. The detection
technique in this case involves the comparison of the average
LLRs of the error syndromes derived from the parity-check
relations of each code.

The second CR enhancement mentioned before is the PC
strategy based on which the SUs are accessing the frequency
band of the PU. This vast topic has been thoroughly inves-
tigated from many aspects depending on the system model,
the optimization variables, the objective functions, the con-
straints and other known or unknown parameters. An inter-
esting approach to the PC problem tackled by the research
community within the wireless network context has been the
centralized one. Based on this, a central decision maker, the
Base Station, gathers local information from the users through
a control channel, elaborates an intelligent selection of their
operational parameters, such as their transmit power, channel
or time schedule, and communicates it to them. In this general
context, the research community has formulated and tackled
PC problems [9–14] to achieve common or different signal
to interference plus noise ratio (SINR) requirements, max-
imum total system throughput, maximum weighted through-
put, maximum worst user throughput or minimum transmit
power, subject to QoS constraints from individual users, like
SINR, data rate or outage probability. In the CR regime, the
centralized PC problem retains its basic form but with some
small alterations. One critical modification is the knowledge
of the interference channels from the CR transmitters to the
PU receivers. Previous work has considered perfect CR-to-
PU channel knowledge [15], [16], limited-rate feedback from



the PUs on CR-to-PU channel gains [17], imperfect CR-to-PU
channel knowledge [18] and CR-to-PU channel uncertainty
knowledge attained through SS or channel gain cartography
[19].

An even more challenging PC problem in CR networks
is the one without any prior knowledge of the interference
channels and cooperation from the PU link. The additional
burden in this case is learning the CR-to-PU channels using
eavesdropped information from the PU feedback channel. A
solution for one SU coexisting with one PU was given in [20]
based on a probing and sensing model. Nevertheless, the most
sophisticated methods suitable for learning the interference
channel gains of multiple SUs through probing with the use
of even binary feedback are derived from multiple input
multiple output (MIMO) and beamforming research scenarios.
Previous researchers have exploited a slow random exploration
algorithm [21], the one-bit null space learning algorithm [22]
and an analytic center cutting plane method (ACCPM) based
learning algorithm [23].

In this paper, a centralized PC method aided by interference
channel power gain learning is demonstrated which concerns
multiple SUs and a PU and maximizes the total SU throughput
subject to maintaining the PU QoS. This case study considers
the PU link changing its MCS based on an ACM protocol and
operating in its assigned band together with a CR network
accessing this band and having knowledge of this ACM
protocol. Our idea is to apply an algorithm in order to first
estimate the interference channel power gains by exploiting
SS feedback and finally maximize the total SU throughput.
This CR-to-PU channel knowledge is acquired by having the
coexisting cognitive SUs constantly probing in a binary search
trial and error way and checking whether the CR network
caused the PU MCS to change. The detection of the PU
MCS is performed in a cooperative way at the CBS which
gathers the MCC feedback from all the SUs through a control
channel and combines them using a hard decision fusion rule.
The proposed DSA application concerns only the SU system
without adding any complexity in the infrastructure or a control
channel between the PU system and the SU one in order to
exchange information about the channel gains or the induced
interference.

The remainder of this paper is structured as follows: Section
II provides the system model and the problem formulation.
Section III introduces the cooperative MCC. Section IV ana-
lyzes the interference channel power gain learning. Section V
shows the results obtained by the combination of the above.
Finally, Section VI gives the concluding remarks and future
work in this topic.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Initially, the outputs of the MCC procedure and the way they
are employed have to be described. All the SUs are equipped
with a secondary omnidirectional antenna only for sensing the
PU signal and an MCC module which enables them to identify
the MCS of the PU as shown in Fig. 1. Specifically, each SU
collects PU signal samples using a standard sensing period TS ,
estimates the current MCS and transmits it through a control

channel to the CBS. The MCS observation of the SUi over
the nth sensing period is expressed as MCSni and a detailed
description about its estimation can be found in [3], [4].
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Fig. 1. Abstract illustration of the CR operation

Furthermore, at system level a PU link and N SU links
exist in the same frequency band as shown in Fig. 2. As far
as the interference to the PU link is concerned, this is caused
by the transmitter part of each SU link to the receiver of the
PU link. Considering strong interference links, this may have
a severe effect on the MCS chosen by the PU link. In addition,
a channel access method allows SU links not to interfere with
each other. In this scenario, the unknown interference channel
gains and the PU channel gain are static and no fading channel
models are considered.

Here we focus on channel power gains G, which in general
are defined as G = ‖g‖2, where g is the channel gain. From
this point, we will refer to channel power gains as channel
gains. The aggregated interference to the PU side is defined
as:

IPU =

N∑
i=1

GIiPSUi
(1)

where GIi is the SUi-to-PU interference channel gain and PSUi

is the SUi transmit power. Additionally, the SINR of the PU
is defined in as:

SINRPU = 10 log

(
GPUPPU
IPU +NPU

)
dB (2)

where GPU is the PU link channel gain, PPU is the PU
transmit power and NPU is PU receiver noise power. From
a PU system perspective, an ACM scheme is applied with a
set of possible MCS’s. The ACM protocol changes the MCS
of the PU link to more or less robust modulation constellations
and coding rates depending on the level of the SINRPU . Each
MCS operation has a specific minimum required SINRPU
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Fig. 2. The PU system and the CR network

value, denoted as SINRth, which whenever violated, an MCS
adaptation happens. Assuming that NPU remains the same at
the PU receiver side and that the PU transmitter retains its
transmit power, the SINRth values correspond to particular
maximum allowed IPU values, designated as Ith. Hence,
whenever the PU is active, for every MCS there are interfer-
ence thresholds Ith over which the PU is obliged to change its
transmission scheme to a lower order modulation constellation
or a lower code rate and whose levels are unknown to the CR
network.

In this paper, we address the problem of total SU throughput
(U totSU ) maximization without causing harmful interference to
the PU system, which can be written as:

maximize
PSU

U totSU (PSU) =

N∑
i=1

log2

(
1 +

GSUiPSUi

NSUi

)
(3a)

subject to
N∑
i=1

GIiPSUi
≤ Ith (3b)

0 ≤ PSUi ≤ Pmaxi i = 1, . . . , N (3c)

where PSU is the power vector [PSU1
, ..., PSUN

], Pmaxi is the
maximum transmit power level of the SUi transmitter, GSUi

is
the channel gain of the SUi link and NSUi

is the noise power
level of the SUi receiver. The channel gain parameters GSUi

and the noise power levels NSUi
are considered to be known

to the CR network and not changing in time. An observation
necessary for tackling this problem is that the GIi gains
normalized to Ith are adequate for defining the interference
constraint. Therefore, the new version of (3b), will be:

N∑
i=1

GnormIi PSUi
≤ 1 (4)

where GnormIi
=

GIi

Ith
.

This optimization problem is convex and using the Karush-
Kuhn-Tucker (KKT) approach a capped multilevel waterfilling
(CMP) solution is obtained [24] for each SUi of the closed
form:

P ∗SUi
=


Pmaxi if 1

λGnorm
Ii

− NSUi

GSUi
≥ Pmaxi

0 if 1
λGnorm

Ii

− NSUi

GSUi
≤ 0

1
λGnorm

Ii

− NSUi

GSUi
otherwise

(5)
where λ is the KKT multiplier of the interference constraint (4)
and which can be determined as presented in [24]. Once, all
the parameters of the optimization problem are established, the
aforementioned analytical solution can be directly calculated.
In the following sections, we deal with the learning of the
unknown parameters described in the constraint (4).

III. COOPERATIVE MODULATION AND CODING
CLASSIFICATION

A general description of cooperative SS is that each SU per-
forms a SS technique independently, forwards its observation
to the CBS via a control channel and finally the CBS using
a fusion rule combines this information to get to a decision.
In this paper, a hard decision fusion of observations obtained
by MCC is considered using a plurality voting system [25].
Based on this voting system, the CBS collects all the MCC
feedback over the nth sensing period and decides the MCS of
the PU, denoted as MCSn. Let C = {c1, .., cK} denote the
set of the MCS candidates of the ACM protocol, which are
considered to be equiprobable, K the number of elements of
this set and Vcj the vote tally associated with the class cj .

During the voting procedure, the CBS first gathers the
votes of the nth period, which in our case are the
MCSn1 , ...,MCSnN and support elements of the class set C.
All the votes are of same importance and no use of weight
factors is made. With every vote MCSni , the CBS increases
by one the vote tally Vcj of the cj class supported by this vote.
After casting every vote of the nth period to the corresponding
vote tally, the CBS identifies the MCSn as:

MCSn = arg max
cj∈C

Vcj . (6)

Even though plurality voting is a simple and not sophis-
ticated method which elects the MCS value that appears
more often than all of the others, it produces the correct
voting output under the condition that some SUs have sensing
channels of moderate quality. Its equivalent voting system for
binary data fusion, the majority one, has been used by the
research community to improve the detection and false alarm
probabilities with satisfactory results.



IV. INTERFERENCE HYPERPLANE LEARNING

From here on, the equality extreme of the constraint (4) will
be referred to as the interference hyperplane. In this section,
a binary search probing method is described for estimating
the interference hyperplane. First of all, a binary indicator is
defined which shows whether the CR network is generating
IPU above or below the Ith based on the MCSn fusion
output of the MCSni observations. Whenever the CBS detects
a deterioration of the MCS from the (n−1)th to the nth period,
the indicator In changes state as shown below:

In =

{
1 if MCSn 6= MCSn−1

0 if MCSn = MCSn−1
. (7)

In addition, the feasible set of this problem is defined as
ΩN = {PSU|0 ≤ PSUi

≤ Pmaxi , i = 1, . . . , N}, an N -
dimensional rectangle with 2N corners. The objective of this
section is to find a geometric method for determining this
hyperplane which crosses ΩN . The only exploitable feedback
of this method is the In which specifies whether the SU power
allocation PSU, chosen by the CBS, just before the beginning
of the nth period causes or not harmful interference. In other
words, if the SU power allocation before the beginning of
the nth period is expressed as Pn

SU = [PnSU1
, ..., PnSUN

], In

demonstrates whether this chosen point in ΩN is above or
below the interference hyperplane.

Thus, the main challenge of this method is how to intel-
ligently select a series of points in ΩN , for which we only
know whether they are above or below the desired hyperplane,
in order to estimate this hyperplane. Also, this series has
to be limited within the N -dimensional rectangle, since the
CBS cannot assign power levels beyond this region. Another
challenge that has to be taken into account is the total number
of these probing/testing points. The more trial points are used,
the more MCS deteriorations the CR network likely causes,
which is a considerable damage to the PU QoS. So, this
geometric method must find the interference hyperplane with
the lowest number of trial points possible.

The core idea for solving the problem is the limitation
of the feedback In. A binary indicator would be ideal to
determine a threshold in the 1-dimensional case by using
binary search. Still, in the N -dimensional case a binary search-
like method must have some kind of directivity to identify
the hyperplane-threshold. Hence, the question becomes how
can binary search be applied in this scenario. Basically, to
detect an N -dimensional plane one has to find N linearly
independent points upon it. Furthermore, if each point belongs
to a 1-dimensional ordered set, like a line segment, the binary
indicator In could be used for a binary search upon the set
to find this point. Consequently, for this idea to work, N line
segments which cross the hyperplane need to be found and
with the lowest number of trial points possible.

To locate N line segments crossing the hyperplane, a num-
ber of end points need to be known with some of them below
the N -dimensional plane and the rest above it. Considering
that any combination of points from different sides creates
line segments which cross the hyperplane, if points above
and below the N -dimensional plane belong respectively to

groups A and B and NA and NB are the number of points
in these groups, then the number of possible line segments
is NANB . As mentioned before, the required number of line
segments is N , but since the lowest number of trial points
possible is demanded the problem is to find NA and NB points
minimizing NA +NB while NANB ≥ N .

Taking into account some facts from the nature of this
problem, the aforementioned end point search can be sim-
plified. Given that the interference hyperplane crosses ΩN ,
there is always a known point below this N -dimensional plane,
the [0, ..., 0], and one above it, the [Pmax1 , ..., PmaxN ]. So, in
the worst case scenario, N − 1 more points are needed to
define N line segments crossing the hyperplane. To simplify
the end point search, it is proposed to examine randomly the
corners of the ΩN . After these segments are found, binary
searches are performed on each one of them so as to detect
the N intersection points of the line segments and hence the
interference hyperplane.

A detailed description of the binary search method on a
line segment with arbitrary end points should also be given.
Assuming 2 points, p1 and p2, in the N -dimensional space,
every point p(θ) lying on the line segment defined by them
is expressed using the parametric equation p(θ) = θp1 +
(1− θ)p2, where θ ∈ [0, 1]. So, basically the binary search is
performed within the θ region [0, 1].

Once, the intersection points of the line segments and the
interference hyperplane are estimated the GIi gains normalized
to Ith can be found as the solution of an N ×N system using
the equality of the constraint (4):


GnormI1
GnormI2

...
GnormIN

 =


Pcross

1
Pcross

2
...

Pcross
N


−1 

1
1
...
1

 (8)

where Pcross
i , i = 1, . . . , N , are the intersection points as row

vectors.
Additionally, it is necessary to determine the maximum

probing/testing points needed to detect the intersection points
and thus the interference hyperplane, since it was explained
that a large number of probing/testing points could degrade
the PU QoS. Supposing that each binary search is performed
with accuracy ε, it is well known that the maximum attempts
for each line segment of length dk, where k = 1, . . . , N , are
dlog2(dkε )e. Even though the lengths dk cannot be precisely
estimated, because a random selection of corner points is
performed and so the line segments do not have a standard
length, an upper bound can be derived for the total binary
search attempts of the procedure. The maximum length a line
segment can have in ΩN , dmax, is of the diagonal defined
by the points [0, ..., 0] and [Pmax1 , ..., PmaxN ] and calculated as√

N∑
i=1

(Pmaxi )2. Therefore, the following

N∑
k=1

dlog2(
dk
ε

)e ≤ Ndlog2(
dmax
ε

)e (9)



Algorithm 1 Interference hyperplane learning geometric algo-
rithm

Sense MCS0

n = 1
Transmit P1

SU = [Pmax1 , ..., PmaxN ]
Sense MCS1

if I1 = 0 then
Let SUs transmit at maximum

else
repeat
n = n+ 1
Transmit at Pn

SU, a random corner point of ΩN

Sense MCSn and cast point Pn
SU to group A or B

until NANB ≥ N
Combine points in A and B to create line segments
for k = 1, . . . , N do

Select a line segment with endpoints Pk
A ∈ A and

Pk
B ∈ B

repeat
n = n+ 1
Transmit at Pn

SU, the midpoint of Pk
A and Pk

B
Sense MCSn

if In = 0 then
Pk

B = Pn
SU

else
Pk

A = Pn
SU

end if
until ‖Pk

A −Pk
B‖ ≤ ε

Define Pcross
k as the midpoint of Pk

A and Pk
B

end for
Calculate normalized GnormIi

using (8)
end if

holds and presents an upper boundary of O(Nlog2(N))
performing trials. This result proves the scalability of this
geometric algorithm, presented in Algo. 1, which can be used
even when the SUs of the CR network are large in number.

A simple example of how this geometric algorithm pro-
gresses in time for N = 2 SUs is given in Fig. 3. The binary
searches were performed on the line segments OB and BC
in order to find their intersection points with the interference
line, E and D. Once, these points are obtained it is easy to
define the interference line.

V. RESULTS

Following, the performance of the aforementioned geomet-
ric algorithm and the probing progress of each PSUi

vs time are
presented. For testing the performance, a case of CR network
with N = 3 SUs was considered. The following diagrams
in Fig. 4 represent geometrically the probing/testing point
coordinates which gradually converge to the coordinates of
the intersection points Pcross

i .
As seen in Fig. 4, testing power allocation points are

tried with a time step of 200ms and it is considered that
Pmax = 300mW and TS = 100ms for every SU. Also, at
each time step the output of the cooperative MCC process is

Fig. 3. A 2D graphical example of the geometric algorithm
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Fig. 4. Geometric algorithm progress in time for N = 3 SUs

assumed to be correctly estimated and thus the binary indicator
In contributing in the geometric algorithm is always accurate.
An important aspect of the algorithm is the convergence time
which for the examined CR network is 3200ms. After the
interference hyperplane learning process finishes, the CBS is
able to directly find the optimal power allocation based on (5).



VI. CONCLUSIONS

In this paper, a centralized Power Control (PC) scheme aided
by an interference hyperplane learning algorithm is proposed
to allow a CR network and a PU coexist in a frequency band.
The leading idea of this algorithm is to exploit the SS feedback
from the cooperative MCC procedure and perform consecutive
binary searches in the power allocation set to define points
of the interference hyperplane and thus the hyperplane itself.
The algorithm is of O(Nlog2(N)) time complexity, which
makes it ideal even for large CR networks, and guarantees
that the minimum number of probing/testing points possible is
performed. The last remark is essential for the PU QoS, since
the more trials are performed by the CBS for the hyperplane
learning, the more likely it is to surpass the interference
hyperplane and deteriorate the PU MCS. Moreover, it must be
mentioned that the proposed learning algorithm achieves better
time complexity than the ones used in previous work related
with binary feedback learning. In [21], a slow convergence rate
stochastic gradient algorithm was utilized, [22] suggested an
algorithm of O(N2log2(N)) time complexity and [23] applied
an optimization technique based learning algorithm of O(N2)
time complexity.

Improving some of the problem aspects could lead our future
work in this subject. Initially, an enhanced fusion rule of the
MCC observations could be suggested using soft decision rules
based on the sensing link quality of each SU. Furthermore, the
cooperative MCC process is assumed to perfectly recognize the
PU MCS, but under low quality sensing link conditions this is
not true. An introduction of a reliability factor indicating how
accurate the output of the MCS fusion rule is and therefore
how reliable the binary indicator In is could be useful so that
binary searches using uncertainty could be carried out. Finally,
an online version of the proposed geometric algorithm could
be implemented to tackle fading interference channels and not
only static ones.
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