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Abstract: In the near future, mobile service robots are expected to provide services in all
spheres of life. They have to execute demanding and complex tasks in a dynamic environment,
collaborate with human users in a natural and intuitive way and adapt themselves to varying
conditions. The necessary flexible and intelligent behavior however can only be achieved by
mobile service robots with a high degree of autonomy. While much effort in research is spent on
the investigation and realization of autonomous service robots, it is often neglected that a higher
degree of autonomy also results in higher safety requirements, especially if these autonomous
robots have to interact closely with human users. This work gives a perspective on the design
of safe autonomous service robots using online risk assessment.

1. INTRODUCTION

Mobile service robots are intended to provide services
in various domains of life. Herein, the main challenge
for the robot is the execution of complex tasks within
an unstructured dynamic environment while collaborating
with human users in a natural and intuitive way. In order
to achieve the necessary highly flexible behavior, mobile
service robots must have a high degree of autonomy. The
development of autonomous mobile robots has been stud-
ied since decades, leading to many published possible ap-
proaches and successful implementations, see e.g. Siciliano
[2008] for a comprehensive overview. However, although
much effort is spent on the investigation and realization
of autonomy, it is most often neglected that autonomous
robots are also causing new types of safety problems. While
a safe stationary robotic manipulator can be obtained
by avoiding any collisions with users or the environment
(e.g. with the help of a separating safety cage), this is
no longer the case for autonomous mobile robots. Here,
touching human persons might be even necessary on the
one side, while also the pure decisions of the robot, e.g.
delivering a requested medicine, could also cause safety-
critical situations on the other side.

This work focuses on a perspective for the development
of safe autonomous mobile robots. While processes and
measures for the design of safety-critical technical systems
in general exist, both the structural and behavioral com-
plexity of an autonomous mobile robot requires measures
to ensure safety that are far beyond the currently existing
approaches. Since passive methods like simulation, testing
or software verification and validation turned out to be
rather ineffective for the complex control software of an
autonomous robot, this approach mainly focuses on a
supervisory system as an active method that checks safe
operation of the robot during runtime.

The work is organized as follows. First, autonomous robots
are identified as safety-critical systems, and current ap-
proaches for the development of safe robots are discussed.

Since safety can be interpreted as a special state of the
robot-environment-interaction, any method to check safety
during operation requires a suitable modeling approach of
this interaction. Here, we propose the extended Situation-
Operator-Model (exSOM) for this purpose. Using the ex-
SOM model, a possible control architecture for a safe
autonomous robot will be derived, which includes risk
assessment, risk-dependent planning on a deliberative and
model-predictive control on a reactive layer. Finally, sim-
ulation and experimental results are presented for a first
proof of concept.

2. SAFETY ASPECTS OF AUTONOMOUS ROBOTS
2.1 Robots as Safety-Critical Systems

Safety-critical systems are those systems whose failure
could result in loss of life, significant property damage or
damage of the environment. Therefore, a system is called
safe if we can ensure that risks are kept at an accepted level
(IEC61508 [2005]). Herein, risk is the possibility of injury,
loss or environment incident created by a hazard, while the
significance or level of the risk is generally determined by
the probability of an unwanted incident and the severity of
the consequences. Safety of technical systems is enforced
by regulations formulated in laws and directives, and
different directives exist for different technical domains.
In order to fulfill the requirements of these safety-related
regulations, well-established processes and measures for
the development of safety-critical systems like air- and
spacecrafts or automobiles have been developed, see e.g.
Boresok [2007], including reliability and risk analysis,
redundancy, fault and event tree analysis, simulation and
testing or formal verification to mention only a few.

Mobile robots have a considerable mass and kinetic energy
during operation, they share the same environment with
human users and autonomous mobile robots are in addi-
tion even enabled to come to own decisions. Therefore,
mobile robots and especially those with a higher degree
of autonomy are clearly safety-critical systems. Robots in



general belong to the class of machines and therefore are
in the scope of the directives EN ISO 13849 for safety of
machinery and EN ISO 10218 for industrial robots sharing
workspace with humans. However, these directives are
mainly considering industrial (stationary) robots, where
the general goal of safety is to reduce the collision energy.
Therefore, small and weak industrial robots are already
certified as safe systems. While the application of heavy
and strong industrial robots without a safety cage has been
permitted in the past, the new directive EN ISO 10218
also allows automatic operation of (industrial) robots in
cooperation with humans. Hereby, the work of humans
in the operating range of the robots is enabled through
sufficient protection, realized by suitable sensors and au-
tomatic control systems. However, mobile robots are so far
not directly included in any of these directives, and also
autonomous systems are not considered, too.

Some first contributions that are especially focused on
the development of safe autonomous mobile robots can
already be found in the literature, see e.g. Sommerville
[1997], Simmons [2000], Voos [2007] or Wardzinski [2008].
However, most of these papers are mainly focusing on
single aspects of this special safety-related problem like
software verification, special redundant hardware systems,
special software development processes or risk assessment.
In this paper, the main focus is on a more comprehensive
overall process and system architecture. Nevertheless, the
development of safe autonomous mobile robots should first
of all also include all the already mentioned well known
development processes and measures for safety-critical sys-
tems in general, see e.g. Boresok [2007]. Most of these mea-
sures however are passive, i.e. they are applied during the
development phase in order to achieve a safe system. This
includes a safety-related analysis and a suitable design of
the mechanical and electrical /electronic parts. Regarding
the software part, the choice of a suitable operating system
and programming language could increase safety, but also
methods of computer science like programming guidelines,
verification and validation of the software etc. could be
applied. From a control engineering point of view, robust
control methodology also contributes to the passive mea-
sures that increase safety of mobile robots.

However, it is typical for all passive safety measures
that the possible hazards and failures must be foreseen
and included in the safety case during development. In
addition, previous investigations led us to the conclusion
that software testing, verification and validation is not
effective if applied to a complex autonomous robot control
system, see e.g. Simmons [2000], Voos [2007]. It turned
out that safety is always related to the overall state of
the robot and the environment, also including human
persons, and it is nearly impossible to foresee all possible
interactions between robot and environment at design-
time. Nevertheless, also these passive methods should be
applied to contribute to the task of designing a safe
autonomous robot, however their application alone is not
sufficient.

Therefore, it seems to be more promising to add active
measures to ensure safety in the case of autonomous
mobile robots or autonomous systems in general, see e.g.
Wardzinski [2008]. These measures are active during the
operation of the mobile robot in order to ensure safety.

During operation, the risk of failure is mainly influenced
by the correctness of the state of operation of the robot, the
correctness of the application and finally the correctness of
the behavior of the robot. The correct state of operation
includes correct functioning of the sensors, the computer
systems as well as the actuators. Correct application of a
robot means that the robot is applied in a specific task as
originally intended, i.e. not operated outdoor if originally
intended for indoor application. Finally, correct behavior
means that the robot is fulfilling its tasks and reaching
its goals as planned, also including “safe” behavior. Here,
the main focus is on this last aspect, i.e. to find measures
that enable the robot to fulfill its tasks and reach its goals
while keeping the risk below an accepted level. The related
concept is described in the following.

2.2 An Approach for Designing Safe Autonomous Robots

We assume a mobile robot which is intended to move
freely in a dynamic environment and to interact with
objects and human persons over a longer period of time in
order to solve given tasks. During this period of operation,
possible hazards could occur creating a certain risk in
the previously described sense. The mobile robot will be
considered as being safe if at all times during operation
the risk is kept below an accepted level (Borcsok [2007]).
However, this risk does not only depend on the robot itself
but clearly also on the dynamic environment. Therefore,
risk assessment is a basic feature of the proposed approach
and must be a dynamic process that takes the overall state
of the robot and the environment as well as the interaction
between robot and environment into account.

That first of all requires a suitable model of the robot-
environment-interaction, i.e. a suitable world model. For
that purpose, we will apply an extended version of the so-
called “Situation-Operator-Model” (exSOM) derived by
Soffker [2008], which will be described in more detail in
the next section. The core of this exSOM-approach is the
assumption that the real world is modeled as a sequence of
discrete-time situations and operators. Situations describe
the current state of the world comprising the robot and
the environment as perceived by the robot. The transition
from one situation to the next is caused by operators. The
exSOM-based world model is also one of the basic com-
ponents of the active safety concept. Since it is nowadays
widely recognized that efficient robot control architectures
are combining reactive control and deliberation to a hybrid
deliberative/reactive architecture (Murphy [2000], Sicil-
iano [2008]), this architecture is also adopted here for robot
control.

In a hybrid deliberative/reactive architecture, complex
and long-term planning tasks based on the world model
are solved on a deliberative layer, then the generated plans
are executed in a reactive fashion by the activation of a set
of suitable behaviors in the underlying reactive layer (Mur-
phy [2000]). These layers are extended in this work in order
to achieve the active safety concept. On the deliberative
layer, the planning and decision making procedures also
take the result of the risk assessment of the current and
future predicted situations into account. The generated
plans therefore must lead to situations whose risk is always
kept under the accepted level. On the reactive layer, the
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Fig. 1. Structure of the extended hybrid robot control
system.

risk assessment of the situations must also be considered
during the activation of suitable behaviors. In the proposed
approach, this reactive behavior and the coordination of
the behaviors is solved by the help of a model-predictive
control approach. Hereby, the execution of the plans is
formulated as an optimization problem while the safety
aspects as a result of the risk assessment are forming
constraints. An online optimization finally leads to the
optimal action while keeping the safety constraints. The
overall structure of this architecture is shown in Fig. 1
and will be further detailed in the following.

3. THE EXTENDED SITUATION-OPERATOR
MODEL OF AUTONOMOUS ROBOTS

One of the basic modules of the hybrid robot control
architecture and also the basis for risk assessment is the
already mentioned exSOM model, which will therefore be
explained in more detail. The ”Situation-Operator-Model”
(SOM) as developed by Softker [2008] extends classical
ideas of the situation and event calculus to a more com-
prehensive cognitive framework that allows the modeling
of the structure of complex scenes. Herein, the reality of
the real world, such as a mobile robot in its environment,
is mapped to a formal representation. In our work, the
SOM approach has been further adapted to robotics and
is called extended SOM (exSOM). The core of the exSOM-
approach is the assumption that the real world could be
understood as a sequence of situations and operators. Since
all robots are equipped with digital computer systems
which work in a discrete-time manner, this timing model
will also be applied to the SOM approach: the robot
internally generates the situations at discrete time steps
with a constant sampling time AT

Each situation is that extract and internal representation
of the real world which is of current interest for the robot.
The situation is described by a suitable set of signifi-
cant facts, the so-called characteristics. The characteristics
could be numerical, boolean or linguistic variables, but
also more complex data structures like images etc. They
include information which is perceived from the external
world, i.e. the environment, with the help of suitable
sensors and signal processing, and also information of the
current physical and cognitive state of the robot, e.g. the

current active goals and plans. The accuracy of the char-
acteristics mainly depends on the considered sensor infor-
mation. Characteristics can be defined by the developer or
autonomously extracted from data by the robot during op-
eration. A situation is generated at each discrete time step
t=kAT k=0,1,...,denoted by S(k), and comprises the
set of all characteristics {C;(k)},i =1,2,...,n(k). Herein,
n(k) is the current number of characteristics, which could
change during operation since some new information might
arise while other information might become less relevant
for the robot. For instance, possible characteristics of a ro-
bot could be the current value of the velocity C; (k) = v(k)
and the current main goal Cy(k) = Deliver Drug.

Changes in the real world are represented by so called
operators. The operators are linking the situations in a
way that the situation snapshot at any point in time
is transferred by an operator to the following situation
(Softker [2008]). In accordance with the previous defined
discrete-time description, the operators are assumed to be
applied at each time step k and lead to a new situation
at time step k 4 1. Operators could be changes of the
characteristics of a situation based on physics and thus
described by differential or difference equations. However,
operators could also be more abstract changes of the
characteristics caused by discrete events or computational
algorithms which run in the robot’s control system. An
operator ¢ at time step k is denoted by O;(k), where a finite
number ¢ = 1,...,m(k) of operators is assumed. At any
time step k, several operators could be applied in parallel,
which is depicted in Fig. 2. For further details of the
underlaying SOM approach, we also refer to Soffker [2008].
The exSOM approach finally offers a possibility to model
situation

S(k) operators

characteristics =

time

Fig. 2. The basic structure of the exSOM modeling ap-
proach.

the robot-environment-interaction in a more formal way in
the robot control system. In the following, safety aspects
of autonomous robots will be discussed with respect to the
exSOM model.

4. CONCEPT FOR SAFE AUTONOMOUS ROBOTS
4.1 Online risk assessment using the exSOM approach

As previously defined, a mobile robot will be considered
as being safe if at all times during operation, the risk
is kept below an accepted level. In the discrete-time
description of the exSOM approach, safety is a property
of any situation S(k) at any time step k, and is described
by a risk value which is assigned to the situation. This
risk value clearly depends on the values of the current
set of characteristics {C;(k)} and thus also depends on
both robot and environment. A risk value of a situation



describes the probability of an unwanted incident in the
future and the severity of the consequences, given the
current set of characteristics. In this approach, a risk is
only assigned to situations and not directly to operators.
Therefore, operators transfer a current situation with a
given risk into the next situation with the resulting risk,
respectively.

However, the calculation of the risk in a pure mathematical
sense as a product of the probability of an incident
and the severity of the consequences would be a rather
difficult procedure. That would require an enormous effort
of numerous experiments and statistical evaluations of
the situations. On the other side, it is obvious that
also human beings as the most advanced “autonomous
systems” are assessing the risk of situations and deciding
risk-depending without calculating the risk values in the
strict mathematical sense. Here, humans tend to consider
risk more as a qualitative property of a situation. For
instance, if we should put our hand on a stove without
having any more information, we would assign at least a
medium risk to this situation, since the stove could be
rather hot and burn our hand. However, in that situation
we would certainly not be able to calculate the precise risk
value of the given situation and base our decision on this.

Therefore, in order to describe the risk of a situation with
regard to the related values of the characteristics in the
mobile robot application, a qualitative, linguistic approach
seems to be more suitable, which could be realized with the
help of a fuzzy system. Fuzzy systems are a well established
methodology to describe and process qualitative expert
knowledge and the whole mathematical background of
fuzzy logic is omitted here (see e.g. Levin [1996]). The
fundamental elements of a fuzzy system are the fuzzy
sets and the rule base. The methodology of the fuzzy sets
represents the human interpretation of measured variables.
In a fuzzy system, the input variables are interpreted as
linguistic variables which are described in linguistic terms.
The rule base of a fuzzy system contains a number of
IF-THEN-rules which are connecting preconditions and
related conclusions both formulated with the help of the
linguistic variables.

However, the definition of such a fuzzy system for risk
assessment also requires the assignment of a range of values
to the risk. Here we assume normalized risk values of a
situation S(k) which are real numbers out of the interval
between 0 (no risk at all) and 1 (highest risk, i.e. incident
is already happening). In addition, if we consider the range
of tasks of an autonomous mobile service robot, it seems
to be suitable to distinguish between two types of risk:
a risk that is mainly concerned with the real physical
environment (called physical risk) and a risk which is
related to logical decisions of the robot (furthermore called
deliberative risk). A look at a service robot which has the
task to deliver a medicine, e.g. in the form of a yellow box,
could clarify the reason for this interpretation. Since the
service robot has to move in the environment of the human
user and even has to come quite near to this person, there
is always the risk of injury because of a collision between
human and robot with a too large kinetic energy. This
physical risk always exist and must be taken into account.
On the other side, even if the robot moves with a very
low velocity minimizing the kinetic energy, also the pure

deliberative capabilities of the robot like decision making
could result in a considerable risk for the human user.
This would be the case if the robot decides to bring a box
without being sure that this is the correct yellow box. In
this case, the box might contain another medicine which
could be rather dangerous, and there is a considerable
deliberative risk. In addition, as already depicted in Fig. 1,
the two risk types are considered and processed in different
levels of the robot control system, since the physical risk is
more related to direct reactions and the deliberative risk
is more related to planning and decision making.

Taking these considerations into account, we assign the
normalized range of values to the two mentioned risk types
Ryhy(S(k)), Raer(S(k)) € RT of situation S(k), i.e. the
physical and the deliberative risk:

0 < Ryny (S(K)), Raa (S(k)) < 1 (1)

If the risk is interpreted as a linguistic variable, linguis-
tic terms have to be defined such as ZERO, SMALL,
MEDIUM, LARGE and V_LARGE, which finally form the
fuzzy sets as depicted in Fig. 3 using triangular member-
ship functions.
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Fig. 3. The fuzzy sets of the linguistic variable Rge; (S (k)).

The input variables of the fuzzy system for risk assessment
are the characteristics of the situation {C;(k)} using
the exSOM model. Also these characteristics are now
interpreted as linguistic variables with assigned linguistic
terms and membership functions. Now, the knowledge
about the risk of a situation is formulated as the rule
base of the fuzzy risk assessment system. Because of the
mentioned reasons, we distinguish between a logical and a
deliberative risk assessment which are both realized as a
fuzzy system, respectively (see also Fig. 1).

The deliberative risk assessment takes that risk into ac-
count which is mainly caused by the current goals of the
service robot in the actual context. Therefore, the main
input variables of this assessment are the goals of the robot
and the current sensor information about the environment
together with a confidence value. Since the goals are given
internally in a deterministic form as results of the planning
and decision process, the respective sets are crisp sets.
If the only information is the pure goal and no further
information is available, the risk of the goal itself also
determines the risk of the current situation, i.e. a possible
fuzzy rule could be

IF  (Goal=Deliver Drug) THEN Rg¢;(S(k))=LARGE

Herein, the only current information is the existence of
a goal to deliver a drug. However, without any further
information, this is per se a risky goal and therefore the



deliberative goal is set to a large value. If the vision system
delivers the additional information that the object that
has been gripped by the robot is a yellow box (which is
the correct one) and the confidence of this perception is
high, the risk would be assessed as being small:

IF (Goal=Deliver Drug) AND (Conf(Obj_Yellow_Box)=HIGH)

THEN  Rge(S(k))=SMALL

The physical risk takes that risk into account which is
caused by the physical interaction of the robot and the
environment, also including human persons. For instance,
the physical risk would be assessed as high, if a detected
object is a person (with a high confidence) and the distance
is small, i.e.

IF  (Distance=SMALL) AND (Conf(0Obj_Person)=HIGH)

THEN Ry, (S(k))=LARGE

It becomes obvious from these considerations that the
sensor and image processing algorithms also have to deliver
confidence values in this realization of an online fuzzy risk
assessment.

One remaining question considers the completeness of the
safety-related knowledge which is included in the two
rule bases of the risk assessment systems. We assume
that a first definition of the rule bases is based upon
the expert knowledge of the engineers during the design
phase. Since this knowledge normally will be incomplete
and not cover all possible situations with a considerable
risk, learning will be applied in the future realization. Here,
reinforcement learning could be a suitable approach, where
a human supervisor enters his own risk assessment results
with the help of a suitable man-machine-interface during
robot actions in simulations or experimental runs.

In the overall robot control system according to the
hybrid deliberative/reactive architecture shown in Fig.
1, the two fuzzy risk assessment systems are connected
with the exSOM-based world model of the robot. In each
situation S(k), the values {C;(k)} of the characteristics
are updated and the risk assessment takes place. The
resulting values Rppny (S(k)), Raei(S(k)) are calculated and
included as additional characteristics in the exSOM-based
world model, see Fig. 4. These extended situations are
then used by the planning and decision systems on the
deliberative layer and the model-predictive control system
on the reactive layer.

4.2 Risk-based extension of deliberative and reactive layer

The physical and deliberative risk values which are finally
calculated and stored as characteristics in the exSOM
world model are then used to influence the next actions of
the autonomous mobile robot. On a deliberative layer, the
planning and decision process of the autonomous robot is
also adapted to the exSOM-based world model leading to a
system architecture as described in Ahle [2008]. First, the
actual situation S(k) is extracted from the world model.
In the exSOM representation of the robot-environment
interaction, operators are now applied (and realized) which
finally lead to the following situation S(k + 1) in the
next time step. One or more goals are provided to the
system, translated into the exSOM description and formed
to a desired situation that the robot finally intends to
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Fig. 4. The online risk evaluation using the exSOM world
model.

reach with the help of a sequence of suitable operators.
In addition, a knowledge base exists which contains the
known operators with probabilities that the application of
this operator in a specific initial situation S;(k) leads to
the specific final situation Sy(k + 1).

Now, two main processes take place in parallel on this
deliberative layer: a planning and decision making process
and a learning process. The planning process compares the
actual situation S(k) with the generated desired situation
Sq(k + K) where K is the planning horizon in discrete
time steps. To generate a plan, the information from the
knowledge base that includes the operators as well as the
risk assessment systems are used. A sequence of operators
to reach the desired situation could be found by gener-
ating a tree of situations and operators and to conduct
deepening depth-first search, see Ahle [2008] (however, any
other planning procedure could also be applied). Herein,
all generated situations during the planning procedure are
always extended by the deliberative risk values. Therefore,
the risk values could also be used to form objectives for
the planning procedure, e.g. to find that plan that reaches
the desired situation while including only intermediate
situations with a risk value that is below a threshold (i.e. a
“safe plan”). If a plan is generated, the included operators
are applied time step by time step and the result of the
application is always checked. If the resulting situation is
not equal to the situation expected during planning, the
operators knowledge data base is updated by a learning
process and a new plan is generated. For the details of the
learning procedure, we refer to Ahle [2008].

While these generated higher level plans are including the
deliberative risk, the physical risk is mainly included in
the processes on the reactive layer. The reactive layer gets
the higher level plans, e.g. in the form of a desired path
given by waypoints or gripping tasks etc. On the reactive
layer, these plans are executed with the help of model
predictive control algorithms. Model predictive control is
a method from control engineering (for an introduction
see e.g. Allgoewer [1999]) which is especially suited to
include all different types of constraints. The essence
of this approach is to optimize, over the manipulatable
inputs, forecasts of the behavior of a dynamic process. The
forecasting is accomplished with a process model over a
finite time interval, the prediction horizon. Only the first



input of the optimal input sequence is injected into the
plant and the problem is solved again in the next time step
using updated measurements (Allgoewer [1999]). During
the optimization, also equality and inequality constraints
could be taken into account.

Here, the underlying control tasks of the robot on the
reactive layer, e.g. following a path or solving a gripping
task, are controlled with the help of suitable formulated
model predictive control algorithms. In order to enable
the model predictive control approach in realtime on the
reactive layer, the physical risk assessment is not applied
to all forecasts (which would lead to a rather complex
calculation during the realtime optimization), but is used
to form differential constraints like maximum values of the
velocities, accelerations or turn rates or constraints like
minimum distances etc. For instance, if the physical risk
in the current situation is assessed as being large (e.g.
because the robot is near to a human), the maximum
values of the velocities as constraints are set to a low
level and a minimum safety distance (if applicable) is also
commanded. This finally leads to the realtime execution
of the control tasks on the reactive layer while including
the safety aspects in a very straightforward way, see also
Voos [2009] for details.

5. EXPERIMENTAL RESULTS AND FUTURE WORK

The proposed approach to design safe autonomous mobile
robots is currently implemented and tested in a Pioneer
3 DX from ActiveMedia Robotics which is also equipped
with a lightweight manipulator from Neuronics and nu-
merous sensors, including a stereo vision systems and a
Sick Laser Scanner. The robot control system as proposed
also including the exSOM approach is implemented with
the help of the SmartSoft Robotic Software framework.
A result of the risk assessment during a test scenario is
shown in Fig. 5. In this scenario, the service robot is
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Fig. 5. Online risk evaluation during test scenario.

approaching a human person, and therefore the physical
risk is continuously increasing with decreasing distance.
However, this leads to a reduced velocity and acceleration
because of the model predictive control approach on the
reactive layer. At ¢ = 7 sec, the robots gets the goal to
deliver the medicine in the yellow box. At the same time,
the box is perceived by the optical sensors and the image
processing system, but the confidence that the perceived
box is yellow is calculated as being low at the beginning.
The box is gripped and over the next time interval, the
confidence that the box is yellow is increasing because the

illumination was getting better. Hence the deliberative risk
is decreasing, as shown in Fig. 5.

In Fig. 6, a simulation result of the model predictive
control system on the reactive layer is shown. Herein, the
task of the considered robot 1 was to follow a defined
path given by waypoints commanded from the deliberative
layer and to keep a minimum distance of 0.4 m to another
moving robot 2. It can be seen that the result is the
optimal compromise between path following (left figure)
and keeping the safety constraints, i.e. the minimum
distance (right figure).
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Fig. 6. Result of the model predictive control system.

Besides these first simulations and experimental ap-
proaches, further experiments and extensions are currently
going on to improve the system and to apply it to more
complex real world applications.
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