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Abstract: Quadrotor UAVs are one of the most preferred type of small unmanned aerial vehicles
because of the very simple mechanical construction and propulsion principle. However, the
nonlinear dynamic behavior requires a more advanced stabilizing control and guidance of these
vehicles. In addition, the small payload reduces the amount of batteries that can be carried and
thus also limits the operating range of the UAV. One possible solution for a range extension
is the application of a base station for recharging purpose even during operation. In order to
increase the efficiency of the overall system further, a mobile base station will be applied here.
However, landing on a moving base station requires autonomous tracking and landing control
of the UAV. In this paper, a novel nonlinear autopilot for quadrotor UAVs is extended with a
tracking and landing controller to fulfill the required task. First simulation and experimental
results underline the performance of this new control approach for the current realization.

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) already have a wide area
of possible applications. Recent results in miniaturization,
mechatronics and microelectronics also offer an enormous
potential for small and inexpensive UAVs for commercial
use. While many possible types of small UAVs exist, one
very promising vehicle with respect to size, weight and
maneuverability is the so called quadrotor. The quadrotor
is a system with four propellers in a cross configuration,
see Fig. 1 for a sketch of a quadrotor UAV. While the front
and the rear motor rotate clockwise, the left and the right
motor rotate counter-clockwise which nearly cancels gyro-
scopic effects and aerodynamic torques in trimmed flight.
One additional advantage of the quadrotor compared to a
conventional helicopter is the simplified rotor mechanics.
By varying the speed of the single motors, the lift force
can be changed and vertical and/or lateral motion can
be generated. However, in spite of the four actuators, the
quadrotor is a dynamically unstable nonlinear system that
has to be stabilized by a suitable control system.

One main drawback of small UAVs in nearly all types of
application is the reduced payload which also limits the
amount of batteries that can be carried. Therefore the
UAV has to return to a base station after a comparatively
short amount of time for recharging purpose. In addition,
in order to fulfill missions where a longer operating range
is required such as pipeline, border or coast surveillance,
returning to a stationary base station is also not useful. In
such applications it would be more suitable to operate with
an autonomous mobile base station that is able to carry
a higher amount of energy for several recharging cycles.
Such a mobile base station could be an autonomous mobile
robot or ship. Coordinated parallel operation of the mobile
base station and the UAV then leads to an overall system
for aerial surveillance with extended range. However, that
concept requires basic stabilizing control of the quadrotor,

tracking of the mobile base station and finally control of
the landing procedure.

In this paper, we first address the problem of a precise
and fast stabilization of the quadrotor UAV since the
fulfillment of this task is a precondition for further im-
plementation of other functionalities. In spite of the four
actuators, the quadrotor is a dynamically unstable system
with nonlinear dynamics that has to be stabilized by a suit-
able control system. Concerning controller design for small
quadrotor UAVs, some solutions are already proposed in
the literature, see e.g. Bouabdallah (2005), McGilvray
(2006), Castillo (2004), Voos (2006) and Voos (2009) to
mention only a few. Many of the proposed control systems
are based on a linearized model and conventional PID- or
state space control while other approaches apply sliding-
mode, Hy, or SDRE control (Voos (2006)). Recently, a
new nonlinear control algorithm has been proposed by the
author which is based upon a decomposition of the overall
controller into a nested structure of velocity and attitude
control (Voos (2009)). The controller has the advantage of
an easy implementation and proven stability while taking
the nonlinearities of the dynamics directly into account.
Here, this controller is first shortly explained in order to
provide the basis for the development of the guidance
and landing controller. This control strategies are then
derived in details, first simulation and experimental results
underline the obtained performance.

2. DYNAMIC MODEL AND STABILIZING CONTROL
OF THE QUADROTOR

2.1 Dynamic Model of the Quadrotor

The general dynamic model of a quadrotor UAV has been
presented in a number of papers, see e.g. Bouabdallah
(2005), Castillo (2004), Voos (2006) or Voos (2009), and
therefore will not be discussed here in all details again.



We consider an inertial frame and a body fixed frame
whose origin is in the center of mass of the quadrotor, see
Fig. 1. The attitude of the quadrotor is given by the roll,
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Fig. 1. Configuration, inertial and body fixed frame of the
quadrotor.

pitch and yaw angle, forming the vector Q7 = (0,0,7),
while the position of the vehicle in the inertial frame is
given by the position vector r’ = (z,y, z). The dynamic
model of the quadrotor can be derived by applying the laws
of conservation of momentum and angular momentum,
taking the applied forces and torques into account (see
Voos (2009)). The thrust force generated by rotor i,i =
1,2,3,4is F; = b - w? with the thrust factor b and the
rotor speed w;, and the law of conservation of momentum
yields

0 4 0
;,'.:g.<()>_R(Q)-b/me?-<0> (1)
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Herein, R(f2) is a suitable rotation matrix. With the inertia
matrix I (a pure diagonal matrix with the inertias I, I,
and I, on the main diagonal), the rotor inertia Jg, the
vector M of the torque applied to the vehicle’s body and
the vector M ¢ of the gyroscopic torques of the rotors, the
law of conservation of angular momentum yields:

IQ:-(me)—MG+M (2)
The vector M is defined as (see Fig. 1)

Lb(wj — w})

Lb(w} - w3) ®3)
d(wf +wi —w) — i)
with the drag factor d and the length L of the lever. The

gyroscopic torques caused by rotations of the vehicle with
rotating rotors are

M:

0
Mg =Iz(Q x (?))'(w1w2+w::,w4) (4)

The four rotational velocities w; of the rotors are the real
input variables of the vehicle, but for a simplification of the
model, the following substitute input variables are defined:

ur = b(wi + Wi + Wi + i)
uy = b(wj — wy)
uz = b(w? — w?)

ug = d(w? + w3 — w3 — wi)

(5)
Defining u” = (uy,us,u3,u4) and (w; — wo + w3 — wy) =
g(u) and introducing the vector of state variables z7 =
(&,9,2,0,0,1, 0,0,1), evaluation of (1) until (5) yields the
following state variable model:
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Herein, we use the abbreviations Iy = (I, — I.)/I;, I» =
(I. - I;)/I, and Is = (I, — I,)/I.. It becomes obvious
that the state variable model can be decomposed into one
subset of differential equations (DEQs) that describe the
dynamics of the attitude using the last six equations of
(6), and one subset that describes the translation of the
UAV using the first three equations of (6).

3. VEHICLE CONTROLLER DESIGN

The task of the vehicle controller is the stabilization of a
desired velocity vector which is calculated by the higher-
level mission controller. The decomposed structure of the
state variable model (6) already suggests a nested struc-
ture for vehicle control. In order to achieve and maintain
a desired velocity vector, first the necessary attitude of
the UAV has to be stabilized. Therefore, we propose a
decomposition of the vehicle control system in an outer-
loop velocity control and an inner-loop attitude control
system. In this structure, the inner attitude control loop
has to be much faster than the outer loop and stabilizes
the desired angles Q) = (¢4,0a,%a) = (¥4,0, 5,4, T6,d)
that are commanded by the outer loop. First we consider
the inner attitude control loop, then we derive the outer-
loop controller to stabilize a desired velocity vector.

3.1 Attitude Control System

For the design of the attitude control system we consider
the last six DEQs of (6) as the relevant submodel. Herein,
the last three DEQs describing x7, s, x9 are nonlinear and
depend on the input variables us,us, uq, while x4, x5, zg
are obtained from the former state variables by pure
integration leading to three simple linear DEQs in (6).
The control strategy now is as follows: we first apply a
nonlinear feedback linearization to the last three DEQs in
order to transfer them into linear and decoupled DEQs.
Together with the set of the remaining linear DEQs we
finally obtain three independent linear systems which can
be stabilized via linear feedback.



If we first neglect the gyroscopic terms (since the rotor
inertias are comparatively small) we obtain the simplified
DEQs for x7,xg, 9 as

L
x8w9l1 + T U
L

Trxgls + Tu;g (7)

ot —
T7x8l3 + A Uy

Now we apply a feedback linearization in order to obtain
a linear system:

ug = fo(wr, 23, 29) + U5
ug = fa(x7,xs,9) + u3

U4:f4($77$8,$9)+uz (8)
with the new input variables u3,u3,u}. It can be shown
that

Iy

L
I
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falzr, xs, 29) = I, (Kyzg — x72813) 9)

fa(x7, 28, 29) = — (Kox7 — xg911)

(Ksxg — x7w9ls)

with the so far undetermined constant parameters Ko, K3, K4

transfer (7) into a set of linear and decoupled DEQs. It
has been proven in Voos (2009) using a suitable Lyapunov
function that this feedback is stable for Ko, K3, K4 < 0
even if the gyroscopic terms from (6) are considered again.
Since &4 = 7, 5 = g, T¢ = Tg we finally obtain linear
decoupled DEQs for x4, x5, xg, respectively, see e.g. x4:
If 244 is the desired angle, application of a linear controller
uy = wsy - (x44 — x4) with constant parameter wy leads to
a closed-loop system of second order

F(s) = X4(s) _ wo

X4d(8) Ix/L-SQ—KQIJC/[wS-ng

The same considerations hold for the other angles with
linear controllers u} = w3 - (54 — x5) and u} = wy -
(x6q — wg), respectively. In addition it can be shown that
wy = (K2/2)* - (I/L), wy = (K3/2)* - (I,/L), wy =
(K4/2)? - I,. Therefore, the dynamics of these closed-
loop systems can be easily adjusted by a choice of a
suitable parameter Ky, K3, K, respectively, with the only
limitation that Ko, K5, K4 < 0, see Voos (2009).

(11)

3.2 Velocity Control System

We now assume that the previously defined inner attitude
control loops are adjusted in a way that their dynamic
behavior is very fast compared to the outer velocity control
loops. Therefore we approximate the inner closed control
loops as static blocks with transfer function Fj(s) =
Xi(s)/Xia(s) = 1,i = 4,5,6. Inserting this in (6), the
velocities of the quadrotor UAV then can be approximated
by

21 = —(COS T4q SIN T54 COS Tgq + SN Taq SIN Tgq) - U1 /M
Tg = — (€08 T4 SIN T5q SIN Tq — SIN T4 COS Tgq) - Uy /M

&3 =g — COST4q COST5q - U1 /M (12)

where all x44, 54, 64 and u; can be considered as input
variables. Equation (12) can be interpreted in a way that
all differential equations are of the form

C.U1 7-~’41
(@) = f(%4d, T5d, T6d, u1) = (%) (13)
.i‘g ﬂS

with the new input variables 11, o, 3 that depend on the
other four input variables in a nonlinear form described
by the vector function f. However, regarding these new
input variables, the control task comprises the control of
three independent first-order systems which is solved by
pure proportional controllers, respectively:

iy =ky - (x1q4 — 1)

U = kg - (T2q — 72)

i3 = k3 - (x3q — 3) (14)
Herein the controller parameters ki, ke and k3 could be
chosen in a way that the outer loop is sufficiently fast but
not too fast with respect to the inner loop attitude control.
In a next step, these transformed input variables @1, Uz, U3
must be used to obtain the real input variables x44, 54, 64
and u; by using (13). First it becomes obvious that any
desired velocity vector can be achieved without any yaw
rotation and therefore we can set xgqg = ¥g = 0. Under
this assumption it is shown in Voos (2009) that (13) can
be solved analytically by calculating the inverse function

of f:
()= (2)
54 | = f (0
U us

8.8 Qwerall Vehicle Control System

(15)

The overall control system consist of the derived inner
attitude and the outer velocity control loop. The command
to the vehicle control system is a desired velocity vector
given by 14,24, %34. Then, (14) is used to calculate
the respective values of the variables 1, o, i3 which are
transferred by static inversion (15) into the values of the
desired angles x4q and x5 as well as the input variable
uy. As discussed, the third desired angle is set to zgq = 0.
The desired angles are used to calculate w3, u3,u; and
evaluation of (8) with the measured values of the angular
rates x7, xg, Tg9 and the nonlinear feedback yields the input
variables ug, us, us. Finally, (5) allows the calculation of
the required angular rates of the rotors, namely wq,ws, w3
and wy.

The main advantage of the overall control system is the
fact that the feedback linearization and the controllers are
comparatively easy to be implemented, while taking the
full nonlinear behavior of the vehicle into account. That
leads to a fast computation even on standard embedded
micro-controller systems. However, the overall control al-
gorithm requires the measurement of all state variables,
i.e. all velocities, angles and angular rates. These mea-
surements must be provided by an inertial measurement
unit with sufficient accuracy. Further details, simulation
and experimental results are also given in Voos (2009).
This derived vehicle control system is now extended by
a suitable landing control system to solve the problem of
automatic landing on a moving platform.



4. AUTOMATIC LANDING ON A MOBILE
PLATFORM

In the following we consider the problem that a quadrotor
UAV which is stabilized via the previously described
vehicle control system should land on a moving platform.
The platform is moving on the surface of the underlying
terrain at an altitude of z4(¢) with regard to the inertial
frame. The overall landing procedure can be roughly
decomposed into three main modes, namely the cruise
mode, the align mode, and the land mode. Initially, the
quadrotor is in the cruise mode where it is far away from
the platform. In this mode the UAV tracks the path of
the moving platform and tries to approach the platform
while staying at a constant altitude over ground, e.g. an
altitude of 2 m. The transitions to the align and land
modes are defined by the entrance into an imaginary 3D
semi-conical-semi-cylindrical geometric shape above the
moving platform, see Fig. (2).
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Fig. 2. 3D imaginary state transition geometric shape.

The upper conical section defines the align mode and the
lower cylindrical section defines the land mode while the
center points of the respective geometric shapes coincide
with the center of mass of the platform. The radius of
the upper base plane of the conical section can be chosen
appropriately, e.g. to a value of 1 m. As soon as the
UAV enters the upper conical section of the imaginary
geometric shape, it transits into the align mode in order
to decend and align the quadrotor with the center of mass
of the platform inside the conical section. However, if the
quadrotor exits this section while decending because of
disturbances, the UAV switches back to the cruise mode
and ascents back to the safe initial altitude. The lower
cylindrical section of the geometric shape defines the land
mode. When the UAV enters this cylindrical section, it
simply should descend as fast as possible for finally landing
on the platform. The radius of the base of the cylinder can
be adjusted for a desired alignment accuracy and could be
fixed at e.g. 0.1 m.

Regarding the underlying control tasks, we can mainly
distinguish between an altitude and a 2-dimensional (2D)
tracking control system. The altitude controller has the
task to stabilize the constant altitude over ground during
the cruise mode and to achieve a zero altitude during the
align and land mode. The 2D-tracking controller has the
task to reduce the distance between the quadrotor and
the platform in a pure x-y-plane to zero. The result of the
altitude controller is a desired velocity component in z-
direction, i.e. 24 = x34 for the underlying vehicle controller
while the result of the 2D-tracking controller are the two
components of the desired velocity vector in x- and y-
direction, i.e. £3 = x14,Y4 = T24. Finally, the results

of these two controllers form the overall desired velocity
vector which is commanded to the vehicle controller.

4.1 Altitude Control

The general task of the altitude control system is to achieve
and maintain a desired altitude reference which can be
either the constant altitude over ground during the cruise
mode or a zero altitude over ground during the align and
land modes. If z is the altitude of the quadrotor UAV and
zs is the current altitude of the surface (i.e. the platform)
in the inertial frame, the difference Az = z — z, is the
relative altitude of the UAV over ground. The current
desired altitude over ground commanded by the overall
landing control is the value Azg. Now we assume that the
dynamic behavior of the controlled quadrotor UAV in z-
direction is very fast with respect to the altitude control
task and can therefore be approximated by a pure static
system, i.e. Fo(s) = 1. If a linear altitude controller with
transfer function Fgr ,(s) is chosen, the structure of the
resulting closed altitude control loop can be depicted as
shown in Fig. 3.
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Fig. 3. Altitude control loop.

Herein the altitude of the surface z, is considered as a
non-measurable disturbance, however the quadrotor is able
to measure the current altitude over ground Az with a
suitable sensor system. In the literature some solutions
based on ultrasonic, optical or laser sensors have already
been proposed for this measurement problem, see e.g.
Waslander (2005) and Barber et al (2006). It becomes
obvious from the structure of the altitude control loop
shown in Fig. 3 that a proportional controller can be
applied in order to solve the control task:

Zd =K- (Azd - AZ) (16)
The gain K of the controller is adjusted in a way that the
speed of the closed loop is sufficiently fast. The reference

altitude Azg is set to the desired altitude in the cruise
mode and set to zero in the align and land mode.

4.2 2D-Tracking Control

The second task of the overall landing controller comprises
the tracking of the image of the moving platform with the
quadrotor in a pure x-y-plane and to control the quadrotor
in a way that the range R is finally reduced to zero.
The overall geometry of the engagement scenario between
the platform and the quadrotor is shown in Fig. 4. The
underlying kinematic model of this engagement can be
formulated as follows, (see also Zarchan (2007)):
R=Vp-cos(ap —0c)— Vg cos(ag — 0)
R~d:Vp~SiIl(Oép*O’)*VQ'SiH(OZQ70’) (17)
where the sets (Vg, aq) and (Vp, ap) describe the velocity
vectors of the quadrotor and the platform in the x-y-plane
in the inertial frame, respectively, R is the planar range
and o is the line-of-sight angle. The planar range is defined
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Fig. 4. Engagement geometry of quadrotor and mobile
platform.

as the distance between the center of mass of the quadrotor
and the image of the center of mass of the platform in a
plane parallel to the one in which the platform is moving.
Both R and o can be easily calculated if the positions of
the quadrotor and the platform in the inertial frame are
measured. During the cruise mode, a DGPS is applied for
this measurement, however, more accurate measurements
are necessary during the align and land mode. There are
some possible solutions for this problem such as a vision
based or ultrasonic based sensor system, see e.g. Waslander
(2005) and Barber et al (2006). Since the main focus of
this work is on the development of the control system, the
sensing aspects are omitted here. The 2D-tracking problem
comprises the calculation of a suitable velocity vector
in the x-y-plane described by (Vg,aq) while the main
disturbance is the velocity vector (Vp,ap) of the moving
platform. One possible solution to solve the 2D-tracking
problem is the application of the classical command to
line-of-sight principle which is well known from missile
guidance, see e.g. Zarchan (2007). Herein, the engagement
scenario comprises a missile which should be guided to hit
a moving target, and it has been shown that a missile is
on a collision course if the rate of the line-of-sight angle is

Zero: 5(t) = 0 (18)

In the special case considered in this work, the platform
is like a cooperative target since the quadrotor UAV and
the platform can communicate and therefore also exchange
measurements of the current movements. Therefore, the
current values (Vp, ap) of the platform can be considered
as a measurable disturbance from the perspective of the
UAV.

In order to derive a 2D-tracking control system, we define a
state variable model based on (17). First, we again neglect
the dynamics of the controlled quadrotor since we assume
that the underlying vehicle control loop is much faster
than the tracking controller. The control inputs u; = Vg,
and up = Vg, are the x- and y-components of the planar
velocity vector Vi of the quadrotor, 1 = R and 22 = o
are the two state variables and d; = Vp, and dy = Vp, are
the two measurable disturbances for the system, namely
the x- and y-components of the planar velocity vector of
the platform. With the vectors of input variables u, of state
variables z and disturbances d, (17) can be written as

z=B(z) u+D(z)-d (19)
where
[ —coszy —sinzg
B(z) = (sinxg/xl —COS£U2/$1> (20)
and

D) - (5 (21)

sin g

—sinxzg/xy cosza/xq
In order to obtain a linear system, we define a new vector
u* of input variables which satisfies

z=u" (22)
The resulting system is decomposed into two linear inde-
pendent integrating systems that can be easily controlled
via the following linear state feedback:

(23)
with the so far undetermined controller parameters k1, ks.

Evaluation of (19) and (23) allows the calculation of the
original control input w of the system:

u=B'(z)- (u* — D(z) ~d)
and further evaluation finally yields

(u1 ) _ (d1 + 1 (k1 cos ko — koxa sinzs) > (25)

(5 dg + l’l(kl sin To + ]{121’2 COS IQ)

k
ulz—kl-xl s u;:—]{Q'Z‘Q

(24)

Applying the collision condition (18) to (23) suggests to
choose k; = 0. Since the absolute value of the planar
velocity vector Vg can be calculated as

Vo = y/ui +u3
= \/V2 + K2R? 4 2k, R(Vp, cos o + Vi, sino) - (26)

and should have a finite value and not exceed the maxi-
mum nominal speed of the quadrotor, (26) can be used to
calculate a suitable positive value for the second controller
parameter k;. Finally, the resulting values of Vg, and
Voy are commanded as desired velocities 24 and g4 to the
underlying vehicle controller.

5. SIMULATION AND EXPERIMENTAL RESULTS

In order to evaluate the derived vehicle and landing control
system, an experimental prototype of the quadrotor has
been designed and the dynamic model (6) of this quadrotor
has been derived by identification of the system parame-
ters like inertias, dimensions etc., see also Voos (2009)
for a more detailed description. This dynamic model then
has been implemented in MATLAB/SIMULINK for the
simulative evaluation of the overall control system. The
simulation results of the underlying vehicle control sys-
tem are already shown in Voos (2009), therefore we first
present some results of the vehicle controller obtained from
experimental test flights with the quadrotor prototype. In
the experiment the control goal was the stabilization of
a hovering state, i.e. v4 = 0 and Q4 = 0, starting from
any initial deviations and compensating for any external
disturbances. The obtained control result is shown in Fig.
5 as a time plot of all angles of the quadrotor. After a
very short transition phase the hovering state is reached
and maintained. The small constant deviation of the yaw
angle results from a slight misalignment of the inertial
measurement unit. It becomes obvious from Fig. 5 that
external disturbances at 35 seconds of the roll angle, at 45
seconds of the pitch angle and at 50 seconds at the yaw
angle are completely compensated.

The overall landing control system is not yet implemented
in the experimental quadrotor prototype and is therefore
evaluated in simulations. In the simulation, the platform
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Fig. 5. Experimental results of the vehicle control system.

is initially assumed to be located at (zpg = 5 m , ypo
=5 m and zpy = 0.1 m and moving with a constant
speed of Vp = 0.5 m/sec on a sinusoidal path in the x-
y-plane at a constant altitude zg = 0.1 m. The quadrotor
is initially located in the origin of the inertial frame in the
hovering state. The obtained control result of the overall
landing control system is depicted in Fig. 6. Diagram (a)
shows a top view of the 2D-engagement in which the
quadrotor starts from the initial position, tracks the path
of the moving platform and finally lands on the platform.
Diagram (b) shows the altitude of the quadrotor which
ascends from the initial position on the ground to a defined
altitude of 2 m within the first 2 sec of the simulation.
At t =8.1 sec the quadrotor enters the align mode and
stays inside it till final landing at ¢ =10.3 sec. Diagram (c)
shows the planar range R which can be used to monitor
land mode transition of the behavior based navigation
control system. Since » = 0.1 m is chosen for the radius of
the lower cylindrical section of the geometric shape, this
diagram shows that the quadrotor enters and stays inside
this cylindrical section from ¢ = 8.2 sec until the final
landing.

6. CONCLUSION AND FUTURE WORKS

This paper presents an overall control system for the auto-
matic landing of a quadrotor UAV on a moving platform.
Herein, the vehicle control system comprises a nonlinear
inner loop attitude control and an outer loop velocity
control system based on static inversion. The landing
controller consists of a linear altitude controller and a
2D-tracking controller which is also based an feedback
linearization. The dynamic model of the quadrotor and
the proposed landing control system are implemented in
a MATLAB/SIMULINK simulation which proofs the ef-
ficiency of the overall control result. The vehicle control
system is finally realized in an experimental prototype and
first test flights underline the performance of this novel
nonlinear approach. In our ongoing work we are currently
also implementing the landing control system as well as
the necessary sensors in the UAV prototype.
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