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Abstract—One main problem in multi-robot systems is the
coordinated navigation of the autonomous robots. Hereby, the
robots have to fulfill their respective tasks while avoiding
collisions with other moving robots. In addition, problem-
specific differential constraints like limitations of the velocities
and accelerations have to be considered. Coordinated naviga-
tion of such a multi-robot system therefore has to combine
contradicting aspects like efficient task accomplishment and
the fulfillment of safety and problem-specific constraints in
parallel. This work focuses on a two-level model predictive
optimizing approach. On a global long-term level, simple
dynamic models of the robots are used to compute optimal paths
under differential constraints where a safety distance between
all robots is achieved. Since many uncertainties and unforeseen
events could occur, all robots are additionally using a non-
linear model predictive control approach on a local real-time
level. This control approach solves the path following and the
collision avoidance problem in parallel while also considering
differential constraints of the single robots.

I. INTRODUCTION

In a multi-robot system, several mobile autonomous robots
are used to act together and to achieve overall common
goals. Possible areas of application are flexible manufac-
turing environments and here we consider the industrial
example of a flexible microproduction system, see also [1]
for further details. In this microproduction system, stationary
machine tools are interconnected by autonomous mobile
robots which are transporting the micro-workpieces in palette
systems in the right sequence between the different machines.
Fig. 1 depicts a possible structure of the resulting highly
flexible microproduction system. One main task concerning
the multi-robot system is the coordinated navigation during
their transportation tasks. Here we assume that each robot
receives the information about the next transportation task
(e.g. provided by a higher-level production planning system)

Fig. 1. A flexible microproduction system including multiple robots.

in the form of start position and time, destination position
and latest delivery time as well as the assigned transportation
order. The robots then have to fulfill these transportation
tasks in the best possible way while the special micropro-
duction environment adds some problem-specific constraints.
Since the space between the stationary machine tools is free
(i.e. without further stationary obstacles) but limited, and
since several robots always operate in parallel, the biggest
problem for the robots is collision avoidance with other
moving robots. In addition, since the robots have to transport
extremely small workpieces in palette systems which should
not be disordered too much, the accelerations both in and
perpendicular to the travel direction as well as velocities and
turning rates are limited. In addition, the robots should move
energy-efficient in order to increase the operating time with
one battery charge.
Therefore, this contribution focuses on multi-robot mo-

tion planning and control where all aspects of the special
transportation task should be considered in parallel: (1) the
delivery should be achieved in an optimal way, (2) safety
constraints like collision avoidance must be guaranteed, (3)
energy, acceleration, velocity and turn rate limitations must
be considered and (4) the algorithms must be capable of
responding to unforeseen changes in the environment or
inaccuracies of the planning procedures. The next section
first provides some more details of the considered example
of the multi-robot based flexible microproduction system and
describes some related work in multi-robot motion planning
and control. In section 3, a two-level model predictive
approach for motion planning and control of multiple robots
in the microproduction system is derived while section 4
presents some first simulation and experimental results.

II. BACKGROUND AND RELATED WORK

A. The Multi-Robot System and Experimental Testbed

The proposed microproduction system has some special
characteristics with respect to the included multi-robot sys-
tem used for transportation tasks. As a manufacturing facility
it will be an indoor environment with a defined structure,
i.e. the machine tools and any other objects are stationary
at fixed positions with free flat space in between for the
navigation of the mobile robots. Since this structure is fixed it
is assumed that a cartesian map of the environment is defined
and available to each single robot. The only moving objects
considered so far are the mobile robots while in a future
extension also human workers as non-cooperative moving
objects will be considered, too.



Each robot now is equipped with a suitable system for
localization and communication. For localization, i.e. the
determination of the robot’s current location in configuration
space (C-space), systems based upon local sensor informa-
tion or global localization systems exist. Many possible so-
lutions exist here, see [2] for a comprehensive overview and
further references. We will neglect further details here and
without loss of generality assume that a suitable localization
system exist that delivers the current location of all robots in
C-space with a suitable accuracy. For communication, each
robot is equipped with a wireless communication system
which enables the robots to exchange data with a blackboard
system in a central computer. Each robot is associated with
a unique ID-number for identification, and each robot’s
necessary data which will be detailed later will be posted
at the blackboard, readable for all other robots. In order to
obtain experimental results with the planned approach of the
microproduction system, an experimental small-scale testbed
has been developed.

B. Related Work in Multi-Robot Motion Planning

Motion planning for mobile robots is one of the fun-
damental and most intensively studied robotics tasks, see
e.g. [2], [3], [4] for comprehensive overviews. Many of the
contributions deal with path planning of one single mobile
robot in an environment where collisions with static obstacles
must be avoided. In this work, the main focus is on motion
planning for multiple robots, and the considered obstacles are
dynamic (namely the other robots). According to [2], multi-
robot planning can be grouped into centralized and decoupled
planning. In centralized planning, one single planner is used
to compute the paths for all robots. In decoupled planning,
some aspects of the planning are handled independently for
each robot. Herein, no central planner is necessary and the
approaches are computationally more efficient, but at the
expense of extensive communication between the robots.
Examples of decoupled planning are prioritized planning
[5], fixed-path coordination [6], traffic rules, potential field
methods or model predictive approaches [7].
In this work, we apply an adapted version of prioritized

planning on the global long-term level for planning rough
collision free paths defined by waypoints for all the robots.
This approach fits well to the underlaying transportation
problem: if any robot starts its transportation task, we
generally assume that the already moving robots have a
higher priority. Therefore, the considered robot computes its
own collision free path with the help of a model predic-
tive approach taking the already determined paths of the
other prioritized robots as fixed. This approach then has
to be extended to include differential constraints. In order
to simplify the algorithms, our approach only considers
velocity constraints on the global long-term planning level
and more detailed differential constraints on the local real-
time control level. For global motion planning, the velocities
of the robots are considered as being constant but limited
between two waypoints, respectively. Planning under dif-
ferential constraints also has been intensively studied, see

e.g. [2]. One useful approach is the discretization of the
constraints by using a simplified discrete-time model of
the robotic motion. In this work, the result of the global
long-term decoupled planning under simplified differential
constraints is a priority relation between the robots and a
set of collision free waypoints for all robots from the start
to the goal location with a fixed limited velocity for each
way-segment between two waypoints.
However, it must be taken into account that in reality

uncertainties and unforeseen events during the execution
of the plans can have a strong influence on the overall
resulting motion of the robots. Problems of this type are
also intensively studied in the literature, see again [2] for an
overview, and solutions are e.g. using probabilistic planning
or dynamic re-planning on the global long-term level. In this
contribution, those problems are not solved on the global
long-term planning level but are combined with the solution
of the path following problem and therefore solved on a local,
real-time motion control level. Here, we interpret the solution
of the long-term motion planning as a set of paths that must
be followed by the robots with a “desired” velocity on the
respective path segments. If these conditions are perfectly
fulfilled this would result in collision free paths. Because
of the mentioned uncertainties however, we cannot generally
guarantee that no collisions occur if we only try to realize
the long-term motion planning.
Therefore, all robots are continuously combining the task

of path following with collision avoidance under detailed
differential constraints on the local real-time motion control
level. Hereby the main task for each robot is to follow the
specified path with the desired velocity while continuously
checking for any possible collision. This is done with the
help of the blackboard and the knowledge about all current
locations of the robots and therefore in a collaborative fash-
ion. The problem of motion control like path following is also
investigated in the literature, see e.g. [2] for an overview. One
promising approach which motivates the proposed solution is
based on model predictive control [9] for the path following
or tracking problem [8] since it offers a natural way to
include differential constraints. In addition, this contribu-
tion extends a non-linear model predictive path following
algorithm with collision avoidance to a very efficient overall
approach.

III. MODEL-PREDICTIVE PATH PLANNING, FOLLOWING

AND COLLISION AVOIDANCE

A. Global Long-Term Motion Planning

The problem of multi-robot global long-term motion plan-
ning is considered here as an optimization problem under
special constraints: while all robots have to fulfill their
respective transportation tasks in the optimal way, the robots
have to keep a safety distance from each other and also
velocity constraints have to be fulfilled. In the following
we assume a multi-robot system with n robots. The robots
move in a cartesian x-y-coordinate system on paths given by
a sequence of waypoints that are defined for a single robot
i ∈ {1, . . . , n} as position vectors rrri(k)T = (xi(k), yi(k))



at discrete time steps k ·ΔT with a fixed unique time interval
ΔT in between. Between the waypoints, the robot is moving
with a fixed velocity vector vvvi(k)T = (vix(k), viy(k)) and a
simple discrete-time dynamic model of robot i is given by

rrri(k + 1) = rrri(k) + ΔT · vvvi(k) , i ∈ {1, . . . , n} (1)

That modelling approach has the advantage that the posi-
tions of all robots at any given discrete time step k can
be compared against each other. As previously mentioned,
the transportation task of robot i is defined by the start
position rrriS and and the destination position rrriD at the latest
arrival time step k = Ki. All robots now should fulfill the
transportation task in an optimal way, e.g. using a minimal
amount of energy and finally minimizing the distance to
the destination position. If VVV T

i = (vvvi(0), . . . , vvvi(Ki − 1))
denotes the vector of all velocity vectors of robot i on
its path and RRRT

i = (rrri(0), . . . , rrri(Ki)) denotes the vector
of all waypoints, this can be expressed as the following
optimization problem with the objective function Ji(VVV i,RRRi):

min
{VVV i,RRRi}

(
Ji(VVV i,RRRi) =

Ki−1∑

k=0

|vvvi(k)|2+(rrri(Ki)−rrriD)2
)
(2)

The constraints of this optimization problem are first the
equations of motion given by (1) which can be defined as a
set of linear equality constraints in the form gggi(VVV i,RRRi) = 000.
Further constraints are the limitations of the velocities, i.e.
0 ≤ vix(k), viy(k) ≤ vimax, here simply expressed as the
set of linear inequality constraints hhhi(VVV i) ≤ 000. While the
constraints considered so far are local for each single robot
i, there is also a set of inequalities that define the constraints
of the safety distance between all robots. Therefore, each
robot also has to consider the paths planned by the other
robots during its own planning procedure.
In order to define a decoupled motion planning algorithm,

a priority relation between all robots is defined. Herein, it is
assumed that the robot which starts first has a higher priority
than those robots which start later. The first robot then has
the highest priority and therefore is able to plan its motion
without any safety constraints. The obtained optimal path, i.e.
the vectors VVV ∗

1 and RRR∗
1 are posted at the blackboard and can

be accessed by the next robot 2. This robot has to accept this
path and velocities of robot 1 as given and has to optimize its
path by taking further nonlinear inequality constraints into
account. The next robot 3 then has to take the two higher
priority path vectors into account etc. If several robots start at
the same time, priority is given to them in a random fashion.
This procedure now can be generalized as follows: Assume

a considered robot i where all robots j ∈ {1, . . . , i−1} have
a higher priority and already determined their respective op-
timal path vectors RRR∗

j . Then, the set of nonlinear inequalities
considering the safety distance for robot i can be expressed
as

|rrri(k) − rrr∗j (k)| ≥ δ ∀j,∀k (3)

where δ denotes the safety distance between the robots
at any given discrete time step k. This can be expressed
more compact as the nonlinear inequality constraints denoted

by hhhi,δ(RRR
∗
1, . . . ,RRR

∗
i−1,RRRi) ≤ 000. Regarding the optimization

problem of robot i, the only variable that must be optimized
then is RRRi, and the motion planning problem of robot i ∈
{1, . . . , n} can be written as:

min
{VVV i,RRRi}

Ji(VVV i,RRRi)

s.t. gggi(VVV i,RRRi) = 000, hhhi(VVV i) ≤ 000
hhhi,δ(RRR

∗
1, . . . ,RRR

∗
i−1,RRRi) ≤ 000 (4)

This optimization problem (4) describes the optimal path
planning task for each robot in the multi-robot system under
the mentioned constraints on a higher level from all start
to all destination positions. The solution of (4) defines the
optimal path for each robot given by waypoints and also
the desired constant velocities between these waypoints.
However, since many unforeseen events and disturbances can
occur during the movement of the robots on these paths from
start to destination, these calculated paths are considered as
the long term desired paths that have to be followed by
controllers on a lower real-time motion control level.

B. Model-Predictive Motion Control

On the real-time motion control level, each robot has to
follow the desired long-term path with the desired velocity
between the waypoints. Herein the robots have to compensate
any deviations from the desired path while keeping detailed
differential constraints. In addition, all robots are continu-
ously checking whether there is a threat of a collision with
other robots. Because of the previously determined hierarchy
of priorities, it is also fixed for the local motion control
level which robots have higher or lower priority if they
meet. Since all robots can access the blackboard where all
current positions and velocities of all robots are posted, they
consider all other robots which are currently within a certain
distance limit as potential collision candidates which have to
be taken into account during the local control task. However,
if we have a look at the intersections of the global long-
term optimal paths of the robots it becomes obvious that
possible intersections of the paths mainly occur for pairs of
two robots, respectively. Without any loss of generality we
therefore consider only two robots 1 and 2 in the following
while the approach can easily be extended to more than two
robots.
It is assumed that each robot has to follow the previously

calculated path, given by straight path segments between
waypoints. The path following problem of the single robot 1
under consideration is depicted in Figure 2 and describes the
task to follow the given path currently defined by the two
waypoints rrr1(i) and rrr1(i+1) while the desired absolute value
of the velocity (constant on that path segment) defined by
the global long-term planning is denoted by v1(i) = v1D.
In order to distinguish between the variables determined
during long-term planning and real-time motion control, the
variables used in real-time motion control are always denoted
by a -̃sign in the following.
For motion control we first have to specify the dynamic

behavior of the robots more precisely. The mobile transport



robots are equipped with two differential-drive wheels on
one common axis and one castor wheel. Robots with this
configuration have a restricted mobility in the sideways
direction and thus have an underlying non-holonomic prop-
erty. The posture, i.e. position and orientation of the robot
in a Cartesian x-y-coordinate system is described by the
kinematic equations

˙̃x1(t) = ṽ1(t) · cos θ̃1(t)
˙̃y1(t) = ṽ1(t) · sin θ̃1(t)
˙̃
θ1(t) = ω̃1(t) (5)

Herein, ṽ1(t) is the heading velocity, θ̃1(t) is the heading
angle, i.e. the angle between the x-axis and the axis of
the robot 1, ω̃1(t) is the angular velocity of the robot and
r̃rr1(t)T = (x̃1(t), ỹ1(t)) is the current position vector of robot
1. Using a differential drive, the two input variables ṽ1(t) and
ω̃1(t) are finally generated via the two wheel velocities of
the left and the right wheel, respectively.
For a mathematical description, it is more suitable to

work with a path coordinate system where d̃1(t) is the
current orthogonal distance between the robot 1 and the path
and s̃1(t) is the distance travelled along the path direction
starting in the last waypoint. The orientation of the curent
path segment between the neighboring waypoints rrr1(i) and
rrr1(i + 1) is denoted by the angle ϕ1(i), see Fig. 2. If the
vector Δrrr1(i) = rrr1(i + 1) − rrr1(i) is the vector that points
along the current path segment, the orthogonal distance
between robot and current path segment can be calculated
as

d̃1(t) =
|Δrrr1(i) × (r̃rr1(t) − rrr1(i))|

|Δrrr1(i)| (6)

For the description of the path following problem, it is more
suitable to describe the movement of the considered robot 1
with regard to the path coordinate system in the form

˙̃s1(t) = ṽ1(t) · cos(θ̃1(t) − ϕ1(i))
˙̃
d1(t) = ṽ1(t) · sin(θ̃1(t) − ϕ1(i)) (7)

However, while following the desired path, the robots also
have to avoid collisions. As previously described, the dis-
tributed global path planning algorithm results in situations
where the considered robot 1 can meet a second robot

Fig. 2. The path following problem of a single robot.

Fig. 3. The engagement geometry of two mobile robots.

2. Without loss of generality we assume that robot 2 has
a higher priority than robot 1 and hence robot 1 is also
responsible for the collision avoidance. The engagement
geometry between two robots 1 and 2 is shown in Fig. 3.
The distance R̃12(t) between the two robots with current
local position vectors r̃rr1(t) and r̃rr2(t) yields

R̃12(t) = |r̃rr1(t) − r̃rr2(t)| (8)

From a mathematical point of view, collision avoidance
means that the distance R̃12(t) must always be larger than
the defined security threshold δ defining the constraint

R̃12(t) > δ ∀t (9)

Herein, the security threshold must be defined with regard to
the geometry of the involved robots. As already mentioned,
the microproduction environment adds some more detailed
application-specific differential constraints. Since the robots
have to transport extremely small parts in palette systems
which should not be shaken too much, the accelerations both
in travel direction (ã1x(t)) and perpendicular to the travel
direction (ã1y(t)) must be limited as well as the velocities
and turning rates itself:

−ã1y,max < ã1y(t) = ṽ1(t) · ω̃1(t) < ã1y,max

−ã1x,max < ã1x(t) = ˙̃v1(t) < ã1x,max

−ω̃1,max < ω̃1(t) < ω̃1,max

−ṽ1,max < ṽ1(t) < ṽ1,max (10)

The task of robot 1 now consists in following the desired
path defined by (7) while keeping the constraints given by
the kinematic equations (5), the constraints added by the
collision avoidance problem (8), (9) and the problem-specific
differential constraints (10). Therefore, this approach directly
combines the three different and partially contradicting tasks
of path following and collision avoidance under the problem-
specific differential constraints. The problem is now solved
by a model predictive control approach.



First we develop a discrete-time version of the un-
derlying dynamic model on the control level. We define
the vector of state variables of robot 1 as q̃qq1(t)T =
[x̃1(t), ỹ1(t), θ̃1(t), s̃1(t), d̃1(t)], and the vector ũuu1(t)T =
[ṽ1(t), ω̃1(t)] as the vector of input variables. The state
variable differential equations are then again given by (5) and
(7). Now we apply the Euler approximation to the differential
quotient with time interval Δτ (with a small time interval
Δτ � ΔT ) in order to obtain a discrete-time model:

˙̃qqq1 ≈ q̃qq1(k + 1) − q̃qq1(k)
Δτ

(11)

Herein, k again denotes a discrete time step and in the
following, q̃qq1(k) and ũuu1(k) denote the discrete-time vectors
of state and input variables of robot 1. The set of differential
equations (5),(7) is then converted into a set of algebraic
equations (using the notation of the input and state variables),
see e.g. the conversion of the first differential equation in (5)
as follows:

q̃11(k + 1) − q̃11(k) − Δτ(ũ11(k) · cos q̃13(k)) = 0 (12)

Herein, q̃1i denotes the element i of the vector q̃qq1 of state
variables. Now, also the differential constraints given by
(10) can be re-formulated, see the following example of the
conversion of the second equation in (10):

−ã1x,max <
ũ11(k + 1) − ũ11(k)

Δτ
< ã1x,max ∀k (13)

In the same way also the constraints describing the collision
avoidance task (8), (9) can be re-formulated, too.
We now assume that at t = 0 (and hence k = 0) the

two robots 1 and 2 have the initial vectors of state variables
q̃qq1(0) and q̃qq2(0) and both robots have to follow a path with
given current path angles ϕ̃1(i) and ϕ̃2(j), respectively. The
proposed algorithm then works as follows. For a given time
horizon of K time steps, robot 2 with the higher priority
has to calculate its trajectories of input and state vectors
Q̃QQ2 = [q̃qq2(1), . . . , q̃qq2(K + 1)] and ŨUU2 = [ũuu2(0), . . . , ũuu2(K)]
in a way that the distance to the path as well as the difference
between the current velocity in path direction and the desired
velocity v2D is minimized, using the following objective
function:

J2(ŨUU2, Q̃QQ2) =

K+1�

k=1

( q̃24(k + 1) − q̃24(k)

Δτ
− v2D

)2
+ (q̃25(k))2

(14)
It becomes obvious that the set of constraints with regard to
the dynamics of the robot after discrete-time formulation can
generally be formulated as a set of nonlinear equality con-
straints g̃gg2(ŨUU2, Q̃QQ2) = 000. The problem-specific differential
constraints in discrete-time formulation according to (13) can
be given as a set of linear inequality constraints h̃hh2(ŨUU2) < 000.
Therefore, the optimization problem of robot 2 finally yields

min
{ŨUU2,Q̃QQ2}

J2(ŨUU2, Q̃QQ2)

s.t. g̃gg2(ŨUU2, Q̃QQ2) = 000, h̃hh2(ŨUU2) < 000 (15)

The results are the sets of optimal input and corresponding
vectors of state variables over the considered horizon given

by ŨUU
∗
2 and Q̃QQ

∗
2. Robot 1 now has to follow its own path

while avoiding collisions with robot 2, which is assumed to
be on its optimal path defined by Q̃QQ

∗
2. In the collaborative

approach as proposed in this work it is assumed that robot
2 communicates this planned optimal path to robot 1 via
publication on the blackboard. Robot 1 now has to calculate
its own optimized path while however taking the collision
avoidance problem into account. This adds a further set of
nonlinear inequality constraints given by h̃hh1,δ(Q̃QQ

∗
2, Q̃QQ1) ≤ 000

according to (8), (9). With the information about the future
behavior of robot 2 given by Q̃QQ

∗
2 robot 1 now solves the

following nonlinear static optimization problem:

min
{ŨUU1,Q̃QQ1}

J1(ŨUU1, Q̃QQ1)

s.t. g̃gg1(ŨUU1, Q̃QQ1) = 000, h̃hh1(ŨUU1) < 000

h̃hh1,δ(Q̃QQ
∗
2, Q̃QQ1) < 000 (16)

After this calculation of the trajectories of optimal vectors
of input variables ŨUU

∗
1 and ŨUU

∗
2 however, only the optimal

steering commands ũuu∗
1(0) and ũuu∗

2(0) for the current time step
are realized and the overall procedure starts again in the next
time step. That means that the steering commands of the two
robots are always calculated on model-based predictions of
the future trajectories, but the calculated future trajectories
are not fully realized. The reason for that approach is the
possibility to consider disturbances of the state variables that
can occur in the next time step. Thus the overall scheme
is a model predictive control algorithm, see e.g. [9] for an
overview, but realized by communicating robots. The full
procedure can be summarized as follows:
(1) The current discrete time is set to k = 0,
both robots 1 and 2 receive the current posture vec-
tors (x̃1(0), ỹ1(0), θ̃1(0)) and (x̃2(0), ỹ2(0), θ̃2(0)) from the
blackboard. (2) Both robots determine the current distance
d̃1(0), d̃2(0) to the respective paths with the help of (6). The
initial value of s can be easily set to s̃1(0) = s̃2(0) = 0.
(3) Robot 2 with the higher priority solves (15) with the
initial values and obtains the optimal trajectories ŨUU

∗
2 and

Q̃QQ
∗
2 for the time horizon of K time steps. (4) Robot 2

communicates the optimal trajectory of the state variables
Q̃QQ

∗
2 to the blackboard where this information is read by robot

1. (5) Robot 1 uses Q̃QQ
∗
2 in order to solve the combined path

following / collision avoidance problem (16) and to obtain
the optimal trajectories ŨUU

∗
1 and Q̃QQ

∗
1 for the time horizon of

K time steps. (6) Both robots realize the optimal steering
commands ũuu∗

1(0) and ũuu∗
2(0) for the current time step. Then

they proceed again with step 1.
This model predictive motion control approach then has been
implemented in both simulation environments as well as in
the previously described testbed. For the implementation of
the model predictive approach, the special multiple shooting
based dynamic optimization package MUSCOD-II [11] has
been applied. Aspects of stability are discussed in [10].
While the implemented solution always converged in our
simulation and experimental tests, a proof of the stability
of the described approach is currently investigated.



IV. FIRST RESULTS AND FUTURE WORKS

In the following, some first results of the derived approach
are presented. In a first simulation which is intended to
proof the concept of the global long-term motion planning,
three robots are considered in an x-y-coordinate system. The
robots start at the same time after prioritization where robot
1 has the highest, robot three the lowest priority. The result
of the decoupled prioritized planning is shown in Fig. 4.
Herein, S denotes the start and E the goal location, and the
markers denote the calculated waypoints, respectively.

Fig. 4. Result of the global long-term motion planning.

It becomes obvious that robot 1 with the highest priority
drives on the direct way from start to the goal location, herein
keeping the velocity constraints. Robot 2 then has to take
this path of robot 1 into account and to plan a path where
the distance between these two robots is always larger than
three meters. Finally, robot 3 has the lowest priority and to
adapt its path to the two other already computed paths of
robot 1 and 2. Also in this case, the obtained path of robot
3 keeps a distance of a least three meters between robot 3
and the other two robots. In all cases, the velocity constraints
are also fulfilled. Finally, also the real-time motion control
approach is tested in a simulation and in the experimental
testbed described in section 2. In this experiment two robots
1 and 2 meet and robot 2 has the higher priority. Therefore,
robot 2 only has to follow its desired path, as depicted in
Fig. 5. Robot 1 then has to follow the path while having an
initial deviation from the desired path and always has to keep
a distance of a least 0.4 meters from the other robot in the
testbed. For testing, the algorithms are implemented in the
central computer and the steering commands are then sent to
the robots, respectively. This allows the real-time solution of
the optimization problems, respectively, for the robots that
move with an average speed of 0.1 m/s.
The results of the model predictive approach as depicted

in Fig. 5 are promising and underline its efficiency. The
robot 1 first tries to minimize the deviation from the desired
path, however then it has to start avoiding the approaching
robot 2. That results in a deviation from the desired path
of robot 1 again. After robot 2 has passed, robot 1 is
again approaching the desired path. Fig. 5 also shows that
the collision avoidance constraints are always fulfilled. The

Fig. 5. Result of the local real-time motion control.

result can be interpreted as the best compromise between
path following and collision avoidance while additionally
keeping the differential constraints. Future work comprises
the integration of the algorithms in the robots itself using em-
bedded solutions. In addition, stability aspects are currently
investigated in more detail. Finally, the approach will also
be implemented in mobile robots with own local sensors for
localization. REFERENCES
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