
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/220819512

In-situ	unmanned	aerial	vehicle	(UAV)	sensor
calibration	to	improve	automatic	image
orthorectification

CONFERENCE	PAPER	·	JULY	2010

DOI:	10.1109/IGARSS.2010.5652989	·	Source:	DBLP

CITATIONS

3

READS

98

4	AUTHORS:

Austin	M.	Jensen

Utah	State	University

39	PUBLICATIONS			188	CITATIONS			

SEE	PROFILE

Norman	Wildmann

University	of	Tuebingen

12	PUBLICATIONS			54	CITATIONS			

SEE	PROFILE

YangQuan	Chen

University	of	California,	Merced

664	PUBLICATIONS			11,003	CITATIONS			

SEE	PROFILE

Holger	Voos

University	of	Luxembourg

108	PUBLICATIONS			282	CITATIONS			

SEE	PROFILE

Available	from:	YangQuan	Chen

Retrieved	on:	16	February	2016

https://www.researchgate.net/publication/220819512_In-situ_unmanned_aerial_vehicle_UAV_sensor_calibration_to_improve_automatic_image_orthorectification?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_2
https://www.researchgate.net/publication/220819512_In-situ_unmanned_aerial_vehicle_UAV_sensor_calibration_to_improve_automatic_image_orthorectification?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Austin_Jensen?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Austin_Jensen?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Utah_State_University?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Austin_Jensen?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Norman_Wildmann?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Norman_Wildmann?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_Tuebingen?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Norman_Wildmann?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_7
https://www.researchgate.net/profile/YangQuan_Chen?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/YangQuan_Chen?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_California_Merced?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/YangQuan_Chen?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Holger_Voos?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Holger_Voos?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_Luxembourg?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Holger_Voos?enrichId=rgreq-f3d4f0ed-ecce-4b1e-b475-60941ff6e86c&enrichSource=Y292ZXJQYWdlOzIyMDgxOTUxMjtBUzoxMDI2MDAzNjgxOTc2NDlAMTQwMTQ3MzI0MzAzNQ%3D%3D&el=1_x_7


IN-SITU UNMANNED AERIAL VEHICLE (UAV) SENSOR CALIBRATION TO IMPROVE
AUTOMATIC IMAGE ORTHORECTIFICATION

Austin M. Jensena, Norman Wildmanna,b, YangQuan Chena, Holger Voosb

aUtah State University
8200 Old Main Hill Logan, UT, USA

Austin.Jensen@aggiemail.usu.edu

bHochschule Ravensburg-Weingarten
Weingarten,Germany

ABSTRACT

Small, low-altitude unmanned aerial vehicles (UAV)s can be

very useful in many ecological applications as a personal re-

mote sensing platform. However, in many cases it is diffi-

cult to produce a single georeferenced mosaic from the many

small images taken from the UAV. This is due to the lack of

features in the images and the inherent errors from the inex-

pensive navigation sensors. This paper focuses on improv-

ing the orthorectification accuracy by finding these errors and

calibrating the navigation sensors. This is done by inverse-

orthorectifying a set of images collected during flight using

ground targets and General Procrustes Analysis. By com-

paring the calculated data from the inverse-orthorectification

and the measured data from the navigation sensors, different

sources of errors can be found and characterized, such as GPS

computational delay, logging delay, and biases. With this

method, the orthorectification errors are reduced from less

than 60m to less than 1.5m.

Index Terms— Unmanned Aerial Vehicle, General Pro-

crustes Analysis, Calibration, Image Orthorecification, Per-

sonal remote sensing system

1. INTRODUCTION

Small, low-altitude unmanned aerial vehicles (UAV)s can be

helpful as remote sensing platforms; they can be low-cost,

easy-to-use, quick to deploy, and have high spatial resolution.

AggieAirTM, an unmanned aerial system (UAS) developed at

Utah State University (USU), has demonstrated the effective-

ness of the UAV as a remote sensing platform [1, 2]. Even

though the UAV itself is inexpensive, conventional post pro-

cessing and georeferencing of the imagery can still take sig-

nificant time and resources due to the small image footprint

and the high number of images needed to cover an area. For

This work is supported in part by UWRL MLF grants WR-1057, WR-

1011 and WR-1102.

example, 100 images may be required to cover a two kilome-

ter squared area. One could georeference all of the images us-

ing a basemap and common features in each image; however,

this process can be very time consuming and costly, making

the UAV platform less competitive with conventional remote

sensing platforms. In addition, many cases lack the necessary

features in each image to georeference them to a basemap. A

quicker and less expensive approach to georeferencing the im-

ages would be to orthorectify them based on the position and

orientation of the camera at the time the image was taken.

This process can be completed autonomously; however, the

low-cost sensors that measure position and orientation of the

aircraft have some inherent errors, which are then projected

onto the ground with the image. Depending on the altitude,

this can cause up to 60m of error on the ground. In an effort

to address this issue, some have improved the location accu-

racy of a ground target by loitering above it, sampling the

location many times, and filtering the data [3]. Others have

improved the location accuracy of a ground target by using

multiple UAVs [4]. Since they are applied to a single ground

target, these methods may be ineffective for creating maps of

an area. The best solution to the errors in the aircraft sensors

may be to quantify them by in-situ calibration of the system

[5]. This method includes setting up ground control points

with defined geodetic positions measured by a precise GPS

receiver, taking aerial photographs of the control points, and

using the control points to inverse orthorectify the images to

find the actual position and orientation of the camera when

the picture was taken. Even though Jensen et. al. [5] was

able to reduce the errors induced by the aircraft sensors with

the in-situ calibration, the method used to inverse orthorec-

tify the images was not able to find the roll and pitch of the

aircraft. This limitation prevented the accurate characteriza-

tion of some of the errors. This paper uses a different, more

accurate inverse orthorectification method that can also find

the roll and pitch of the aircraft. This more accurate pose es-

timation allows us to characterize not only the position and

596978-1-4244-9566-5/10/$26.00 ©2010 IEEE IGARSS 2010



orientation, but also the delays caused by the GPS receiver

and the synchronization between the datalog and the cameras

[6].

2. GENERAL PROCRUSTES ANALYSIS

General Procrustes Analysis (GPA) uses least-squares fitting

to find the transform matrix between two 3D point sets [7, 8].

For this application, the 3D point sets are the locations of the

ground control points on the images (camera frame), and the

geodetic position of the ground control points on the earth

(navigation frame). Given the point sets, GPA calculates the

centroid of the set of points in each coordinate system, finds

the distance from each point in the coordinate system to the

centroid, and solves the least squares problem by minimizing

equation 1, where dci is the distance of each point to the cen-

troid in the camera frame, mci is the distance of each point

to the centroid in the navigation frame and R is the transform

matrix. It is assumed that the measured position and orienta-

tion of the UAV are the coordinates of the camera frame and

are used as the initial conditions of the least-squares fitting.

∑
‖dci − Rmci‖2

(1)

After a transform matrix R is found, which minimizes

equation 1, the translation between a point d in the camera

frame and a point m in the navigation frame can be found

with equation 2.

T = d − Rm (2)

At this point, R and T can be used to find the position

and orientation of the camera. However, for this application,

better results are found by using non-linear least-squares fit-

ting and iterating until the result converges. Figure 1 shows

a plot of the sum of the squared errors versus the iteration

number from data collected from a test flight. The significant

reduction in error shows the benefit of using the non-linear

least-squares method.

Fig. 1. Sum of squared errors vs iteration number.

3. CAMERA CALIBRATION

For accurate orthorectification, the intrinsic and extrinsic (ori-

entation of the camera with respect to the UAV) parameters of

the camera must be known. CalCam, a professional camera

calibration program by MosaicMill Ltd. Finland [9], is used

to find the intrinsic parameters: principal point, focal length,

affinity, skew, radial distortion and tangential distortion.

When the images are inverse-orthorectified, the GPA

method will find the orientation of the camera frame with

respect to the navigation frame. However, to calibrate the

navigation sensors, the orientation of the body frame (aircraft

coordinate system) with respect to the navigation frame will

be needed. Therefore, the orientation of the camera frame

with respect to the body frame must be found. This can

be done before the flight by using the UAV to take multi-

ple pictures of a chessboard poster, and using GPA to find

the orientation from the inner corners of the chessboard on

the image and their true positions on the chessboard poster.

Given the orientation of the camera with respect to the chess-

board (using GPA) and the orientation of the aircraft body

with respect to the chessboard (using orientation data from

IMU), the orientation of the camera with respect to the body

can be found. Figure 2 shows some test data from this process

before a flight. The data was collected in an open area where

the magnetic field was not distorted by buildings, power lines,

etc. For each of the plots, the y axis is the orientation of the

camera and the x axis is the orientation of the UAV. As ex-

pected, all of the plots are very linear with a slope of about 1.

The bias in each axis represents the orientation of the camera

frame with respect to the body frame.

Fig. 2. Results from extrinsic parameter calibration.

4. CALIBRATING AIRCRAFT SENSORS

To calibrate the aircraft sensors, ground control points are set

up on the ground in an unsymmetrical pattern to get a unique

solution from GPA. The ground control points are also placed

so they are well distributed in each of the images even though

the UAV is flown at a range of altitudes. After the ground
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control points are laid out and geolocated using a survey grade

GPS receiver, the UAV is flown over the targets using a flower

navigation routine. The flower navigation routine flies the

UAV over a given point until it reaches a predetermined dis-

tance from that point. Once the distance is reached, the UAV

will turn around and fly over the point again. Since the al-

titude of the UAV can be changed at any point, this routine

ensures the images will be taken over the targets with a wide

range of altitudes and headings. After the UAV lands, the

targets in each of the images are identified and located us-

ing automatic target recognition. Using the target locations in

the images and the target locations on the ground, the GPA

method is used to calculate the position and orientation of the

UAV for each image. Comparing the position and orienta-

tion found by GPA with the sensor data that was logged in

synchronization with the cameras allows us to find, quantify,

and correct many features of the sensors: the biases in the alti-

tude, yaw, and position, the misalignment of the cameras with

the aircraft coordinate system, and the time delays caused by

the GPS receiver and the synchronization between the datalog

and the cameras.

5. RESULTS

One large contributer to the orthorectification error is delay.

There are two delays in the system: the delay between the

camera exposure and when the UAV data for that image is

logged, and a computational delay in the GPS. Unlike the roll,

pitch and yaw of the aircraft, which are only affected by the

logging delay, the GPS data is affected by both the computa-

tional and the logging delay. Therefore to find the computa-

tional delay, both the GPS delay (computational plus logging)

and the logging delay must be known.

One way to find the GPS delay is by using the UAV

log, which has all of the UAV data at a higher frequency,

and checking the error while stepping forward or backward

through the log from the time the picture was assumed to

have been exposed. Figure 3 shows the latitude and longitude

error with respect to the time shift in the high frequency log.

The point at which the error is smallest indicates the point in

the log with the correct position of the UAV when the picture

was actually exposed. The shift is approximately 0.75s.

The GPS delay can also be found using the kinematics of

the UAV. Since the UAV is moving, the speed of the aircraft

is related to the position error and the time delay (eq. 3).

TimeDelay =
PositionError

Speed
(3)

Figure 4 shows the x and y components of speed plotted

with the x and y components of the position error. The plots

have a slope of 0.89 and 0.85, which gives some support to

the delay found in the previous method.

Fig. 3. Delay using GPS position.

Fig. 4. Delay using speed.

After applying the GPS delay to the data from the GPS

(position and altitude), the errors in position improved by 15m

and the errors in altitude improved by 2m.

Once the GPS delay is known, it can be separated into

the logging delay and the GPS computational delay by using

the roll and pitch data. Similar to the method used to find

the GPS delay, the UAV log can also be stepped through to

find the logging delay. However, instead of using the roll and

pitch data directly, the slope of the linear fit between the mea-

sured data and calculated data is used. This is due to the noisy

IMU data; the statistical approach of a linear fit gives a much

clearer result. Figure 5 shows the slope of the roll and pitch

data in the high frequency log versus the time shift from the

point at which the UAV data for the image was logged. Since

the accuracy improves as the slope goes to 1, the plot shows

that the UAV data for the image was logged 0.25 seconds af-

ter the actual exposure. Subtracting the GPS delay (0.75s)

gives a computational delay of 1s (fig. 6). This is confirmed

by comparing the improvement in the GPS data after apply-

ing the GPS delay (15m) and the average speed of the UAV

during the experiment (15 m/s).

After correcting for the delay, figures 7 and 8 show the

relationship between the calculated values and the measured

values for altitude, yaw, roll and pitch. The altitude and yaw

plots look very linear with a slope of about 1 and biases of

3.6m and 11 deg respectively. The results from the roll and

pitch, however, are not as conclusive. This is probably due to

the limited range of values that were sampled (10 degrees for
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Fig. 5. Delay using roll and pitch.

Fig. 6. Delay Explanation.

pitch, 20 degrees for roll, 360 degrees for yaw).

Fig. 7. Altitude and yaw plot.

After correcting the aircraft data for each of the im-

ages, the position error for each of the ground control points

(through orthorectificiation) is reduced to less than 1.5m.

6. CONCLUSIONS AND FUTURE WORK

Using General Procrustes Analysis to inverse orthorectify the

images made it possible to characterize many sources of error

from the navigation sensors on the UAV: GPS computational

delay, logging delay, and biases in the altitude, yaw, roll, and

pitch. Future improvements include finding a way to increase

the range of values sampled from the roll and pitch to im-

prove their characterization and finding a real-time method

that takes less time to set up in order to make the process

more practical for regular use.

Fig. 8. Roll and pitch after delay correction.
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