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ABSTRACT

Small, low-altitude unmanned aerial vehicles (UAV)s can be
very useful in many ecological applications as a personal re-
mote sensing platform. However, in many cases it is diffi-
cult to produce a single georeferenced mosaic from the many
small images taken from the UAV. This is due to the lack of
features in the images and the inherent errors from the inex-
pensive navigation sensors. This paper focuses on improv-
ing the orthorectification accuracy by finding these errors and
calibrating the navigation sensors. This is done by inverse-
orthorectifying a set of images collected during flight using
ground targets and General Procrustes Analysis. By com-
paring the calculated data from the inverse-orthorectification
and the measured data from the navigation sensors, different
sources of errors can be found and characterized, such as GPS
computational delay, logging delay, and biases. With this
method, the orthorectification errors are reduced from less
than 60m to less than 1.5m.

Index Terms— Unmanned Aerial Vehicle, General Pro-
crustes Analysis, Calibration, Image Orthorecification, Per-
sonal remote sensing system

1. INTRODUCTION

Small, low-altitude unmanned aerial vehicles (UAV)s can be
helpful as remote sensing platforms; they can be low-cost,
easy-to-use, quick to deploy, and have high spatial resolution.
AggieAir™, an unmanned aerial system (UAS) developed at
Utah State University (USU), has demonstrated the effective-
ness of the UAV as a remote sensing platform [1, 2]. Even
though the UAV itself is inexpensive, conventional post pro-
cessing and georeferencing of the imagery can still take sig-
nificant time and resources due to the small image footprint
and the high number of images needed to cover an area. For
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example, 100 images may be required to cover a two kilome-
ter squared area. One could georeference all of the images us-
ing a basemap and common features in each image; however,
this process can be very time consuming and costly, making
the UAV platform less competitive with conventional remote
sensing platforms. In addition, many cases lack the necessary
features in each image to georeference them to a basemap. A
quicker and less expensive approach to georeferencing the im-
ages would be to orthorectify them based on the position and
orientation of the camera at the time the image was taken.
This process can be completed autonomously; however, the
low-cost sensors that measure position and orientation of the
aircraft have some inherent errors, which are then projected
onto the ground with the image. Depending on the altitude,
this can cause up to 60m of error on the ground. In an effort
to address this issue, some have improved the location accu-
racy of a ground target by loitering above it, sampling the
location many times, and filtering the data [3]. Others have
improved the location accuracy of a ground target by using
multiple UAVs [4]. Since they are applied to a single ground
target, these methods may be ineffective for creating maps of
an area. The best solution to the errors in the aircraft sensors
may be to quantify them by in-situ calibration of the system
[5]. This method includes setting up ground control points
with defined geodetic positions measured by a precise GPS
receiver, taking aerial photographs of the control points, and
using the control points to inverse orthorectify the images to
find the actual position and orientation of the camera when
the picture was taken. Even though Jensen et. al. [5] was
able to reduce the errors induced by the aircraft sensors with
the in-situ calibration, the method used to inverse orthorec-
tify the images was not able to find the roll and pitch of the
aircraft. This limitation prevented the accurate characteriza-
tion of some of the errors. This paper uses a different, more
accurate inverse orthorectification method that can also find
the roll and pitch of the aircraft. This more accurate pose es-
timation allows us to characterize not only the position and
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orientation, but also the delays caused by the GPS receiver
and the synchronization between the datalog and the cameras

[6].

2. GENERAL PROCRUSTES ANALYSIS

General Procrustes Analysis (GPA) uses least-squares fitting
to find the transform matrix between two 3D point sets [7, 8].
For this application, the 3D point sets are the locations of the
ground control points on the images (camera frame), and the
geodetic position of the ground control points on the earth
(navigation frame). Given the point sets, GPA calculates the
centroid of the set of points in each coordinate system, finds
the distance from each point in the coordinate system to the
centroid, and solves the least squares problem by minimizing
equation 1, where d.; is the distance of each point to the cen-
troid in the camera frame, m.; is the distance of each point
to the centroid in the navigation frame and R is the transform
matrix. It is assumed that the measured position and orienta-
tion of the UAV are the coordinates of the camera frame and
are used as the initial conditions of the least-squares fitting.

Z lldei — Rmci”2 (1)

After a transform matrix R is found, which minimizes
equation 1, the translation between a point d in the camera
frame and a point m in the navigation frame can be found
with equation 2.

T=d—-Rm ()

At this point, R and 7' can be used to find the position
and orientation of the camera. However, for this application,
better results are found by using non-linear least-squares fit-
ting and iterating until the result converges. Figure 1 shows
a plot of the sum of the squared errors versus the iteration
number from data collected from a test flight. The significant
reduction in error shows the benefit of using the non-linear
least-squares method.

Goodness-affit criterion

Fig. 1. Sum of squared errors vs iteration number.
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3. CAMERA CALIBRATION

For accurate orthorectification, the intrinsic and extrinsic (ori-
entation of the camera with respect to the UAV) parameters of
the camera must be known. CalCam, a professional camera
calibration program by MosaicMill Ltd. Finland [9], is used
to find the intrinsic parameters: principal point, focal length,
affinity, skew, radial distortion and tangential distortion.

When the images are inverse-orthorectified, the GPA
method will find the orientation of the camera frame with
respect to the navigation frame. However, to calibrate the
navigation sensors, the orientation of the body frame (aircraft
coordinate system) with respect to the navigation frame will
be needed. Therefore, the orientation of the camera frame
with respect to the body frame must be found. This can
be done before the flight by using the UAV to take multi-
ple pictures of a chessboard poster, and using GPA to find
the orientation from the inner corners of the chessboard on
the image and their true positions on the chessboard poster.
Given the orientation of the camera with respect to the chess-
board (using GPA) and the orientation of the aircraft body
with respect to the chessboard (using orientation data from
IMU), the orientation of the camera with respect to the body
can be found. Figure 2 shows some test data from this process
before a flight. The data was collected in an open area where
the magnetic field was not distorted by buildings, power lines,
etc. For each of the plots, the y axis is the orientation of the
camera and the x axis is the orientation of the UAV. As ex-
pected, all of the plots are very linear with a slope of about 1.
The bias in each axis represents the orientation of the camera
frame with respect to the body frame.

Fig. 2. Results from extrinsic parameter calibration.

4. CALIBRATING AIRCRAFT SENSORS

To calibrate the aircraft sensors, ground control points are set
up on the ground in an unsymmetrical pattern to get a unique
solution from GPA. The ground control points are also placed
so they are well distributed in each of the images even though
the UAV is flown at a range of altitudes. After the ground



control points are laid out and geolocated using a survey grade
GPS receiver, the UAV is flown over the targets using a flower
navigation routine. The flower navigation routine flies the
UAV over a given point until it reaches a predetermined dis-
tance from that point. Once the distance is reached, the UAV
will turn around and fly over the point again. Since the al-
titude of the UAV can be changed at any point, this routine
ensures the images will be taken over the targets with a wide
range of altitudes and headings. After the UAV lands, the
targets in each of the images are identified and located us-
ing automatic target recognition. Using the target locations in
the images and the target locations on the ground, the GPA
method is used to calculate the position and orientation of the
UAV for each image. Comparing the position and orienta-
tion found by GPA with the sensor data that was logged in
synchronization with the cameras allows us to find, quantify,
and correct many features of the sensors: the biases in the alti-
tude, yaw, and position, the misalignment of the cameras with
the aircraft coordinate system, and the time delays caused by
the GPS receiver and the synchronization between the datalog
and the cameras.

5. RESULTS

One large contributer to the orthorectification error is delay.
There are two delays in the system: the delay between the
camera exposure and when the UAV data for that image is
logged, and a computational delay in the GPS. Unlike the roll,
pitch and yaw of the aircraft, which are only affected by the
logging delay, the GPS data is affected by both the computa-
tional and the logging delay. Therefore to find the computa-
tional delay, both the GPS delay (computational plus logging)
and the logging delay must be known.

One way to find the GPS delay is by using the UAV
log, which has all of the UAV data at a higher frequency,
and checking the error while stepping forward or backward
through the log from the time the picture was assumed to
have been exposed. Figure 3 shows the latitude and longitude
error with respect to the time shift in the high frequency log.
The point at which the error is smallest indicates the point in
the log with the correct position of the UAV when the picture
was actually exposed. The shift is approximately 0.75s.

The GPS delay can also be found using the kinematics of
the UAV. Since the UAV is moving, the speed of the aircraft
is related to the position error and the time delay (eq. 3).

PositionE
TimeDelay — ositionError 3)
Speed

Figure 4 shows the x and y components of speed plotted
with the x and y components of the position error. The plots
have a slope of 0.89 and 0.85, which gives some support to
the delay found in the previous method.
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Fig. 3. Delay using GPS position.

Fig. 4. Delay using speed.

After applying the GPS delay to the data from the GPS
(position and altitude), the errors in position improved by 15m
and the errors in altitude improved by 2m.

Once the GPS delay is known, it can be separated into
the logging delay and the GPS computational delay by using
the roll and pitch data. Similar to the method used to find
the GPS delay, the UAV log can also be stepped through to
find the logging delay. However, instead of using the roll and
pitch data directly, the slope of the linear fit between the mea-
sured data and calculated data is used. This is due to the noisy
IMU data; the statistical approach of a linear fit gives a much
clearer result. Figure 5 shows the slope of the roll and pitch
data in the high frequency log versus the time shift from the
point at which the UAV data for the image was logged. Since
the accuracy improves as the slope goes to 1, the plot shows
that the UAV data for the image was logged 0.25 seconds af-
ter the actual exposure. Subtracting the GPS delay (0.75s)
gives a computational delay of 1s (fig. 6). This is confirmed
by comparing the improvement in the GPS data after apply-
ing the GPS delay (15m) and the average speed of the UAV
during the experiment (15 m/s).

After correcting for the delay, figures 7 and 8 show the
relationship between the calculated values and the measured
values for altitude, yaw, roll and pitch. The altitude and yaw
plots look very linear with a slope of about 1 and biases of
3.6m and 11 deg respectively. The results from the roll and
pitch, however, are not as conclusive. This is probably due to
the limited range of values that were sampled (10 degrees for



Fig. 5. Delay using roll and pitch.
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Fig. 6. Delay Explanation.

pitch, 20 degrees for roll, 360 degrees for yaw).

Fig. 7. Altitude and yaw plot.

After correcting the aircraft data for each of the im-
ages, the position error for each of the ground control points
(through orthorectificiation) is reduced to less than 1.5m.

6. CONCLUSIONS AND FUTURE WORK

Using General Procrustes Analysis to inverse orthorectify the
images made it possible to characterize many sources of error
from the navigation sensors on the UAV: GPS computational
delay, logging delay, and biases in the altitude, yaw, roll, and
pitch. Future improvements include finding a way to increase
the range of values sampled from the roll and pitch to im-
prove their characterization and finding a real-time method
that takes less time to set up in order to make the process
more practical for regular use.
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Fig. 8. Roll and pitch after delay correction.

7. REFERENCES

[1] Austin M. Jensen, YangQuan Chen, Thom Hardy, and
Mac McKee, “AggieAir - a low-cost autonomous multi-
spectral remote sensing platform: New developments and
applications,” in Proc. IEEE International Conference
on Geoscience and Remote Sensing Symposium IGARSS
2009, July 2009.

[2] Haiyang Chao, Austin M. Jensen, Yiding Han, YangQuan
Chen, and Mac McKee, Advances in Geoscience and Re-
mote Sensing, chapter AggieAir: Towards Low-cost Co-
operative Multispectral Remote Sensing Using Small Un-
manned Aircraft Systems, pp. 463 — 489, INTECH, 2009.

[3] J.D. Redding, T.W. McLain, R.W. Beard, and C.N. Tay-
lor, “Vision-based target localization from a fixed-wing

miniature air vehicle,” in Proc. American Control Con-
ference, June 2006.

[4] J. Tisdale, A. Ryan, Zu Kim, D. Tornqvist, and J.K.
Hedrick, “A multiple UAV system for vision-based
search and localization,” in American Control Confer-
ence, 2008, June 2008, pp. 1985-1990.

[S] Austin M. Jensen, Yiding Han, and YangQuan Chen,
“Using aerial images to calibrate inertial sensors of a low-
cost multispectral autonomous remote sensing platform
(AggieAir),” in Proc. IEEE International Conference
on Geoscience and Remote Sensing Symposium IGARSS
2009, July 2009.

[6] Norman Wildmann, “Techniques towards increased
precision in direct-georeferencing for AggieAir, a low-
cost personal remote sensing system,” M.S. thesis,
Hochschule Ravensburg-Weingarten, February 2010.

[71 K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-
squares fitting of two 3-D point sets,” [EEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol.
PAMI-9, no. 5, pp. 698-700, Sept. 1987.

[8] M. Devrim Akca, “Generalized procrustes analysis and
its applications in photogrammetry,” 2003.

[91 MosaicMill, “http://www.mosaicmill.com/,” June 2010.



