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ABSTRACT: Sets of free energy differences are useful for finding the equilibria of
chemical reactions, while absolute free energies have little physical meaning. However
finding the relative free energy between two macrostates by subtraction of their absolute
free energies is a valuable strategy in certain important cases. We present calculations of
absolute free energies of biomolecules, using a combination of the well-known Einstein
molecule method (for treating the solute) with a conceptually related method of recent
genesis for computing free energies of liquids (to treat the solvent and counterions).
The approach is based on thermodynamic integration from a detailed atomistic model
to one which is simplified but analytically solvable, thereby giving the absolute free
energy as that of the tractable model plus a correction term found numerically. An
example calculation giving the free energy with respect to salt concentration for the B- and Z-isomers of all-atom duplex DNA in
explicit solvent and counterions is presented. The coexistence salt concentration is found with unprecedented accuracy.

■ INTRODUCTION
Overview. Recent improvements of atomistic force fields

for nucleic acids1 and advances in a particular family of
thermodynamic integration techniques2−5 together encourage a
return to what we believe should be considered, due to its
combination of simplicity and intractability, as a canonical
model system to benchmark computational methods for
biomolecules and polyelectrolytes: the handedness-switching
B to Z isomerization of DNA.
Here, we present a new addition to the progression of free

energy methods beginning from the “Einstein Crystal” of
Frenkel and Ladd,6 followed by the “Einstein Molecule,”7 the
“Confinement Method,”3 and a recently introduced analytical
reference-liquid model.5,8 We demonstrate this new method
using the example of the transition between B and Z DNA. In
the absence of an existing umbrella term for this philosophy of
free energy calculation, it is referred to here as Thermodynamic
Integration relative to an Exact Solution (TIES) because it
relies on performing a Thermodynamic Integration (TI)
calculation with a realistic (but intractable) model at one end
point of the integration path and an exactly solvable (ES)
model at the other. The principal technical advance within the
field of TIES to be presented here is in the adaptation of a
recently developed reference liquid model5,8 such that it can be
used for triangular water in a molecular dynamics simulation
and successful combination of this adapted liquid model with
the existing Einstein Molecule (EM) model for the solute.
For the “realistic,” but intractable, end of the integration

path, the AMBER simulation code9 and selected AMBER force
field parameters were used. The details of this quantitative all-
atom treatment (with Coulomb, bonded, and van der Waals
interactions) are given in the Methods.

The results of the example calculation are found to be of
groundbreaking accuracy for the example considered, although
they were computationally expensive, and the scope for future
gains in efficiency is acknowledged.

B−Z DNA Isomerization. The B−Z isomerization of
duplex DNA is a gross structural transition, from a right-handed
double helix (the canonical B-form) to a left-handed double
helix (the Z-form, which occurs in vitro at high salt
concentration10,11 or in vivo with the assistance of DNA-
binding proteins12 and/or with negative supercoiling13). The
occurrence of Z-DNA in mammalian cells has been implicated
as a causative factor for certain cancers.14 In low salt, the (more
compact) Z-DNA is disfavored relative to B-DNA for reasons
of electrostatics and solvation; it becomes free energetically
favorable in total when a high salt concentration screens the
repulsion between the charged backbone phosphate groups,
also making partial solvent-exposure of the base pairs more
favorable (Figure 1). The unwinding which is required to
change the handedness of the double helix presents a
formidable energetic barrier which must be overcome for the
transition to take place,15,16 even when the ends of the duplex
are free.
The salt concentration for coexistence of these two forms is

known from circular dichroism measurements to be roughly 2.8
M NaCl for [d(CG)]6; this varies with sequence, temperature,
chain length, and methylation.10,11,17 The availability of these
experimental data, particularly for short dodecamer sequences,
has attracted several simulation studies. Definitive thermody-
namic characterization with respect to salt concentration has
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remained just over the horizon for some years; however recent
improvements have been made: 3DRISM has been qualitatively
successful in finding the coexistence point18 (estimated at 0.8
M), and targeted molecular dynamics simulations have had at
least some success in describing the transition path,15,16

although this last matter is still difficult to compare directly
against experimental results.
Previous Calculations of the Energetics. The history of

computational studies of the B−Z transition from a free energy
point of view is, in a microcosm, the history of developing
computational methods for molecular electrostatics and
solvation. Early treatments used continuum electrostatic
models and rigid-body treatments of the DNA, either based
on static atomic structures19,20 or on geometric constructs such
as grooved cylinders21 or double-helical chains of charged
beads.22 A review article in 198723 pointed out that results from
continuum-electrostatics seemed to depend dramatically on the
assumptions made for the various geometric and physical
parameters. The same review article also ruled out an all-atom
simulation approach for the near future on grounds of
computational expense (a view still advanced some 23 years
later by researchers from another group18).
A paper in 199724 responded to the perceived limitations of a

continuum treatment of the ions, by making a hybrid approach
with discrete counterions in continuum solvent. The same
paper pointed out that treatments which give a coexistence
concentration without calculating the nonelectrostatic free
energy difference are either right for the wrong reasons (if they
ignore this contribution) or cheating somewhat, by setting the
nonelectrostatic free energy change to whatever value gives the
correct coexistence point (e.g., ref 21). In the “right for the
wrong reasons” category falls one of the most accurate results,
based on a classical density-functional theory (DFT) approach,
which gave qualitative agreement of 3.6 M NaCl to the infinite-
chain coexistence value of 2.25 M as early as 1989;25 however
the model used was without any detailed representation of the
DNA. When the same author returned to the problem 21 years
later with a similar but more detailed model taking into account
the atomic structure of the water molecules and the DNA, the
final value for the coexistence was in fact less accurate than the
older one,18 at 0.8 M (compared to the dodecamer coexistence
value of 2.8 M), although of course more insight was available
from the use of the richer model.
The calculation we present gives the most accurate value for

the position of this conformational equilibrium from an all-

atom treatment, and also the most accurate without fitting
parameters to date (yielding a coexistence concentration of 2.5
M NaCl compared to the 2.86 M observed experimentally by
Pohl and Jovin in 197210). With the understanding that
calculations from other methods can of course provide insight
in different ways, the previous values reported in the literature
were, in chronological order, 2.25 M22 (exactly right for the
infinite chain, but with Na+ hard-sphere radius set as a free
parameter to 4.95 Å vs the crystal ionic radius of 0.12 Å26), 3.6
M (vs 2.25 M for the infinite chain),25 no transition,24 3.7 M
(vs 2.4 M given by them as the infinite-chain value),21 and 0.8
M18 (vs 2.86 for the dodecamer).
Given the difficulty of finding the correct coexistence value,

some papers have drawn attention to the gradient of the free
energy with respect to concentration, comparing their results
with a fit to the empirical data of

βΔ =−

+
G A

C
ln

[Na ]
B Z (1)

where β = 1/kBT, ΔGB−Z is the free energy difference per base
pair, and C is the coexistence concentration.27 This fit was
derived based on data at the long-chain limit (A = 0.6, C =
2.25). There has not been a great deal more success from
theory in matching the observed gradient ∂βΔG/∂ ln[Na+] of
the free energy near coexistence than the coexistence point
itself, and the fit of a simple logarithm to the free energy has
been brought into question by more recent experimental work
pointing to the existence of intermediates.28,29

The gradients near coexistence of some reported theory
treatments were A = 0.3,20 A = 0.15,24 and A = 0.3.21 One
theory treatment gave an elbow in the plot, with a value below
coexistence of approximately A = 0.3 and above coexistence of
A = 0.6.22

Thermodynamic Integration Relative to Exact Sol-
ution. This established and powerful family of thermodynamic
integration (TI) techniques has recently been extended to
permit application to liquids.3,5,8 In brief, the method consists
of defining for a given system a reference Hamiltonian 1(r,⃗p ⃗)
which has an analytically tractable expression for its free energy
(described in the Supporting Information) and also a realistic
but intractable 0(r,⃗p ⃗) (here, the AMBER Hamiltonian). A
third, “mixed” Hamiltonian is then defined as a sum of the two:

λ λ λ⃗ ⃗ = ⃗ ⃗ + ⃗ ⃗r p f r p f r p( , , ) ( ) ( , ) ( ) ( , )0 0 1 1 (2)

Here, λ is introduced as a control variable of the system such
that for λ = 0, f 0(λ) = 1 and (r,⃗p ⃗,0) = 0(r,⃗p ⃗), while for λ =
1, (r,⃗p⃗,1) = 1(r,⃗p ⃗). The Helmholtz free energy A0 of the
system under the realistic (but intractable) Hamiltonian 0
can then be expressed in terms of an integral with respect to λ:

∫ λ
λ

λ= − < ∂
∂

⃗ ⃗ > λA A r pd ( , , ) N V T0 1
0

1

, , , (3)

where A1 and 1 refer to the free energy and Hamiltonian of
the reference system, f 0(·) and f1(·) are mixing functions used
to control the speed with which 1 is introduced in place of

0 over the interval λ = [0,1], and ⟨⟩N,V,T,λ refers to the
ensemble average for a given value of λ. Each “generalized
force” ⟨∂/(∂λ) (r,⃗p ⃗,λ)⟩N,V,T,λ is found by collecting time
averages of the partial derivatives of while the system
evolves under this mixed Hamiltonian at fixed λ. (Here,
obviously, the sampling times need to be long enough to allow
for identification of the ensemble average with the time

Figure 1. B and Z isomers of [d(CG)6]2 DNA, after 12 ns
equilibration in 1 M NaCl. The backbone phosphate groups are
closer together in the more compact Z isomer, and the base stacks
have greater solvent exposure.
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average.) While the time-averaged generalized force may be
slow to converge, this procedure has the advantage that
calculations at each value of λ can be carried out in parallel,
without any need for intercommunication.
Einstein Molecule and Cage-Swapping Liquid Model.

The first presentation of TIES was in the context of an 1
appropriate for solids or for macromolecules in a vacuum, due
to Frenkel and Ladd6 with modifications by Vega and Noya,7

and is known as the “Einstein Molecule method” (EM) or as
“the confinement method.” The basic idea of the EM reference
model is that the particles do not interact with each other, so
that the reference partition function factorizes and the reference
free energy can easily be computed exactly. In the simplest such
model, the particles are simply coupled to predetermined
reference positions by harmonic springs.
The EM model was used here for the DNA chains. The

reference model used for the water and counterions in this
calculation, however, is still quite new and has been slightly
modified from its most recent appearance in the literature8 for
use in conjunction with MD rather than Monte Carlo sampling.
The EM model of harmonic wells cannot be used

unmodified as a reference for the liquid state. In the liquid,
each particle is ultimately free to move throughout the volume;
so the range of the harmonic well in the EM model would have
to be infinite as well. Thus to sample the average in eq 3, one
would need to sample for infinite lengths of time. Instead, we
use a potential which is attractive at a short range from the
reference position but flat at long range (Figure 2). The

contribution of the flat part to the partition function of the
mixed model is trivial, so there is no need to extensively sample
the reference model outside the short range of attraction.
The use of a potential cutoff solves the problem of dealing

with an infinitely ranged well of attraction, but it introduces
another problem: for a large system volume, a diffusing particle
hardly ever revisits its reference site, once it has left the
attractive well. We solve this problem by means of a Monte
Carlo move in which we swap particle identities such that the
diffusing particle has frequent opportunities (via a Metropolis
acceptance rule) to rejoin or part from its reference site. This
model is here called “CS,” with reference to the “Cage-
Swapping” dynamical behavior which it provides. The “cage-
swapping” move reflects the factorial term in the general
partition function of liquids, related to the indistinguishability
of particles. For a detailed explanation, see Schilling and
Schmid.5

The alternative in the literature to the CS MC move is to
solve the linear assignment problem of particle identities so as
to minimize the particle-well interaction energy at each MD
time step, as by Tyka et al.3 (see also ref 30). This has both
advantages and drawbacks over the approach of using an MC
move, and a thorough comparison might be valuable in a later
publication. The principal advantage of linear assignment
appears to be that the size of the configuration × identity space
is reduced because the system always has the identity
assignment which gives the mininum energy for the given
configuration. The principal advantage of MC cage-swapping
would appear to be enhanced sampling, as nearby particles can
exchange wells even if it is not energetically favorable to do so,
with the well exchange creating an attractive force which pulls
the particles to their new minima.
Modifications made for the MD/MC CS model used here

relative to previous pure-MC treatments were to use MD time
steps instead of those MC moves which moved particles
spatially without changing their identities, and to add a
harmonic region near the well-bottoms, such that the wells
were harmonic out to 1 Å, then constant force out to 5 Å, and
then flat. The small harmonic region was necessary for the
stability of the MD.
A natural objection to the use of a swap move in conjunction

with MD simulation is to ask if it is required that the MC
sampling should converge before each MD time step takes
place; mercifully it has been shown in other work that any
combination of MD and MC steps which would individually
provide Boltzmann sampling of the degrees of freedom to
which they are applied will in total provide Boltzmann sampling
of the combined degrees of freedom.31

Detailed Motivation of the Integration. In a TI
calculation, the free energy landscape of the system gradually
morphs from one shape to another, in a way that is not yet easy
to characterize. From an intuitive basis, we can state
qualitatively that for effective TI, four sometimes-conflicting
criteria are important: (a) To minimize the error from the
numerical integration, the integration path should be as smooth
as possible, meaning that the higher-order derivatives of each
generalized force ∂/(∂λ)f(λ) should be as small as possible.
(b) The shapes of landscapes to be mixed should be similar to
each other, otherwise the generalized force due to 0, for
instance, could sporadically take extremely large values when
f 0(λ) is small and 1 is primarily controlling the dynamics. (c)
To minimize the convergence time per integration point,
exploration of the mixed landscapes should be as fast as
possible. (d) Because the variance of the generalized force
scales with the gradient of the mixing function f(λ), to
efficiently distribute sampling between integration points, the
mixing functions should be as close to linear as is consistent
with the other criteria.
To meet criterion a, it is first required to avoid discontinuities

in the generalized forces by making sure that the integration
does not cross any first order phase transitions. The basis of
TIES is a successful treatment of this issue by defining tractable
models which match a given phase in terms of the symmetries
expressed by their partition functions. Definition of the model
partition functions is discussed in the Supporting Information.
Criterion b is more difficult. The reference model that we use

decouples all particles from each other (in this way, the
partition function is easily solved analytically). Thus, at λ = 1
particles can freely move through each other, while for λ = 0
this is not possible. Therefore the landscape under 1 is

Figure 2. A simple harmonic well was used for the EM potential, while
a constant-force well with a cutoff at long range and a harmonic region
at very short range was used for the CS potential of the fluid part of
the system.
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topologically different from that under 0. This brings the
question of appropriately changing between landscapes sharply
into focus. In order to treat cases where a cavity in the free
energy landscape (e.g., a region of infinite potential energy,
such as due to the Lennard-Jones short-range repulsion) must
be introduced, starting from a flat potential, it is valuable to
gradually increase the maximum energy associated with that
region to some high but finite value. The region is only then
blocked completely, by introducing the infinite potential inside
the region which is already effectively forbidden by the large
finite potential. This strategy, which was attempted here by use
of the “Guide Hamiltonian” discussed below, should ensure
that regions of phase space which are populated for a given λ
are also populated at neighboring values of λ, while still
allowing topological change of the landscape to occur. In the
absence of such a technique, the generalized force can diverge,
with an infinitesimal change in λ giving an infinite change in

∂/(∂λ)f(λ).
A further, partial, fix for problems with respect to criterion b

is provided by the choice of mixing function used to introduce
or remove a given Hamiltonian. Careful work has been done on
this in the context of alchemical TI involving Lennard-Jones
and Coulomb forces,32 which was broadly followed here: the
essence of the strategy is to use polynomial mixing functions
such that, as the ability of a given Hamiltonian to direct the
system into its own minima drops with f(λ), the generalized
force ∂/(∂λ)f(λ) also drops. The choice of mixing function
must be balanced between criteria b and d.
Criterion c is addressed here by defining 1, the CS

Hamiltonian, with few and low energetic barriers over the
difficult (λ < 0.5) part of the integration, such that exploration
is relatively quick. It has been suggested that it might also
sometimes be valuable to retain barriers in the landscape as
these can serve to reduce the effective dimensionality of the
configurational space and actually accelerate exploration;33

however this effect was not observed here.
Criterion d is addressed here by choosing a relatively low-

order mixing function compared to some of those which have
been tried in other work.32

Guide Hamiltonian. To manage the changes of the
topology of the free energy landscape over the integration, a
third Hamiltonian, guide, was introduced in addition to 0

and 1, with a mixing function such that it would be zero at
both end points of the path. The weak short-range interparticle
repulsion provided by guide controlled the topology in the
sense that it was used to first introduce gently sloping energy
barriers around those states which would later take on infinite
energy becoming topological “cavities” in the free energy
landscape. The unshielded existence of such a cavity is
intolerable if carrying out MD, because this leads to infinite
values for the forces between particles.
This use of a guide Hamiltonian, introduced here, is an

alternative to the practice of adding a λ dependence to the
functional form of the Lennard-Jones (LJ) potential such that it
is finite over all configurations for λ > 0, known as
“softcoring.”34 Softcoring of the LJ typically follows mixing-
out of the Coulomb interaction (which also has a discontinuity
at zero separation), in a multistep procedure which increases
computational expense. Such a process is also undesirable
because it has the potential to introduce first order phase
transitions: the phase diagram of water, for instance, is
dramatically altered when electrostatics are removed. Initial

attempts were made to softcore the Coulomb and LJ terms
together in such a way as to preserve the shape of the energy
landscape, and this was found to be prohibitively complex,
especially given the requirement for the sake of efficiency to
treat the Coulomb interactions using a fast algorithm such as
the Ewald sum.
The use of guide has the advantages of solving at a stroke

discontinuities of both LJ and Coulomb forces, of being
extremely simple to implement and to parametrize, and of
introducing no extra code into the complex and highly
optimized nonbonded force and Ewald sum routines of the
molecular dynamics program. The short-range repulsion is
handled using a neighbor list and therefore adds only a small
(and linearly scaling) cost to the calculation.
The guide Hamiltonian was defined very simply as a

quadratic repulsive potential between all heavy atoms, where
the cutoff Rij was defined as the radius giving the minimum of
the van der Waals interaction for the given atom pair ij,
multiplied by 0.88.
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Mixing Function Design. Numerical smoothness of the
integration over λ depends critically on the choice of mixing
functions used to turn the Hamiltonians 0, 1, and guide
off and on. The mixing functions were defined as polynomials:

λ λ= −f ( ) (1 )0
4

(5)

λ λ=f ( )1
2

(6)

λ λ λ= −f ( )
729
16

(1 )guide
2 4

(7)

The choice of polynomial mixing functions (which has been
advised with order 4 or greater for alchemical transformations
involving Lennard-Jones atoms32) gives generalized forces
∂/(∂λ)f 0(λ) 0 and ∂/(∂λ)f1(λ) 1, which are zero for λ = 1
and λ = 0, respectively, so that (for example) two particles can
pass through each other without causing a singularity in the
generalized force with respect to 0.
Formally, the use of a polynomial mixing function is enough

to stabilize the integration, mixing the two topologically distinct
landscapes without an introduction of singularities. Unfortu-
nately the multiplication of very large by very small numbers is
numerically abhorrent; therefore the guide Hamiltonian was
also required.
In order to allow guide to take effect before removing the

nonsmooth Hamiltonian 0, the mixing function f 0(·) was
rescaled such that the end point of the mixing would be at λ =
λg instead of at λ = 1 (with λg chosen arbitrarily as 0.5). The
actual function used in place of f 0(·) was therefore g0(λ) =
MIN[f 0(λ/(λg)),0]. The three mixing functions are shown in
Figure 3.

■ METHODS
AMBER Setup. A molar NaCl concentration was defined as

the ratio of Na+ ions to H2O molecules multiplied by the
molarity of water, 55.55. 0 was defined using the AMBER99
force field35 with the Barcelona corrections to nucleic acid
parameters,1 the Joung−Cheatham ion parameters,36 and the
TIP3P water model.37 Water molecules were kept rigid using
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the SHAKE algorithm. The temperature was held at 300 K
using a Langevin thermostat with a coupling of 0.1 ps−1. The
seeds for the noise generator in the Langevin thermostat were
set to be the same for each pair of B and Z at a given λ and
[NaCl], in the hope of reaping some benefits by covariant
sampling38 in the estimate of the free energy difference. The
molecular dynamics time step was 2 fs. The “pmemd” dynamics
engine39 provided in AMBER was used (with default
parameters) to treat the electrostatic and other terms of the
force field efficiently.
Starting configurations of [d(CG)]6 DNA double helices in

the B and Z conformations were prepared using the NAB
molecular building tool.40 Counterions were added near the
DNA using the Xleap component of AMBER so as to neutralize
backbone charge, and further counterions were then added at
random to bring the salt concentration up to the required
molarity assuming 9441 water molecules. Water molecules were
then added from a pre-equilibrated water box, deleting those
which overlapped with an ion or DNA atom, until 9441 were
present. The concentrations studied were 1.11, 1.61, 2.11, and
2.61 M NaCl. The initial configurations were energy-minimized
and then equilibrated at 300 K and 1 atm in the NPT ensemble
for 2 ns. The average volume of each system 1.11−2.61 M
NaCl was taken over the interval 1−2 ns, and the system box
sizes in each configuration were set to these average volumes,
so that the TI calculations could be carried out in the NVT
rather than NPT ensemble.
Exploratory runs for concentrations 1.11 to 2.61 M NaCl

were made out to 20 ns to check the stability and to estimate
the important time and length scales of the dynamics (see the
Supporting Information). Although the full TI calculations were
not carried out at 2.86 M NaCl, an initial 10 ns test
equilibration run was also made at this concentration (see the
Supporting Information). Molecular images were prepared
using VMD.41

Analytical Model Setup. In the reference model of the
system, all solute atoms (including hydrogens) were placed in
harmonic wells of spring constant 5kBT Å−2. Counterions and
water oxygen atoms were assigned to three sets of identical CS
wells. Because the TIP3P water molecules are treated as rigid
triangles, it was not necessary to restrain the water hydrogen
atoms in addition to the oxygens. The CS wells had a spring
constant of 1.112kBT Å−2 up to r1 = 1 Å, then a constant force
of 1.11kBT Å−1 out to r2 = 5 Å. The “cage-swapping”
reassignment of CS wells was carried out using a Metropolis

MC algorithm. For each liquid molecule present in the system,
five MC well-swapping attempts were made every time step.
Each system run under a mixed Hamiltonian was allowed 500
ps (250 000 time steps) of equilibration, before collecting the
generalized force time series for a minimum further 500 ps,
depending on convergence.

■ RESULTS
The equilibrium work done on each integration path is shown
in Table 1.

Free Energies. Free energies were separately calculated for
Z and B conformations over a range of salt concentrations
(Table 1 and Figure 4). The crossover between the B and Z

regimes occurred around 2.5 M NaCl, quite near the 2.86 M
found in the experiments of Pohl and Jovin.10 As far as the
authors are aware, this is the most accurate numerical
calculation of the coexistence position (without fitting free
parameters) to date.
The shape of the free energy difference away from

coexistence does not seem to match the phenomenological
equation proposed by Pohl27(eq 1); however given the small
number of points and the large error bars, it is also difficult to
completely discount this equation, or to suggest an alternative,
more complex functional form such as from more recent
theory42,43 and experiments,28,29 suggesting the existence of
intermediates. A fit of eq 1 with A and C free gives A = 1.8 ±
0.7 and the coexistence value C = 2.7 ± 0.6 M, although,
because of the questionable agreement of the shape of eq 1
with our data, we prefer to report coexistence as 2.5 M based
simply on the y intercept of the trace between points three and
four.
A possible explanation for the apparent overestimate of the

free energy penalty for disfavored forms (the large value of the
fitting parameter A) relative to the experimental data, could be

Figure 3. The three mixing functions. The function g0(λ) controlled
the AMBER Hamiltonian 0. f1(λ) controlled the analytically
tractable reference Hamiltonian 1, and fguide(λ) controlled the
“path” Hamiltonian guide.

Table 1. Equilibrium Work over Each Integration Path and
Estimated Standard Errors

[NaCl] ΔAB (kBT/bp) ΔAZ (kBT/bp)

1.11 M 3497.21 (±0.41) 3495.60 (±0.40)
1.61 M 4123.90 (±0.41) 4123.20 (±0.40)
2.11 M 4751.90 (±0.42) 4750.93 (±0.42)
2.61 M 5378.15 (±0.43) 5378.35 (±0.44)

Figure 4. Free energy differences between the B and Z conformations
with respect to salt concentration. The coexistence point found
experimentally10 is indicated with an arrow (PJ). The dotted line is a
fit by Pohl27 to experimental data (eq 1); the dashed line is a fit of the
same function to our own data.
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that the experimentally studied left-handed DNA structures at
low salt are not the same as the conventional Z-DNA structure
observed at high salt, which was used as the starting
configuration for the simulations at low salt. If the starting
configurations used were in fact strongly metastable with
respect to some lower-energy left-handed form (as well as with
respect to the still-lower B-DNA), then this would explain the
observed behavior. A wider-ranging examination of the free
energy landscape would be required to discuss this possibility
further.
It was found that, while the Z-DNA structure used was

strongly metastable at low salt concentrations, the more labile
B-DNA structure tended to melt or fray at 2.86 M NaCl and
above (see Supporting Information). The greater flexibility of
B-DNA, or the sharp elbow in the free energy difference above
coexistence which has been suggested,22 might serve to explain
this. Given that the Watson−Crick bonded B-DNA structure
was unstable with respect to a disordered structure, the TIES
calculation of this paper would have been difficult to apply
without artificially enforcing W−C base pairing. Separate from
the difficulty of such a calculation would be the question of its
interpretation in a regime where it is no longer clear that B is
the dominant right-handed metastable conformation.
Integration Path. The character of the integration path can

be seen by examining the generalized force due to each of the
three Hamiltonians with respect to λ (Figure 5). The

smoothness of these curves (apart from at λ = 0.5, where the
integration-out of the AMBER Hamiltonian is completed)
indicates that no first-order phase transitions were crossed
during the integration path and also serves to justify the use of a
basic Simpson’s rule integration scheme, carried out separately
over the three terms of the generalized force and over the [0,
0.5] and [0.5, 1.0] intervals.

■ PERFORMANCE AND CONVERGENCE
Calculations were carried out using four 2.26 GHz processor
cores per integration point (therefore, 68 per measurement of
AB − AZ). Calculations required on average 26.3 h per 100 ps
block, giving a total of 210 000 core hours for the entire
calculation (42 core months assuming 24/7 operation), plus
equilibration.
To estimate the convergence of the individual generalized

force measurements at each integration point, a spectral

analysis of the time series of generalized forces was carried
out using the CODA library of R functions,44 in order to
identify the decorrelation times and effective numbers of
independent samples present. Estimated Standard Errors of the
mean (ESE) are given as the root of the variance divided by the
effective number of independent samples. The ESE at each
value of λ (Figure 6b) provides a description of the efficiency of
the sampling in each of the “mixed” free energy landscapes
which were visited.
The radically different sampling efficiencies at the different

integration points derive from separately addressable causes,
the signatures of which are individually labeled in Figure 6, and
which are discussed in relation to the criteria for good TI
design which were presented above:

a. Smoothness of Generalized Force with Respect to
λ. The smoothness criterion was met quite well (Figure 5).

b. Small Variance of Generalized Force. When the
potential corresponding to a given term of the generalized force
is very different from the potential which is controlling the
dynamics, then fluctuations in that term of the force can
become very large. The peak labeled “4” in Figure 6 shows this
effect.
Peak “4” is lower than in first attempts, thanks to the use of a

polynomial mixing function, and also greatly diminished by the
use of the guide Hamiltonian. Peak “4” might also be further
reduced by the use of different 1 Hamiltonians which more
closely mirror the dynamics of the “real” 0 system.

c. Fast Exploration. The peaks labeled “2” and “3” show
slow exploration due to roughness of the potential energy
landscape: sampling of the Boltzmann distribution for atomistic
models of biomolecules is famously difficult, due to the many
traps and barriers which exist. Sampling also becomes slower in
the CS Hamiltonian when it is fully turned on, due to the depth
of the wells becoming greater than the thermal energy. Peak “5”
shows a slowing of exploration due to the decoupling of
particles under the CS Hamiltonian: when the particles no
longer interact, decorrelation over time must rely purely on the
Langevin thermostat rather than being assisted by the chaotic
properties of the many-body Hamiltonians. Although the aspect
indicated by peak “5” seems to be of relatively minor
importance, it should be possible to address it by altering the
coupling parameter of the Langevin thermostat for different
values of λ, or by using an 1 which has explicit interparticle
forces while remaining tractable.
To address point c, there is no easy escape from the need to

sample the atomistic model at one end of the integration (“2”).
At the other end of the integration (“3”), the trapping due to
the CS potential could (and probably should) be reduced in a
future calculation simply by holding the CS potential constant
for λ > 0.5.

d. Near-Linear Mixing. Peak “1” arises because the
gradient of the mixing function g(λ) is large at small λ, and
this large value scales not only the generalized force but its
variancethis represents a trade-off accepted in the process of
mixing function selection; it stands in balance against peak “4.”
To address this need to trade between the criteria b and d, it

seems that the best hope is to improve the guide or end point
Hamiltonians used such that the need for a polynomial mixing
function is removed.

Figure 5. Generalized forces due to the AMBER Hamiltonian ( 0),
the EM+CS Hamiltonian ( 1), and the “guide” Hamiltonian used to
prevent particle overlaps during the midsection of the integration
( g). The guide Hamiltonian (right axis) was much smaller than the
main Hamiltonians (left and right axes). A trace is shown for each of
the eight calculations carried out; however B and Z cannot be
distinguished on the scales used.
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■ DISCUSSION

This calculation is the most quantitatively accurate numerical
estimate of the salt concentration at B−Z DNA coexistence to
date. As recently as 2010, it was noted that an atomistic
calculation of this value should be prohibitively difficult
“because the problem requires the sampling of an extraordi-
narily large configuration space, including water and ions, to
obtain the free energy difference”;18 that the result is
quantitatively correct demonstrates solid improvements in the
techniques of free energy estimation suitable for biomolecular
complexes, over and above the normal progress due to
improved hardware.
Because of the reductive nature of the molecular dynamics

approach (treating, for instance, an atom in a protein in much
the same way as an atom in a DNA base), it is reasonable to
assume that the software and parameter sets developed can be
reused widely and can be effective for any combination of
protein, nucleic acid, counterions, and solvent, although there is
still substantial room for further development of them. It is
intended to release the software and parameter sets as a
downloadable library on Dr. Berryman’s Web site, for easy
linking against the AMBER simulation program or other
packages.
The accuracy of the final result for the coexistence serves as a

validation for use of the combination of the Joung−Cheatham
ion parameters and the parmbsc force field (both of which are
relatively new) with TIP3P water for the simulation of DNA
under the fairly unusual conditions of very high salt
concentration.
The work here has made minor alterations to the “cage-

swapping” model for absolute free energy calculation of fluids
and combined it with a standard Einstein molecule method for
the solute. The principal novelty was in the scale and
complexity of the system treated, but the introduction of a
“guide” Hamiltonian to control the path of the thermodynamic
integration while not altering behavior at the end points is also
novel as far as the authors are aware.
There is too much active research in thermodynamic

integration and free-energy perturbation methods to give a
comprehensive list of ideas which could influence further work.
A brief suggestion is that absolute free energy methods could be
well suited to the mapping of phase diagrams of complex fluids.
There are a large number of biomolecular and soft-matter

systems which exhibit rich phase behavior that have not yet
been explored. On the methodological side, recent advances in
nonequilibrium TI,45 in correlated sampling, and in Hamil-
tonian exchange46 all offer increases in computational efficiency
for future TIES calculations. It has been suggested that an
efficiency gain can be made by doing away with the
intermediate stages of the TI calculation entirely, instead
carrying out a type of importance sampling over 0 and 1
such that those areas of configurational space which overlap
between them receive enhanced attention.47

If one is interested in locating a phase transition, one can, of
course, use eq 3 to compute the free energy difference between
two phases directly and avoid the “detour” via absolute free
energies; however, eq 3 only holds if the integration path does
not cross a first order phase transition. TIES is thus more
generally useful (compared to performing TI over single or
multilegged free energy cycles between nontractable Hamil-
tonians) in that states which are separated by a first order phase
transition can be compared. This is much simpler than carrying
out TI calculations which integrate between phases by
following a complex path designed to give consistently
pseudocritical behavior.2,48

A second general argument for TIES, which is more germane
for the specific calulation presented here, is that setting one end
point of the integration as an analytically tractable model leaves
open the possibility of a shorter and smoother integration path,
with smaller variances in the generalized force at a given λ, as
the analytical models are refined. The most obvious step in
further development, then, is extension and refinement of the
analytical models which serve as end points for the calculation.
Ideally, the mixed energy landscapes generated by an
analytically tractable model should be as similar as possible to
“softened” versions of the initial Hamiltonian. This possibility
should serve as a call to arms for any theorists who may believe
that they can swiftly assemble a tractable model for some
system of interest.

■ ASSOCIATED CONTENT
*S Supporting Information
A supporting document is provided, giving derivations for the
absolute free energies of the CS and EM Hamiltonians. A
second supporting document showing convergence of the
simulations is also provided. This material is available free of
charge via the Internet at http://pubs.acs.org.

Figure 6. (a) Variance and decorrelation time of generalized force. The rate of convergence of the estimate of the summed generalized force (B−Z)
at a given λ was determined by variance (left axis, red) and by the decorrelation time τ (right axis, green). Numbered labels indicate peaks in the
variance or in τ, which are discussed individually in the text. (b) ESE of the generalized force. The ESE per 500 ps was much higher for λ < 0.5;
therefore longer runs of 1600 ps were made for this section. A separate trace is shown for each salt concentration studied. Lines are not drawn
between the points at λ = 7/16 and λ = 8/16 because the generalized forces on the two intervals λ < 0.5 and λ ≥ 0.5 had different shapes and were
integrated separately. Each trace corresponds to the ΔA calculation for a given [NaCl].
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