Kesterite, Cu,ZnSn(S,Se),, for earth abundant photovoltaics:
can we make single phase thin films, and does it matter?

* Why earth abundant photovoltaics?
« Some properties of kesterites

» Synthesis methods

« The voltage challenge

* How to overcome the V_, challenge?
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Photovoltaic technologies
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Photovoltaic technologies
Inorganic — 22 %
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The need for Earth Abundant Thin Film Photovoltaics
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Sn, Zn are more abundant than

Ga and In

Neither Cu(In,Ga)Se, nor CdTe is abundant enough for terrawatt deployment
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J ZEM [1] Materials for Photovoltaics, lan Forbes and Laurence M Peter pp 558-591. In Materials for a ||||||||
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How do Photovoltaic Devices Work?
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How do Photovoltaic Devices Work?
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Voltage is the difference in quasi fermi levels



Properties of Cu,ZnSn(S,Se), CZTS

la lla 1l IV V VI
[1]
C, Si, Ge Cu
\V} - Cu|Zn
O\ Zn Ag|Cd
GaAs  ZnSe Se Au |Hg
-V 11-VI Sn
} } Grimm-Sommerfeld-Rule:
/nGeAs, CuGaSe
ILIV.V.. CulnSe, 4 valence electrons/atom
STV, — ,diamond structure*
2 Grimm, Sommerfeld
Zeitschrift f. Physik 36, 36 (1926)
u,ZnSnSej; 4.00E+09
Cu,ZnSnS, o
L-11-1V-IV & 3.00E+09 | —Cu(In,Ga)Se2 [2] [2,3,4]
g —CZTS [3]
"..:I.J.. 2.00E+09 —CZTSe [4]
j:
£ 1.00E+09
0.00E+00
0 0.5 1 1.5 2
SR Energy (eV) ™

Kesterite is a suitable replacement for CIGSe and is earth abundant

[1] courtesy of Susanne Siebentritt, ,[2] Boyle et al. Journal of Applied Physics 115, 223504 (2014)
[3] Bruc et al. 27th EUPVSEC pg 2763-2766 [4] Guetay et al. APL . 100, 102113 (2012)



Efficiency vs Cumulative Publications from first device
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What is limiting device performance?
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(1) What is limiting kesterite V_.?
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(2) What is limiting kesterite V_.?
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[1] Rau, Werner, Appl. Phys. Lett 84, 3735 (2004); .
ZEM [2] Scragg, Berg, Dale, Jnl Electroanalytical Chemistry (2008) |||||I||

[2] Rau, Grabitz, Werner. Appl. Phys. Lett. 85, 6010 (2004);
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Composition and homogeneity are the key?

recombination in the bulk

\

|

Secondary Differences in band gap
phases
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Absorber layer fabrication
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Methodologies pursued Efficiency / %
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Best devices are not in the single phase region

nSe
Cu,Se
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@ [1] T. K. Todorov et al., Advanced Energy Materials 3, 34 ( 2013)

[adapted from 4]

@ [2] I. Repins et al., Solar Energy Materials and Solar Cells 101, 154 (2012) .
ZEM @ [3] D. A. R. Barkhouse, et al., Progress in Photovoltaics 20, 6 (Jan, 2012) ||||||||
[4] 1. V. Dudchak, L. V. Piskach, Journal of Alloys and Compounds 351, 145 (2003) UNIVERSITE DU
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ZnSe secondary phase
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1i1dd

Secondary phase formation due to CZTSe instability with gas phase
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[adapted
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[1a] A. Redinger, D. M. Berg, P. J. Dale, S. Siebentritt, JACS 133, 3320 (2011)

[3] F. Zocchi, V. Piacente, Journal of Materials Science Letters 14, 235 (1995)

[1b] D.M. Berg and P.J.Dale Chapter 5 in "CZTS solar cells" Wiley, 2014 ed. K. Ito
ZE [2] A. Redinger et al., Photovoltaics, IEEE Journal of 1, 200 (2011)
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'Secondary phase formation due to CZTSe instability with substrate

2Cu,ZnSnSe, + Mo — 2Cu,Se + 2ZnSe + 25nSe + MoSe,  [1]
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ZEM [1] J. J. Scragg, P. J. Dale, D. Colombara, L. M. Peter, Chemphyschem 13, 3035 (2012) ““i |“
[2] J. J. Scragg et al., Journal of the American Chemical Society 134, 19330 (2012) :
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How to deal with secondary phases?

[1] Top surface — chemical etching [2] Mo interface — selenium barrier layer
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Z W [1] Lopez-Marino et al. Chem. Eur. J. (2013), 19, 14814 — 14822 TR
[2] Liu et al. Applied Physics Letters 104, 051105 (2014) UNIVERSITE DU
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Composition and homogeneity are the key?

recombination in the bulk

\
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Secondary Differences in band gap
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Defect states in the bulk
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Composition and homogeneity are the key?

Conduction Band
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Mterite Summary on voltage loss mechanisms
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Time to panic? Not yet

role of grain boundaries
and alkali dopants

J \

- Uniform precursor deposition essential on a sub-micron scale

- Back contact is thermodynamically inert and provide ohmic contact
- Annealing atmosphere is controlled to avoid changes in composition
- Secondary phases only nucleate on the surface to be etched away
- Band gap grading is implemented like in Cu(In,Ga)Se,

- Buffer and window layer optimization (more transparent in the IR)
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