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Abstract:
Ontologies are an essential component of semantic knowledge bases and applications, and nowadays
they are used in a plethora of domains. Despite the maturity of ontology languages, support tools
and engineering techniques, the testing and validation of ontologies is a field which still lacks
consolidated approaches and tools. This paper attempts at partly bridging that gap, taking a first
step towards the extension of mutation testing techniques to ontologies expressed in a widely-used
format. Mutation testing techniques, revisited in the light of the peculiar features of the ontology
language and structure, can help in the engineering and refinement of ontologies and software
based on them.

1 Introduction

The use of semantics in information technol-
ogy is greatly enhancing the expressiveness of
knowledge bases, especially with respect to in-
formation representation and retrieval. Infor-
mation is classified according to domain-specific
structures which describe the concepts and the
relations between them, and this organization
allows an efficient access to such information.
Cross-domain organization is also made possi-
ble through the use of formal languages to de-
scribe the domains. Nowadays, knowledge bases
structured according to description logic (Quil-
lian, 1967) are popular, and they can also be gen-
erated using Natural Language Processing (NLP)
techniques to classify unstructured documents.

Semantic knowledge is a wide field of research
and application, and it is based on a multi-layered
framework of components and technologies. How-
ever, at the very basic level, there is the need
to describe the domains. This result is achieved
by means of ontologies. Ontologies are a general
concept to denote the definition of a domain, de-
scribing it at various level of abstraction.

Of course, to be used in computer systems,
ontologies need to be described according to
some formal language. Early attempts at defin-
ing a language to structure knowledge resulted

in the Resource Description Framework (RDF)
language (World Wide Web Consortium (W3C),
2014a). However, the purpose of RDF is mainly
to describe resources by means of metadata, and
it is too low level to provide an efficient means
of describing an ontology. For that purpose,
the Web Ontology Language (OWL) specifica-
tion (World Wide Web Consortium (W3C), 2012)
has been defined.

OWL, that was developed starting from an-
other ontology language (Antoniou and van
Harmelen, 2004) called DAML+OIL (Horrocks,
2002), is a family of abstract languages which
are expressed in several different syntaxes, some
of which are based on eXtensible Markup Lan-
guage (XML). The primary syntax is RDF/XML,
which easily maps onto RDF concepts and inte-
grates with other XML languages.

It is widely known that there is no “right”
way of defining an ontology. Its definition re-
ally depends on the domain, the desired level
of abstraction, the purpose for which the on-
tology is intended, and a number of choices by
the developer. In other words, the same do-
main could be represented by several totally dif-
ferent ontologies, which would result in different
structures of the respective knowledge bases (and
consequently, with different results when classi-
fying and querying information). However, for



ontology-based applications to be integrated, it
is necessary that they are based on the same on-
tology.

Ontologies have a number of uses, primarily
that of describing some domain of knowledge from
a specific perspective. In this sense, they act
much like a vocabulary, similarly to a database.
They have found their place as the basis of knowl-
edge representation in many application fields,
from web searches to the medical and legal do-
mains (Horrocks, 2013).

Ontologies are also used for decision sup-
port (Rospocher and Serafini, 2013), therefore it
is important that they are as complete as possi-
ble (within their domain and purpose), and also
that they do not contain errors. Previous ex-
periences (Kershenbaum et al., 2006) have high-
lighted the risks of using an incorrect ontology as
a structure for a knowledge base. However, de-
spite the acknowledged importance of the correct-
ness of ontologies, few methodologies and tools
exist for the testing and validation of ontologies.

This paper aims at partly filling this void by
proposing a mutation testing methodology for
OWL ontologies. Mutation testing is a well-
known testing method that assesses the validity
of a test suite by generating mutants, i.e., incor-
rect versions of the System Under Test (SUT),
by introducing single errors in the trustworthy
version. The ontology-based software could then
be linked to the mutants generated in this way,
and run against the test suite. The mutants thus
killed can provide important information about
the ontology and the program using it, including
coverage details and fault detection.

The paper is organized as follows. Section 2
provides a survey of existing literature in ontol-
ogy testing and mutation testing. Section 3 of-
fers a high-level description of mutation testing.
Section 3.1 describes the proposed methodology,
explaining the various operators used for the mu-
tation of an OWL ontology. It also contains a
high-level description of the implementation of
the mutation tool. Section 4 shows the methodol-
ogy in action, applying the mutation operators to
various ontologies in different domains. Finally,
Section 5 summarizes the results and envisions
some directions for future research.

2 Related work

Although knowledge bases and semantic ap-
plications are a very consolidated domain nowa-

days, it appears that there has been little atten-
tion to the validation of ontologies (Blomqvist
et al., 2012).

The World Wide Web Consortium (W3C) pro-
vides a set of test cases for evaluating the OWL
ontology from a structural point of vies (World
Wide Web Consortium (W3C), 2004b). (Wang
et al., 2005) defines an algorithm to “debug” on-
tologies in search of inconsistent classes. (Garćıa-
Ramos et al., 2009) offer a means of ontol-
ogy validation through user-defined test cases,
whereas (McGuinness et al., 2000) defines an ap-
proach to merge large ontologies and find incon-
sistencies.

A lot of research addresses metrics and
benchmarks for ontologies. The work proposed
by (Gangemi et al., 2006) defines some measures
for assessing an ontology, and evaluates these
measures by means of a meta-ontology against
which the ontology under validation is compared.
This work does not seem to address the semantic
correctness of the ontology but mainly its struc-
ture and engineering methodology. A similar ap-
proach, but with a greater attention to semantics,
is proposed by (Burton-Jones et al., 2005). (Ma
et al., 2006) defines a benchmark for the analy-
sis of ontologies based on two different semantics,
OWL Lite and OWL DL.

In (Blomqvist et al., 2012), the authors pro-
pose a methodology and tool for testing an ontol-
ogy. The methodology addresses three main per-
spectives: verification of the Competency Ques-
tions (CQs) to which the ontology is supposed to
provide an answer, verification of the inferences
by means of an OWL reasoner, and provocation
of errors. The last perspective differs significantly
from the current work because it does not modify
the ontology structure, but rather introduces test
data that are inconsistent with the ontology.

An interesting approach is described
in (Poveda-Villalón et al., 2012). The au-
thors have built a testing tool which tries to
search for potential pitfalls in ontology devel-
opment. The list pitfalls has been introduced
by the authors in (Poveda-Villalón et al., 2010).
Although different from the idea of introducing
errors in the ontology, their work can provide
interesting suggestions for the definition of
mutation operators.

An approach that combines ontology evalua-
tion with software engineering techniques is de-
scribed by (Denny Vrandečić, 2006), which intro-
duces a proposal to adapt unit testing to OWL
ontologies. In the past, several tools have been



developed for ontology unit testing, although it
does not appear to be a mainstream testing ap-
proach for ontologies. Another interesting ap-
proach is presented in (Granitzer et al., 2007):
instances are generated from an ontology, and hy-
potheses are formulates on these instances. The
validation of the generated hypotheses is then fed
as an input to refine the ontology.

Some previous work concerning mutation test-
ing in the OWL language can be found in (Lee
et al., 2008). The methodology does not apply to
the general ontology language OWL, but rather
to a specific ontology called OWL-S (World Wide
Web Consortium (W3C), 2004a) which can be
used as a semantic descriptor web services, and
it applies mutation to classes, conditions, control
flows and data flows. The purpose of that pa-
per is not to improve an ontology and its related
test suite, but rather to detect errors in the web
service specification. However, some of the con-
cepts introduced in that work are similar to those
introduced in the current work.

3 Mutation testing

Mutation testing is a testing technique origi-
nally proposed in (DeMillo et al., 1978; Hamlet,
1977), although allegedly the initial idea can be
traced back to a few years earlier (Lipton, 1971).
It is classified either among the syntax-based test-
ing techniques (Ammann and Offutt, 2008), or
among the error-based or fault-based testing tech-
niques (Howden, 1982; Jia and Harman, 2011).
It is normally, but not exclusively, meant for unit
testing (Offutt, 1994).

In its essence, it is a methodology in which
small parts of a software code are changed. Its
main purpose is not to test the SUT proper, but
the quality of its test suite. However, it has an
indirect benefit on the SUT, because the detec-
tion of faults in the test suite can often also lead
to detecting errors in the SUT.

According to the description provided
by (Ammann and Offutt, 2008), mutation is
carried out by applying a set of mutation op-
erators to a ground string. The ground string
is expressed in the grammar, and a mutation
operator is “[a] rule that specifies syntactic
variations of strings generated from a grammar”.
These operators can also be applied directly to
the grammar if no ground string exists. Mutation
can be used to generate both invalid strings and
strings that are valid but different from the

ground string. In both cases, the strings thus
generated are called mutants.

The mutants generated from the SUT are then
executed on the test suite, and the test results
are compared against those of the original code.
Those mutants which behave differently with re-
spect to the test suite are killed by the test suite.
An ideal test suite would kill n out of n generated
mutants. The whole process is generally auto-
mated by means of batch scripts, because the gen-
eration of a high number of mutants and the exe-
cution of the test suite on each is a complex and
tedious process which is well-suited for autom-
atization. Mutation can be also carried out by
introducing simplifications that reduce the num-
ber of mutants (Offutt and Untch, 2001; Bartolini
et al., 2008) to lower the complexity of the testing
process.

Mutation testing has generally been applied
to software code, particularly to Java (Ma et al.,
2005; Ma et al., 2005). Previous research (Of-
futt et al., 1996; Ammann and Offutt, 2008) has
identified a set of operators for mutation.

Traditional mutation testing operates at the
syntax level, by introducing errors in the code.
However, semantic mutation testing has also been
defined (Offutt and Hayes, 1996; Mottu et al.,
2006; Clark et al., 2010), in which mutation op-
erators affect the semantics of the code. In other
words, the code is still syntactically correct, but
its functionality is different from the intended
one.

3.1 Mutation testing applied to
OWL

To apply the mutation testing methodology to an
ontology, some premises are in order.

First off, the mutation operators will be ap-
plied to the ontology. However, the testing can
be carried out in two different ways: either by
viewing the ontology as the SUT, independently
of what it is used for; or when the SUT is the
knowledge base or software that relies upon the
ontology. Choosing either perspective has signifi-
cant consequences in the testing and the test suite
that is used.

The mutation proposed in this paper is a kind
of semantic mutation. The syntax of an ontology
is managed satisfactorily by the various parsers
and editors available, so unless the SUT is a new
OWL editor or parser there would be little need
for a syntactic mutation testing. What is signif-
icantly more interesting is the evaluation of the



ontology definition. Additionally, using OWL as
the underlying specification, there is no point in
working at the syntax level because OWL does
not have a syntax per se, but can be built ac-
cording to different syntaxes. In fact, the pro-
posed methodology has been executed using the
OWL/RDF, OWL/XML and Manchester (Hor-
ridge et al., 2006) syntaxes with identical results.

The mutation operators have therefore been
defined as a set of operations that conceptually
modify the ontology. An ontology refers to enti-
ties, which are the main building blocks used to
represent real-world objects. The ontology does
not define the entities, which are defined by the
domain itself. For the purposes of this work,
the following entity types have been used as the
ground string for mutation:

classes represent the core concepts in the ontol-
ogy. A class is the abstraction which subsumes
all individuals of a given type;

individuals are the real-world objects, single in-
stances of a class;

object properties describe the relationships
between individuals;

data properties are used to associate informa-
tion data to classes.

In addition to entity-specific mutation oper-
ators, it is also possible to define some general
operators. In particular, some static information
can be added to any entity by means of annota-
tions. Typical annotations include label and com-
ment, which are part of RDF Schema (RDFS) and
are language specific.

All mutation operators affect some axiom,
which is the base expression in the ontology. Ax-
ioms are connections between entities, and some
examples of axioms are:

• a subclass relationship between two classes;

• the belonging of an individual to a class;

• the domain or the range of an object or data
property;

• association of an annotation with its entity.

3.2 Mutation operators

This section describes the various classes of muta-
tion operators defined for OWL mutation testing.
Entities in OWL can be declared using either a
human-readable Internationalized Resource Iden-
tifier (IRI), or an auto-generated one. When us-
ing the latter naming convention, which is rec-

ommended by the Protégé software, the domain-
specific names must be referred to by means of
label annotations. This solution is very versatile,
because it does not force a naming, but an entity
can have a number of names, also in different lan-
guages. However, when referring to entities using
labels, the absence of a label can cause errors.

Table 1 offers an overview of all the mutation
operators.

Some of the mutation operators produce iden-
tical mutants: for instance, the ORI operator,
when applied to a class and to its inverse, gen-
erates two identical mutants.

3.2.1 Entities

Some mutation operators are general and can be
applied to any entity:

ERE Remove entity. This operator deletes the
declaration of an entity from the ontology, be
it a class, property, or individual. All axioms
concerning the deleted entity are removed as
well.

ERL Remove label. This operator removes a la-
bel annotation from an entity.

ECL Change label language. A label annotation
is composed by the actual label and a lan-
guage attribute. This operator removes the
language attribute, setting it to a meaningless
value.

While it is possible to also apply mutation op-
erators to comment annotations, comments are
generally not meant for processing purposes, but
only to provide a description to the human user.
Therefore, no mutation on comment annotations
has been introduced in this work. Similarly, no
mutation operators have been defined for other
annotations such as versionInfo or seeAlso.

3.2.2 Classes

Classes are entities which describe the conceptual
abstraction of real-world objects. Class relations
can be described in hierarchical terms, from the
general to the particular. In other words, a class
can be defined as the subclass of another class, by
means of an “is a” relationship. Classes can be
subclasses of more than one superclass. If a class
is not defined as a subclass, then it is implicitly a
subclass of the top-level class, Thing. A class can
also be the subclass of an anonymous class, i.e.,
a class defined “on the fly” using properties.



Entity Operator Effect

Any entity
ERE Remove the entity and all its axioms
ERL Remove entity labels
ECL Change label language

Class

CRS Remove a single subclass axiom
CSC Swap the class with its superclass
CRD Remove disjoint class
CRE Remove equivalent class

Object property

OND Remove a property domain
ONR Remove a property range
ODR Change property domain to range
ORD Change property range to domain
ODP Assign domain to superclass
ODC Assign domain to subclass
ORP Assign range to superclass
ORC Assign range to subclass
ORI Remove inverse property

Data property
DAP Assign property to superclass
DAC Assign property to subclass
DRT Remove data type

Individual
IAP Assign to superclasses
IAC Assign to subclasses
IRT Remove data type

Table 1: List of mutation operators

In addition to the mutation operators appli-
cable to all entities, the following operators have
been defined for class entities:

CRS Remove subclass axiom. This operator re-
moves a subclass axiom, thus changing the
hierarchical structure of the ontology. If the
class has a single superclass, then it will be-
come a subclass of the top-level class.

CSC Swap subclass axiom. This operator ex-
changes a class with one of its superclasses.
Simply put, it reverses part of the hierarchi-
cal structure.

CRD Remove disjoint class. A class can be de-
clared as being disjoint from other classes.
This operator erases a disjoint declaration, so
the two classes are no longer disjoint.

CRE Remove equivalent class. A class can be
declared as being equivalent to other classes.
This operator erases an equivalent declara-
tion, so the two classes are no longer equiv-
alent.

3.2.3 Object properties

Object properties represent relations between
classes which cannot be in hierarchical terms. All
relations except “is a” must be defined in terms
of object properties.

An object property normally has at least one
domain and one range. The domain represents
the classes (which can also be anonymous classes,
defined for example using set operations) to which
the object property applies. A range represents
the possible values that the property can have. In
other words, domain and ranges are limitations
to the individuals to which the property can be
applied and to the individuals that it can have as
its values, respectively.

The following mutation operators specific to
object properties have been defined:

OND Remove domain. One domain (set of en-
tities to which the property can apply) is re-
moved from the object property. Since the ac-
tual domain is the intersection of all ranges,
this operator actually widens the possible en-
tities to which the property can apply.

ONR Remove range. One range is removed from
the object property. Since the actual range
is the intersection of all ranges, this operator
actually widens the possible values that the
property can have.

ODR Change domain to range. One of the do-
mains of the property is changed to a range,
actually restricting its possible values but in-
creasing the classes it can apply to.



ORD Change range to domain. One of the
ranges of the property is changed to a domain.

ODP Assign to superclass. One of the domains
of the property is replaced with one of the
superclasses of that domain. This operator
cannot be applied to anonymous domains or
to domains which are only subclass of the top-
level class.

ODC Assign to subclass. One of the domains of
the property is replaced with one of the sub-
classes of that domain. This operator cannot
be applied to anonymous domains.

ORP Set range to superclass. One of the ranges
of the property is replaced with one of the su-
perclasses of that range. This operator cannot
be applied to anonymous ranges or to range
which are only subclass of the top-level class.

ORC Set range to subclass. One of the ranges
of the property is replaced with one of the
subclasses of that range. This operator cannot
be applied to anonymous ranges.

ORI Remove inverse property. The property can
be declared as being inverse to another one.
This operator removes the inverse declaration,
but it does not remove the other property.

3.2.4 Data properties

Data properties are used to describe additional
features of an entity. Technically, they represent
a connection between entities and literals (such
as XML strings and integers). Data properties
have a domain which limits the entities it can be
applied to, and a range which limits the set of
possible literals it can have as values.

In addition to the general operators, the fol-
lowing operators have been defined for data prop-
erties:

DAP Assign to superclass. One of the domains
of the property is replaced with one of the
superclasses of that domain. This operator
cannot be applied to anonymous domains or
to domains which are only subclass of the top-
level class.

DAC Assign to subclass. One of the domains of
the property is replaced with one of the sub-
classes of that domain. This operator cannot
be applied to anonymous domains.

DRT Remove data range. One of the data
ranges of the property is removed, and it is
implicitly replaced with the top-level literal
rdfs:Literal, actually increasing the set of pos-
sible literals that this property can have.

3.2.5 Individuals

Individuals represent single instances of a class
(including anonymous classes). Individuals are
very similar to classes, but they represent a single
object and not an abstract generalization. There-
fore, they can be defined as belonging to one or
more classes.

The following specific operators have been de-
fined for individuals.

IAP Assign to superclass. One of the types of
the individual is replaced with one of its su-
perclasses. This operators can be applied only
to those types which have a superclass differ-
ent from the top-level class.

IAC Assign to subclass. One of the types of
the individual is replaced with one of its sub-
classes.

IRT Remove type. One of the types to which the
individual belongs is removed (both named
and anonymous classes). If the individual is
of a single type, then it becomes an individual
of the top-level class.

4 Experiments

The proposed mutation testing methodology
has been implemented and executed on several
existing ontologies. This section describes the
test platform, the reference ontologies and the re-
sults of the application of the methodology.

4.1 Experimental setup

The implementation of the proposed mutation
testing approach was done using Eclipse 4.5
(Mars) as a development environment. The pro-
gramming language used is Java (Sun Java 1.8).
The setup is platform-independent and has been
successfully tested on Windows 7, Ubuntu Linux
14.04 and Mac OS X 10.10 machines, both at 32
and 64 bit.

The implementation is lightweight and only
requires the OWL API libraries1, managed
through Maven2.

The mutation testing tool, called Mutating
OWLs, is available as a Git repository3. The

1http://owlapi.sourceforge.net/.
2https://maven.apache.org/.
3https://bitbucket.org/guerret/lu.uni.owl.

mutatingowls.



repository also contains the test ontologies de-
scribed below.

4.2 Reference ontologies

The proposed methodology has been executed on
three different ontologies.

4.2.1 Data protection

The data protection ontology has been introduced
in (Bartolini and Muthuri, 2015; Bartolini et al.,
2015). The European Union is currently un-
dergoing a reform of the protection of personal
data. The main legislative document of the re-
form is the General Data Protection Regulation
(GDPR), which will introduce significant changes
in the duties of the controller (Reding, 2010). The
ontology has been defined to describe the upcom-
ing reform; however, it does not aim at modeling
the whole domain of data protection in the Euro-
pean Union, but only focuses on the requirements
of the data controller.

The ontology is preliminary and subject to
change, especially given that the reform is not
finalized yet. It is mainly made up of hierarchical
relations, and contains a number of object prop-
erties that relate the duties of the controller with
the corresponding rights of the data subject.

Entities in the ontology are named using
an auto-generated IRI, and labels contain the
human-readable names.

4.2.2 Passenger rights

The second ontology used as an experimental base
has been introduced in (Rodŕıguez-Doncel et al.,
2014a; Rodŕıguez-Doncel et al., 2014b) to de-
scribe the legal framework for flight incidents. In
particular, the ontology addresses the perspective
of the rights of the passenger.

This ontology has a more complex structure,
and is split into three files. Since the import links
were actually broken, some changes had to be
made to the ontology to allow the OWL API to
access local files. Specifically, the ontology had
to be converted from Turtle syntax (World Wide
Web Consortium (W3C), 2014b) to an XML se-
rialization because of some limitations of OWL
API in parsing non-XML syntaxes.

The naming convention differs from the previ-
ous ontology in that the IRIs are human-readable
terms in English language, and no labels are used
throughout the ontology.

4.2.3 Pizza

Finally, the proposed methodology has been run
against the well-known pizza ontology4, which is
the one provided as a standard example for OWL
and Protégé tutorials. The naming convention
used in this ontology is based on English-language
identifiers for the entities, but entities also feature
label annotations in Portuguese.

4.2.4 Summary

Table 2 displays a summary of the features of the
three ontologies used.

4.3 Experimental results

The mutation operators defined in Section 3.2
have been applied to the three test ontologies,
generating mutants for each. The total number
of mutants per mutation operator is displayed in
Table 3.

Some considerations are offered by the very
structure of the three ontologies. For example,
the data protection ontology, as mentioned ear-
lier, uses auto-generated IRIs as identifiers, and
labels for descriptive purposes. The pizza ontol-
ogy uses English terms as identifiers, but enti-
ties also have Portuguese labels. Finally, the pas-
senger rights ontology does not use label anno-
tations. For this reason, the ERL and ECL op-
erators do not generate any mutant in the latter.
Similarly, no mutant is generated by the IAP, IAC
and IRT operators in the passenger rights ontol-
ogy because the individuals are not assigned to
any class.

The data protection ontology makes a very
limited use of data properties, so very few mu-
tants are generated from the data property entity;
the same is not true for the passenger rights en-
tity, which has a significant number of data prop-
erties but less object properties. The pizza on-
tology does not have any data properties at all,
and few object properties. However, the classes
that make up the domain and range of some of
the object properties have a large number of sub-
classes, hence many mutants from the ODC and
ORC operators.

4http://protege.stanford.edu/ontologies/
pizza/pizza.owl.



Data
protection

Passenger
rights

Pizza

Total number of axioms 680 541 940
Classes 87 89 100
Object properties 41 26 8
Data properties 4 31 0
Individuals 12 14 5
Subclass axioms 114 83 259

Table 2: Summary of the test ontologies.

Operator
Data

protection
Passenger

rights
Pizza

ERE 142 67 113
ERL 142 0 96
ECL 142 0 96
CRS 114 33 259
CSC 101 33 84
CRD 18 0 796
CRE 28 0 41
OND 39 10 6
ONR 34 8 7
ODR 39 10 6
ORD 34 8 7
ODP 29 8 6
ODC 239 54 254
ORP 29 5 7
ORC 119 22 257
ORI 0 0 0
DAP 2 29 0
DAC 5 3 0
DRT 3 13 0
IAP 12 0 0
IAC 30 0 0
IRT 12 0 10

Table 3: Mutants by mutation operator.

4.4 Validation

The proposed approach was validated by testing
an ontology itself and not an application run-
ning on top of it. For the SUT to be an ontol-
ogy, the simplest approach to test it is to have
a set of SPARQL Protocol and RDF Query Lan-
guage (SPARQL) queries (World Wide Web Con-
sortium (W3C), 2008) which retrieve data from
the ontology.

Unfortunately, none of the ontologies used
provide a SPARQL test suite. A set of queries for
the pizza ontology exists as the test suite for an
alternative query language5. As minimal as this
test suite is, it has been used as a starting point to

5https://code.google.com/p/twouse/wiki/
SPARQLASExamples.

assess the validity of the approach. The queries
in that test suite were thus converted back to
SPARQL. However, two more queries were added
to the test suite, because the existing queries only
search for very small parts of the ontology6.

The results of the validation is shown in Ta-
ble 4, and a summary of killed mutants is shown
in Figure 1.

A brief analysis of the results elicits some in-
teresting considerations. First, it is clear that
the test suite mainly addresses classes, with lit-
tle tests covering the properties. Thus, additional
tests, especially for the object properties, are re-
quired. Also, concerning the classes, the tests
mostly cover a particular branch of the hierarchy,

6The complete setup is available in the repository
(see footnote 3).



Operator
Mutants

killed
Total

mutants
ERE 108 112
ERL 95 95
ECL 95 95
CRS 255 255
CSC 83 83
CRD 471 753
CRE 41 41
OND 0 6
ONR 0 7
ODR 0 6
ORD 0 7
ODP 0 6
ODC 1 250
ORP 0 7
ORC 1 253
IRT 0 10

Table 4: Results of the mutation testing.

Figure 1: Overview of mutants killed.

while almost no tests search other branches of
the ontology. Finally, some considerations can be
done on the ontology itself. For example, by ex-
amining the live mutants in the ERE operator, it
emerges that some object properties are not used
anywhere. Depending on the purposes of the on-
tology, this might suggest that those properties
are irrelevant. Of course, such a small test suite
does not yield a lot of results, but a richer test
suite would allow a more significant analysis.

5 Conclusions and future work

The work presented in this paper extends and
adapts mutation testing techniques to ontologies
defined using the OWL language. The essentials

of OWL ontologies are described, to introduce a
methodology and operators for mutation testing.
The work then presents an implementation of the
mutation testing technique and some basic exper-
iments on previously-defined ontologies.

The benefits of mutation testing are manifold:
by analyzing the patterns of killed and alive mu-
tants, testers can detect errors in the SUT and in
the test suite. Equivalent mutants can help de-
tect redundancies in the ontology, which may not
be errors but still facilitate errors, for example
when creating instances of the ontology.

More in general, the extension of software en-
gineering and testing approaches to ontologies
and semantic knowledge bases can pave the way
to the formalization of integrated design and test-
ing patterns in for semantics-based applications.

This work is at its initial stages, with many
opportunities for future development. First off,
the proposed methodology needs to be expanded
to support a full test suite: a significant set of
SPARQL queries, if the SUT is the ontology it-
self; or, if the SUT is an ontology-based software,
testing it with its own test suite. The purpose
would be to compare the outputs of the test suite
when executed against the original ontology and
against the mutants. In this phase, it is possible
that the complexity of the mutation testing is ex-
cessive and causes performance problems, and it
might be necessary to apply or develop algorithms
designed to reduce the number of mutants.

Second, the mutation methodology can be im-
proved, by extending it with additional mutation
operators. For example, the mutation operators
do not currently address annotations other than
labels, or the value and cardinality constraints.
Some of these features of the OWL language can
have a significant effect in the ontology definition,
and mutants thus created might be useful in as-
sessing the ontology.

Third, the mutation testing should take into
account the peculiarities of ontology engineering.
In particular, while the domain certainly imposes
some constraints on the ontology developer, many
decisions are based on discretionary choices, bal-
ancing different aspects such as human readabil-
ity and efficiency of the ontology. Traditional mu-
tation testing techniques might be extended to
embrace these features, for example by separating
those mutant operators that are likely to intro-
duce errors in the domain (for example swapping
a class with its parent) from those that simply
change the ontology structure without making it
inconsistent with the domain. If such a partition



were possible, then mutation testing techniques
could be used not only to detect errors in the
design, but also to suggest different ontology ar-
chitectures that the designer might overlook.

Finally, stretching along the line of the previ-
ous point, an extended mutation technique could
be designed which alters the structure of the on-
tology. For example, there might be circum-
stances where using a hierarchical relationship
(subclass axiom) might be an alternative to using
an object property. An extended mutation tech-
nique that generates mutants based on a different
structure of the ontology might offer a fast way
to compare a wide number of ontology designs.
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Poveda-Villalón, M., Suárez-Figueroa, M. C., and
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Gómez-Pérez, A. (2012). Validating ontologies
with OOPS! In ten Teije, A., Völker, J., Hand-
schuh, S., Stuckenschmidt, H., d’Acquin, M.,
Nikolov, A., Aussenac-Gilles, N., and Hernan-
dez, N., editors, Knowledge Engineering and
Knowledge Management, volume 7603 of Lec-
ture Notes in Computer Science, pages 267–281.
Springer Berlin Heidelberg.

Quillian, M. R. (1967). Word concepts: A theory and
simulation of some basic semantic capabilities.
Behavioral Science, 12(5):410–430.

Reding, V. (2010). The upcoming data protection
reform for the European Union. International
Data Privacy Law.
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