
Ontology mutation testing

February 3, 2016

Cesare Bartolini

Interdisciplinary Centre for Security, Reliability and Trust (SnT),
University of Luxembourg



Outline

1 Mutation testing

2 Mutant generation

3 OWL ontologies

4 OWL mutation testing

5 Validation

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 1 / 39



Outline

1 Mutation testing

2 Mutant generation

3 OWL ontologies

4 OWL mutation testing

5 Validation

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 2 / 39



What is testing

I Verifying the conformance of the System Under Test (SUT) to its
requirements

I Many properties to verify
I Correctness
I Performance
I Security
I . . .

I Many different ways of testing
I Requires a Test Suite (TS)

I Manual, automated, test factory. . .

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 3 / 39



Testing 101

Figure: How to run a test

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 4 / 39



Testing 102

Figure: How standard testing works

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 5 / 39



Mutation testing

Figure: Mutation testing process

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 6 / 39



Mutation essentials

Figure: Mutation testing process

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 7 / 39



Step 1: normal test suite run

I Use the unmodified SUT ("golden")
I Run the test suite TS

I Right or wrong doesn’t matter!
I Store the output R0 in some format

I Text, XML, binary. . .

Important!
Tests should not fail (i.e., break execution) against the "golden" SUT.

Consequently
It’s important to fix the TS first.

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 8 / 39



Step 1: normal test suite run

I Use the unmodified SUT ("golden")
I Run the test suite TS

I Right or wrong doesn’t matter!
I Store the output R0 in some format

I Text, XML, binary. . .

Important!
Tests should not fail (i.e., break execution) against the "golden" SUT.

Consequently
It’s important to fix the TS first.

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 8 / 39



Step 1: normal test suite run

I Use the unmodified SUT ("golden")
I Run the test suite TS

I Right or wrong doesn’t matter!
I Store the output R0 in some format

I Text, XML, binary. . .

Important!
Tests should not fail (i.e., break execution) against the "golden" SUT.

Consequently
It’s important to fix the TS first.

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 8 / 39



Step 2: generate the mutants

I Start from ground string ("golden" SUT)
I Mutation operators
I Remove equivalent mutants (optional)
I Reduce number of mutants (optional)
I Store the mutated SUTs
I Have n mutants at the end

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 9 / 39



Step 3: mutant runs

I Batch runner
I Fetches a mutant
I Runs TS against the mutant
I Stores the results R1, ...,Rn

I Rinse & repeat

Complexity
Mutation testing can be very hard. Think of a TS with 100 tests run over a
code which generates 10K mutants.

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 10 / 39



Step 3: mutant runs

I Batch runner
I Fetches a mutant
I Runs TS against the mutant
I Stores the results R1, ...,Rn

I Rinse & repeat

Complexity
Mutation testing can be very hard. Think of a TS with 100 tests run over a
code which generates 10K mutants.

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 10 / 39



Step 4: check the outputs

I Oracle compares results
I R1, ...,Rn against R0

I Comparison may be difficult
I Results differ: mutant is killed
I Results do not differ: mutant is alive
I Best result: 100% killed mutants

Important!
Tests may fail (i.e., execution breaks) against the mutant. The result is
different from the "golden" anyway.

I E.g., if the mutant introduces an infinite loop

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 11 / 39



Step 4: check the outputs

I Oracle compares results
I R1, ...,Rn against R0

I Comparison may be difficult
I Results differ: mutant is killed
I Results do not differ: mutant is alive
I Best result: 100% killed mutants

Important!
Tests may fail (i.e., execution breaks) against the mutant. The result is
different from the "golden" anyway.

I E.g., if the mutant introduces an infinite loop

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 11 / 39



Step 5: and now?

I Mutation testing tells me how good my test suite is
I Find patterns of live mutants

I But it can also give me insights on the SUT
I Example: mutants alive because path not covered

I Reason 1: missing a test in the TS (must add tests)
I Reason 2: unreachable code (must modify the SUT)

I Analysis can be complex
I Generally used for unit testing

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 12 / 39



Outline

1 Mutation testing

2 Mutant generation

3 OWL ontologies

4 OWL mutation testing

5 Validation

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 13 / 39



How mutant generation works

I Based on error testing or fault testing
I Hypothesis: the original SUT is correct
I Inject an error in the code

I A single error
I E.g., remove a semicolon

I Each error injection is a separate mutant
I Alive mutant ⇔ TS cannot detect the error

I Specific tests should be added

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 14 / 39



Semantic mutant generation

I Traditional mutant generation is syntactic
I Can operate on the semantics

I E.g., + changed to -

I The system is still formally correct
I But now it should behave differently from the "golden"
I If it doesn’t, then

I TS doesn’t even go there, or
I TS goes there but code is irrelevant

This can be an error in the code or in the test suite!

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 15 / 39



Typical mutation operations

I Remove statement
I Change variable type
I Change unary operators
I Change arithmetical operators
I Change comparison operators
I Change logical operators
I Reverse conditions
I Reverse then and else branches
I Change 1 into 0
I . . .

Important!
Never use random changes.

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 16 / 39



Typical mutation operations

I Remove statement
I Change variable type
I Change unary operators
I Change arithmetical operators
I Change comparison operators
I Change logical operators
I Reverse conditions
I Reverse then and else branches
I Change 1 into 0
I . . .

Important!
Never use random changes.

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 16 / 39



Equivalent mutants

I Mutants are supposed to be different
I Two different mutants might behave identically

Example
for (int i = 1; i < n; i++) // "golden"
for (int i = 0; i < n; i++) // Mutant 1
for (int i = 1; i <= n; i++) // Mutant 2

Techniques allow equivalent detection.

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 17 / 39



Equivalent mutants

I Mutants are supposed to be different
I Two different mutants might behave identically

Example
for (int i = 1; i < n; i++) // "golden"
for (int i = 0; i < n; i++) // Mutant 1
for (int i = 1; i <= n; i++) // Mutant 2

Techniques allow equivalent detection.

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 17 / 39



Too many mutants?

I If TS is changed, mutation testing should be redone
I Possibly too much computation
I It may be necessary to further reduce the number of mutants
I Heuristics or algorithms such as Category Partition

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 18 / 39



Outline

1 Mutation testing

2 Mutant generation

3 OWL ontologies

4 OWL mutation testing

5 Validation

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 19 / 39



What is the Web Ontology Language (OWL)?

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 20 / 39



OWL essentials

I Knowledge representation
I Ontologies are descriptions of a knowledge domain
I RDF is too low-level
I OWL derives from DAML+OIL
I Representation of real-world objects
I Ontologies do not define anything

I Objects are defined in the domain itself
I Ontologies describe relations

I By means of axioms

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 21 / 39



OWL classification

Syntax
Abstract modelling with no mandatory syntax. Possibilities:

I RDF/XML (standard, XML-based, W3C)
I OWL/XML (uses own tagset, XML-based, W3C)
I Manchester (highly descriptive, almost textual)
I Turtle (descriptive, similar to SPARQL syntax)
I . . .

Semantics (OWL 2)
I OWL Full
I OWL-DL
I Several profiles

Syntax and semantics are irrelevant for the present work.

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 22 / 39



OWL classification

Syntax
Abstract modelling with no mandatory syntax. Possibilities:

I RDF/XML (standard, XML-based, W3C)
I OWL/XML (uses own tagset, XML-based, W3C)
I Manchester (highly descriptive, almost textual)
I Turtle (descriptive, similar to SPARQL syntax)
I . . .

Semantics (OWL 2)
I OWL Full
I OWL-DL
I Several profiles

Syntax and semantics are irrelevant for the present work.

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 22 / 39



OWL classification

Syntax
Abstract modelling with no mandatory syntax. Possibilities:

I RDF/XML (standard, XML-based, W3C)
I OWL/XML (uses own tagset, XML-based, W3C)
I Manchester (highly descriptive, almost textual)
I Turtle (descriptive, similar to SPARQL syntax)
I . . .

Semantics (OWL 2)
I OWL Full
I OWL-DL
I Several profiles

Syntax and semantics are irrelevant for the present work.

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 22 / 39



OWL structure

I Entities (named or anonymous)
I Classes
I Individuals
I Object properties
I Data properties
I Datatypes
I Annotations
I . . .

I Axioms
I Subclass
I Domain
I Range
I Class assertion
I . . .

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 23 / 39



Outline

1 Mutation testing

2 Mutant generation

3 OWL ontologies

4 OWL mutation testing

5 Validation

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 24 / 39



OWL mutation

Figure: Perspectives
Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 25 / 39



OWL mutation testing basics

I The SUT is the ontology
I TS built for the ontology
I E.g., SPARQL queries
I The tester must be able to

run tests for the specific
SUT

I E.g., SPARQL engine

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 26 / 39



A more practical perspective

I The SUT is the software
I TS built for the software
I E.g., input values for the

program
I The tester only needs to run

the software
I E.g., batch execution

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 27 / 39



Differences

Testing the ontology
I Deeper analysis of the ontology
I Harder to develop tests (no specific functionality)
I Harder to say when the output is wrong
I Harder to compare results (ask later)
I The testing setup is more complex because OWL does not execute

Testing the software
I Focus only on the software requirements
I Plenty of test generation methodologies
I Outputs are clearer
I Easy to compare outputs (the software has an output format)
I The testing setup must only invoke the program

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 28 / 39



Differences

Testing the ontology
I Deeper analysis of the ontology
I Harder to develop tests (no specific functionality)
I Harder to say when the output is wrong
I Harder to compare results (ask later)
I The testing setup is more complex because OWL does not execute

Testing the software
I Focus only on the software requirements
I Plenty of test generation methodologies
I Outputs are clearer
I Easy to compare outputs (the software has an output format)
I The testing setup must only invoke the program

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 28 / 39



Mutation operators: categories

I Five categories of operators
I Entities in general (E)
I Classes (C)
I Object properties (O)
I Data properties (D)
I Named individuals (I)

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 29 / 39



Mutation operators

ERE Remove the entity and all its axioms
Any entity ERL Remove entity labels

ECL Change label language
CRS Remove a single subclass axiom

Class CSC Swap the class with its superclass
CRD Remove disjoint class
CRE Remove equivalent class
OND Remove a property domain
ONR Remove a property range
ODR Change property domain to range

Object property ORD Change property range to domain
ODP Assign domain to superclass
ODC Assign domain to subclass
ORP Assign range to superclass
ORC Assign range to subclass
ORI Remove inverse property
DAP Assign property to superclass

Data property DAC Assign property to subclass
DRT Remove data type
IAP Assign to superclasses

Individual IAC Assign to subclasses
IRT Remove data type

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 30 / 39



Some examples

ERE operator
I Completely removes an entity
I Also removes all axioms associated with it
I If it’s a class, its subclasses become subclasses of Thing

OND operator
I Removes a domain from an object property
I The object property actually expands its domain

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 31 / 39



Some examples

ERE operator
I Completely removes an entity
I Also removes all axioms associated with it
I If it’s a class, its subclasses become subclasses of Thing

OND operator
I Removes a domain from an object property
I The object property actually expands its domain

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 31 / 39



Outline

1 Mutation testing

2 Mutant generation

3 OWL ontologies

4 OWL mutation testing

5 Validation

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 32 / 39



Experimental setup

I Programming language: Java 7+
I Just because I haven’t learnt lambda expressions yet

I Mutant generator: based on OWL API 4
I SUT is the OWL ontology in RDF/XML format
I TS is set of SPARQL queries
I Query engine: based on Apache Jena/ARQ
I https://github.com/guerret/lu.uni.owl.mutatingowls

Why two libraries?
I had already developed a tool for operating on ontologies using OWL API,
but OWL API does not manage SPARQL.

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 33 / 39

https://github.com/guerret/lu.uni.owl.mutatingowls


Experimental setup

I Programming language: Java 7+
I Just because I haven’t learnt lambda expressions yet

I Mutant generator: based on OWL API 4
I SUT is the OWL ontology in RDF/XML format
I TS is set of SPARQL queries
I Query engine: based on Apache Jena/ARQ
I https://github.com/guerret/lu.uni.owl.mutatingowls

Why two libraries?
I had already developed a tool for operating on ontologies using OWL API,
but OWL API does not manage SPARQL.

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 33 / 39

https://github.com/guerret/lu.uni.owl.mutatingowls


How the testing works

1. Generate the mutants
1.1 Why this step first?

2. Run all queries on "golden" ontology
3. Store the results (not as text)
4. For each mutant:

4.1 Run all queries on the mutant
4.2 Compare against the "golden" results
4.3 Reset the ground results
4.4 Store if the mutant is killed or alive

5. Output a detailed report

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 34 / 39



Result comparison

I Mutation testing normally compares text
I SPARQL results may have a different order of the output
I Text is not an option
I Better to compare the mutants one by one

I Too much space needed to store all results
I Jena/ARQ has the order-neutral method

I ResultSetCompare.equalsByTerm

I But I must reset the "golden" results after each comparison
I By default, parsing "consumes" the data

Why this?

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 35 / 39



Result comparison

I Mutation testing normally compares text
I SPARQL results may have a different order of the output
I Text is not an option
I Better to compare the mutants one by one

I Too much space needed to store all results
I Jena/ARQ has the order-neutral method

I ResultSetCompare.equalsByTerm

I But I must reset the "golden" results after each comparison
I By default, parsing "consumes" the data

Why this?

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 35 / 39



Example

I Tried to reuse existing stuff, avoid bias
I Reference SUT: the pizza ontology

I http://protege.stanford.edu/ontologies/pizza/pizza.owl
I Set of SPARQL queries: not immediately available

I Found
https://code.google.com/p/twouse/wiki/SPARQLASExamples

I Had to convert back to SPARQL
I Very minimal, had to introduce two additional tests

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 36 / 39

http://protege.stanford.edu/ontologies/pizza/pizza.owl
https://code.google.com/p/twouse/wiki/SPARQLASExamples


Results

Operator Mutants killed Total mutants Percentage
ERE 108 112 96.43
ERL 95 95 100.00
ECL 95 95 100.00
CRS 255 255 100.00
CSC 83 83 100.00
CRD 471 753 62.55
CRE 41 41 100.00
OND 0 6 0.00
ONR 0 7 0.00
ODR 0 6 0.00
ORD 0 7 0.00
ODP 0 6 0.00
ODC 1 250 0.40
ORP 0 7 0.00
ORC 1 253 0.40
IRT 0 10 0.00
Other operators 0 0 0.00
Total 1150 1986 57.62

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 37 / 39



Some preliminary analyses

Considerations on the TS
I The TS mainly covers the class hierarchy

I More tests needed for properties and individuals
I Tests cover only a branch of the class hierarchy

I Tests needed for the rest

Considerations on the SUT
I Some object properties are not used anywhere

I This might mean they are irrelevant

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 38 / 39



Future developments

I Full-fledged test suite
I Using both the ontology and the software relying on it as SUT

I Extend the set of mutation operators, e.g.:
I Change the OWL cardinality constraints
I Operate on annotations other than labels

I Algorithms to reduce the complexity (e.g., detect equivalents)
I Add a new, "structural" level of mutation (unique to ontologies), e.g.:

I Change a subclass axiom into an object property
I Create named classes from unnamed ones
I Split intersections into separate entities
I . . .

This work will be presented at the AMARETTO workshop, co-located with
the MODELSWARD conference, on February 19.

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 39 / 39



Future developments

I Full-fledged test suite
I Using both the ontology and the software relying on it as SUT

I Extend the set of mutation operators, e.g.:
I Change the OWL cardinality constraints
I Operate on annotations other than labels

I Algorithms to reduce the complexity (e.g., detect equivalents)
I Add a new, "structural" level of mutation (unique to ontologies), e.g.:

I Change a subclass axiom into an object property
I Create named classes from unnamed ones
I Split intersections into separate entities
I . . .

This work will be presented at the AMARETTO workshop, co-located with
the MODELSWARD conference, on February 19.

Cesare Bartolini (SnT) Ontology mutation testing February 3, 2016 39 / 39


	Mutation testing
	Mutant generation
	OWL ontologies
	OWL mutation testing
	Validation

