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ABsTRACT. This article studies the volume of compact quotients of re-
ductive homogeneous spaces. Let G/H be a reductive homogeneous
space and I' a discrete subgroup of GG acting properly discontinuously
and cocompactly on G/H. We prove that the volume of I'\G/H is the
integral, over a certain homology class of I', of a G-invariant form on
G/K (where K is a maximal compact subgroup of G).

As a corollary, we obtain that, in all known examples of compact
reductive Clifford—Klein forms that admit deformations, the volume is
constant under these deformations.

We also derive a new obstruction to the existence of compact Clifford—
Klein forms for certain homogeneous spaces. In particular, we obtain
that SO(p,q + 1)/SO(p, q) does not admit compact quotients when p
is odd, and that SL(n,R)/SL(m,R) does not admit compact quotients
when m is even.

INTRODUCTION

The problem of understanding compact quotients of homogeneous spaces
has a long history that can be traced back to the “Erlangen program” of
Felix Klein [13]. In the second half of the last century, several existence and
rigidity theorems where proved (by Borel [5], Mostow [22] and Margulis [20]
among others), leading to a rather good understanding of quotients of Rie-
mannian homogeneous spaces. Comparatively, little is known about the non-
Riemannian case, and in particular about quotients of pseudo-Riemannian
homogeneous spaces.

In this paper we focus on reductive homogeneous spaces, i.e. quotients
of a semi-simple Lie group G by a closed reductive subgroup H. The G-
homogeneous space X = G/H carries a natural G-invariant pseudo-Riemannian
metric (coming from the Killing metric of G) and therefore a G-invariant vol-
ume form wvolx. Interesting examples include the homogeneous spaces

HP? = SO (p,q + 1)/SO¢(p, q)

whose pseudo-Riemannian metric has signature (p, ¢) and constant negative
sectional curvature.

A quotient of X by a discrete subgroup I' of G acting properly discontin-
uously and cocompactly is called a compact Clifford—Klein form of X. The
study of compact Clifford-Klein forms of reductive homogeneous spaces was
initiated by Kulkarni and Kobayashi in the 80’s. Here, we are interested in
the following questions: do Clifford—Klein forms exist? If so, are they rigid?
If not, is their volume rigid?
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Volume of Compact Clifford—Klein forms. The question of the volume
rigidity was raised in [2] in the specific case of anti-de Sitter 3-manifolds,
which are locally modelled on SO¢(2,1) with its Killing metric. In that
case, compact Clifford—Klein forms are known to exist and to have a rich
deformation space (see [23], [12] or [25]). In a recent paper, the author
studies more generally the volume of compact quotients of SOgy(n,1) by a
discrete subgroup of SOg(n, 1) x SOg(n, 1) [26]. By the work of Kassel [11],
such quotients have the form

7% p(TN\SOo(n,1) ,

where T" is a cocompact lattice in SOg(n, 1), j the inclusion and p another
representation of I' into SOg(n, 1). Moreover, Guéritaud and Kassel proved
in [9] that these quotients have the structure of a SO(n) bundle over I'\H"
(see Theorem 6.1). In [26], we proved the following formula:

Vol (j x p(I')\SOg(n, 1)) = Vol(SO(n)) /(F)\H volgn + (—1)" f*volgn |
f n

where f is any smooth (7, p)-equivariant map. It follows that the volume of
these compact Clifford—Klein forms is rigid.

The primary purpose of this paper is to extend this result to compact
Clifford—Klein forms of reductive homogeneous spaces. The main issue is
that we don’t have a structure theorem similar to the one of Guéritaud—
Kassel in general. However, denoting L a maximal compact subgroup of H
and K a maximal compact subgroup of G containing L, we see that I'\G/H
is homotopy equivalent to I'\G/L, which is a K/L bundle over I'N\G/K. Let
q be the dimension of K/L and p+ ¢ the dimension of G/H. Using spectral
sequences, one can deduce that I' has homological dimension p and that
H,(I",Z) is generated by an element [I'] (Proposition 2.1). Since G/K is
contractible, H,(I', Z) is naturally isomorphic to H,(I'\G/K,Z) and [I'] can
thus be seen as a singular p-cycle in I'\G /K. We will prove the following:

THEOREM 1.

Let G/H be a reductive homogeneous space, with G and H connected.Let L be
a maximal compact subgroup of H and K a maximal compact subgroup of G
containing L. Set p = dim G/H —dim K/L. Then there exists a G-invariant
p-form wg on G/K such that, for any torsion-free discrete subgroup I' C G
acting properly discontinuously and cocompactly on G/H , we have

I
)

Ezample 0.1. If G = SOg(n,1) x SOg(n,1) and H = SOpy(n, 1) embedded
diagonally, then the symmetric space G/K is H" x H". The main Theorem
in [26] asserts that, in this case,

Vol (I\G/H) =

wpg = Vol(SO(n)) (voly + (—1)"vola) ,

where voly and voly denote respectively the volume forms on the first and
second copy of H".
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Rigidity of the volume. The construction of the form wg is rather explicit,
though hard to compute in general. For certain Lie groups G, a theorem of
Cartan and Borel guaranties that every G-invariant form on G/K is essen-
tially a characteristic class (Theorem 4.3). This implies that the volume is
locally rigid (i.e. invariant by small deformations of T).

COROLLARY 2.
Assume that G and K have the same complex rank. Then the volume of
I'\G/H is locally rigid. In particular, the volume is locally rigid in the fol-
lowing cases:
(1) G =50(p,q+1), H=150(p,q), p even,
(i) G =8S0(2n,2), H="U(n,1),
(7i1) G =SU(n,1) x SU(n,1), H =SU(n,1) (embedded diagonally).

Together with the case G = SO(n, 1) xSO(n,1) and H = SO(n, 1) embed-
ded diagonally (which was covered in [26]), this proves the volume rigidity
of all known examples of compact reductive Clifford—Klein forms admitting
“Interesting” deformations (see section 4 for details).

A new obstruction to the existence of compact quotients. Con-
trary to the Riemannian setting, compact pseudo-Riemannian Clifford—Klein
forms do not always exist, and it is a long standing problem to characterize
which reductive homogeneous spaces admit compact quotients. Let us recall
two famous conjectures in this field.

Kobayashi’s Space-form Conjecture. The homogeneous space HPY =
SO¢(p,q + 1)/SO0(p,q) (p,q > 0) admits a compact Clifford-Klein form if
and only if one of the following holds:

e piseven and g =1,

e p is a multiple of 4 and q = 3,

ep=8andqg="1.

Conjecture (See for instance [12], Section 0.1.5). The homogeneous space
SL(n,R)/SL(m,R) (1 < m < n) never admits a compact Clifford-Klein
form.

It is known that HP? does not admit a compact Clifford—Klein form when
p < q 28] and when p and ¢ are odd [17]. As for the second conjecture, it
is known for m <n — 3 ([18], [19]) and for n = m + 1 odd [3] (see Section 5
for details).

In section 5, we prove that, in some cases, the form wp vanishes. This
provides a rather powerful obstruction to the existence of compact Clifford—
Klein forms. In particular, we obtain new results toward the conjectures
above:

THEOREM 3. e The homogeneous space HP? (p,q > 1) does not admit
a compact Clifford—Klein form when p is odd.
e The homogeneous space SL(n,R)/SL(m,R) (1 < m < n) does not
admit a compact Clifford-Klein form when m is even. In particular,
SL(2n + 2,R)/SL(2n,R) does not admit a compact Clifford-Klein
form.
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Theorem 5.1 gives a longer list of homogeneous spaces where our obstruc-
tion applies.

Organization of the paper. In Section 1 we give some precisions about
the setting of this work. In Section 2, we explain why compact Clifford—Klein
forms can always be seen as fibrations over an Eilenberg—-McLane space “at
the homology level”. In Section 3 we construct the form wp as the contraction
of a p + g-form on G/L along the fibers gK/L and we prove Theorem 1. In
Section 4, we state a theorem of Cartan and Borel and explain why and
when it allows us to prove the volume rigidity. In Section 5 we prove that
the form wp vanishes for certain homogeneous spaces G/H, and deduce the
non-existence of compact Clifford—Klein forms for these homogeneous spaces.
Finally in Section 6, we prove that the vanishing of the form wy is also an
obstruction to the existence of certain local foliations of G/H by compact
homogeneous subspaces, and we formulate a conjecture about the geometry
of compact reductive Clifford-Klein forms.

Acknowledgements. [ am very thankful to Gabriele Mondello and Gregory
Ginot for helping me understand spectral sequences and to Bertrand Deroin
for suggesting the use of Thom’s representation theorem in the proof of
Theorem 1.

1. REDUCTIVE CLIFFORD—KLEIN FORMS AND THEIR VOLUME

In all this paper, we fix a connected semi-simple Lie group G and a con-
nected reductive subgroup H. The quotient X = G/H is called a reductive
homogeneous space. We also fix L a maximal compact subgroup of H and
K a maximal compact subgroup of G containing L. Finally we denote re-
spectively by g, b, € and [ the Lie algebras of G, H, K, L.

The homogeneous space X is always pseudo-Riemannian, meaning that
the action of G on X preserves a pseudo-Riemannian metric. Indeed, the
restriction of the Killing form x¢g to b in non-degenerate and kg thus splits
as an orthogonal sum of two bilinear forms xz and kx, respectively on h
and h'. Since h' naturally identifies with the tangent space to X at the
point zg = H and since kx is invariant by the adjoint action of H, it extends
to a G-invariant pseudo-Riemannian metric on X that we still denote kx.
Moreover, since H is connected, the space X is orientable and the metric xx
induces a G-invariant volume form volx on X.

A compact Clifford—Klein form of X is a quotient of X by a discrete
subgroup I' of G acting properly discontinuously and cocompactly. The
volume form wvolx then descends to a volume form on I'\X (that we still
denote by volx) and we can define the volume of T'\ X by

/ vol x
X

We say that the Clifford—Klein form I'\X is (locally) rigid if, for every
representation p : I' — G in some neigbourhood of the inclusion, if p(I") acts
properly discontinuously on X, then p is conjugate to the inclusion. (Note
that this is a priori weaker than the local rigidity of T'.)

Vol (I\ X) =
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Finally, we say that the volume of the Clifford—Klein form I'\ X is (locally)
rigid if, for every representation p : I' — G in some neigbourhood of the
inclusion, if p(I") acts properly discontinuously on X, then

Vol (p(I)\X) = Vol (T\X) .

It is easy to see that, if a compact Clifford—Klein form is rigid, then its
volume is rigid.

2. CLIFFORD—KLEIN FORMS ARE FIBRATIONS AT THE HOMOLOGY LEVEL

Let us fix I' a torsion-free discrete subgroup of G acting properly discon-
tinuously and cocompactly on G/H, and denote by M the Clifford-Klein
form

M =T\G/H .
We introduce two auxiliary Clifford—Klein forms:
E=T\G/L
and
B=T\G/K .

We remark the following facts:

(i) E fibers over M with fibers isomorphic to H/L. Since H/L is con-
tractible, it follows that this fibration is a homotopy equivalence.

(1) E is also a fibration over B with fibers isomorphic to K/L.

(7i7) Since G//K is contractible, B is a classifying space for T

From the first point, we deduce in particular that the homology of M is
the same as the homology of E. The third point implies that the homology
of B is the homology of I'. Finally, (i) implies that the homologies of B, E
and K /L are linked (in a complicated way) by Serre’s spectral sequence. We
will use the following consequence:

Proposition 2.1 (See [17] and [14]). The group I" has homological dimension
p and
HP(F’Z) = Hp+q(M,Z) =7Z.

Proof. Let p', ¢’ and r’ denote respectively the homological dimensions of B,
K/L and E. By Serre’s theorem, the spectral sequence given by
E;, = Hy (B, Hy(K/L,Z))
converges to Hiy(E,Z). A classical consequence is that
v =p 4 q
and that
(1) Hy iy (E,Z) ~H,y (B,Hy(K/L,Z)) .

Since K/L is a closed oriented manifold of dimension ¢, we have ¢’ = ¢ and
H,(K/L,Z) ~ Z. Since E is homotopy equivalent to M which is a closed
oriented manifold of dimension p + ¢, we also have r’ = p + q. Therefore
/
p =D
Moreover, since L is connected, the action of I' on G/L preserves an
orientation of the fibers of the fibration

G/L - G/K
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and I' thus acts trivially on Hy(K/L,Z). From (1), we obtain
Z~H, (B, 7Z) ~H,(B,Z) .

The proposition follows since E is homotopy equivalent to M and B is a
classifying space for I'. O

To go further, we need to explictly describe the isomorphism H,,(E,Z) ~
H,(B,Z). Let [I'] denote a generator of H,(B,Z) ~ H,(I',Z), and 7 the
fibration of E over B. The general idea is that, if one thinks of [I'] as a
closed submanifold of B of dimension p, then the isomorphism H,(B,Z) —
Hy14(E,Z) maps [['] to 7~ 1([[]), which is a submanifold of E of dimension
p+q.

However, we don’t know that [I'] is realized by a submanifold. One way to
overcome this difficulty would be to work with simplicial complexes. How-
ever, since we will use differential geometry later, it is more convenient to
use Thom’s realization theorem:

Theorem 2.2 (Thom, [27]). There exists a closed oriented p-manifold B,
a smooth map ¢ : B’ — B and an integer k such that

k[I] = ¢u[B] .

Let ' : B/ — B’ be the pull-back of the fibration 7 : E — B by ¢ and
¢ : E' — FE the lift of p. The total space of the fibration E’ is a closed
orientable (p + ¢)-manifold.

Proposition 2.3. Let [E] denote a generator of Hpq(E). Then, up to
switching the orientation of E', we have

k[E] = ¢.[ET] .

Proof. The Serre spectral sequence shows that the fibrations 7 and 7’ re-
spectively induce isomorphisms

7 Hp(B) = Hp14(E)
and
7" Hy(B') — Hpy(E) .

By naturality of the Serre spectral sequence, we have the following commut-
ing diagram:

*

H,(B') ——= H,(B)

@*
Hpyg(E') ——Hpi4(E) .
Since ¢, [B'] = k[I'], we thus have

O

To summarize, we proved that the rational homology of E in dimension
p + q is represented by a cycle that “fibers” over a p-cycle of B.
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3. FIBERWISE INTEGRATION OF THE VOLUME FORM

Let E', B’, ¢, ¢ and 7, 7’ be as in the previous section. Denote by 1 the
projection from E to M. Recall that the volume form volxy on X = G/H
induces a volume form on M that we still denote volx.

Proposition 3.1. We have

1
Vol(M) = Z / P volx

Proof. Since 1 is a homotopy equivalence, we have

/ Y¥volx

[E]

Since k[E] = ¢.[E'], we have

/ Y*vol / P vol
(E] '

Now, since E’ fibers over B’, we can “average” the form ¢*1¢*vol along the
fibers to obtain a p-form on B’ whose integral will give the volume of M.
Let us give more precisions.

Let = be a point in G/K and let F denote the fiber 7=!(z). Choose some
volume form wvolgp on F and let & denote the section of AYTF such that
volp(§) = 1. At every point y of F, the p-form obtained by contracting
Y*vol with § has T, F' in its kernel and therefore induces a p-form w, on

T.G/K.
Definition 3.2. The form wy on G/K is defined at the point x by

(WH)z = /Fwy dvolp(y) .

On easily checks that this definition does not depend on the choice of
volp. Since the maps ¢ and 7 are equivariant with respect to the actions of
G, the volume forms ¥*volx and wy are G-invariant. By a slight abuse of
notation, we still denote by wy the induced p-form on B =I'\G/H.

Vol(M) = ‘/ volx
M

1
K

O

Proposition 3.3. We have

) | gvrvi = [ g

Proof. This is presumably a classical result of differential geometry. Let U
be an open set in B’ over which the bundle n’ : E/ — B’ is trivial. Let
us identify 7'~ (U) with K/L x U. We can locally write the form ¢*¢*vol
as f(y,x)volp A voly for some function f on K/L x U and some volume
forms volp and voly on K/L and U respectively. Let & be the section of
ANITK/L such that volp(§) = 1. The contraction of ¢*y*vol with & is thus
f(y,x)voly. By construction, we thus have

(s = ([ S p)avotit)) votr
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and therefore

/ P Y ol x fy, x)dvolp(y)dvoly (z)
o'~ U) FxU

= / orwg .
U
We can now conclude the proof of Theorem 1. Indeed, we have

1
/ P vol
E/

Vol(M) = -—
k //SD*WH‘

2
fy
0]

1
4. CHARACTERISTIC CLASSES AN RIGIDITY OF THE VOLUME

In this section, we deduce from Theorem 1 that for certain Lie groups G
the volume of compact Clifford—Klein forms I'\G/H is always locally rigid.

Recall that the volume of I'\G/H is trivially rigid if T" itself is rigid in
G. In particular, the rigidity theorems of Mostow [22] and Margulis [20] im-
ply that the volume of a compact Riemannian Clifford—Klein form is always
rigid when G has no factor isomorphic to PSL(2,R). When G is PSL(2,R),
Riemannian Clifford—Klein forms are either hyperbolic surfaces or their unit
tangent bundle, and the volume rigidity follows from the Gauss—Bonnet for-
mula.

There is no analogous rigidity theorem for non-Riemannian Clifford—Klein
forms, and a few such non-rigid forms are known:

e Let L be SOg(n,1) or SU(n,1). Let G be L x L and H the diagonal
embedding of L into L x L, so that G/H identifies with the space L
with the action of L x L by left and right multiplication. If I is a
uniform lattice in L and u : ' — L a representation sufficiently close
to the trivial representation (a more precise criterion is given in [8]),
then the group

ry,= {(77u(7))77 € P}

acts properly discontinuously on L = G/H [16]. When H;(I", Z) does
not vanish, such non-trivial representations u exist and provide de-
formations of the group I'o = {(v,1),y € T'}.

e Let G be SO¢(2n,2) and H be U(n,1). Let I" be a cocompact lattice
of SOy(2n,1) C SOg(2n,2). Then I' acts properly discontinuously
and cocompactly on G/H [17]. The group I' can sometimes be de-
formed into a Zariski dense subgroup of SOg(2n,2) [10]. By results of
Barbot [1] and Guéritaud-Guichard-Kassel-Wienhard (8], for every
representation p : I' — SOg(2n,2) in the connected component of
the inclusion, p(I") acts properly discontinuously on G/H.
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These give, to the best of our knowledge, the only examples of non Rie-
mannian reductive Clifford-Klein forms I'\G/H such that I' is Zariski dense
in G.

Remark 4.1. The dual case where H is SOg(2n, 1) and I a lattice in U(n, 1)
is essentially rigid. A theorem of Ragunathan implies that I" can only be
deformed inside U(n, 1) by “adding” a representation of I' into the center of
U(n,1) (see [12, Section 6.1.2]). This implies the volume rigidity.

Here we prove the volume rigidity in these examples. The proof will follow
from Theorem 1, together with the fact that, for certain Lie groups G, every
G-invariant form on G/K is essentially a characteristic class.

Let G be a semi-simple Lie group and K a maximal compact subgroup.
We see the group G as the total space of a principal K-bundle over G/K.
The distribution orthogonal to the fibers (with respect to the Killing metric)
provides a G-invariant principal connexion V on this bundle. The curvature
Fy of V is a G-invariant 2-form on G/K with values in ¢. We say that a
G-invariant p-form w on G/K is an equivariant Chern—-Weil class if there
exists a K-invariant polynomial P on £ such that

w:P(Fv)

Remark 4.2. This terminology is justified by the fact that the algebra of
equivariant Chern—Weil classes of G/K is isomorphic to the algebra of equi-
variant Chern—Weil classes of the compact dual of G/K, which is isomorphic
to the algebra of its Chern—Weil classes.

The study of the cohomology of symmetric spaces, initiated by Cartan in
[6], was completed by Borel in his thesis [4]. They obtain in particular le
following result:

Theorem 4.3 (Cartan, Borel). Let G be a Semi-simple Lie group and K
a mazximal compact subgroup. Assume that the complexifications of the Lie
algebras g and € have the same rank. Then the exterior algebra of G-invariant
forms on G/K is exactly the algebra of equivariant Chern—Weil classes.

We say that a semi-simple Lie group G satisfies the Borel-Cartan property
if the complexifications of g and € have the same rank.

COROLLARY 4.
Let G be a semi-simple Lie group, H a closed reductive subgroup and I' a
discrete subgroup of G acting properly discontinuously and cocompactly on
G/H. If G satisfies the Borel-Cartan property, then the volume of T\G/H
1s Tigid.

The list of simple Lie groups G satisfying the Borel-Cartan property is
the following:

e SU(p,q), Sp(2n,R) and more generally every Lie group whose sym-
metric space is Hermitian,

e SOg(p, q) for p or q even,

* Sp(p;q);

e the exceptional Lie groups Eg(), E7(7), E7(_5), Eg(g), Eg—24), Faa),
F4(,20) and G2(2).
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Besides, the product of two Lie groups satisfying the Borel-Cartan prop-
erty still satifies the Borel-Cartan property. In particular, the groups SOg(2n, 2),
SOp(2n,1) x SOp(2n,1) and SU(n,1) x SU(n,1) satisfy the Borel-Cartan
property. Therefore, the volume of compact Clifford—Klein forms of SOy (2n,2)/U(n, 1),
SOp(2n,1)xSO¢(2n,1)/SOp(2n, 1) and SU(n,1)xSU(n,1)/SU(n, 1) is rigid.
The volume ridity of compact Clifford—Klein forms of SO¢(2n + 1,1) x
SO0 (2n+1,1)/SOg(2n + 1,1) is proved in [26]. To our knowledge, this cov-
ers all known examples of compact non-rigid reductive pseudo-Riemannian
Clifford—Klein forms that admit Zariski dense deformations.

Proof of Corollary 4. It is a rather classical fact that, if a G-invariant p-form
w on a symmetric space G/K is what we called an equivariant Chern—Weil
class, then for any continuous family p; of representations of a group I' into
G, the cohomology class pfw € HP(I', R) is constant. Let us give some more
details in our setting.

By Selberg’s Lemma, we can replace I' by a torsion-free finite index sub-
group. Let pg : I' = G denote the inclusion and let p; be a continuous
deformation of py such that p.(T") still acts properly discontinuously and
cocompactly on G/H. We denote respectively by B; and E; the spaces
pt(M\G/K and pi(I')\G. Recall that E; is a principal K-bundle over B
with a natural connection V.

Let B’ be a closed orientable manifold of dimension p and g : B’ — By
such that ¢g,[B’] = k[I']. One can deform ¢ into a family of smooth maps
¢ : B' — By depending continuously on t. By continuity, we have

¢1.[B'] = kpy.[T]

for all ¢t. (Here, we denote by p,[I'] the class [I'] seen as a homology class of
n(D\G/K.)
We obtain the volume rigidity by using Chern—Weil theory. Let BK be
a classifying space for K and FK — BK the associated universal principal
K-bundle. There exists a continuous map f; : B — BK (unique up to
homotopy) such that the principal K-bundle ¢} E; is isomorphic to ffEK.
By the theorem of Cartan and Borel, we know that

wWH = P (Fv)
for some K-invariant polynomial P on . We thus have
piwn = P(Fyrv) ,

where ¢;V denotes the pulled back connection on ¢} Fj.

The Chern—Weil isomorphism implies the existence of a cohomology class
cp € HP(BK,R) such that the form P(F,:v) represents the cohomology
class ffcp in HP(B',R). We thus obtain

1
Vol (n(T\G/H) = [ wiwn
= % fiep .

(B']
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Now, since p; depends continuously on t, one can choose f; so that it
depends continuously on ¢t. Therefore, the f; are all homotopic and the class
ficp is constant. We conclude that the volume of p;(I')\G/H is constant.

O

5. AN OBSTRUCTION TO THE EXISTENCE OF COMPACT CLIFFORD—KLEIN
FORMS

In this section, we prove that, in some homogeneous spaces G/H, the form
wy vanishes. By Theorem 1, every compact Clifford—Klein form I'\G/H
should have volume 0. Since this is clearly absurd, we conclude that compact
Clifford—Klein forms of these homogeneous spaces do not exist.

Theorem 5.1. For the following pairs (G, H), the volume form wp vanishes
and G/H does not admit any compact Clifford-Klein form.

(1) G =SO0¢(p,q+1), H=S0¢(p,q), p,q,m > 0, p odd;
(2) G =SL(n,R), H=SL(m,R), 1 <m < n, m even;
(3) G=SL(p+¢q,R), H=S0¢(p,q), p,g >0, p+ q odd;
(4) G=S0(n,C), H=S0(m,C), 1 <m < n, m even;
(5) G=SO(p+q,C), H=S0(p,q), p,g >0, p+q odd.

In the past decades, many different works have been devoted to finding
various obstructions to the existence of compact Clifford—Klein forms. Let
us detail where Theorem 5.1 fits in this litterature.

e Case (1) extends a result of Kulkarni [17] and its recent improvement
by Morita [21]|, where both p and ¢ are assumed to be odd. When
specified to r = 1, we obtain in particular that H»? = SOg(p,q +
1)/SOq(p, q) does not admit a compact quotient when p is odd. This
is an important step toward Kobayashi’s space form conjecture.

e The case of SL(n,R)/SL(m,R) has been extensively studied as a
“test case”. It is conjectured that SL(n,R)/SL(m,R) never admits
a compact quotient (for 2 < m < n). Kobayashi proved that such
quotients do not exist for n < [3/2m] [15] and Labourie, Mozes
and Zimmer extended the result to m < n — 3 with completely dif-
ferent methods ([29], [18], [19]). On the other side, Benoist proved
that SL(2n+1,R)/SL(2n,R) does not admit a compact quotient [3].
Case (2) recovers Benoist’s result! and also implies that SL(2n +
2,R)/SL(2n,R) does not admit a compact quotient, which was pre-
viously known only for n =1 [24].

e To the best of our knowledge, case (3) is new. It complements a
recent result of Morita according to which SL(p + q)/SOg(p, q) does
not admit a compact quotient when p and ¢ are odd [21]. When
p = q + 1, Benoist proved that every discrete group acting properly
discontinuously on SL(p + ¢)/SOq(p, q) is virtually Abelian (in par-
ticular, its action is not cocompact) [3|. He also constructed proper

1Benoist’s result is actually stronger: every discrete group acting properly discontinu-
ously on SL(2n + 1,R)/SL(2n,R) is virtually abelian.
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actions of a free group of rank 2 as soon as p # q or ¢ + 1.

e Case (4) seems new in general. However, for m < n—>5, it follows from
Constantine’s generalization of the work of Labourie-Mozes—Zimmer
[7]. Conjecturally, very few complex reductive homogeneous spaces
admit compact Clifford—Klein forms. In particular, Kobayashi con-
jectured that the homogeneous space SO(n + 1, C)/SO(n,C) (which
can be thought of as a complexification of the real sphere) only ad-
mits compact quotients for n = 1, 3 and 7. Unfortunately, case
(4) only gives the non-existence of compact quotients of SO(2n +
1,C)/SO(2n, C), which is already a consequence of the Calabi—-Markus
phenomenon (see [14]).

e Finally, case (5) is new to the best of our knowledge.

There are more examples of homogeneous spaces where the form wyy
vanishes. For instance the form wpy vanishes when G = SL(n,R), H =
SL(m,R) x SL(n — m,R), 0 < m < n, n odd, or when G = SO(n,C),
H =80(m,C) x SO(n —m,C), 0 < m < n, n odd (in these cases the non-
existence of compact Clifford-Klein forms was proven by Benoist [3]).

In order to prove Theorem 5.1, we need to give a more explicit description
of the form wy. Recall that the tangent space of G/H at the point xg = H
can be identified with the orthogonal of h in g. The form wy is uniquely
determined by its restriction to T,,G/H.

If v is a subspace of g of dimension d in restriction to which the Killing form
K¢ is non degenerate, we denote by w, the d-form on g given by composing
the orthogonal projection on v with the volume form on v induced by the
restriction of the Killing form.

Finally, we provide K /L with the left invariant volume form wy sz induced
by the restriction of the metric on G/H.

Lemma 5.2. The form wy at the point xq is given by
(wH)xO = AdZUJELmhL dwK/L(u) .
K/L
Proof. In the construction of wy (Definition 3.2), we choose W/, as our

volume form on F,, = K/L. Let { be the g-vector on wg/;, such that

WK/L(§) =1

At yo = L, the pull-back of volx by the projection ¢ : G/L — G/H
identifies with the form wy. on g. Since the g-vector £ at yo is given by
e1 A\...\eg, where (e1,...,eq) is an orthonormal frame of €N ht, we have

(igwhl)yo = Wélmhl .
By left invariance, we also have
(g™ Vol x Juyy = UsWprlrpl -

Now, identifying T}.,, with u.lt, the differential of 7 : G/L — G/K is
given at u - yg by
ATy (Usv) = per Ady(v)
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where py1 denotes the orthogonal projection on ¢+,

Therefore, the form (i¢p*volx ) at u-yo, whose kernel contains u.£, induces
by projection the form Ady.wpinpr at . By construction of the form wy,
we thus obtain

(wH)xO =/ Adu*wklﬁhl dwK/L(u) .
K/L
U

Proof of Theorem 5.1. Though the proof requires a case-by-case study, the
strategy is always the same: we exhibit an element 2 € K whose action on g
stabilizes £ N h+ and whose induced action on €~ N h* has determinant —1.
It follows that

wHg = AdU*WELmhL dvolK/L(U)
K/L

= AdUQ *wklmhl dvolK/L(U)
K/L

= / —AdU*wELmhL dUOZK/L(U)
K/L
= —WwH,

hence wy = 0.

For each case in Theorem 5.1, we now describe ¢+ N h+ as a space of
matrices and we give a choice of an element €. This element 2 just multiplies
certain coefficients of the matrices in £-NhL by —1 and we leave to the reader
the verification that the induced action on £~ N h* has determinant —1.

We denote by Dy (a1,...,a;) the diagonal matrix of size n whose i-th di-
agonal coefficient is —1 if i € {aq,...,ar} and 1 otherwise.

e G= SOO(paq + T)? H= SOO(pa Q)7 D, q, T > 07 b odd:

In this case, K = SO(p) x SO(q + r) and £ N h* is the space of
matrices of the form

0
A

with A € M, ,(R). We can choose

Q= Dpigrrlp+qp+q+1).
e G =8SL(n,R), H=SL(m,R), m even:
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In this case, K = SO(n) and & N h* is the space of matrices of
the form

Al A

AT B

with A € My, n-m(R), B € Sym,,_,,(R) and A € R satisfying
Tr(B) + mA = 0. We choose

Q=D (m,m+1).
G =SL(p+¢,R), H=S00(p,q), p,q >0, p+ ¢ odd:

In this case, K = SO(p + q) and £+ N bt is the space of matrices
of the form

0 B

with A € Sym,(R) and B € Sym,(R). We can choose
Q= Dn(p,p+1) .
G =850(n,C), H=S0(m,C), m even:

In this case, K = SO(n) and & N h* is the space of matrices of
the form

—i AT iB

with A € My, —m(R) and B € Antisym,,, _,,(R). Again, we choose
Q=D,(m,m+1).
G =50(p+¢,C), H="500(p,q), p,q >0, p+ q odd;:
To embed SOq(p, q) into SO(p + ¢, C), we see SO(p + ¢, C) as the
group of complex matrices P satisfying

PTIp,qP =Ipg -
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Then €= N bt is the space of matrices of the form

1A 0

0 1B

with A € Antisym,,(R) and B € Antisym,(R). Again, we choose

Q= Dpyqep,p+1) .
O

This proof unfortunately requires a case by case study and does not pro-
vide a general criterion for the vanishing of the form wg. Note, however, that
the form wy vanishes if, for some reason, G/K cannot admit any non-trivial
G-invariant form of the right degree. In particular, if G satisfies the Borel-
Cartan criterion, then every G-invariant form on G/K has even degree, and
we obtain:

Proposition 5.3. If the complexifications of g and  have the same rank and
dimG/H — dim K/L is odd, then G/H does not admit a compact Clifford-

Klein form.

We haven’t found any new example where this criterion applies. It gives
for instance the non-existence of compact quotients of HP'¢ when both p and
q are odd, recovering a result of Kulkarni [17].

6. LOCAL FOLIATIONS OF G/H AND GLOBAL FOLIATIONS OF I'\G/H

The results of this paper where motivated by the fact that compact Clifford—
Klein forms should “look like” K/L-bundles over a classifying space for T
This was suggested by the following theorem:

Theorem 6.1 (Guéritaud-Kassel, [9]). Let I' be a discrete torsion-free sub-
group of SOp(n,1) x SOg(n,1) acting properly discontinuously and cocom-
pactly on SOg(n,1) (by left and right multiplication). Then T' is isomor-
phic to the fundamental group of a closed hyperbolic n-manifold B, and
I\SOg(n, 1) admits a fibration over B with fibers of the form

gSO(n)h™t, g,h € SOy(n,1) .
More generally, we conjecture the following:

Conjecture. Let G/H be a reductive homogeneous space (with G and H
connected), L a mazimal compact subgroup of H and K a mazimal compact
subgroup of G containing L. Let I be a torsion free discrete subgroup of G
acting properly discontinuously and cocompactly on G/H. Then there exists
a closed manifold B of dimension p such that

e the fundamental group of B is isomorphic to I,
e the universal cover of B is contractible,
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e I'\G/H admits a fibration over B with fibers of the form gK/L for
some g € G.

To support this conjecture, we note that the vanishing of the form wg
(which implies the non-existence of compact Clifford—Klein forms) is actually
an obstruction to the existence of a local fibration by copies of K/L.

Proposition 6.2. Let G/H be a reductive homogeneous space (with G and H
connected), L a mazimal compact subgroup of H and K a mazimal compact
subgroup of G containing L. If the form wg on G/K wvanishes (and in
particular for all the pairs (G, H) in Theorem 5.1), then no non-empty open
domain of G/H admits a foliation with leaves of the form gK/L.

The non-existence of such local foliations in certain homogeneous spaces
may be quite surprising. For instance, if G = SOg(2n — 1,2) and H =
SOp(2n — 1,1), then G/H is the anti-de Sitter space AdSsy, (for which the
non-existence of compact Clifford—Klein forms was proven by Kulkarni [17]).
In that case, K/L is a timelike geodesic and we obtain the following corollary:

Corollary 6.3. No open domain of the even dimensional anti-de Sitter space
can be foliated by complete timelike geodesics.

This leads to the following more general question, that may be of inde-
pendent interest:

Question 6.4. Let G/H be a reductive homogeneous space, G' a closed
subgroup of G and H' = G' N H. When does G/H admit an open domain
with a foliation by leaves of the form gG'/H'?

Proof of Proposition 6.2. Assume that there exists a non-empty domain U
in X = G/H with a foliation by leaves (F,),cy of the form g,K/L. Since
the stabilizer in G of K/L C G/H is exactly K, the space of leaves V' can
be seen as a submanifold of dimension p in G/K. Set U’ = 7= 1(V), where
7 is the projection from G/L to G/K. Then the projection ¢ from G/L to
G/H induces a diffeomorphism from U’ to U. We thus have

/ volx = Yrvolx .
U U’

On the other hand, by construction of wyr, we have

Y¥volx :/ WH .
U’ 14

Since U is non-empty, its volume is non-zero, hence the form wy cannot
vanish. 0
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