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Associativity for binary functions
X,Y = non-empty sets
F: X x X = X is associative if
F(x,F(y,2)) = F(F(x,y),2)
Associativity enables us to define expressions like
F(x,y,zt)

(F(F(x,¥),2), 1)
(x, F(F(y,2),1))

F
F

Define F: (U5, X" = X:x € X" = F(x1,..., xn)



Notation
We regard n-tuples x in X" as n-strings over X

0-string: €
1-strings: x,y,z,...
n-strings: X,y,z,...
|x| = length of x

X* ::UX"

n>0
We endow X* with concatenation (X* is a free monoid)

Any F : X* — Y is called a variadic function, and we set
Fn = F‘Xn.

We assume




Associativity for variadic operations

F: X* — X U{e} is called a variadic operation.

Definition. F: X* — X U {c} is associative if

F(xyz) = F(xF(y)z) V xyz € X*

Examples.
- the sum x; + - -+ + x,,
- the minimum x; A ... A x,,

- variadic extensions of binary associative functions.

F1 may differ from the identity map!



Associativity for string functions

Definition. F: X* — X™ is associative if

F(xyz) = F(xF(y)z) V xyz € X*



Associativity for string functions

F(xyz) = F(xF(y)z) V xyz € X*

Examples.
- sorting in alphabetical order

- letter removing, duplicate removing



Associativity for string functions

F(xyz) = F(xF(y)z) Y xyz € X*

Examples. [...] duplicate removing

INPUT: xzu--- in blocks of unknown length given at unknown
time intervals.

OutpuT: F(xzu---)

F(x) F
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Associativity for string functions

F(xyz) = F(xF(y)z) V xyz € X*

Examples. [...] duplicate removing
INPUT: xzu--- in blocks of unknown length given at unknown
time intervals.

OutpuT: F(xzu---)

F(x) F(z) F
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“Highly” distributed algorithms



Associativity for string functions

F(xyz) = F(xF(y)z) V xyz € X*

Proposition.

(1) If F,G: X* — X* are associative, then

F =66 — (F1 =Gy and F = Gp)

(2) G: X? — X is associative if and only if it admits a variadic
associative extension F: X* — X U {e} (i.e., F = G).



Preassociative variadic functions

Definition. We say that F: X* — Y is preassociative if

Fly) = F(y)) = F(xyz) = F(xy'z)

Examples. F,(x)=x? +---+x2 (X=Y =R)
Fn(x) = |x| (X arbitrary, Y =N)

Slogan. Preassociativity is a composition-free version of
associativity.

Fact. For F: X* = Y

F is preassociative = ker(F) is a congruence on X*



Associative and preassociative functions

Proposition. Let F: X* — X*.

F is associative
<~
F is preassociative and FoF=F.

Proposition Let F: X* — ran(F) be preassociative and
g:ran(F) —» Z
If g is one-to-one or constant, then g o F is preassociative.

Problem. Let F: X* — Y be preassociative. For which gis go F
preassociative?

Hard! Characterize [ker(F)) in the congruence lattice of X*.



Associative and preassociative functions

Theorem. (AC) Let F: X* — Y. The following conditions are
equivalent.

(i) F is preassociative.
(i) F=foH where
H: X* — X* is associative and f: ran(H) — Y is one-to-one.



Associative and preassociative functions

Theorem. (AC) Let F: X* — Y. The following conditions are
equivalent.
(i) F is preassociative.
(i) F=foH where
H: X* — X* is associative and f: ran(H) — Y is one-to-one.

Proof. )
Define

X F ran(F) g(F(x)) € x/ ker(F),
r~__ -7 H:=goF,
g then
F=FoH.



Factorizations lead to axiomatizations of function classes

A three step technique:
(Binary) Start with a class associative functions F : X? — X,
(Source) Axiomatize all their associative extensions F : X* — X U {¢},

(Target) Use factorization theorem to weaken this axiomatization to
capture preassociativity.

The methodology will be used for other factorization results.



An example based on Aczélian semigroups

Theorem (Aczél 1949). H: R? —» R is
- continuous
- one-to-one in each argument
- associative
if and only if
Hixy) = ¢ He(x) + ()

where ¢: R — R is continuous and strictly monotone.

Source class of associative variadic operations

Ho(x) = ¢ (o) + - + ©(xn))




An example based on Aczélian semigroups

Target axiomatization theorem

Let F: R* — R U {e}. The following assertions are equivalent:
(i) F is preassociative and
- ran(Fy) = ran(F),
- F; and F, are continuous,
- F; and F;, one-to-one in each argument,

(i) we have
Fn(x) = 77/)(90(X1) +oeee ‘P(Xn))

where ¢,1: R — R are continuous and strictly monotone.




Transition systems
A transition system over X:

H @ A =(Q, qo,9)

where qg € Q is the initial state and
0: QxX—Q

is the transition function.

=0

For instance The map 0 is extended to Q x X* by

d(qo, ababb) = q (q,¢) = q,
(q,xy) :==6(6(q,x),y)



Transition systems
A transition system over X:

H @ A =(Q, qo,9)

where qg € Q is the initial state and
0: QxX—Q

is the transition function.

=0

For instance The map 0 is extended to Q x X* by

d(qo, ababb) = q (q,¢) = q,
(q,xy) :==6(6(q,x),y)

Definition.

FA(x) := d(qo0,x)



Preassociativity and transition

FA(x) := d(qo,x)

Fact. If A is transition system,
- F 4 is “half”-preassociative:

Fa(x)

Faly) = Fa(xz)

- F4 may not be preassociative:

b a

systems

= Fa(yz)
= q = FA(ba)
g2 # qo = Fu(bba)



Preassociativity and transition systems

FA(x) := d(qo,x)
Definition. A transition system is preassociative if it satisfies

5(q0)x) = 5(q0>Y) d 5(qO?ZX) = 5(q052y)
Lemma.

A preassociative <=  F4 preassociative



Preassociativity and transition systems

FA(x) := d(qo,x)
Definition. A transition system is preassociative if it satisfies

5(q0>x) = 5(q0>Y) d 5(qO?ZX) = 5(qo,zy)
Lemma.

A preassociative <=  F4 preassociative

Example. X ={0,1}

0 1 o0
w Fi(x)=e < #{i|x; =1} is even,
GQ Fa(x) =0 <= #{i|x; =1} is odd.



Preassociativity and transition systems
X, Q finite.

Definition. For an onto F: X* — Q, set

Generally, Af is a non-deterministic transition system.

Lemma.

F is preassociative <= A’ is deterministic and preassociative I




A criterion for preassociativity

F is preassociative <= A’ is deterministic and preassociative I

For any state q of A = (Q, go,d), any L C 2%X" and z € X, set

LA(q) = {x € X" | §(q0, %) = 4}
z.L:={zx|xe L}

Proposition. Let A = (Q, go,d) be a transition system. The
following conditions are equivalent.

(i) Ais preassociative,
(ii) forallze X and g € Q,

z.14(q) C LA(¢), for some ¢’ € Q.



z.L4(q) C LA(q), for some ¢’ € Q.

Example. X = {0,1}

0o 1 o0
poSliBo
1

L“(e) = {x | x contains an even number of 1}

LA(0) = {x | x contains an odd number of 1}

0.L4(0) C LA(0) 0.LA(e) C LA(e)
1.L4(0) C LA(e) 1.L4(e) € L (o)



Associative length-based functions

Definition. F: X* — X* is length-based if

F = ¢ol-| for some ¢: N — X*.

Proposition. Let F: X* — X* be a length-based function. The
following conditions are equivalent.

(i) F is associative
(i)
[F()| = a(lx])

where o: N — N satisfies

a(n+ k) = ala(n) + k), Vn, ke N



a(n+ k) = ala(n)+ k),

Vn k€N




a(n+ k) = ala(n)+ k),

Vn k€N




a(n+ k) = ala(n)+ k),

Vn k€N




a(n+ k) = ala(n)+ k),

Vn k€N




a(n+ k) = ala(n)+ k),

Vn k€N
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a(n+ k) = ala(n)+ k), Vn, k € N
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B-associativity
and its variants



B-associative functions

Definition. A function F: X* — X U {e} is B-associative if

F(xF(y)Mz) = F(xyz), Vxyz € X*.

The function value does not change when replacing every
letter of a substring of consecutive letters by the value of
the function on this substring.

Example. {Arithmetic, geometric, harmonic} means!

Schimmack (1909), Kolmogoroff (1930), Nagumo (1930).



B-associative functions

The function value does not change when replacing every
letter of a substring of consecutive letters by the value of
the function on this substring.



B-associative functions

The function value does not change when replacing every
letter of a substring ef-consecutivetetters by the value of
the function on this substring.



Strongly B-associative functions

Definition. A function F: X* — X U {e} is strongly B-associative
if
The function value does not change when replacing every
letter of a substring ef-consecutivetetters by the value of
the function on this substring.

For instance,

F(x1x2x3xax5) = F(F(x1x3)x2 F (x1X3)X4x5),
= F(F(xix3)xoF (x1x3) F (xaxs) F (xaxs)).



Strongly B-associative functions

Fact.
—
Strongly B-associative B-associative
gly { P }

Example.

oi—1 o
F(x) = Z x; is (not strongly) B-associative



Strongly B-associative functions

Fact.
—
Strongly B-associative B-associative
gly { P }

Example.

oi—1
F(x) = Z x; is (not strongly) B-associative

Proposition. The following conditions are equivalent.
(i) F is strongly B-associative
(i)
F(xyz) = F(F(xz)'x‘yF(xz)M) V xyz € X*



Strong B-associativity and symmetry

Fact.

B-associative + symmetric { } strongly B-associative

Example.

F(x) = x1 is strongly B-associative but not symmetric

Proposition. If F: X* — X U {e} is strongly B-associative, then
y — F(xyz) is symmetric for every xz € X2.



A composition-free version of strong B-associativity

Definition. F: X* — Y is strongly B-preassociative if
x| = [x’|
2| = || = F(xyz) = F(xXyZ)).
F(xz) = F(x'?)

Example. The length function F: X* — R: x — |x| is strongly
B-preassociative.



Strongly B-associative and B-preassociative functions

Proposition. Let F: X* — X U {e}. The following conditions
are equivalent.

(i) F is strongly B-associative.
(i) F is strongly B-preassociative and satisfies F(F(x)*!) = F(x).



Strongly B-associative and B-preassociative functions

Proposition. Let F: X* — X U {e}. The following conditions
are equivalent.

(i) F is strongly B-associative.
(i) F is strongly B-preassociative and satisfies F(F(x)*!) = F(x).

Theorem. (AC) Let F: X* — Y. The following conditions are
equivalent.

(i) F is strongly B-preassociative and ran(F,) = {F(x") | x € X}
for all n;
(i) Fy=f,0H, forevery n> 1 where
- H: X* = X U {e} is strongly B-associative,

- fp: ran(H,) — Y is one-to-one.



Strongly B-preassociative and associative functions
H: X* — X*is length-preserving if |H(x)| = |x| for all x € X*.

Theorem. (AC) Let F: X* — Y. The following conditions are
equivalent.

(i) F is strongly B-preassociative.

(i) Fp=f,oH, forevery n>1 where
- H: X*— X*is
associative

length-preserving
strongly B-preassociative,

- f,: ran(H,) — Y is one-to-one.



From the factorization theorem to axiomatizations of
function classes

(Source) Start with a class of strongly B-associative functions which is
axiomatized,

(Target) Use factorization theorem to weaken this axiomatization to
capture strongly B-preassociativity.



An example based on quasi-arithmetic means

I = non-trivial real interval.
Definition. F:I* — R is a quasi-arithmetic pre-mean function if

1 n

F(x) = f,,(; 2 f(x,-)), n>1xe X"
1=
where £, f, are
continous and strictly increasing

If £, = f~1 for every n > 1 then F is a quasi-arithmetic mean.
Example. The product function is a quasi-arithmetic pre-mean

function over I =)0, 4+o00[ (take f,(x) = exp(nx) and f(x) = In(x))
which is not a quasi-arithmetic mean function.



Characterization of quasi-arithmetic mean functions

Theorem (Kolmogoroff - Nagumo). Let F: I* — I. The following
conditions are equivalent.

(i) F is a quasi-arithmetic mean function.

(ii) F is B-associative, and for every n > 1, F, is
symmetric,
continuous,
strictly increasing in each argument,

reflexive.

Theorem. B-associativity and symmetry can be replaced by
strong B-associativity. Moreover, reflexivity can be removed.



Characterization of quasi-arithmetic pre-mean functions

(Source) Quasi-arithmetic mean functions.

Theorem. (Target) Let F: I* — R. The following conditions are
equivalent.

(i) F is a quasi-arithmetic pre-mean function

(ii) F is strongly B-preassociative, and for every n > 1, F, is
symmetric,
continuous,

strictly increasing in each argument.



