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Associativity for binary functions

X ,Y ≡ non-empty sets

F : X × X → X is associative if

F (x ,F (y , z)) = F (F (x , y), z)

Associativity enables us to define expressions like

F (x , y , z , t)

= F (F (F (x , y), z), t)

= F (x ,F (F (y , z), t))

= · · ·

Define F :
⋃

n≥2 X
n → X : x ∈ X n 7→ F (x1, . . . , xn)



Notation
We regard n-tuples x in X n as n-strings over X

0-string: ε
1-strings: x , y , z , . . .
n-strings: x, y, z, . . .
|x| = length of x

X ∗ :=
⋃
n≥0

X n

We endow X ∗ with concatenation (X ∗ is a free monoid)

Any F : X ∗ → Y is called a variadic function, and we set

Fn := F |X n .

We assume
F (x) = ε ⇐⇒ x = ε



Associativity for variadic operations

F : X ∗ → X ∪ {ε} is called a variadic operation.

Definition. F : X ∗ → X ∪ {ε} is associative if

F (xyz) = F (xF (y)z) ∀ xyz ∈ X ∗

Examples.

· the sum x1 + · · ·+ xn,

· the minimum x1 ∧ . . . ∧ xn,

· variadic extensions of binary associative functions.

F1 may differ from the identity map!
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Associativity for string functions

F (xyz) = F (xF (y)z) ∀ xyz ∈ X ∗

Examples.

[. . . ] duplicate removing

· sorting in alphabetical order

· letter removing, duplicate removing



Associativity for string functions

F (xyz) = F (xF (y)z) ∀ xyz ∈ X ∗

Examples. [. . . ] duplicate removing

Input: xzu · · · in blocks of unknown length given at unknown
time intervals.

Output: F (xzu · · · )

F F F

x z u

F (x) F (z) F (u)

“Highly” distributed algorithms
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Associativity for string functions

F (xyz) = F (xF (y)z) ∀ xyz ∈ X ∗

Proposition.

(1) If F ,G : X ∗ → X ∗ are associative, then

F = G ⇐⇒ (F1 = G1 and F2 = G2)

(2) G : X 2 → X is associative if and only if it admits a variadic
associative extension F : X ∗ → X ∪ {ε} (i.e., F2 = G ).



Preassociative variadic functions

Definition. We say that F : X ∗ → Y is preassociative if

F (y) = F (y′) ⇒ F (xyz) = F (xy′z)

Examples. Fn(x) = x21 + · · ·+ x2n (X = Y = R)
Fn(x) = |x| (X arbitrary, Y = N)

Slogan. Preassociativity is a composition-free version of
associativity.

Fact. For F : X ∗ → Y

F is preassociative ⇐⇒ ker(F ) is a congruence on X ∗



Associative and preassociative functions

Proposition. Let F : X ∗ → X ∗.

F is associative

⇐⇒
F is preassociative and F ◦ F = F .

Proposition Let F : X ∗ → ran(F ) be preassociative and

g : ran(F )→ Z

If g is one-to-one or constant, then g ◦ F is preassociative.

Problem. Let F : X ∗ → Y be preassociative. For which g is g ◦ F
preassociative?

Hard! Characterize [ker(F )) in the congruence lattice of X ∗.



Associative and preassociative functions

Theorem. (AC) Let F : X ∗ → Y . The following conditions are
equivalent.

(i) F is preassociative.

(ii) F = f ◦ H where

H : X ∗ → X ∗ is associative and f : ran(H)→ Y is one-to-one.

Proof.

X ∗ ran(F )
F

g

Define

g(F (x)) ∈ x/ ker(F ),

H := g ◦ F ,
then

F = F ◦ H.
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Factorizations lead to axiomatizations of function classes

A three step technique:

(Binary) Start with a class associative functions F : X 2 → X ,

(Source) Axiomatize all their associative extensions F : X ∗ → X ∪ {ε},

(Target) Use factorization theorem to weaken this axiomatization to
capture preassociativity.

The methodology will be used for other factorization results.



An example based on Aczélian semigroups

Theorem (Aczél 1949). H : R2 → R is

· continuous

· one-to-one in each argument

· associative

if and only if
H(xy) = ϕ−1(ϕ(x) + ϕ(y))

where ϕ : R→ R is continuous and strictly monotone.

Source class of associative variadic operations

Hn(x) = ϕ−1(ϕ(x1) + · · ·+ ϕ(xn))



An example based on Aczélian semigroups

Target axiomatization theorem

Let F : R∗ → R ∪ {ε}. The following assertions are equivalent:

(i) F is preassociative and

· ran(F1) = ran(F ),
· F1 and F2 are continuous,
· F1 and F2 one-to-one in each argument,

(ii) we have
Fn(x) = ψ

(
ϕ(x1) + · · ·+ ϕ(xn)

)
where ϕ,ψ : R→ R are continuous and strictly monotone.



Transition systems

q0 q1

q2

a

b a

b

b

For instance,

δ(q0, ababb) = q2

A transition system over X :

A = (Q, q0, δ)

where q0 ∈ Q is the initial state and

δ : Q × X → Q

is the transition function.

The map δ is extended to Q × X ∗ by

δ(q, ε) := q,

δ(q, xy) := δ(δ(q, x), y)

Definition.
FA(x) := δ(q0, x)
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Preassociativity and transition systems

FA(x) := δ(q0, x)

Fact. If A is transition system,

· FA is “half”-preassociative:

FA(x) = FA(y) =⇒ FA(xz) = FA(yz)

· FA may not be preassociative:

q0 q1

q2

a

b a

b

b

FA(b) = q1 = FA(ba)

FA(bb) = q2 6= q0 = FA(bba)



Preassociativity and transition systems

FA(x) := δ(q0, x)

Definition. A transition system is preassociative if it satisfies

δ(q0, x) = δ(q0, y) =⇒ δ(q0, zx) = δ(q0, zy)

Lemma.

A preassociative ⇐⇒ FA preassociative

Example. X = {0, 1}

e o

1 0

1

0
FA(x) = e ⇐⇒ #{i | xi = 1} is even,

FA(x) = o ⇐⇒ #{i | xi = 1} is odd.
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Preassociativity and transition systems

X ,Q finite.

Definition. For an onto F : X ∗ → Q, set

q0 := F (ε),

δ(q, z) := {F (xz) | q = F (x)},

AF := (Q, q0, δ)

Generally, AF is a non-deterministic transition system.

Lemma.

F is preassociative ⇐⇒ AF is deterministic and preassociative



A criterion for preassociativity

F is preassociative ⇐⇒ AF is deterministic and preassociative

For any state q of A = (Q, q0, δ), any L ⊆ 2X
∗

and z ∈ X , set

LA(q) := {x ∈ X ∗ | δ(q0, x) = q}
z .L := {zx | x ∈ L}

Proposition. Let A = (Q, q0, δ) be a transition system. The
following conditions are equivalent.

(i) A is preassociative,

(ii) for all z ∈ X and q ∈ Q,

z .LA(q) ⊆ LA(q′), for some q′ ∈ Q.



z .LA(q) ⊆ LA(q′), for some q′ ∈ Q.

Example. X = {0, 1}

e o

1 0

1

0

LA(e) = {x | x contains an even number of 1}
LA(o) = {x | x contains an odd number of 1}

0.LA(o) ⊆ LA(o)

1.LA(o) ⊆ LA(e)

0.LA(e) ⊆ LA(e)

1.LA(e) ⊆ LA(o)



Associative length-based functions

Definition. F : X ∗ → X ∗ is length-based if

F = φ ◦ | · | for some φ : N→ X ∗.

Proposition. Let F : X ∗ → X ∗ be a length-based function. The
following conditions are equivalent.

(i) F is associative

(ii)
|F (x)| = α(|x|)

where α : N→ N satisfies

α(n + k) = α(α(n) + k), ∀n, k ∈ N



α(n + k) = α(α(n) + k), ∀n, k ∈ N
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B-associativity
and its variants



B-associative functions

Definition. A function F : X ∗ → X ∪ {ε} is B-associative if

F (xF (y)|y|z) = F (xyz), ∀xyz ∈ X ∗.

The function value does not change when replacing every
letter of a substring of consecutive letters by the value of
the function on this substring.

Example. {Arithmetic, geometric, harmonic} means!

Schimmack (1909), Kolmogoroff (1930), Nagumo (1930).



B-associative functions

Definition. A function F : X ∗ → X ∪ {ε} is strongly B-associative
if

The function value does not change when replacing every
letter of a substring of consecutive letters by the value of
the function on this substring.

For instance,

F (x1x2x3x4x5) = F (F (x1x3)x2F (x1x3)x4x5),

= F (F (x1x3)x2F (x1x3)F (x4x5)F (x4x5)).
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Strongly B-associative functions

Fact.

Strongly B-associative

{
=⇒
6⇐=

}
B-associative

Example.

F (x) =
n∑

i=1

2i−1

2n − 1
xi is (not strongly) B-associative

Proposition. The following conditions are equivalent.

(i) F is strongly B-associative

(ii)
F (xyz) = F (F (xz)|x|yF (xz)|z|) ∀ xyz ∈ X ∗
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Strong B-associativity and symmetry

Fact.

B-associative + symmetric

{
=⇒
6⇐=

}
strongly B-associative

Example.

F (x) = x1 is strongly B-associative but not symmetric

Proposition. If F : X ∗ → X ∪ {ε} is strongly B-associative, then
y 7→ F (xyz) is symmetric for every xz ∈ X 2.



A composition-free version of strong B-associativity

Definition. F : X ∗ → Y is strongly B-preassociative if

|x| = |x′|
|z| = |z′|

F (xz) = F (x′z′)

 =⇒ F (xyz) = F (x′yz′).

Example. The length function F : X ∗ → R : x 7→ |x| is strongly
B-preassociative.



Strongly B-associative and B-preassociative functions

Proposition. Let F : X ∗ → X ∪ {ε}. The following conditions
are equivalent.

(i) F is strongly B-associative.

(ii) F is strongly B-preassociative and satisfies F (F (x)|x|) = F (x).

Theorem. (AC) Let F : X ∗ → Y . The following conditions are
equivalent.

(i) F is strongly B-preassociative and ran(Fn) = {F (xn) | x ∈ X}
for all n;

(ii) Fn = fn ◦ Hn for every n ≥ 1 where

· H : X ∗ → X ∪ {ε} is strongly B-associative,

· fn : ran(Hn)→ Y is one-to-one.
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Strongly B-preassociative and associative functions

H : X ∗ → X ∗ is length-preserving if |H(x)| = |x| for all x ∈ X ∗.

Theorem. (AC) Let F : X ∗ → Y . The following conditions are
equivalent.

(i) F is strongly B-preassociative.

(ii) Fn = fn ◦ Hn for every n ≥ 1 where

· H : X ∗ → X ∗ is

associative
length-preserving
strongly B-preassociative,

· fn : ran(Hn)→ Y is one-to-one.



From the factorization theorem to axiomatizations of
function classes

(Source) Start with a class of strongly B-associative functions which is
axiomatized,

(Target) Use factorization theorem to weaken this axiomatization to
capture strongly B-preassociativity.



An example based on quasi-arithmetic means

I ≡ non-trivial real interval.

Definition. F : I∗ → R is a quasi-arithmetic pre-mean function if

F (x) = fn
(1

n

n∑
i=1

f (xi )
)
, n ≥ 1, x ∈ X n.

where f , fn are

continous and strictly increasing

If fn = f −1 for every n ≥ 1 then F is a quasi-arithmetic mean.

Example. The product function is a quasi-arithmetic pre-mean
function over I =]0,+∞[ (take fn(x) = exp(nx) and f (x) = ln(x))
which is not a quasi-arithmetic mean function.



Characterization of quasi-arithmetic mean functions

Theorem (Kolmogoroff - Nagumo). Let F : I∗ → I. The following
conditions are equivalent.

(i) F is a quasi-arithmetic mean function.

(ii) F is B-associative, and for every n ≥ 1, Fn is

symmetric,

continuous,

strictly increasing in each argument,

reflexive.

Theorem. B-associativity and symmetry can be replaced by
strong B-associativity. Moreover, reflexivity can be removed.



Characterization of quasi-arithmetic pre-mean functions

(Source) Quasi-arithmetic mean functions.

Theorem. (Target) Let F : I∗ → R. The following conditions are
equivalent.

(i) F is a quasi-arithmetic pre-mean function

(ii) F is strongly B-preassociative, and for every n ≥ 1, Fn is

symmetric,

continuous,

strictly increasing in each argument.


