The Mathematics behind the Property of Associativity

An invitation to study the many variants of associativity

Bruno TEHEUX and Jean-Luc MARICHAL

University of Luxembourg

Associativity for binary functions

 $X, Y \equiv \text{non-empty sets}$

$$F: X \times X \to X$$
 is associative if

$$F(x, F(y, z)) = F(F(x, y), z)$$

Associativity enables us to define expressions like

$$F(x, y, z, t)$$

$$= F(F(F(x, y), z), t)$$

$$= F(x, F(F(y, z), t))$$

$$= \cdots$$

Define $F: \bigcup_{n\geq 2} X^n \to X: \mathbf{x} \in X^n \mapsto F(x_1, \dots, x_n)$

Notation

We regard n-tuples x in X^n as n-strings over X

0-string: ε 1-strings: $\mathbf{x}, \mathbf{y}, \mathbf{z}, \dots$ n-strings: $\mathbf{x}, \mathbf{y}, \mathbf{z}, \dots$ $|\mathbf{x}| = \text{length of } \mathbf{x}$

$$X^* := \bigcup_{n \ge 0} X^n$$

We endow X^* with concatenation (X^* is a free monoid)

Any $F: X^* \to Y$ is called a *variadic function*, and we set

$$F_n := F|_{X^n}$$
.

We assume

$$F(\mathbf{x}) = \varepsilon \iff \mathbf{x} = \varepsilon$$

Associativity for variadic operations

 $F: X^* \to X \cup \{\varepsilon\}$ is called a *variadic operation*.

Definition. $F: X^* \to X \cup \{\varepsilon\}$ is *associative* if

$$F(xyz) = F(xF(y)z) \quad \forall xyz \in X^*$$

Examples.

- the sum $x_1 + \cdots + x_n$,
- the minimum $x_1 \wedge \ldots \wedge x_n$,
- · variadic extensions of binary associative functions.

 F_1 may differ from the identity map!

Definition. $F: X^* \to X^*$ is associative if

$$F(xyz) = F(xF(y)z) \quad \forall xyz \in X^*$$

$$F(xyz) = F(xF(y)z) \quad \forall xyz \in X^*$$

Examples.

- · sorting in alphabetical order
- · letter removing, duplicate removing

$$F(xyz) = F(xF(y)z) \quad \forall xyz \in X^*$$

Examples. [...] duplicate removing

INPUT: **xzu**··· in blocks of unknown length given at unknown time intervals.

OUTPUT: $F(xzu\cdots)$

$$F(xyz) = F(xF(y)z) \quad \forall xyz \in X^*$$

Examples. [...] duplicate removing

INPUT: **xzu**··· in blocks of unknown length given at unknown time intervals.

Output: $F(xzu\cdots)$

$$F(xyz) = F(xF(y)z) \quad \forall xyz \in X^*$$

Examples. [...] duplicate removing

INPUT: **xzu**··· in blocks of unknown length given at unknown time intervals.

OUTPUT: $F(xzu\cdots)$

"Highly" distributed algorithms

$$F(xyz) = F(xF(y)z) \quad \forall xyz \in X^*$$

Proposition.

(1) If $F, G: X^* \to X^*$ are associative, then

$$F = G \iff (F_1 = G_1 \text{ and } F_2 = G_2)$$

(2) $G: X^2 \to X$ is associative if and only if it admits a variadic associative extension $F: X^* \to X \cup \{\varepsilon\}$ (i.e., $F_2 = G$).

Preassociative variadic functions

Definition. We say that $F: X^* \to Y$ is *preassociative* if

$$F(y) = F(y') \Rightarrow F(xyz) = F(xy'z)$$

Examples.
$$F_n(\mathbf{x}) = x_1^2 + \dots + x_n^2 \quad (X = Y = \mathbb{R})$$

 $F_n(\mathbf{x}) = |\mathbf{x}| \quad (X \text{ arbitrary}, Y = \mathbb{N})$

Slogan. Preassociativity is a *composition-free* version of associativity.

Fact. For
$$F: X^* \to Y$$

$$F$$
 is preassociative \iff $\ker(F)$ is a congruence on X^*

Associative and preassociative functions

Proposition. Let $F: X^* \to X^*$.

$$\Longrightarrow$$

F is preassociative and $F \circ F = F$.

Proposition Let $F: X^* \to \operatorname{ran}(F)$ be preassociative and

$$g: \operatorname{ran}(F) \to Z$$

If g is one-to-one or constant, then $g \circ F$ is preassociative.

Problem. Let $F: X^* \to Y$ be preassociative. For which g is $g \circ F$ preassociative?

Hard! Characterize $[\ker(F)]$ in the congruence lattice of X^* .

Associative and preassociative functions

Theorem. (AC) Let $F: X^* \to Y$. The following conditions are equivalent.

- (i) F is preassociative.
- (ii) $F = f \circ H$ where

 $H \colon X^* \to X^*$ is associative and $f \colon \operatorname{ran}(H) \to Y$ is one-to-one.

Associative and preassociative functions

Theorem. (AC) Let $F: X^* \to Y$. The following conditions are equivalent.

- (i) F is preassociative.
- (ii) $F = f \circ H$ where $H \colon X^* \to X^*$ is associative and $f \colon \operatorname{ran}(H) \to Y$ is one-to-one.

Proof.

$$X^* \xrightarrow{F} \operatorname{ran}(F)$$

Define

$$g(F(\mathbf{x})) \in \mathbf{x}/\ker(F),$$
 $H := g \circ F,$ then $F = F \circ H$

Factorizations lead to axiomatizations of function classes

A three step technique:

- (Binary) Start with a class associative functions $F: X^2 \to X$,
- (Source) Axiomatize all their associative extensions $F: X^* \to X \cup \{\varepsilon\}$,
- (Target) Use factorization theorem to weaken this axiomatization to capture preassociativity.

The methodology will be used for other factorization results.

An example based on Aczélian semigroups

Theorem (Aczél 1949). $H: \mathbb{R}^2 \to \mathbb{R}$ is

- continuous
- · one-to-one in each argument
- · associative

if and only if

$$H(xy) = \varphi^{-1}(\varphi(x) + \varphi(y))$$

where $\varphi \colon \mathbb{R} \to \mathbb{R}$ is continuous and strictly monotone.

Source class of associative variadic operations

$$H_n(\mathbf{x}) = \varphi^{-1}(\varphi(x_1) + \cdots + \varphi(x_n))$$

An example based on Aczélian semigroups

Target axiomatization theorem

Let $F: \mathbb{R}^* \to \mathbb{R} \cup \{\varepsilon\}$. The following assertions are equivalent:

- (i) F is preassociative and
 - $\operatorname{ran}(F_1) = \operatorname{ran}(F)$,
 - · F_1 and F_2 are continuous,
 - \cdot F_1 and F_2 one-to-one in each argument,
- (ii) we have

$$F_n(\mathbf{x}) = \psi(\varphi(x_1) + \cdots + \varphi(x_n))$$

where $\varphi, \psi \colon \mathbb{R} \to \mathbb{R}$ are continuous and strictly monotone.

Transition systems

For instance,

$$\delta(q_0,ababb)=q_2$$

A *transition system* over *X*:

$$\mathcal{A} = (Q, q_0, \delta)$$

where $q_0 \in Q$ is the *initial state* and

$$\delta \colon Q \times X \to Q$$

is the transition function.

The map δ is extended to $Q \times X^*$ by

$$\delta(q, \varepsilon) := q,$$

 $\delta(q, \mathbf{x}y) := \delta(\delta(q, \mathbf{x}), y)$

Transition systems

For instance,

$$\delta(q_0, ababb) = q_2$$

Definition.

A *transition system* over *X*:

$$\mathcal{A} = (Q, q_0, \delta)$$

where $q_0 \in Q$ is the *initial state* and

$$\delta \colon Q \times X \to Q$$

is the transition function.

The map δ is extended to $Q \times X^*$ by

$$\delta(q, \varepsilon) := q,$$

 $\delta(q, \mathbf{x}y) := \delta(\delta(q, \mathbf{x}), y)$

$$F_{\mathcal{A}}(\mathbf{x}) := \delta(q_0, \mathbf{x})$$

$$F_{\mathcal{A}}(\mathbf{x}) := \delta(q_0, \mathbf{x})$$

Fact. If A is transition system,

 \cdot F_A is "half"-preassociative:

$$F_{\mathcal{A}}(\mathbf{x}) = F_{\mathcal{A}}(\mathbf{y}) \implies F_{\mathcal{A}}(\mathbf{x}\mathbf{z}) = F_{\mathcal{A}}(\mathbf{y}\mathbf{z})$$

 \cdot F_A may not be preassociative:

$$F_{\mathcal{A}}(b) = q_1 = F_{\mathcal{A}}(ba)$$

 $F_{\mathcal{A}}(bb) = q_2 \neq q_0 = F_{\mathcal{A}}(bba)$

$$F_{\mathcal{A}}(\mathbf{x}) := \delta(q_0, \mathbf{x})$$

Definition. A transition system is *preassociative* if it satisfies

$$\delta(q_0, \mathbf{x}) = \delta(q_0, \mathbf{y}) \implies \delta(q_0, z\mathbf{x}) = \delta(q_0, z\mathbf{y})$$

Lemma.

$${\mathcal A}$$
 preassociative \iff $F_{{\mathcal A}}$ preassociative

$$F_{\mathcal{A}}(\mathsf{x}) := \delta(q_0, \mathsf{x})$$

Definition. A transition system is *preassociative* if it satisfies

$$\delta(q_0, \mathbf{x}) = \delta(q_0, \mathbf{y}) \implies \delta(q_0, z\mathbf{x}) = \delta(q_0, z\mathbf{y})$$

Lemma.

$${\mathcal A}$$
 preassociative \iff $F_{{\mathcal A}}$ preassociative

Example. $X = \{0, 1\}$

$$F_{\mathcal{A}}(\mathbf{x}) = e \iff \#\{i \mid x_i = 1\} \text{ is even,}$$

$$F_{\mathcal{A}}(\mathbf{x}) = o \iff \#\{i \mid x_i = 1\} \text{ is odd.}$$

X, Q finite.

Definition. For an onto $F: X^* \to Q$, set

$$egin{aligned} q_0 &:= F(arepsilon), \ \delta(q,z) &:= \{F(\mathbf{x}z) \mid q = F(\mathbf{x})\}, \ \mathcal{A}^F &:= (Q,q_0,\delta) \end{aligned}$$

Generally, A^F is a non-deterministic transition system.

Lemma.

F is preassociative $\iff A^F$ is deterministic and preassociative

A criterion for preassociativity

F is preassociative $\iff A^F$ is deterministic and preassociative

For any state q of $\mathcal{A}=(Q,q_0,\delta)$, any $L\subseteq 2^{X^*}$ and $z\in X$, set

$$L^{\mathcal{A}}(q) := \{ \mathbf{x} \in X^* \mid \delta(q_0, \mathbf{x}) = q \}$$
$$z.L := \{ z\mathbf{x} \mid \mathbf{x} \in L \}$$

Proposition. Let $\mathcal{A} = (Q, q_0, \delta)$ be a transition system. The following conditions are equivalent.

- (i) A is preassociative,
- (ii) for all $z \in X$ and $q \in Q$,

$$z.L^{\mathcal{A}}(q)\subseteq L^{\mathcal{A}}(q'),$$
 for some $q'\in Q.$

$$z.L^{\mathcal{A}}(q)\subseteq L^{\mathcal{A}}(q'), \qquad ext{ for some } \ q'\in Q.$$

Example. $X = \{0, 1\}$

 $L^{\mathcal{A}}(e) = \{ \mathbf{x} \mid \mathbf{x} \text{ contains an even number of } 1 \}$ $L^{\mathcal{A}}(o) = \{ \mathbf{x} \mid \mathbf{x} \text{ contains an odd number of } 1 \}$

$$0.L^{\mathcal{A}}(o) \subseteq L^{\mathcal{A}}(o) \qquad 0.L^{\mathcal{A}}(e) \subseteq L^{\mathcal{A}}(e)$$
$$1.L^{\mathcal{A}}(o) \subset L^{\mathcal{A}}(e) \qquad 1.L^{\mathcal{A}}(e) \subset L^{\mathcal{A}}(o)$$

Associative length-based functions

Definition. $F: X^* \to X^*$ is *length-based* if

$$F = \phi \circ |\cdot|$$
 for some $\phi \colon \mathbb{N} \to X^*$.

Proposition. Let $F: X^* \to X^*$ be a length-based function. The following conditions are equivalent.

(i) F is associative

(ii)

$$|F(\mathbf{x})| = \alpha(|\mathbf{x}|)$$

where $\alpha \colon \mathbb{N} \to \mathbb{N}$ satisfies

$$\alpha(n+k) = \alpha(\alpha(n)+k), \quad \forall n, k \in \mathbb{N}$$

B-associativity and its variants

B-associative functions

Definition. A function $F: X^* \to X \cup \{\varepsilon\}$ is *B-associative* if

$$F(xF(y)^{|y|}z) = F(xyz), \quad \forall xyz \in X^*.$$

The function value does not change when replacing every letter of a substring of consecutive letters by the value of the function on this substring.

Example. {Arithmetic, geometric, harmonic} means!

Schimmack (1909), Kolmogoroff (1930), Nagumo (1930).

B-associative functions

The function value does not change when replacing every letter of a substring of consecutive letters by the value of the function on this substring.

B-associative functions

The function value does not change when replacing every letter of a substring of consecutive letters by the value of the function on this substring.

Strongly B-associative functions

Definition. A function $F: X^* \to X \cup \{\varepsilon\}$ is *strongly B-associative* if

The function value does not change when replacing every letter of a substring of consecutive letters by the value of the function on this substring.

For instance,

$$F(x_1x_2x_3x_4x_5) = F(F(x_1x_3)x_2F(x_1x_3)x_4x_5),$$

= $F(F(x_1x_3)x_2F(x_1x_3)F(x_4x_5)F(x_4x_5)).$

Strongly B-associative functions

Fact.

Strongly B-associative
$$\left\{\begin{array}{c} \Longrightarrow\\ \not\leftarrow\end{array}\right\}$$
 B-associative

Example.

$$F(\mathbf{x}) = \sum_{i=1}^{n} \frac{2^{i-1}}{2^n - 1} x_i$$
 is (not strongly) B-associative

Strongly B-associative functions

Fact.

Strongly B-associative
$$\left\{\begin{array}{c}\Longrightarrow\\ \Leftarrow\end{array}\right\}$$
 B-associative

Example.

$$F(\mathbf{x}) = \sum_{i=1}^{n} \frac{2^{i-1}}{2^n - 1} x_i$$
 is (not strongly) B-associative

Proposition. The following conditions are equivalent.

(i) F is strongly B-associative

$$F(xyz) = F(F(xz)^{|x|}yF(xz)^{|z|}) \quad \forall xyz \in X^*$$

Strong B-associativity and symmetry

Fact.

Example.

$$F(\mathbf{x}) = x_1$$
 is strongly B-associative but not symmetric

Proposition. If $F: X^* \to X \cup \{\varepsilon\}$ is strongly B-associative, then $\mathbf{y} \mapsto F(x\mathbf{y}z)$ is symmetric for every $xz \in X^2$.

A composition-free version of strong B-associativity

Definition. $F: X^* \to Y$ is *strongly B-preassociative* if

$$\left. \begin{array}{l} |x| = |x'| \\ |z| = |z'| \\ F(xz) \ = \ F(x'z') \end{array} \right\} \implies F(xyz) \ = \ F(x'yz').$$

Example. The length function $F: X^* \to \mathbb{R} \colon \mathbf{x} \mapsto |\mathbf{x}|$ is strongly B-preassociative.

Strongly B-associative and B-preassociative functions

Proposition. Let $F: X^* \to X \cup \{\varepsilon\}$. The following conditions are equivalent.

- (i) F is strongly B-associative.
- (ii) F is strongly B-preassociative and satisfies $F(F(\mathbf{x})^{|\mathbf{x}|}) = F(\mathbf{x})$.

Strongly B-associative and B-preassociative functions

Proposition. Let $F: X^* \to X \cup \{\varepsilon\}$. The following conditions are equivalent.

- (i) F is strongly B-associative.
- (ii) F is strongly B-preassociative and satisfies $F(F(\mathbf{x})^{|\mathbf{x}|}) = F(\mathbf{x})$.

Theorem. (AC) Let $F: X^* \to Y$. The following conditions are equivalent.

- (i) F is strongly B-preassociative and $ran(F_n) = \{F(x^n) \mid x \in X\}$ for all n;
- (ii) $F_n = f_n \circ H_n$ for every $n \ge 1$ where
 - · $H: X^* \to X \cup \{\varepsilon\}$ is strongly B-associative,
 - $f_n : \operatorname{ran}(H_n) \to Y$ is one-to-one.

Strongly B-preassociative and associative functions

$$H \colon X^* \to X^*$$
 is length-preserving if $|H(\mathbf{x})| = |\mathbf{x}|$ for all $\mathbf{x} \in X^*$.

Theorem. (AC) Let $F: X^* \to Y$. The following conditions are equivalent.

- (i) F is strongly B-preassociative.
- (ii) $F_n = f_n \circ H_n$ for every $n \ge 1$ where $\cdot H \colon X^* \to X^*$ is associative length-preserving strongly B-preassociative,
 - $f_n : \operatorname{ran}(H_n) \to Y$ is one-to-one.

From the factorization theorem to axiomatizations of function classes

- (Source) Start with a class of strongly B-associative functions which is axiomatized,
- (Target) Use factorization theorem to weaken this axiomatization to capture strongly B-preassociativity.

An example based on quasi-arithmetic means

 $I \equiv \text{non-trivial real interval.}$

Definition. $F: \mathbb{I}^* \to \mathbb{R}$ is a *quasi-arithmetic pre-mean function* if

$$F(\mathbf{x}) = f_n\left(\frac{1}{n}\sum_{i=1}^n f(x_i)\right), \qquad n \geq 1, \mathbf{x} \in X^n.$$

where f, f_n are

continous and strictly increasing

If $f_n = f^{-1}$ for every $n \ge 1$ then F is a quasi-arithmetic mean.

Example. The product function is a quasi-arithmetic pre-mean function over $\mathbb{I} =]0, +\infty[$ (take $f_n(x) = \exp(nx)$ and $f(x) = \ln(x)$) which is not a quasi-arithmetic mean function.

Characterization of quasi-arithmetic mean functions

Theorem (Kolmogoroff - Nagumo). Let $F: \mathbb{I}^* \to \mathbb{I}$. The following conditions are equivalent.

- (i) F is a quasi-arithmetic mean function.
- (ii) F is B-associative, and for every $n \geq 1$, F_n is symmetric, continuous, strictly increasing in each argument, reflexive.

Theorem. B-associativity and symmetry can be replaced by strong B-associativity. Moreover, reflexivity can be removed.

Characterization of quasi-arithmetic pre-mean functions

(Source) Quasi-arithmetic mean functions.

Theorem. (Target) Let $F: \mathbb{I}^* \to \mathbb{R}$. The following conditions are equivalent.

- (i) F is a quasi-arithmetic pre-mean function
- (ii) F is strongly B-preassociative, and for every $n \geq 1$, F_n is symmetric, continuous,
 - strictly increasing in each argument.