The Mathematics behind the Property of Associativity

An invitation to study the many variants of associativity

Bruno Teheux
and Jean-Luc Marichal
University of Luxembourg

Associativity for binary functions

$X, Y \equiv$ non-empty sets
$F: X \times X \rightarrow X$ is associative if

$$
F(x, F(y, z))=F(F(x, y), z)
$$

Associativity enables us to define expressions like

$$
\begin{aligned}
& F(x, y, z, t) \\
= & F(F(F(x, y), z), t) \\
= & F(x, F(F(y, z), t)) \\
= & \cdots
\end{aligned}
$$

Define $F: \bigcup_{n \geq 2} X^{n} \rightarrow X: \mathbf{x} \in X^{n} \mapsto F\left(x_{1}, \ldots, x_{n}\right)$

Notation

We regard n-tuples \mathbf{x} in X^{n} as n-strings over X
0 -string: ε
1-strings: x, y, z, \ldots
n-strings: $\mathbf{x}, \mathbf{y}, \mathbf{z}, \ldots$
$|\mathbf{x}|=$ length of \mathbf{x}

$$
X^{*}:=\bigcup_{n \geq 0} X^{n}
$$

We endow X^{*} with concatenation (X^{*} is a free monoid)
Any $F: X^{*} \rightarrow Y$ is called a variadic function, and we set

$$
F_{n}:=\left.F\right|_{X^{n}}
$$

We assume

$$
F(\mathbf{x})=\varepsilon \quad \Longleftrightarrow \quad \mathbf{x}=\varepsilon
$$

Associativity for variadic operations

$F: X^{*} \rightarrow X \cup\{\varepsilon\}$ is called a variadic operation.
Definition. $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ is associative if

$$
F(\mathrm{xyz})=F(\mathrm{x} F(\mathrm{y}) \mathbf{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Examples.

- the sum $x_{1}+\cdots+x_{n}$,
- the minimum $x_{1} \wedge \ldots \wedge x_{n}$,
- variadic extensions of binary associative functions.
F_{1} may differ from the identity map!

Associativity for string functions

Definition. $F: X^{*} \rightarrow X^{*}$ is associative if

$$
F(\mathrm{xyz})=F(x F(\mathrm{y}) \mathrm{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Associativity for string functions

$$
F(\mathrm{xyz})=F(x F(\mathrm{y}) \mathrm{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Examples.

- sorting in alphabetical order
- letter removing, duplicate removing

Associativity for string functions

$$
F(\mathrm{xyz})=F(x F(\mathrm{y}) \mathrm{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Examples. [...] duplicate removing
InPUT: xzu \cdots in blocks of unknown length given at unknown time intervals.
Output: $F(\mathbf{x z u} \cdots)$

Associativity for string functions

$$
F(\mathrm{xyz})=F(x F(\mathrm{y}) \mathrm{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Examples. [...] duplicate removing
InPUT: xzu \cdots in blocks of unknown length given at unknown time intervals.
Output: $F(\mathbf{x z u} \cdots)$

Associativity for string functions

$$
F(\mathrm{xyz})=F(x F(\mathrm{y}) \mathrm{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Examples. [...] duplicate removing
InPUT: xzu ... in blocks of unknown length given at unknown time intervals.
Output: $F(x z u \cdots)$

"Highly" distributed algorithms

Associativity for string functions

$$
F(\mathrm{xyz})=F(x F(\mathrm{y}) \mathrm{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Proposition.

(1) If $F, G: X^{*} \rightarrow X^{*}$ are associative, then

$$
F=G \quad \Longleftrightarrow \quad\left(F_{1}=G_{1} \text { and } F_{2}=G_{2}\right)
$$

(2) $G: X^{2} \rightarrow X$ is associative if and only if it admits a variadic associative extension $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ (i.e., $F_{2}=G$).

Preassociative variadic functions

Definition. We say that $F: X^{*} \rightarrow Y$ is preassociative if

$$
F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right) \Rightarrow F(x y z)=F\left(x^{\prime} y^{\prime} \mathbf{z}\right)
$$

Examples. $F_{n}(\mathbf{x})=x_{1}^{2}+\cdots+x_{n}^{2} \quad(X=Y=\mathbb{R})$

$$
F_{n}(\mathbf{x})=|\mathbf{x}| \quad(X \text { arbitrary, } Y=\mathbb{N})
$$

Slogan. Preassociativity is a composition-free version of associativity.

Fact. For $F: X^{*} \rightarrow Y$
F is preassociative
$\Longleftrightarrow \quad \operatorname{ker}(F)$ is a congruence on X^{*}

Associative and preassociative functions

Proposition. Let $F: X^{*} \rightarrow X^{*}$.
F is associative

$$
F \text { is preassociative } \quad \text { and } \quad F \circ F=F \text {. }
$$

Proposition Let $F: X^{*} \rightarrow \operatorname{ran}(F)$ be preassociative and

$$
g: \operatorname{ran}(F) \rightarrow Z
$$

If g is one-to-one or constant, then $g \circ F$ is preassociative.
Problem. Let $F: X^{*} \rightarrow Y$ be preassociative. For which g is $g \circ F$ preassociative?

Hard! Characterize $[\operatorname{ker}(F))$ in the congruence lattice of X^{*}.

Associative and preassociative functions

Theorem. (AC) Let $F: X^{*} \rightarrow Y$. The following conditions are equivalent.
(i) F is preassociative.
(ii) $F=f \circ H$ where
$H: X^{*} \rightarrow X^{*}$ is associative and $f: \operatorname{ran}(H) \rightarrow Y$ is one-to-one.

Associative and preassociative functions

Theorem. (AC) Let $F: X^{*} \rightarrow Y$. The following conditions are equivalent.
(i) F is preassociative.
(ii) $F=f \circ H$ where
$H: X^{*} \rightarrow X^{*}$ is associative and $f: \operatorname{ran}(H) \rightarrow Y$ is one-to-one.
Proof.
Define

$$
X^{*} \underset{\underset{\mathrm{~g}}{\mathrm{~g}}}{\stackrel{F}{\longrightarrow}} \operatorname{ran}(F)
$$

$$
\begin{gathered}
g(F(\mathbf{x})) \in \mathbf{x} / \operatorname{ker}(F), \\
H:=g \circ F,
\end{gathered}
$$

then

$$
F=F \circ H .
$$

Factorizations lead to axiomatizations of function classes

A three step technique:
(Binary) Start with a class associative functions $F: X^{2} \rightarrow X$,
(Source) Axiomatize all their associative extensions $F: X^{*} \rightarrow X \cup\{\varepsilon\}$,
(Target) Use factorization theorem to weaken this axiomatization to capture preassociativity.

The methodology will be used for other factorization results.

An example based on Aczélian semigroups

Theorem (Aczél 1949). $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is

- continuous
- one-to-one in each argument
- associative
if and only if

$$
H(x y)=\varphi^{-1}(\varphi(x)+\varphi(y))
$$

where $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and strictly monotone.
Source class of associative variadic operations

$$
H_{n}(\mathbf{x})=\varphi^{-1}\left(\varphi\left(x_{1}\right)+\cdots+\varphi\left(x_{n}\right)\right)
$$

An example based on Aczélian semigroups

Target axiomatization theorem
Let $F: \mathbb{R}^{*} \rightarrow \mathbb{R} \cup\{\varepsilon\}$. The following assertions are equivalent:
(i) F is preassociative and

- $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}(F)$,
- F_{1} and F_{2} are continuous,
- F_{1} and F_{2} one-to-one in each argument,
(ii) we have

$$
F_{n}(\mathbf{x})=\psi\left(\varphi\left(x_{1}\right)+\cdots+\varphi\left(x_{n}\right)\right)
$$

where $\varphi, \psi: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and strictly monotone.

Transition systems

A transition system over X :

$$
\mathcal{A}=\left(Q, q_{0}, \delta\right)
$$

where $q_{0} \in Q$ is the initial state and

$$
\delta: Q \times X \rightarrow Q
$$

is the transition function.

For instance,

$$
\delta\left(q_{0}, a b a b b\right)=q_{2}
$$

$$
\begin{gathered}
\delta(q, \varepsilon):=q \\
\delta(q, \mathbf{x y}):=\delta(\delta(q, \mathbf{x}), y)
\end{gathered}
$$

Transition systems

For instance,

$$
\delta\left(q_{0}, a b a b b\right)=q_{2}
$$

A transition system over X :

$$
\mathcal{A}=\left(Q, q_{0}, \delta\right)
$$

where $q_{0} \in Q$ is the initial state and

$$
\delta: Q \times X \rightarrow Q
$$

is the transition function.

The map δ is extended to $Q \times X^{*}$ by

$$
\begin{gathered}
\delta(q, \varepsilon):=q, \\
\delta(q, \mathbf{x y}):=\delta(\delta(q, \mathbf{x}), y)
\end{gathered}
$$

Definition.

$$
F_{\mathcal{A}}(\mathbf{x}):=\delta\left(q_{0}, \mathbf{x}\right)
$$

Preassociativity and transition systems

$$
F_{\mathcal{A}}(\mathbf{x}):=\delta\left(q_{0}, \mathbf{x}\right)
$$

Fact. If \mathcal{A} is transition system,

- $F_{\mathcal{A}}$ is "half"-preassociative:

$$
F_{\mathcal{A}}(\mathbf{x})=F_{\mathcal{A}}(\mathbf{y}) \Longrightarrow F_{\mathcal{A}}(\mathbf{x z})=F_{\mathcal{A}}(\mathbf{y z})
$$

- $F_{\mathcal{A}}$ may not be preassociative:

$$
\begin{gathered}
F_{\mathcal{A}}(b)=q_{1}=F_{\mathcal{A}}(b a) \\
F_{\mathcal{A}}(b b)=q_{2} \neq q_{0}=F_{\mathcal{A}}(b b a)
\end{gathered}
$$

Preassociativity and transition systems

$$
F_{\mathcal{A}}(\mathbf{x}):=\delta\left(q_{0}, \mathbf{x}\right)
$$

Definition. A transition system is preassociative if it satisfies

$$
\delta\left(q_{0}, \mathbf{x}\right)=\delta\left(q_{0}, \mathbf{y}\right) \quad \Longrightarrow \quad \delta\left(q_{0}, \mathbf{z x}\right)=\delta\left(q_{0}, z \mathbf{y}\right)
$$

Lemma.
\mathcal{A} preassociative $\Longleftrightarrow F_{\mathcal{A}}$ preassociative

Preassociativity and transition systems

$$
F_{\mathcal{A}}(\mathbf{x}):=\delta\left(q_{0}, \mathbf{x}\right)
$$

Definition. A transition system is preassociative if it satisfies

$$
\delta\left(q_{0}, \mathbf{x}\right)=\delta\left(q_{0}, \mathbf{y}\right) \quad \Longrightarrow \quad \delta\left(q_{0}, \mathbf{z x}\right)=\delta\left(q_{0}, z \mathbf{y}\right)
$$

Lemma.
\mathcal{A} preassociative $\Longleftrightarrow F_{\mathcal{A}}$ preassociative

Example. $X=\{0,1\}$

$$
\begin{aligned}
F_{\mathcal{A}}(\mathbf{x}) & =e \Longleftrightarrow \#\left\{i \mid x_{i}=1\right\} \text { is even } \\
F_{\mathcal{A}}(\mathbf{x}) & =0 \Longleftrightarrow \#\left\{i \mid x_{i}=1\right\} \text { is odd. }
\end{aligned}
$$

Preassociativity and transition systems

X, Q finite.
Definition. For an onto $F: X^{*} \rightarrow Q$, set

$$
\begin{gathered}
q_{0}:=F(\varepsilon), \\
\delta(q, z):=\{F(\mathbf{x} z) \mid q=F(\mathbf{x})\}, \\
\mathcal{A}^{F}:=\left(Q, q_{0}, \delta\right)
\end{gathered}
$$

Generally, \mathcal{A}^{F} is a non-deterministic transition system.
Lemma.
F is preassociative $\Longleftrightarrow \mathcal{A}^{F}$ is deterministic and preassociative

A criterion for preassociativity

F is preassociative $\Longleftrightarrow \mathcal{A}^{F}$ is deterministic and preassociative

For any state q of $\mathcal{A}=\left(Q, q_{0}, \delta\right)$, any $L \subseteq 2^{X^{*}}$ and $z \in X$, set

$$
\begin{aligned}
L^{\mathcal{A}}(q) & :=\left\{\mathbf{x} \in X^{*} \mid \delta\left(q_{0}, \mathbf{x}\right)=q\right\} \\
& z . L:=\{z \mathbf{x} \mid \mathbf{x} \in L\}
\end{aligned}
$$

Proposition. Let $\mathcal{A}=\left(Q, q_{0}, \delta\right)$ be a transition system. The following conditions are equivalent.
(i) \mathcal{A} is preassociative,
(ii) for all $z \in X$ and $q \in Q$,

$$
z . L^{\mathcal{A}}(q) \subseteq L^{\mathcal{A}}\left(q^{\prime}\right), \quad \text { for some } q^{\prime} \in Q
$$

$$
z . L^{\mathcal{A}}(q) \subseteq L^{\mathcal{A}}\left(q^{\prime}\right), \quad \text { for some } q^{\prime} \in Q
$$

Example. $X=\{0,1\}$

$L^{\mathcal{A}}(e)=\{\mathbf{x} \mid \mathbf{x}$ contains an even number of 1$\}$
$L^{\mathcal{A}}(o)=\{\mathbf{x} \mid \mathbf{x}$ contains an odd number of 1$\}$

$$
\begin{array}{ll}
0 . L^{\mathcal{A}}(o) \subseteq L^{\mathcal{A}}(o) & 0 . L^{\mathcal{A}}(e) \subseteq L^{\mathcal{A}}(e) \\
1 . L^{\mathcal{A}}(o) \subseteq L^{\mathcal{A}}(e) & 1 . L^{\mathcal{A}}(e) \subseteq L^{\mathcal{A}}(o)
\end{array}
$$

Associative length-based functions

Definition. $F: X^{*} \rightarrow X^{*}$ is length-based if

$$
F=\phi \circ|\cdot| \quad \text { for some } \phi: \mathbb{N} \rightarrow X^{*} .
$$

Proposition. Let $F: X^{*} \rightarrow X^{*}$ be a length-based function. The following conditions are equivalent.
(i) F is associative
(ii)

$$
|F(\mathbf{x})|=\alpha(|\mathbf{x}|)
$$

where $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ satisfies

$$
\alpha(n+k)=\alpha(\alpha(n)+k), \quad \forall n, k \in \mathbb{N}
$$

$$
\alpha(n+k)=\alpha(\alpha(n)+k), \quad \forall n, k \in \mathbb{N}
$$

$$
\alpha(n+k)=\alpha(\alpha(n)+k), \quad \forall n, k \in \mathbb{N}
$$

$$
\alpha(n+k)=\alpha(\alpha(n)+k), \quad \forall n, k \in \mathbb{N}
$$

$$
\alpha(n+k)=\alpha(\alpha(n)+k), \quad \forall n, k \in \mathbb{N}
$$

$$
\alpha(n+k)=\alpha(\alpha(n)+k), \quad \forall n, k \in \mathbb{N}
$$

$$
\alpha(n+k)=\alpha(\alpha(n)+k), \quad \forall n, k \in \mathbb{N}
$$

B-associativity and its variants

B-associative functions

Definition. A function $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ is B-associative if

$$
F\left(\mathbf{x} F(\mathbf{y})^{|\mathbf{y}|} \mathbf{z}\right)=F(\mathbf{x y z}), \quad \forall \mathbf{x y z} \in X^{*} .
$$

The function value does not change when replacing every letter of a substring of consecutive letters by the value of the function on this substring.

Example. \{Arithmetic, geometric, harmonic\} means!

Schimmack (1909), Kolmogoroff (1930), Nagumo (1930).

B-associative functions

The function value does not change when replacing every letter of a substring of consecutive letters by the value of the function on this substring.

B-associative functions

The function value does not change when replacing every letter of a substring of consecutive letters by the value of the function on this substring.

Strongly B-associative functions

Definition. A function $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ is strongly B-associative if

The function value does not change when replacing every letter of a substring of consecutive letters by the value of the function on this substring.

For instance,

$$
\begin{aligned}
F\left(x_{1} x_{2} x_{3} x_{4} x_{5}\right) & =F\left(F\left(x_{1} x_{3}\right) x_{2} F\left(x_{1} x_{3}\right) x_{4} x_{5}\right), \\
& =F\left(F\left(x_{1} x_{3}\right) x_{2} F\left(x_{1} x_{3}\right) F\left(x_{4} x_{5}\right) F\left(x_{4} x_{5}\right)\right) .
\end{aligned}
$$

Strongly B-associative functions

Fact.

$$
\text { Strongly B-associative }\left\{\begin{array}{l}
\Longrightarrow \\
\nLeftarrow
\end{array}\right\} \text { B-associative }
$$

Example.

$$
F(\mathbf{x})=\sum_{i=1}^{n} \frac{2^{i-1}}{2^{n}-1} x_{i} \quad \text { is (not strongly) B-associative }
$$

Strongly B-associative functions

Fact.

$$
\text { Strongly B-associative }\left\{\begin{array}{l}
\Longrightarrow \\
\nLeftarrow
\end{array}\right\} \text { B-associative }
$$

Example.

$$
F(\mathbf{x})=\sum_{i=1}^{n} \frac{2^{i-1}}{2^{n}-1} x_{i} \quad \text { is (not strongly) B-associative }
$$

Proposition. The following conditions are equivalent.
(i) F is strongly B-associative
(ii)

$$
F(x y z)=F\left(F(x z)^{|x|} \mathbf{y} F(x z)^{|z|}\right) \quad \forall x y z \in X^{*}
$$

Strong B-associativity and symmetry

Fact.

$$
\text { B-associative }+ \text { symmetric }\left\{\begin{array}{l}
\Longrightarrow \\
\nLeftarrow
\end{array}\right\} \text { strongly B-associative }
$$

Example.

$$
F(\mathbf{x})=x_{1} \quad \text { is strongly } B \text {-associative but not symmetric }
$$

Proposition. If $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ is strongly B-associative, then $\mathbf{y} \mapsto F(x \mathbf{y} z)$ is symmetric for every $x z \in X^{2}$.

A composition-free version of strong B-associativity

Definition. $\quad F: X^{*} \rightarrow Y$ is strongly B-preassociative if

$$
\left.\begin{array}{rl}
|\mathbf{x}| & =\left|\mathbf{x}^{\prime}\right| \\
|\mathbf{z}| & =\left|\mathbf{z}^{\prime}\right| \\
F(\mathbf{x z}) & =F\left(\mathbf{x}^{\prime} \mathbf{z}^{\prime}\right)
\end{array}\right\} \Longrightarrow F(\mathbf{x y z})=F\left(x^{\prime} \mathbf{y z} z^{\prime}\right) .
$$

Example. The length function $F: X^{*} \rightarrow \mathbb{R}: \mathbf{x} \mapsto|\mathbf{x}|$ is strongly B-preassociative.

Strongly B-associative and B-preassociative functions

Proposition. Let $F: X^{*} \rightarrow X \cup\{\varepsilon\}$. The following conditions are equivalent.
(i) F is strongly B-associative.
(ii) F is strongly B-preassociative and satisfies $F\left(F(\mathbf{x})^{|\mathbf{x}|}\right)=F(\mathbf{x})$.

Strongly B-associative and B-preassociative functions

Proposition. Let $F: X^{*} \rightarrow X \cup\{\varepsilon\}$. The following conditions are equivalent.
(i) F is strongly B-associative.
(ii) F is strongly B-preassociative and satisfies $F\left(F(\mathbf{x})^{|\mathbf{x}|}\right)=F(\mathbf{x})$.

Theorem. (AC) Let $F: X^{*} \rightarrow Y$. The following conditions are equivalent.
(i) F is strongly B-preassociative and $\operatorname{ran}\left(F_{n}\right)=\left\{F\left(x^{n}\right) \mid x \in X\right\}$ for all n;
(ii) $F_{n}=f_{n} \circ H_{n}$ for every $n \geq 1$ where

- $H: X^{*} \rightarrow X \cup\{\varepsilon\}$ is strongly B-associative,
- $f_{n}: \operatorname{ran}\left(H_{n}\right) \rightarrow Y$ is one-to-one.

Strongly B-preassociative and associative functions

$H: X^{*} \rightarrow X^{*}$ is length-preserving if $|H(\mathbf{x})|=|\mathbf{x}|$ for all $\mathbf{x} \in X^{*}$.

Theorem. (AC) Let $F: X^{*} \rightarrow Y$. The following conditions are equivalent.
(i) F is strongly B-preassociative.
(ii) $F_{n}=f_{n} \circ H_{n}$ for every $n \geq 1$ where

- $H: X^{*} \rightarrow X^{*}$ is
associative
length-preserving
strongly B -preassociative,
- $f_{n}: \operatorname{ran}\left(H_{n}\right) \rightarrow Y$ is one-to-one.

From the factorization theorem to axiomatizations of function classes

(Source) Start with a class of strongly B-associative functions which is axiomatized,
(Target) Use factorization theorem to weaken this axiomatization to capture strongly B-preassociativity.

An example based on quasi-arithmetic means

$\mathbb{I} \equiv$ non-trivial real interval.
Definition. $F: \mathbb{I}^{*} \rightarrow \mathbb{R}$ is a quasi-arithmetic pre-mean function if

$$
F(\mathbf{x})=f_{n}\left(\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right), \quad n \geq 1, \mathbf{x} \in X^{n}
$$

where f, f_{n} are
continous and strictly increasing

If $f_{n}=f^{-1}$ for every $n \geq 1$ then F is a quasi-arithmetic mean.
Example. The product function is a quasi-arithmetic pre-mean function over $\mathbb{I}=] 0,+\infty\left[\right.$ (take $f_{n}(x)=\exp (n x)$ and $f(x)=\ln (x)$) which is not a quasi-arithmetic mean function.

Characterization of quasi-arithmetic mean functions

Theorem (Kolmogoroff - Nagumo). Let $F: \mathbb{I}^{*} \rightarrow \mathbb{I}$. The following conditions are equivalent.
(i) F is a quasi-arithmetic mean function.
(ii) F is B -associative, and for every $n \geq 1, F_{n}$ is symmetric,
continuous,
strictly increasing in each argument, reflexive.

Theorem. B-associativity and symmetry can be replaced by strong B-associativity. Moreover, reflexivity can be removed.

Characterization of quasi-arithmetic pre-mean functions

(Source) Quasi-arithmetic mean functions.

Theorem. (Target) Let $F: \mathbb{I}^{*} \rightarrow \mathbb{R}$. The following conditions are equivalent.
(i) F is a quasi-arithmetic pre-mean function
(ii) F is strongly B-preassociative, and for every $n \geq 1, F_{n}$ is symmetric,
continuous,
strictly increasing in each argument.

