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Context
Soft-tissue biomechanics simulations with uncertainty

* Non-linear hyperelastic model as a stochastic PDE with random coefficients
- Partially-intrusive Monte-Carlo methods to propagate uncertainty
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Deformation of the beam: mean +/- standard deviation

- Implementation: DOLFIN [Logg et al. 2012] and chaospy [Feinberg and Langtangen 2015]

- Ipyparallel and mpi4py to massively parallelise individual forward model runs

across a cluster



1) Monte-Carlo method

- A non-linear stochastic system:
Flu,w)=0
Expected value of a quantity of interest [Caflisch 1998]:

B (ulw.) = [ 0 (u@w) dPw) = 5 30 (u@.w.) +o

2=

Probability space: (£2, F, P)

Random parameters: (W — (wl, wWa, ... ,CUM)

- The classical Monte-Carlo approach:
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2) MC method with use of sensitivity information

Expected value of a quantity of interest [Cao et al. 2004]:
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- Tangent linear model to evaluate the sensitivity derivatives [Farrell et al. 2013]:

8F(u, UJ) du — 8F(’U,, w) U: size of the deterministic problem

ou dw Ow M: number of random parameters
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First and Second moments of the displacement:




3) Multi-level MC method with use of PCE

Polynomial chaos expansion (PCE) [Wiener 1936]:

u®(z,w) = Z u” (x)H,(w)

ceJ
TN dim(Jar,) = (M 4 p)l (M)

ML-MC method [Matthies 2008, Giles 2015]:

Algorithm 1 Algorithm for the multilevel Polynomial Chaos Expansion Monte-Carlo method
d

1: Solve the deterministic system with average parameters to obtain u
2: k+—1
3: while no convergence do

4: for z=1to Z do

5 Generate w, = (wf,w3, ... ,wi,)

6: Generate u*(w;) = Fpee (u* 1 (w;)) or u? if k ==1

7 Call to deterministic solver to do d (1 or more) iterations with starting values u*(w.)

and all random parameter function of w,

8: output: u"’(wz) after d iterations

9: end for

10:  Calculate Fj, the PCE of u® from Z values of w, and uf(w,)
11: k=k+1

12: end while




4) 3D Numerical simulations
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Fig: Mesh, initial configuration and deformed configuration.

- The stored strain energy density function for a compressible Mooney—Rivlin material:
W =Ci(I —3) +Cs(Is —3) + Di(det F — 1)°

- The total potential energy: 11 = Wdx — pgdx, (g = gy, g = 9.81 m.s_2)

DY =2-10° Pa
p(wi) = p°(1 + w1y /2) Cy =2-10° Pa

_ 0 Cl = 104 Pa
Di(w2) = Di(l+w2) | 55— 600 ko /ms

- 2 RV with beta(2,2) distribution:
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4) 3D Numerical simulations
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4) 3D Numerical simulations
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4) 3D Numerical simulations
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Mean: influence of the number of levels
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4) 3D Numerical simulations

Global and local sensitivity analysis [Sobol 2001, Sudret 2008]

W9 w1
j&j 1.64 | 4.36
T || 0.014 | 0.036
o | | 0.0081 | 0.021

Table 1: Local sensitivity around mean parameters

max max
) U,

W9 w1 W9 W1
First order | 0.136 | 0.862 | 0.133 | 0.867
Total effect | 0.138 | 0.862 | 0.133 | 0.868

Table 2: Sobol’s sensitivity indices (global sensitivity) for the quantities of interest
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4) 3D Numerical simulations
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Computational time with 120 engines running in parallel: comparison between the different
methods with a number of realisations to have an accurate solution
(MC with Z = 18000, MC-SD with Z = 1000 and ML-MC with Z = 4500).
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Conclusion

Partially-intrusive Monte-Carlo methods to propagate uncertainty

By using sensitivity information and multi-level methods with polynomial chaos
expansion we demonstrate that computational workload can be reduced by
one order of magnitude over commonly used schemes

Implementation: DOLFIN [Logg et al. 2012] and chaospy [Feinberg and Langtangen 2015]

- Ipyparallel and mpi4py to massively parallelise individual forward model
runs across a cluster
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