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Context 
Soft-tissue biomechanics simulations with uncertainty 

• Non-linear hyperelastic model as a stochastic PDE with random coefficients
• Partially-intrusive Monte-Carlo methods to propagate uncertainty

Deformation of the beam: mean +/- standard deviation 

• Implementation: DOLFIN [Logg et al. 2012] and chaospy [Feinberg and Langtangen 2015] 
• Ipyparallel and mpi4py to massively parallelise individual forward model runs               

across a cluster 



1) Monte-Carlo method 
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F (u,!) = 0

• A non-linear stochastic system: 

• Expected value of a quantity of interest [Caflisch 1998]: 

• The classical Monte-Carlo approach: 
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2) MC method with use of sensitivity information 
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• Expected value of a quantity of interest [Cao et al. 2004]: 

• Tangent linear model to evaluate the sensitivity derivatives [Farrell et al. 2013]: 

U: size of the deterministic problem 
M: number of random parameters
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• First and Second moments of the displacement: 



3) Multi-level MC method with use of PCE 

5

• Polynomial chaos expansion (PCE) [Wiener 1936]: 

• ML-MC method [Matthies 2008, Giles 2015]: 
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4) 3D Numerical simulations 
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• The stored strain energy density function for a compressible Mooney–Rivlin material:

W = C1(I1 � 3) + C2(I2 � 3) +D1(detF� 1)2

120000 d.o.f

⇢(!1) = ⇢0(1 + !1/2)

⇧ = Wdx� ⇢gdx,
�
g = g~y, g = 9.81 m.s�2

�
• The total potential energy:

• 2 RV with beta(2,2) distribution:
D1(!2) = D0

1(1 + !2)
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>>:

D0
1 = 2 · 105 Pa

C2 = 2 · 105 Pa
C1 = 104 Pa
⇢0 = 600 kg/m3

Fig: Mesh, initial configuration and deformed configuration. 



4) 3D Numerical simulations 
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4) 3D Numerical simulations 

8

10 100 1000 10000 1e+05
Z

0

0.005

0.01

0.015

0.02

u ym
ax

 (m
)

MC
MC-SD
ML-MC

Std



4) 3D Numerical simulations 
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Mean: influence of the number of levels
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4) 3D Numerical simulations 
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Global and local sensitivity analysis [Sobol 2001, Sudret 2008] 
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Table 1: Local sensitivity around mean parameters

Table 2: Sobol’s sensitivity indices (global sensitivity) for the quantities of interest



4) 3D Numerical simulations 

11

|umax

y

|(mm) MC-simulations (Z=18000)

Computational time with 120 engines running in parallel: comparison between the different  
methods with a number of realisations to have an accurate solution  

(MC with Z = 18000, MC-SD with Z = 1000 and ML-MC with Z = 4500).

MC MC-SD ML-MC
T (min) 1100 65 225



Conclusion
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• By using sensitivity information and multi-level methods with polynomial chaos 
expansion we demonstrate that computational workload can be reduced by 
one order of magnitude over commonly used schemes

• Implementation: DOLFIN [Logg et al. 2012] and chaospy [Feinberg and Langtangen 2015]

• Ipyparallel and mpi4py to massively parallelise individual forward model 
runs across a cluster

• Partially-intrusive Monte-Carlo methods to propagate uncertainty


