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In many soft-tissue biomechanics simulations the material parameters used in the definition
of the hyperelastic energy density functional often have a significant degree of uncertainty as-
sociated with them. In a clinical environment, where safety-critical decisions must be made
based on the output of simulations, being able to propagate and visualise this uncertainty is of
importance.

To propagate uncertainty we recast the the geometrically non-linear Mooney-Rivlin hyper-
elastic model as a stochastic PDE with random coeflicients. We advocate the solution of this
non-linear stochastic problem with what we call partially-intrusive Monte-Carlo methods. These
methods only use the output of the forward model and sensitivity information (tangent linear
models derived from UFL expressions) [1] and polynomial chaos expansion (PCE) techniques
[2, 3] to greatly improve convergence.

We implement our forward and tangent linear model solvers using DOLFIN [4] and we
use chaospy [5] to generate various stochastic objects. We then use ipyparallel and mpidpy to
massively parallelise individual forward model runs across a cluster.

We compare the results of our method with simple Monte-Carlo methods. By using sensi-
tivity information we demonstrate that computational workload can be reduced by one order of
magnitude over commonly used schemes.
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Figure 1: Deformation of the beam: mean + /- standard deviation.
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