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Overview

GGoals.

Example uncertainty quantitication problem: sparse
surface observations of a geometrically non-linear
hyperelastic block.

Jsing dolfin-adjoint [Farrell et al.] and petsc4py
Dalcin] to solve the problem.

Efficiently dealing with the high-dimensional
posterior covariance approximation.
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Q: What can we infer about the material parameters inside
the domain, just from displacement observations on the
outside?

Q: Which parameters am | most uncertain about?



Key Features

Use Bayesian theory of inference to give statistical
uncertainty quantification framework, over classical
regularised PDE-constrained optimisation framework.

dolfin-adjoint: can derive MPl-aware adjoint and higher-
order adjoint equations from high-level Unified Form
Language expressions.

'Fast’ high parameter space uncertainty quantitication
~ minutes for thousands of parameters on laptop.

Parallel linear algebra solved using PETSc and SLEPCc.
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lerminology

 Observation. Displacements. VY
 Parameter. Material property. X

 Parameter-to-observable map. Finite deformation
hyperelasticity. f ( X)



Bayes [heorem

71-posterior(X | )/) X Tikelihood (y ‘ X)ﬂ-prior(X)

Goal: Given the observations, find the posterior
distribution of the unknown parameters.



Assumptions

1. I think my parameter is Gaussian (prior).

2. My parameter to observable map is linear and my
noise model is Gaussian.

X ~ N(xq, Fprior), X € R"

Y =AX+ E Y eRM™ Aec RMN

E ~N(0, Thoise), Y € R™
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1 2 1 >
—In 7Tposterior(x y) = 5”)/ — AXHr—l T §HX — XOHr—l

noise prior

— X — X
2|| MAP I H

Tposterior ™ N (Xmap. H_l)
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71-posterior(X ‘ )/) X Tikelihood (y ‘ X)ﬂ-prior(X)

XMAP = arger[ggx Wposterior(x V)
X

XMAP
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Strateqgy

XMAP




XMAP

H™ (xvap)

cov(x




T hosterior ™ N (Xmap. H—l)

approx 1
7Tposterior ™~ N(XMAP' H (XI\/IAP))

XMAP 1
H™*(xmaP)

YN

cov(x | y)

XCM
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Back to the propblem...



Find xppap that satisfies:

1 .1 ,
n}<|n§|‘y_ f(X)Hr—l _|__||X_XOH|-—1 1

noise 2 prior

where the parameter-to-observable map f : R" — R is is defined such that:
F(F(x), x) = DV/Q N(F(x), x) dx =0 Wv e H5(Q), x € L2(Q),
where
|_| : p— / , d - / t ¢ dS,
(u, x) Q’l/)(u x) dx - U

Y(u, x) = g(lc —d)—xIn(J) + % In(J)?,
o

F = G—X — | + VU,
C=F'F,
IC = tI’(C),
J = detF.
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from dolfin import *
mesh = UnitSquareMesh(32, 32)

U = VectorFunctionSpace(mesh, "CG", 1)

V = FunctionSpace(mesh, "CG", 1) phi = (mu/2.0)*(Ic - dims) - mu*1ln(J) + (1lmbda/

# solution 2.0)*(In(J)) **2

u = Function(U) Pi = phixdx

# test functions # gateux derivative with respect to u in direction v
v = TestFunction(U) F = derivative(Pi, u, v)

# incremental solution # and with respect to u in direction du

du = TrialFunction(U) J = derivative(F, u, du)

mu = interpolate(Constant(1.0), V)

lmbda = interpolate(Constant(100.0), V) u_h = Function(U)
F_h = replace(F, {u: u_h})
dims = mesh.type().dim() J_h = replace(J, {u: u_h})
I = Identity(dims) solve(F_h == 0, u_h, bcs, J=J_h)
F =1+ grad(u)
C = F.T*F
J = det(F)

Ic = tr(C)




u obs << File(“observations.xdmf”)

J = Functional (inner(u - u obs, u - u obs)*dx + \
inner (mu, mu))

m = Control (mu)

J hat = ReducedFunctional (J, m)

dJdm = Jhat.derivative () [0]
H = Jhat.hessian (dm) [0]
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Solving

Strategy: Use hooks in dolfin-adjoint to solve with
petsc4py-based contexts.
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 Parameter-to-observable map. Newton-Krylov
method.

* Inner solve with GAMG preconditioned GMRES
(KSP) with near null-space set.

* Newton with second-order backtracking line
search (SNES).
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e MAP estimator.

 Bound constrained Quasi-Newton BLMVM with
More-Thuente line search (TAQO).

 Reisz-Map aware solver - mesh independent
convergence.
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* Principal Component Analysis.

» | eading: Krylov Schur (SLEPC).
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Big Dense

H c R

Expensive to calculate Only have action
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H=QAQ'

rpost — H—l — QT/\—lQ

In addition: Optimal low rank updates from Spantini et al.
[arXiv 2016]
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trailling_eigenvector_O

-2.959e+00 -2 0 2.700e-01
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| eading Eigenvectors

Direction in parameter space most constrained by the
observations
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leading_eigenvector_0
1.250e+01
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leading_eigenvector_1
1.405e+01
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Matches trends from Flath et al. p424 for linear parameter to observable maps.
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Full Hessian.
4000+ actions.
2000 to calculate H. 2000 to extract.

Partial Hessian.
501 actions for 292 for leading.
209 to calculate H. 292 to extract.

Huge savings in computational cost.
Scales with model dimension.
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summary

We are developing methods to access uncertainty In
the recovered parameters in hyperelastic materials.

This is done within the framework of Bayesian
inference.

dolfin-adjoint makes assembling the equations
relatively easy, solving them is tougher.

Currently exploring efficient Monte Carlo methods to
quickly calculate sample statistics of posterior.
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