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Overview
• Goals. 

• Example uncertainty quantification problem: sparse 
surface observations of a geometrically non-linear 
hyperelastic block. 

• Using dolfin-adjoint [Farrell et al.] and petsc4py 
[Dalcin] to solve the problem. 

• Efficiently dealing with the high-dimensional 
posterior covariance approximation.
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Q: What can we infer about the material parameters inside 
the domain, just from displacement observations on the 

outside?

Q: Which parameters am I most uncertain about?



Key Features
• Use Bayesian theory of inference to give statistical 

uncertainty quantification framework, over classical 
regularised PDE-constrained optimisation framework. 

• dolfin-adjoint: can derive MPI-aware adjoint and higher-
order adjoint equations from high-level Unified Form 
Language expressions. 

• ‘Fast’ high parameter space uncertainty quantification 
~ minutes for thousands of parameters on laptop. 

• Parallel linear algebra solved using PETSc and SLEPc.
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Terminology

• Observation. Displacements. 

• Parameter. Material property. 

• Parameter-to-observable map. Finite deformation 
hyperelasticity.
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Bayes Theorem

�posterior(x | y) � �likelihood(y | x)�prior(x)

Goal: Given the observations, find the posterior 
distribution of the unknown parameters.
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Assumptions
1. I think my parameter is Gaussian (prior). 

2. My parameter to observable map is linear and my 
noise model is Gaussian.

X ∼ N (x0,Γprior), X ∈ Rn

Y = AX + E, Y ∈ Rm,A ∈ Rm×n

E ∼ N (0,Γnoise), Y ∈ Rm
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� ln�posterior(x | y) =
1

2
�y � Ax�2

��1noise
+

1

2
�x � x0�2��1prior

=
1

2
�x � xMAP�H

πposterior ∼ N (xMAP,H−1)



�posterior(x | y) � �likelihood(y | x)�prior(x)

xMAP = argmax
x∈Rn

πposterior(x | y)

xMAP

xCM

cov(x | y)
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Strategy
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πposterior ∼ N (xMAP,H−1)

πapproxposterior ∼ N (xMAP,H
−1(xMAP))

xMAP

xCM

cov(x | y)

H−1(xMAP)



Back to the problem…
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Find xMAP that satisfies:

min
x

1

2
�y � f (x)�2

��1noise
+

1

2
�x � x0�2��1prior

,

where the parameter-to-observable map f : Rn � Rm is is defined such that:

F (f (x), x) = Dv

�

�
�(f (x), x) dx = 0 �v � H1

D(�), x � L2(�),

where

�(u, x) =
�

�
�(u, x) dx �

�

�
t · u ds,

�(u, x) =
x

2
(Ic � d)� x ln(J) +

�

2
ln(J)2,

F =
��

�X
= I+�u,

C = FTF,

IC = tr(C),

J = detF.



from dolfin import * 
mesh = UnitSquareMesh(32, 32) 

U = VectorFunctionSpace(mesh, "CG", 1) 
V = FunctionSpace(mesh, "CG", 1) 
# solution 
u = Function(U) 
# test functions 
v = TestFunction(U) 
# incremental solution  
du = TrialFunction(U) 
mu = interpolate(Constant(1.0), V) 
lmbda = interpolate(Constant(100.0), V) 

dims = mesh.type().dim() 
I = Identity(dims) 
F = I + grad(u) 
C = F.T*F 
J = det(F) 
Ic = tr(C)

phi = (mu/2.0)*(Ic - dims) - mu*ln(J) + (lmbda/
2.0)*(ln(J))**2 
Pi = phi*dx 
# gateux derivative with respect to u in direction v  
F = derivative(Pi, u, v) 
# and with respect to u in direction du 
J = derivative(F, u, du) 

u_h = Function(U) 
F_h = replace(F, {u: u_h}) 
J_h = replace(J, {u: u_h}) 
solve(F_h == 0, u_h, bcs, J=J_h)
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u_obs << File(“observations.xdmf”)

J = Functional(inner(u - u_obs, u - u_obs)*dx + \

               inner(mu, mu))

m = Control(mu)

J_hat = ReducedFunctional(J, m)

...

dJdm = Jhat.derivative()[0]

H = Jhat.hessian(dm)[0]



Solving
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Strategy: Use hooks in dolfin-adjoint to solve with 
petsc4py-based contexts. 



• Parameter-to-observable map. Newton-Krylov 
method. 

• Inner solve with GAMG preconditioned GMRES 
(KSP) with near null-space set. 

• Newton with second-order backtracking line 
search (SNES).
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• MAP estimator. 

• Bound constrained Quasi-Newton BLMVM with 
More-Thuente line search (TAO). 

• Reisz-Map aware solver - mesh independent 
convergence.
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• Principal Component Analysis. 

• Leading: Krylov Schur (SLEPc).
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H ∈ Rn×n

Big Dense

Expensive to calculate Only have action
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H = QΛQT

Γpost = H
−1 = QTΛ−1Q

In addition: Optimal low rank updates from Spantini et al. 
[arXiv 2016]
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xmap
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Leading Eigenvectors
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Direction in parameter space most constrained by the 
observations
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Matches trends from Flath et al. p424 for linear parameter to observable maps.

Γprior

Γpost
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Full Hessian. 
4000+ actions.  

2000 to calculate H. 2000 to extract.

Partial Hessian. 
501 actions for 292 for leading.  

209 to calculate H. 292 to extract.

Huge savings in computational cost. 
Scales with model dimension.



Summary
• We are developing methods to access uncertainty in 

the recovered parameters in hyperelastic materials. 

• This is done within the framework of Bayesian 
inference. 

• dolfin-adjoint makes assembling the equations 
relatively easy, solving them is tougher. 

• Currently exploring efficient Monte Carlo methods to 
quickly calculate sample statistics of posterior.
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