SLICES, SLABS, AND SECTIONS OF THE UNIT HYPERCUBE
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ABSTRACT. Using combinatorial methods, we derive several formulas for the
volume of convex bodies obtained by intersecting a unit hypercube with a half-
space, or with a hyperplane of codimension 1, or with a flat defined by two
parallel hyperplanes. We also describe some of the history of these problems,
dating to Pélya’s Ph.D. thesis, and we discuss several applications of these
formulas.

1. INTRODUCTION

In this note we study the volumes of portions of n-dimensional cubes determined
by hyperplanes. More precisely, we study slices created by intersecting a hypercube
with a halfspace, slabs formed as the portion of a hypercube lying between two
parallel hyperplanes, and sections obtained by intersecting a hypercube with a
hyperplane. These objects occur naturally in several fields, including probability,
number theory, geometry, physics, and analysis. In this paper we describe an
elementary combinatorial method for calculating volumes of arbitrary slices, slabs,
and sections of a unit cube. We also describe some applications that tie these
geometric results to problems in analysis and combinatorics.

Some of the results we obtain here have in fact appeared earlier in other contexts.
However, our approach is entirely combinatorial, in contrast with most of the other
work on this topic. In addition, due to the wide application of cube slices and
sections in several fields, it appears that some of the previous work we describe
here (including, for instance, Pélya’s thesis) is not widely cited in the literature,
and we hope that by surveying some of this work here we might make some of the
history and prior contributions on these topics better known.

We remark that Zong’s recent article [32] and monograph [33] survey many
problems and topics regarding n-dimensional cubes and parallelotopes, including
questions on sections, projections, triangulations, and inscribed simplices. We refer
the reader to these sources for additional problems and questions about unit cubes.

We employ the following notation throughout. Let I"™ denote the n-dimensional
unit cube placed in the positive orthant of R” with one vertex at the origin,

Im:.=10,1]"

Also, sometimes it is more convenient to consider the unit cube centered at the
origin in R™, and we let C™ denote this cube,
no.__ 1 11"
(1) "= [=35]
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In particular, it is often more useful to work with C™ rather than I™ in analytic
applications, since C" is simply the ball of radius 1/2 with respect to the ¢, norm
on R”.

Next, for a nonzero vector w := (wy,...,w,) in R™ and a real number z, let
G.. denote the halfspace in R" given by

Gy, ={xeR":w-x <z},

and let H‘?ijl denote the corresponding hyperplane with normal vector w,

Hlf,_zl ={xeR":w-x=2z2}.

If some component of w is 0, then clearly any question on slices, slabs, or sections
of unit cubes involving Gy, , or Hv’f,;l reduces to a problem in a lower dimension,
so we assume that each component of w is nonzero. It is also clear by symmetry
that the volume of a slice, slab, or section is unchanged when the components of w
are permuted.

For a positive integer n, let [n] denote the set {1,2,...,n}, and let V,, denote
the set of vertices of 2C™, that is, V,, := {—1,1}". Also, for s € V,,, let &5 :=
[[i=, si- For a real number p > 1, let |-[|, denote the usual £, norm on R",
so [wll, == (3iy lwil”)!/?, and let [|w]|, := max{|w;| : i € [n]}. We also set
Ny = {i € [n] : w; < 0}, and we denote by Ay, the n x n diagonal matrix whose
ith diagonal entry is 1 if w; is positive and —1 if it is negative. In addition, for any
K C [n], we denote by 1k the characteristic vector of K in {0,1}", and for subsets
K, and K of [n] we let K1 © K5 denote their symmetric difference. Also, for a real
number r and nonnegative integer n, we set 7’ := (max{r,0})". Finally, if x and
y are vectors in R", we write x > y if x; > y; for each ¢, and in the same way we
write x =y if x; > y; for each i.

This paper is organized in the following way. In Section 2 we derive a formula
for the volume of an arbitrary slice of a cube by using an elementary combinatorial
argument (see Theorem 1), and we use this to derive some formulas for volumes
of central slabs of cubes (see Theorem 2 and Corollary 3). We also describe some
of the history of these problems here, including Pélya’s dissertation on volumes of
central slabs of cubes. In Section 3 we use our formula for slices to determine some
formulas for the volume of a section of a cube (see Theorem 4 and Corollary 5), and
we describe some of the history and applications of the problem of bounding this
volume. In Section 4 we describe several applications of these formulas, including
some formulas for integrating a polynomial over a cube slice or a cube section,
some computations in probability, and some combinatorial identities, including a
geometric interpretation of the Eulerian numbers.

2. SLICES AND SLABS OF CUBES

We derive an exact formula for the volume of a hypercube sliced by a hyperplane
of codimension 1. Our method, which generalizes a geometric approach proposed
in 1989 by Denardo and Larraza [15], employs a signed simplicial subdivision of the
sliced cube, together with the inclusion-exclusion principle.

For any w € R™ with w > 0, any z € R, and any K C [n], define the set AVI;Z
by

AR =G N{xeR" x> 1k}
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This set is empty if w - 1x > z, and it is an n-simplex if w - 1x < z. Also, we
immediately see that by translating the set AVI‘;Z by the vector —1k we obtain the
set A2

w,z—wW-1p "

The following lemma, which is the key result of this paper, yields a signed de-
composition of the sliced cube G%, , N 1™ into the simplices AL ..

Lemma 1. Suppose w € R™ has all positive components, and suppose z is a real
number. Then

) Vol (G, . NT") = > (=1)!FIVol, (AF ).
KC[n]

Proof. By writing I" = {x € R" : x = 0} \ U,y {x € R" : x = 143 }, we see that

Vol,, (G:;“z M In) = Vol,, <A\%,z \ U Aé"f’}z)

i€[n]
=Vol,(AZ ) — Voln( U Avj}‘z),
1€[n]

since clearly Aé‘f,}z - A{f,’ ,, for each i. Then, by inclusion-exclusion, we find that

Voln( U Ai;’}z) = > (—1)|K|+1Voln( N Aij}z>

i€[n] KCln] €K
K#9
= Y (- vol, (AX ),
KC[n]
K#9
which completes the proof. ([l

We now establish a formula for the volume of an arbitrary slice of a hypercube.

Theorem 1. Suppose w € R™ has all nonzero components, and suppose z is a real
number. Then

1
n ny _ DOHIE (5w "
(3) Vol,, (G, . NI") = ST o S (-)F Gz -we1g)) .
=1 KC[n]
Proof. The result follows from (2) if we assume that w >~ 0. In fact, as the volume of
the n-simplex bounded by the coordinate hyperplanes and the hyperplane w-x =1

is 1/(n!T];_, w;) (see for instance [16]), we immediately have

(z—w-1g)"
K\ _ o = +
Voln (Ags.2) = Vol (A i) = =g

Assume now that w € R” has all nonzero components. By using the change of
variables x' = Awx + 1n,,, it is straightforward to show that

Vol,, (Gl . N I™) = Vol,, (G nIm.

Therefore, since Aww has all positive components, we obtain

wW,2—=W-1N,

n n 1 n
Voln(Gw7Z Vi ) = m [ ](_1)K6Nw (z—w- 1K9NW)+7
= KC[n

and the result follows by observing that {K © Ny, : K C [n]} = 2["). O
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The general formula for the volume of a cube slice seems to have first appeared
in a note of Barrow and Smith in 1979 [5]. The proof there exploits the simple
integration formula for the truncated power function f(z) = (z—a)k. Also, Ueda et
al. in 1994 [28] and Bradley and Gupta in 2002 [11] independently derived formulas
similar to (3) by analytic means in the context of investigating certain problems
in probability (see Section 4.2). A special case of the formula however occurred
considerably earlier. Certainly from Theorem 1 one immediately obtains a formula
for the volume of the slab

{xeR" iz <w-x< 2z} NI,

for real numbers z; and 2y with 27 < 29. In his 1912 dissertation [24], Pdlya
studied the special case of determining the volume of a central slab of a hypercube,
motivated by a question in statistical mechanics. His results are published in [25].
It is simplest to describe his result here using the centered unit cube C™ from (1).
Let S, 4 denote the central slab with normal vector w in R™ and thickness 6/ [[w||,,

we ={xeR":|w-x| <0/2},

and assume each component w; of w is nonzero. Pdlya in effect proved that

(4) Vol,, (S‘va,e n C") _ g/ sin 0z H sinwir
0

™ - w; T
=1

This may be verified by considering the Fourier transform of a convolution of char-
acteristic functions of intervals. He also determined a formula for this integral by
using the residue theorem. We establish his result here as a simple consequence of
Theorem 1.

Theorem 2. Suppose w € R™ has all nonzero components, and suppose 6 is a
positive real number. Let v denote the vector (wi, ..., wy,0). Then

(5) Vol,, (S g NC") = — e (ves)l .
( s ) 2 IH L w; SEVZHH +
Proof. Let y = w - 1(,,. Using Theorem 1, we have
Voln (S;nv’o N Cn) = Voln (G:Lv,y/2+9/2 N In) VO] (Gw y/2-0/2 N I )

1
= s S0 (02w 1)~ (- 0 2w 1)
onpl Hi:l w; K;[n] ( + +)

1 n
:2”77,!1_[ =1 Wi Z ES(V'S)+' g

s€Vint1

Remark. In fact, Pélya considered the dual problem of slicing an n-dimensional
box of arbitrary dimensions centered at the origin, with a slab having the fixed
normal vector (1,...,1): If w € R™ has all positive components and Py 0 denotes
the polytope determined by the inequalities |z;| < w; for ¢ € [n] and |Zi:1 x| <
then Pdlya showed that

ontl 90 gin Oz yo sinw; 1 "
VOln(Pxﬁ): - / - H - dxzﬁ Z 65(V~S)+7

0 i=1 SEV,41

where again v = (wi,...,w,,0). We have transcribed his results here for the
equivalent problem where the box is fixed and the normal vector of the slab varies.



SLICES, SLABS, AND SECTIONS OF THE UNIT HYPERCUBE 5

Pélya also mentioned that this last formula can be obtained by using a signed
simplicial subdivision, as in the proof of Lemma 1.

Pélya’s formula and its close relatives have been rediscovered several times since
then by many people (including the authors, independently). For example, Borwein
and Borwein [9] proved in 2001 that

2 /OO " sin(a;z)
- ————dx =

where ag, ..., a, are positive real numbers, and ag is 1, 0, or —1 depending on
whether ag + Y1, s;a; is positive, zero, or negative. It is straightforward to show
that this is equivalent to (5).

We next derive two additional useful formulations for the volume of a central
slab of a cube. Let V- denote the set of n-tuples in V,, whose last coordinate is
—1, and let V,;F .=V, \ V..

2”171! Z €sCls <a0 + ; Siai> 5

seVy,

Corollary 3. Suppose w € R™ has all nonzero components, and suppose 0 is a

positive real number. If v = (w1, ..., wy,0), then
n n 1 n

(6) VOln(Sw’eﬂC )Zl-‘rm Z Es(V'S)+'
seVn__*_1

Also, if v/ = (0, w1, ..., wy,), then

n n 0 1 / n

(7) VOln(Sw’emC):E+m ; ES(V'S)+.

sE

n+1
Proof. By using the immediate identity
= () ()
we easily obtain
(8) Z es(v-s)} = Z s (v-s)" + Z es(ves).
seV,, sevh seV, 4

Using the multinomial theorem, we also have

k n n

nl @Fn+1

n ki ki+1

> e(ves)" = > WHM’ > I

SGV:JA iy kng120 e SGVJJA i=1
kit-+kny1=n

The inner sum on the right equals [} ; ((—=1)¥** +1), which is 0 for each possible

choice of k1, ..., kn41 except k1 =--- =k, =1 and k1 = 0. Therefore,
9) Z s (v-s)" =2"n! H w;,
seV,h, i=1

and (6) follows from (5), (8), and (9). Equation (7) may be verified in the same
fashion. ]

A formula similar to (6) also appears in Borwein and Borwein [9], where it is
used in conjunction with (4) to produce some striking formulas for some integrals
involving the sinc function, where sinc(z) := sin(z)/x. For example, since the sum
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of the reciprocals of the odd primes first exceeds 1 at p = 29, we see from (4) and
(6) that

/OO sinc(x) H sinc(x/p) dax = g

0

p prime
3<psm
for m < 28, but
~ x 54084649°
. : de = = —
/0 sinc() Hm sinc(z/p)dz = 5 ( 181440 - 32348466158>
géppém

= (0.49999999999908993 . . .).

Similar formulas appear in [2] and [9]. We mention also that Borwein, Borwein, and
Mares [8] developed further connections between multivariable sinc integrals and
volumes of polytopes constructed by intersecting flats formed by pairs of symmetric
hyperplanes. In addition, Barthe and Koldobsky [6] investigated the problem of
minimizing the volume of a central slab of the unit hypercube, if the thickness of
the slab is fixed.

The formula (7) for the volume of a central slab of a cube is employed in Section 3
to obtain a formula for the volume of a central section of a cube.

3. SECTIONS OF CUBES

The convex bodies formed by intersecting a hypercube with a hyperplane are also
well-studied in analysis and number theory, especially problems about bounding
their volumes. For example, Vaaler [29] established a sharp lower bound on the
volume of a central slice of C™ by a k-dimensional hyperplane HY that passes
through the origin,

Vol (HY ne™) > 1,
and Ball [4] determined an upper bound for an arbitrary hyperplane H* of dimen-
sion k,
Vol (H* nC™) < 2n=k)/2,

This is sharp when k > n/2. Similar problems have been studied in other settings,
for example, bounding the volume of sections of the unit ball of various £, norms
in R™ [22], studying sections of polydiscs in C™ [23], and investigating sections of
regular simplices [30]. More information may be found for instance in [17].

The lower bound on the volume of a central section of a hypercube plays an
important role in the strengthening of Siegel’s lemma by Bombieri and Vaaler [7].
The upper bound is of interest for example in the well-known (and now completely
resolved) problem of Busemann and Petty: If A and B are symmetric convex bodies
in R™, must Vol,(A) > Vol,,(B) if Vol,_1 (H ' N A) > Vol,_i(Hj' N B) for
every unit vector u in R"? (Recall a set A C R™ is symmetric if —x € A whenever
x € A.) Ball [3] showed that comparing a hypercube with a sphere provides a
counterexample for dimensions n > 10; more generally, the answer is now known to
be affirmative only for n < 4. See Koldobsky [17] or Zong [31] for more information.

Here we obtain some exact formulas for the volume of an arbitrary section of a
hypercube. It is possible that more precise information on volumes of sections of
cubes may allow for more exact bounds in applications. Indeed, the precise values
of certain central sections of cubes play an important role in the recent work of
Aliev [1], where in effect the volume of the central section of the cube C™ obtained
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with the symmetric hyperplane H :?[:]1,0 is employed in an improved lower bound on
the maximal element of a set of positive integers having distinct subset sums.

In the following theorem we present one formula for general sections of I™ and
another for central sections of C™. For the sake of clarity we observe that Hy !
intersects C™ if and only if |z| < 4 ||w]|,. Similarly, H."! intersects I™ if and only

if |2 — 3w 1py| < 5 [|wl;, that is, if and only if w- 1y, <2 < W L\, -

w

Theorem 4. Suppose w € R™ has all nonzero components, and suppose z is a real
number. Then

[[wll

In particular, for a central section of C™ we have

(10)  Vol,_i(HoeZ'nIm") = (—D)IE (2 —w- 1)

+

- [wlly n—1

(11) Vol,, 1 (HX 'nC™) = — €s (W= 8)
(e ) = et D T wr 2 =%
Proof. Let w € R™ with all nonzero components, and let z,0 € R. Since the

distance between the hyperplanes H;f,_zl_|r s and HZ "1 is |6] / ||w]|,, we have

Vol, (G2, s NI") = Vol, (G3, . N I"
Vol,—1 (Hy ' NI") = limy (raas 6/ |)|W|2 = |

8 n n
= ||wl]|, 5 Voln(thz NI )

(See for instance Lasserre [20].) Since 4 (z7) = n(z}") for any positive integer
n, then (10) follows immediately from (3). It is then straightforward to check that
(11) follows by setting z = ||w]|; /2 in (10); it may also be verified by computing
limg_ o+ [|wll, £52 = [lwll, f'(0), where f(6) := Vo, (S% , N C™) from (5) or (6).

U

Bradley [10] in effect also computed the volume of an arbitrary section of a
hypercube using inclusion-exclusion, obtaining a formula analogous to (10). We
think however that the more general treatment developed independently in this
paper is of interest as well.

Next, we note an alternative formula for the volume of a central section of a
cube, similar to Corollary 3 for central slabs.

Corollary 5. Suppose w € R™ has all nonzero components. Then

w w _
(12)  Vol,_1(Hy o' nC™) = ”wl'? LT 1|)!2H?—1 o > ea(wes)
seVy,

We omit the proof. The statement (12) may be verified by using the method of
the proof of Corollary 3 on the formula (11), or by computing the derivative of (7)
with respect to 6 at = 0 and multiplying by ||w||,, or by constructing a signed
simplicial subdivision of the cube section directly, as in the proof of Lemma 1.

Clearly, when computing the volume of the cube section it is advantageous to
permute the components of the normal vector w first so that w,, = ||w|| (negating
w first if necessary so that w, > 0) and then use (12), since the number of terms
in this sum is only about half the number required in (11). Also, occasionally the
formula for the volume reduces to a very simple expression. For example, we see
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that Voln_l(vaI)l NC") = [|lwl,/ lw|., precisely when ||w||. = % ||w]|,; in this
case the cube section is simply a parallelotope. Also, it is straightforward to verify
that the expression for the volume has just two terms when [w| < 3 [w]; <
|lw| . + min{|w;| : i € [n]}; here the cube section is a parallelotope with two
opposite simplices shorn off. Of course, similar simplifications occur in analogous
situations for the cube slab formulas (6) and (7).

4. APPLICATIONS

We briefly describe four applications for these formulas for the volumes of slices,
slabs, and sections of hypercubes: obtaining some formulas for integrating func-
tions over cube slices and sections, performing some calculations in probability,
investigating a geometric interpretation of the Eulerian numbers, and deriving a
particular combinatorial identity.

4.1. Integrating over cube slices and sections. For a function f : R" — R,
the change of variables X' = Awx + 1, — 1k, combined with the signed simplicial
decomposition (2), immediately provides the integration formula

[N ey FAWX + L, ) dx,

z
wo NI KC|n] AAWw,z—w-lKer
or, equivalently,

ay [

so integrating a function over the sliced cube reduces to integrating it over standard
n-simplices. Moreover, if f is continuously differentiable, we also have (see Lasserre
[21, Lemma 2.2])

0
[ fedx=lwly [ feodx
Hitnin z Jan nIn

n
w,

Fodx= 3 (—1) KN / F(Aw + 150) dx,

1%
KC[n] A wwiz—wig

- NIn

n
w

The case of polynomials in n variables is particularly interesting, since these func-
tions can be integrated over simplices with exact formulas (see [19] or [21]). For
instance, if w > 0 and a7, ..., o, are positive integers then one may easily show

that
n+y, a; Hn |

L (z—w-1g), !
Vi dx = L .
Joo . T (n+ > a) T wi!

woz—wlg =1

Such formulas are useful, for instance, in some computations in probability, as we
describe next.

4.2. Calculations in probability. As Barrow and Smith [5] indicated, the volume
of the sliced unit cube has the following probabilistic interpretation: Suppose Xj,
..., X, are random variables which are independent and uniformly distributed in
[0,1]. Then the volume formula (3) yields the cumulative distribution function of
the random variable Yy, = > 1", w; X;. It follows that, up to the factor ||w],,
formula (10) yields the corresponding probability density function.

We also remark that, by using three different methods (Fourier transform, op-
erational calculus, and integration by parts), Ueda et al. [28] derived an explicit
formula for the distribution of the sum of independent random variables Xq, ...,
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X, where X; is uniformly distributed on the real interval [—a;, a;]. The distri-
bution function is exactly Vol, (G:}V’Z N C”), with each w; = 2a;. Later Bradley
and Gupta [11], apparently unaware of this formula, rediscovered the corresponding
density (10) by means of the Fourier transform, combined with geometric consid-
erations. Prior contributions on special cases are also discussed in [11], [13], and
[28], and the references therein.

Finally, it is noteworthy that the integration formula (13) makes it possible to
consider other probability distributions. Let f : R™ — R be the probability density
function of a set of continuous random variables Xi, ..., X,,, and assume that f
is supported on I", that is, f(x) = 0 if x ¢ I". Then the cumulative distribution

function of the linear combination Yy, = Z?Zl w; X; of these random variables is

(14) Pr[Yo < 2] = /G f(x) dx.

_nIn

n
w,

For instance, for independent beta variables, the density function is given by

R T
f( ) B 11;[1 B(Oéi,ﬂi) 7

where each «; and f3; is a positive real number and B(x,y) denotes the usual beta
function, B(z,y) := T'(z)I'(y)/T(z + y). If each «; and f; is in fact a positive
integer, then f is a polynomial in n variables, and the integral (14) can therefore
be computed exactly with (13).

4.3. Eulerian numbers. Recall that the Fulerian number <Z> records the number

of orderings aq, ..., a, of [n] having exactly k ascents, so a; < a;+1 for precisely
k values of i. Let =} denote the portion of the hypercube I lying between the
hyperplanes > " ,x; =k and Y, @i =k +1,

Epi={xeR":E<x 1 <k+1}NI"

Laplace seems to have first investigated this problem [18, pp. 257-260] in the context
of a question in probability, implicitly showing that the volume of =} is %<Z>
Stanley [27] supplied an analytic proof of this fact, answering a question of Foata,
by exhibiting a measure-preserving transformation of I that maps =} to the set
{x € I" : x; < x;41 for exactly k values of i}, which clearly has volume %<Z>
Schmidt and Simion [26] found a similar proof, employing a variation of Stanley’s
map to show that Zf may be partitioned into (}) simplices, each with volume 1/n!.
Chakerian and Logothetti [12] also investigated combinatorial properties exhibited
by certain slabs of unit cubes, and discussed the appearance of the Eulerian numbers

in this context.
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Our proof of Theorem 1, together with the following calculation, provides an
alternative combinatorial derivation for the volume of Z}}. We compute

Vol () = Vol (G, 1 N I™) = Vol (G, N 1"

A (es-ir -y (o)

§=0 §=0 J
k+1
1 fn+1 N
(" w1
T j=0

1 /n
ol \k/’
using a standard identity for Eulerian numbers (see for instance [14, section 6.5]).

4.4. A combinatorial identity. Let A be a nonnegative real number, and let
w € R™ have all positive components. Setting 2 = A + w - 1p,,), then certainly
Vol, (Gy,.NI") =1, and using (3) we find a simple geometric interpretation of
the following combinatorial identity for the case p = n:

(15) Z (1)Kl ()\—i— Zuh)p = 0, n fosp<m

K] o (=1)"n! T[_, ws, ifp=n.

The case 0 < p < n follows by differentiating (3) with respect to A, since the volume
is constant for A > 0. A similar observation is made by Bradley [10]. Further, since
(15) is a polynomial identity, it follows that it is in fact valid for any w € C™ and
any A € C. This identity may also be verified by using the multinomial theorem,
or by using a generating function as in [9] and (for the case A = 0) [28].
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