
Slices, Slabs, and Sections of the Unit Hypercube

Jean-Luc Marichal
Institute of Mathematics
University of Luxembourg

162A, avenue de la Fäıencerie
L-1511 Luxembourg

Luxembourg
jean-luc.marichal@uni.lu

Michael J. Mossinghoff
Department of Mathematics

Davidson College
Davidson, NC 28035-6996

USA
mimossinghoff@davidson.edu

Submitted: July 27, 2006; Accepted: January 21, 2008; Published: ???, 2008

Abstract

Using combinatorial methods, we derive several formulas for the volume of convex bodies obtained
by intersecting a unit hypercube with a halfspace, or with a hyperplane of codimension 1, or with a flat
defined by two parallel hyperplanes. We also describe some of the history of these problems, dating to
Pólya’s Ph.D. thesis, and we discuss several applications of these formulas.
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1 Introduction

In this note we study the volumes of portions of n-dimensional cubes determined by hyper-
planes. More precisely, we study slices created by intersecting a hypercube with a halfspace,
slabs formed as the portion of a hypercube lying between two parallel hyperplanes, and
sections obtained by intersecting a hypercube with a hyperplane. These objects occur natu-
rally in several fields, including probability, number theory, geometry, physics, and analysis.
In this paper we describe an elementary combinatorial method for calculating volumes of
arbitrary slices, slabs, and sections of a unit cube. We also describe some applications that
tie these geometric results to problems in analysis and combinatorics.

Some of the results we obtain here have in fact appeared earlier in other contexts. How-
ever, our approach is entirely combinatorial, in contrast with most of the other work on this
topic. In addition, due to the wide application of cube slices and sections in several fields,
it appears that some of the previous work we describe here (including, for instance, Pólya’s
thesis) is not widely cited in the literature, and we hope that by surveying some of this
work here we might make some of the history and prior contributions on these topics better
known.

We remark that Zong’s recent article [32] and monograph [33] survey many problems and
topics regarding n-dimensional cubes and parallelotopes, including questions on sections,
projections, triangulations, and inscribed simplices. We refer the reader to these sources for
additional problems and questions about unit cubes.

We employ the following notation throughout. Let In denote the n-dimensional unit cube
placed in the positive orthant of Rn with one vertex at the origin,

In := [0, 1]n.
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Also, sometimes it is more convenient to consider the unit cube centered at the origin in Rn,
and we let Cn denote this cube,

Cn :=
[−1

2
, 1

2

]n
. (1)

In particular, it is often more useful to work with Cn rather than In in analytic applications,
since Cn is simply the ball of radius 1/2 with respect to the `∞ norm on Rn.

Next, for a nonzero vector w := (w1, . . . , wn) in Rn and a real number z, let Gn
w,z denote

the halfspace in Rn given by

Gn
w,z := {x ∈ Rn : w · x 6 z},

and let Hn−1
w,z denote the corresponding hyperplane with normal vector w,

Hn−1
w,z := {x ∈ Rn : w · x = z}.

If some component of w is 0, then clearly any question on slices, slabs, or sections of unit
cubes involving Gn

w,z or Hn−1
w,z reduces to a problem in a lower dimension, so we assume that

each component of w is nonzero. It is also clear by symmetry that the volume of a slice,
slab, or section is unchanged when the components of w are permuted.

For a positive integer n, let [n] denote the set {1, 2, . . . , n}, and let Vn denote the set
of vertices of 2Cn, that is, Vn := {−1, 1}n. Also, for s ∈ Vn, let εs :=

∏n
i=1 si. For a real

number p > 1, let ‖·‖p denote the usual `p norm on Rn, so ‖w‖p := (
∑n

i=1 |wi|p)1/p, and

let ‖w‖∞ := max{|wi| : i ∈ [n]}. We also set Nw := {i ∈ [n] : wi < 0}, and we denote by
Aw the n × n diagonal matrix whose ith diagonal entry is 1 if wi is positive and −1 if it is
negative. In addition, for any K ⊆ [n], we denote by 1K the characteristic vector of K in
{0, 1}n, and for subsets K1 and K2 of [n] we let K1 ªK2 denote their symmetric difference.
Also, for a real number r and nonnegative integer n, we set rn

+ := (max{r, 0})n. Finally, if x
and y are vectors in Rn, we write x Â y if xi > yi for each i, and in the same way we write
x < y if xi > yi for each i.

This paper is organized in the following way. In Section 2 we derive a formula for the
volume of an arbitrary slice of a cube by using an elementary combinatorial argument (see
Theorem 1), and we use this to derive some formulas for volumes of central slabs of cubes
(see Theorem 2 and Corollary 3). We also describe some of the history of these problems
here, including Pólya’s dissertation on volumes of central slabs of cubes. In Section 3 we
use our formula for slices to determine some formulas for the volume of a section of a cube
(see Theorem 4 and Corollary 5), and we describe some of the history and applications of
the problem of bounding this volume. In Section 4 we describe several applications of these
formulas, including some formulas for integrating a polynomial over a cube slice or a cube
section, some computations in probability, and some combinatorial identities, including a
geometric interpretation of the Eulerian numbers.

2 Slices and Slabs of Cubes

We derive an exact formula for the volume of a hypercube sliced by a hyperplane of codimen-
sion 1. Our method, which generalizes a geometric approach proposed in 1989 by Denardo
and Larraza [15], employs a signed simplicial subdivision of the sliced cube, together with
the inclusion-exclusion principle.
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For any w ∈ Rn with w Â 0, any z ∈ R, and any K ⊆ [n], define the set ∆K
w,z by

∆K
w,z := Gn

w,z ∩ {x ∈ Rn : x < 1K}.
This set is empty if w · 1K > z, and it is an n-simplex if w · 1K 6 z. Also, we immediately
see that by translating the set ∆K

w,z by the vector −1K we obtain the set ∆∅
w,z−w·1K

.
The following lemma, which is the key result of this paper, yields a signed decomposition

of the sliced cube Gn
w,z ∩ In into the simplices ∆K

w,z.

Lemma 1. Suppose w ∈ Rn has all positive components, and suppose z is a real number.
Then

Voln
(
Gn

w,z ∩ In
)

=
∑

K⊆[n]

(−1)|K| Voln
(
∆K

w,z

)
. (2)

Proof. By writing In = {x ∈ Rn : x < 0} \⋃
i∈[n]

{
x ∈ Rn : x Â 1{i}

}
, we see that

Voln
(
Gn

w,z ∩ In
)

= Voln

(
∆∅

w,z \
⋃

i∈[n]

∆{i}
w,z

)

= Voln
(
∆∅

w,z

)− Voln

( ⋃

i∈[n]

∆{i}
w,z

)
,

since clearly ∆
{i}
w,z ⊆ ∆∅

w,z for each i. Then, by inclusion-exclusion, we find that

Voln

( ⋃

i∈[n]

∆{i}
w,z

)
=

∑

K⊆[n]
K 6=∅

(−1)|K|+1 Voln

( ⋂
i∈K

∆{i}
w,z

)

=
∑

K⊆[n]
K 6=∅

(−1)|K|+1 Voln
(
∆K

w,z

)
,

which completes the proof.

We now establish a formula for the volume of an arbitrary slice of a hypercube.

Theorem 1. Suppose w ∈ Rn has all nonzero components, and suppose z is a real number.
Then

Voln
(
Gn

w,z ∩ In
)

=
1

n!
∏n

i=1 wi

∑

K⊆[n]

(−1)|K| (z −w · 1K)n
+ . (3)

Proof. The result follows from (2) if we assume that w Â 0. In fact, as the volume of
the n-simplex bounded by the coordinate hyperplanes and the hyperplane w · x = 1 is
1/(n!

∏n
i=1 wi) (see for instance [16]), we immediately have

Voln
(
∆K

w,z

)
= Voln

(
∆∅

w,z−w·1K

)
=

(z −w · 1K)n
+

n!
∏n

i=1 wi

.

Assume now that w ∈ Rn has all nonzero components. By using the change of variables
x′ = Awx + 1Nw , it is straightforward to show that

Voln
(
Gn

w,z ∩ In
)

= Voln
(
Gn

Aww,z−w·1Nw
∩ In

)
.
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Therefore, since Aww has all positive components, we obtain

Voln
(
Gn

w,z ∩ In
)

=
1

n!
∏n

i=1 wi

∑

K⊆[n]

(−1)|KªNw| (z −w · 1KªNw)n
+ ,

and the result follows by observing that {K ªNw : K ⊆ [n]} = 2[n].

The general formula for the volume of a cube slice seems to have first appeared in a note
of Barrow and Smith in 1979 [5]. The proof there exploits the simple integration formula for
the truncated power function f(x) = (x − a)k

+. Also, Ueda et al. in 1994 [28] and Bradley
and Gupta in 2002 [11] independently derived formulas similar to (3) by analytic means
in the context of investigating certain problems in probability (see Section 4.2). A special
case of the formula however occurred considerably earlier. Certainly from Theorem 1 one
immediately obtains a formula for the volume of the slab

{x ∈ Rn : z1 6 w · x 6 z2} ∩ In,

for real numbers z1 and z2 with z1 6 z2. In his 1912 dissertation [24], Pólya studied the
special case of determining the volume of a central slab of a hypercube, motivated by a
question in statistical mechanics. His results are published in [25]. It is simplest to describe
his result here using the centered unit cube Cn from (1). Let Sn

w,θ denote the central slab
with normal vector w in Rn and thickness θ/ ‖w‖2,

Sn
w,θ := {x ∈ Rn : |w · x| 6 θ/2},

and assume each component wi of w is nonzero. Pólya in effect proved that

Voln
(
Sn

w,θ ∩ Cn
)

=
2

π

∫ ∞

0

sin θx

x

n∏
i=1

sin wix

wix
dx. (4)

This may be verified by considering the Fourier transform of a convolution of characteristic
functions of intervals. He also determined a formula for this integral by using the residue
theorem. We establish his result here as a simple consequence of Theorem 1.

Theorem 2. Suppose w ∈ Rn has all nonzero components, and suppose θ is a positive real
number. Let v denote the vector (w1, . . . , wn, θ). Then

Voln
(
Sn

w,θ ∩ Cn
)

=
1

2nn!
∏n

i=1 wi

∑
s∈Vn+1

εs (v · s)n
+ . (5)

Proof. Let y = w · 1[n]. Using Theorem 1, we have

Voln
(
Sn

w,θ ∩ Cn
)

= Voln
(
Gn

w,y/2+θ/2 ∩ In
)− Voln

(
Gn

w,y/2−θ/2 ∩ In
)

=
1

2nn!
∏n

i=1 wi

∑

K⊆[n]

(−1)|K|
(
(y + θ − 2w · 1K)n

+ − (y − θ − 2w · 1K)n
+

)

=
1

2nn!
∏n

i=1 wi

∑
s∈Vn+1

εs (v · s)n
+ .
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Remark. In fact, Pólya considered the dual problem of slicing an n-dimensional box of
arbitrary dimensions centered at the origin, with a slab having the fixed normal vector
(1, . . . , 1): If w ∈ Rn has all positive components and P n

w,θ denotes the polytope determined
by the inequalities |xi| 6 wi for i ∈ [n] and |∑n

i=1 xi| 6 θ, then Pólya showed that

Voln
(
P n

w,θ

)
=

2n+1

π

∫ ∞

0

sin θx

x

n∏
i=1

sin wix

x
dx =

1

n!

∑
s∈Vn+1

εs (v · s)n
+ ,

where again v = (w1, . . . , wn, θ). We have transcribed his results here for the equivalent
problem where the box is fixed and the normal vector of the slab varies. Pólya also mentioned
that this last formula can be obtained by using a signed simplicial subdivision, as in the proof
of Lemma 1.

Pólya’s formula and its close relatives have been rediscovered several times since then by
many people (including the authors, independently). For example, Borwein and Borwein [9]
proved in 2001 that

2

π

∫ ∞

0

n∏
i=0

sin(aix)

x
dx =

1

2nn!

∑
s∈Vn

εsαs

(
a0 +

n∑
i=1

siai

)n

,

where a0, . . . , an are positive real numbers, and αs is 1, 0, or −1 depending on whether
a0+

∑n
i=1 siai is positive, zero, or negative. It is straightforward to show that this is equivalent

to (5).
We next derive two additional useful formulations for the volume of a central slab of

a cube. Let V −
n denote the set of n-tuples in Vn whose last coordinate is −1, and let

V +
n := Vn \ V −

n .

Corollary 3. Suppose w ∈ Rn has all nonzero components, and suppose θ is a positive real
number. If v = (w1, . . . , wn, θ), then

Voln
(
Sn

w,θ ∩ Cn
)

= 1 +
1

2n−1n!
∏n

i=1 wi

∑

s∈V −n+1

εs (v · s)n
+ . (6)

Also, if v′ = (θ, w1, . . . , wn), then

Voln
(
Sn

w,θ ∩ Cn
)

=
θ

wn

+
1

2n−1n!
∏n

i=1 wi

∑

s∈V −n+1

εs (v′ · s)n
+ . (7)

Proof. By using the immediate identity

rn = rn
+ + (−1)n(−r)n

+ ,

we easily obtain
∑

s∈V +
n+1

εs (v · s)n
+ =

∑

s∈V +
n+1

εs (v · s)n +
∑

s∈V −n+1

εs (v · s)n
+ . (8)

Using the multinomial theorem, we also have

∑

s∈V +
n+1

εs (v · s)n =
∑

k1,...,kn+1>0
k1+···+kn+1=n

n! θkn+1

k1! · · · kn+1!

n∏
i=1

wki
i

∑

s∈V +
n+1

n∏
i=1

ski+1
i .
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The inner sum on the right equals
∏n

i=1

(
(−1)ki+1 + 1

)
, which is 0 for each possible choice

of k1, . . . , kn+1 except k1 = · · · = kn = 1 and kn+1 = 0. Therefore,

∑

s∈V +
n+1

εs (v · s)n = 2nn!
n∏

i=1

wi, (9)

and (6) follows from (5), (8), and (9). Equation (7) may be verified in the same fashion.

A formula similar to (6) also appears in Borwein and Borwein [9], where it is used in
conjunction with (4) to produce some striking formulas for some integrals involving the sinc
function, where sinc(x) := sin(x)/x. For example, since the sum of the reciprocals of the
odd primes first exceeds 1 at p = 29, we see from (4) and (6) that

∫ ∞

0

sinc(x)
∏

p prime
36p6m

sinc(x/p) dx =
π

2

for m 6 28, but
∫ ∞

0

sinc(x)
∏

p prime
36p629

sinc(x/p) dx =
π

2

(
1− 540846499

181440 · 32348466158

)

= (0.49999999999908993 . . .)π.

Similar formulas appear in [2] and [9]. We mention also that Borwein, Borwein, and Mares [8]
developed further connections between multivariable sinc integrals and volumes of polytopes
constructed by intersecting flats formed by pairs of symmetric hyperplanes. In addition,
Barthe and Koldobsky [6] investigated the problem of minimizing the volume of a central
slab of the unit hypercube, if the thickness of the slab is fixed.

The formula (7) for the volume of a central slab of a cube is employed in Section 3 to
obtain a formula for the volume of a central section of a cube.

3 Sections of Cubes

The convex bodies formed by intersecting a hypercube with a hyperplane are also well-
studied in analysis and number theory, especially problems about bounding their volumes.
For example, Vaaler [29] established a sharp lower bound on the volume of a central slice of
Cn by a k-dimensional hyperplane Hk

0 that passes through the origin,

Volk
(
Hk

0 ∩ Cn
)

> 1,

and Ball [4] determined an upper bound for an arbitrary hyperplane Hk of dimension k,

Volk
(
Hk ∩ Cn

)
6 2(n−k)/2.

This is sharp when k > n/2. Similar problems have been studied in other settings, for
example, bounding the volume of sections of the unit ball of various `p norms in Rn [22],
studying sections of polydiscs in Cn [23], and investigating sections of regular simplices [30].
More information may be found for instance in [17].
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The lower bound on the volume of a central section of a hypercube plays an important role
in the strengthening of Siegel’s lemma by Bombieri and Vaaler [7]. The upper bound is of
interest for example in the well-known (and now completely resolved) problem of Busemann
and Petty: If A and B are symmetric convex bodies in Rn, must Voln(A) > Voln(B) if
Voln−1

(
Hn−1

u,0 ∩A
)

> Voln−1

(
Hn−1

u,0 ∩B
)

for every unit vector u in Rn? (Recall a set A ⊆ Rn

is symmetric if −x ∈ A whenever x ∈ A.) Ball [3] showed that comparing a hypercube
with a sphere provides a counterexample for dimensions n > 10; more generally, the answer
is now known to be affirmative only for n 6 4. See Koldobsky [17] or Zong [31] for more
information.

Here we obtain some exact formulas for the volume of an arbitrary section of a hypercube.
It is possible that more precise information on volumes of sections of cubes may allow for
more exact bounds in applications. Indeed, the precise values of certain central sections of
cubes play an important role in the recent work of Aliev [1], where in effect the volume of the
central section of the cube Cn obtained with the symmetric hyperplane Hn−1

1[n],0
is employed

in an improved lower bound on the maximal element of a set of positive integers having
distinct subset sums.

In the following theorem we present one formula for general sections of In and another
for central sections of Cn. For the sake of clarity we observe that Hn−1

w,z intersects Cn if and

only if |z| 6 1
2
‖w‖1. Similarly, Hn−1

w,z intersects In if and only if
∣∣z − 1

2
w · 1[n]

∣∣ 6 1
2
‖w‖1,

that is, if and only if w · 1Nw 6 z 6 w · 1[n]\Nw .

Theorem 4. Suppose w ∈ Rn has all nonzero components, and suppose z is a real number.
Then

Voln−1

(
Hn−1

w,z ∩ In
)

=
‖w‖2

(n− 1)!
∏n

i=1 wi

∑

K⊆[n]

(−1)|K| (z −w · 1K)n−1
+ . (10)

In particular, for a central section of Cn we have

Voln−1

(
Hn−1

w,0 ∩ Cn
)

=
‖w‖2

2n−1(n− 1)!
∏n

i=1 wi

∑
s∈Vn

εs (w · s)n−1
+ . (11)

Proof. Let w ∈ Rn with all nonzero components, and let z, δ ∈ R. Since the distance between
the hyperplanes Hn−1

w,z+δ and Hn−1
w,z is |δ| / ‖w‖2, we have

Voln−1

(
Hn−1

w,z ∩ In
)

= lim
δ→0

Voln
(
Gn

w,z+δ ∩ In
)− Voln

(
Gn

w,z ∩ In
)

δ/ ‖w‖2

= ‖w‖2

∂

∂z
Voln

(
Gn

w,z ∩ In
)
.

(See for instance Lasserre [20].) Since d
dx

(xn
+) = n(xn−1

+ ) for any positive integer n, then (10)
follows immediately from (3). It is then straightforward to check that (11) follows by setting

z = ‖w‖1 /2 in (10); it may also be verified by computing limθ→0+ ‖w‖2
f(θ)

θ
= ‖w‖2 f ′(0),

where f(θ) := Voln
(
Sn

w,θ ∩ Cn
)

from (5) or (6).

Bradley [10] in effect also computed the volume of an arbitrary section of a hypercube
using inclusion-exclusion, obtaining a formula analogous to (10). We think however that the
more general treatment developed independently in this paper is of interest as well.

Next, we note an alternative formula for the volume of a central section of a cube, similar
to Corollary 3 for central slabs.
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Corollary 5. Suppose w ∈ Rn has all nonzero components. Then

Voln−1

(
Hn−1

w,0 ∩ Cn
)

=
‖w‖2

wn

+
‖w‖2

2n−2(n− 1)!
∏n

i=1 wi

∑

s∈V −n

εs (w · s)n−1
+ . (12)

We omit the proof. The statement (12) may be verified by using the method of the proof
of Corollary 3 on the formula (11), or by computing the derivative of (7) with respect to θ
at θ = 0 and multiplying by ‖w‖2, or by constructing a signed simplicial subdivision of the
cube section directly, as in the proof of Lemma 1.

Clearly, when computing the volume of the cube section it is advantageous to permute the
components of the normal vector w first so that wn = ‖w‖∞ (negating w first if necessary
so that wn > 0) and then use (12), since the number of terms in this sum is only about
half the number required in (11). Also, occasionally the formula for the volume reduces
to a very simple expression. For example, we see that Voln−1

(
Hn−1

w,0 ∩ Cn
)

= ‖w‖2 / ‖w‖∞
precisely when ‖w‖∞ > 1

2
‖w‖1; in this case the cube section is simply a parallelotope. Also,

it is straightforward to verify that the expression for the volume has just two terms when
‖w‖∞ < 1

2
‖w‖1 6 ‖w‖∞ + min{|wi| : i ∈ [n]}; here the cube section is a parallelotope

with two opposite simplices shorn off. Of course, similar simplifications occur in analogous
situations for the cube slab formulas (6) and (7).

4 Applications

We briefly describe four applications for these formulas for the volumes of slices, slabs,
and sections of hypercubes: obtaining some formulas for integrating functions over cube
slices and sections, performing some calculations in probability, investigating a geometric
interpretation of the Eulerian numbers, and deriving a particular combinatorial identity.

4.1 Integrating over Cube Slices and Sections

For a function f : Rn → R, the change of variables x′ = Awx + 1Nw − 1K , combined with
the signed simplicial decomposition (2), immediately provides the integration formula

∫

Gn
w,z∩In

f(x) dx =
∑

K⊆[n]

(−1)|K|
∫

∆∅Aww,z−w·1KªNw

f(Awx′ + 1KªNw) dx′,

or, equivalently,
∫

Gn
w,z∩In

f(x) dx =
∑

K⊆[n]

(−1)|K|+|Nw|
∫

∆∅Aww,z−w·1K

f(Awx′ + 1K) dx′, (13)

so integrating a function over the sliced cube reduces to integrating it over standard n-
simplices. Moreover, if f is continuously differentiable, we also have (see Lasserre [21, Lemma
2.2]) ∫

Hn−1
w,z ∩In

f(x) dx = ‖w‖2

∂

∂z

∫

Gn
w,z∩In

f(x) dx.
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The case of polynomials in n variables is particularly interesting, since these functions can
be integrated over simplices with exact formulas (see [19] or [21]). For instance, if w Â 0
and α1, . . . , αn are positive integers then one may easily show that

∫

∆∅w,z−w·1K

n∏
i=1

xαi
i dx =

(z −w · 1K)n+
∑

i αi

+

∏n
i=1 αi!(

n +
∑

i αi

)
!
∏n

i=1 wαi+1
i

.

Such formulas are useful, for instance, in some computations in probability, as we describe
next.

4.2 Calculations in Probability

As Barrow and Smith [5] indicated, the volume of the sliced unit cube has the following
probabilistic interpretation: Suppose X1, . . . , Xn are random variables which are indepen-
dent and uniformly distributed in [0, 1]. Then the volume formula (3) yields the cumulative
distribution function of the random variable Yw =

∑n
i=1 wiXi. It follows that, up to the

factor ‖w‖2, formula (10) yields the corresponding probability density function.
We also remark that, by using three different methods (Fourier transform, operational

calculus, and integration by parts), Ueda et al. [28] derived an explicit formula for the
distribution of the sum of independent random variables X1, . . . , Xn, where Xi is uniformly
distributed on the real interval [−ai, ai]. The distribution function is exactly Voln

(
Gn

w,z∩Cn
)
,

with each wi = 2ai. Later Bradley and Gupta [11], apparently unaware of this formula,
rediscovered the corresponding density (10) by means of the Fourier transform, combined
with geometric considerations. Prior contributions on special cases are also discussed in [11],
[13], and [28], and the references therein.

Finally, it is noteworthy that the integration formula (13) makes it possible to consider
other probability distributions. Let f : Rn → R be the probability density function of a set
of continuous random variables X1, . . . , Xn, and assume that f is supported on In, that is,
f(x) = 0 if x /∈ In. Then the cumulative distribution function of the linear combination
Yw =

∑n
i=1 wiXi of these random variables is

Pr[Yw 6 z] =

∫

Gn
w,z∩In

f(x) dx. (14)

For instance, for independent beta variables, the density function is given by

f(x) =
n∏

i=1

xαi−1
i (1− xi)

βi−1

B(αi, βi)
,

where each αi and βi is a positive real number and B(x, y) denotes the usual beta function,
B(x, y) := Γ(x)Γ(y)/Γ(x + y). If each αi and βi is in fact a positive integer, then f is a
polynomial in n variables, and the integral (14) can therefore be computed exactly with (13).

4.3 Eulerian Numbers

Recall that the Eulerian number
〈

n
k

〉
records the number of orderings a1, . . . , an of [n] having

exactly k ascents, so ai < ai+1 for precisely k values of i. Let Ξn
k denote the portion of the

hypercube In lying between the hyperplanes
∑n

i=1 xi = k and
∑n

i=1 xi = k + 1,

Ξn
k := {x ∈ Rn : k 6 x · 1[n] 6 k + 1} ∩ In.
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Laplace seems to have first investigated this problem [18, pp. 257–260] in the context
of a question in probability, implicitly showing that the volume of Ξn

k is 1
n!

〈
n
k

〉
. Stanley

[27] supplied an analytic proof of this fact, answering a question of Foata, by exhibit-
ing a measure-preserving transformation of In that maps Ξn

k to the set {x ∈ In : xi <
xi+1 for exactly k values of i}, which clearly has volume 1

n!

〈
n
k

〉
. Schmidt and Simion [26]

found a similar proof, employing a variation of Stanley’s map to show that Ξn
k may be

partitioned into
〈

n
k

〉
simplices, each with volume 1/n!. Chakerian and Logothetti [12] also

investigated combinatorial properties exhibited by certain slabs of unit cubes, and discussed
the appearance of the Eulerian numbers in this context.

Our proof of Theorem 1, together with the following calculation, provides an alternative
combinatorial derivation for the volume of Ξn

k . We compute

Voln
(
Ξn

k

)
= Voln

(
Gn

1[n],k+1 ∩ In
)− Voln

(
Gn

1[n],k
∩ In

)

=
1

n!

( k+1∑
j=0

(−1)j

(
n

j

)
(k + 1− j)n −

k∑
j=0

(−1)j

(
n

j

)
(k − j)n

)

=
1

n!

k+1∑
j=0

(−1)j

(
n + 1

j

)
(k + 1− j)n

=
1

n!

〈
n

k

〉
,

using a standard identity for Eulerian numbers (see for instance [14, section 6.5]).

4.4 A Combinatorial Identity

Let λ be a nonnegative real number, and let w ∈ Rn have all positive components. Setting
z = λ+w ·1[n], then certainly Voln

(
Gn

w,z ∩ In
)

= 1, and using (3) we find a simple geometric
interpretation of the following combinatorial identity for the case p = n:

∑

K⊆[n]

(−1)|K|
(
λ +

∑
i∈K

wi

)p

=

{
0, if 0 6 p < n,

(−1)nn!
∏n

i=1 wi, if p = n.
(15)

The case 0 6 p < n follows by differentiating (3) with respect to λ, since the volume is
constant for λ > 0. A similar observation is made by Bradley [10]. Further, since (15) is a
polynomial identity, it follows that it is in fact valid for any w ∈ Cn and any λ ∈ C. This
identity may also be verified by using the multinomial theorem, or by using a generating
function as in [9] and (for the case λ = 0) [28].
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