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Abstract

Airport congestion is a growing problem in many airports worldwide. The movement
towards reduction of government involvement at the micro level has led to the devel-
opment of congestion-management approaches. This dissertation focuses on studying
price and quantity based management solutions, in the presence of airport congestion.
It comprises the following four chapters.

Airport Congestion and Inefficiency in Slot Allocation (joint with Pierre Picard,
Alessandro Tampieri). This chapter analyses optimal slot allocation in the presence
of airport congestion, and interests in the efficiency consequences of airport allocative
strategies. We model peak and off-peak slots as vertically differentiated products, and
congestion limits the number of peak slots that the airport can allocate. Inefficiency
emerges when the airport does not exploit all its slots. We show that for a private
airport, inefficiency may arise if the airport is not too congested and the per-passenger
fee is small enough, while with a public airport it does not emerge. Furthermore the
airport, irrespective of its ownership, tends to give different slots to flights with same
destination if the underlying market is a duopoly, and a single slot if the underlying
market is served by a monopoly.

Slot Allocation at Congested Airport with Endogenous Fee (joint with Alessandro
Tampieri). This chapter extends the analysis of the previous chapter by considering
endogenous airport charge. It contributes to the understanding of a peak period con-
gested airport’s optimal fee setting behaviour when it has power to allocate slots. By
explicitly incorporating the endogenous fee setting behaviour into our previous frame-
work with exogenous fee, we find that allocative inefficiency is precluded at a private
airport if the fee can be determined by the airport.

Per-flight and per-passengers congestion pricing when airline quality differs. The
third chapter investigates and compares congestion pricing scheme under Cournot
competition and Bertrand competition, accounting for both per-passenger and per-
flight charges. It studies a vertically differentiated airline market, where two airlines
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serve a same origin-destination route from a congested airport, and evaluates the mix
of per-passenger and per-flight airport charge. We find out that under Bertrand com-
petition, the low-quality airline partially internalizes congestion delay, whilst the high-
quality airline does not internalize at all. For both, the magnitude of overprovision of
frequency is greater under Bertrand competition than under Cournot competition. In
addition, when the route is served by a monopoly airline, both passenger volume and
flight frequency are undersupplied from a social viewpoint.

Uniform-price auction with endogenous supply: Should seller’s reservation price
be kept hidden? The last chapter examines and compares airlines” bidding behaviour
in noise license auction where the monopolist seller has reservation price. In a uniform-
price auction, the seller is empowered to decide how much to sell after receiving the
bids. We find that when the reservation price is revealed to the bidders, they bid more
aggressively when its realization is high. While when it is secret, there exists a unique
equilibrium outcome for bidding behaviour in our model setting. Moreover, allotting
licenses via auction results in fewer licenses traded than would have by a social planner.



Introduction

Global air traffic has grown substantially in the past decades. As a result, many airports
around the world are working at or even beyond capacity at some operating periods.
Notably, an airport is identified as being capacity constrained when the demand for
movements exceeds the available airport handling capacity. According to the Interna-
tional Air Transport Association (IATA)!, the number of capacity constrained airports
(categorized as Level 3 airports in the IATA guideline) in the world increases markedly
from 136 airports in the year 2000 to 179 in the year 2015. In addition, among the 119
airports that are currently subject to some level of congestion at certain periods of the
day (categorized as Level 2 airports), many are forecasted to become fully congested in
coming years. With traffic demand continues to rise, congestion is constantly a growing
trend. In all instances, though the fundamental solution to a growing strain on capacity
is by building new runways and other infrastructure, the long gestation and construc-
tion horizon make it hardly suitable as a short or medium term solution. Additionally,
provision of extra capacity is often fraught with political opposition and public resis-
tance, which typically revolve around negative environmental impacts such as noise
and greenhouse gas emissions.

This raises the issue of finding interim solution to mitigate congestions through
making better use of existing capacity, in particular through management of airport
slots. A slot is an authorization granted to an airline to use the full range of airport in-
frustructure necessary for taking off and landing within a certain time window. In Eu-
rope, allocation of scarce runway capacity is implemented at 106 airports in accordance
with the principles of IATA Worldwide Slot Guidelines (WSG). The guidelines set stan-
dard procedures and support a transparent, neutral and non-discriminatory allocation
process. However, one important feature of slots has not been given due considera-
tion, that demand is higher in peak periods than in off-peak periods at identical airport

LFor more details see Worldwide Slot Guidelines, August 2015.
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charge, because peak periods are more prefered than off-peak periods by all passengers.
In the presence of the widespread practice of slot control and management, a study into
slot allocation decision within the context of differentiated slots would provide useful
implications.

Against this background particular attention should also be given to airport owner-
ship. Indeed, historically most airports worldwide were public utilities and regulation
on airport fees are held to non-profit levels. From the 1980s onwards, several waves
of privatization have subsequently taken place in Europe, Asia, Australia and New
Zealand and Latin America. Until 2013, 450 airports worldwide are entitled to some
form of private-sector involvement. Among the 100 largest airports worldwide, 40 are
either fully or partially owned or controlled by investors.? The reform process resulted
in the emergence of varies ownership modes. In many instances the government main-
tains a controlling interest and plays a crucial role in establishing airport charges. Es-
sentially, government entails price regulation to prevent airport imposing excessively
high charge. The impact of different levels of economic regulation on airport’s slot allo-
cation decision remains to be analyzed. Relative to this point there is limited literature
on the theory side.

This thesis is devoted to the investigation of two economic instruments to alleviate
airport congestion, notably the slot allocation and congestion pricing. It also looks into
one important type of airport externality, the noise pollution. Particular attention will
be paid to the ownership and regulative intensity faced by an airport.

The first two chapters examine endogenous allocation of peak and off-peak slots,
with the purpose of providing argument that could serve as a guidance for political
proposals. The analysis in these two chapters suggests that privately managed air-
ports that are subject to price regulation may induce allocative inefficiency, while their
publicly owned counterparts would never engage in inefficient allocation. For such a
private regulated airport, the emergence of allocative inefficiency is contingent on the
level of airport charge, as well as peak slot scarcity. Peak slot scarcity can be associ-
ated to the classification of airport levels by IATA slot guidelines, that level 2 airports
represent moderate peak slot scarcity, and level 3 airports represent severe peak slot
scarcity.

Alternatively, other widely discussed congestion remedy is related to the pricing
mechanism, namely congestion pricing. As is known, though the concept of conges-
tion pricing stems from road traffic, a distinct characteristic of airline market is that

2Gee CAPA Centre for Aviation analysis report.
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airlines are non-atomistic® agents. Hence they internalize self-imposed congestion (see
e.g. Brueckner (2002, 2005), Pels and Verhoef (2004), Zhang and Zhang (2006), Basso
(2008), Basso and Zhang (2008a), Morrison and Winston (2007)). As is typical in these
literature, under congestion pricing scheme, externalities are corrected when each air-
line pays for the congestion toll. This toll should account for the portion of uninternal-
ized congestion each airline imposes on all other airlines. Obviously, this toll is smaller
than the toll charged for atomistic airlines. In light of this statement, it is to be expected
that a smaller airline will be more susceptible to a higher toll than a larger airline, own-
ing to a smaller fraction of self-imposed congestion. The application of differentiated
tolls, especially higher tolls to the smaller airlines, is more often than not politically
controversial, due to perceived unfairness (Brueckner (2002), Morrison and Winston
(2007)).

Since airlines are non-atomistic agents and possess market power, the concern as-
sociated with market power effect from the part of the airlines emerges. It follows
intuitively that the optimal toll would contain a component that essentially reduces the
toll, and that airlines would restrict output. If the market power effect outweighs con-
gestion effect, then there is too little traffic (Silva and Verhoef (2013)). When the airport
is owned and operated by a public entity who pursuits socially optimal level of out-
put, such as a municipality, state, or public authority, then rather than charging a toll,
the airport may have to subsidize airlines. By and large, much of existing literature on
airline competition in the presence of airport congestion has focused on homogenous
airlines. Yet the prevailing of low-cost airlines leads one to question how optimal con-
gestion pricing would work if competing airlines are heteogenous. What are airlines’
internalization behaviors when they differ in quality, as proxied by flight frequency?
Would the magnitudes of internalization vary substantively with competition type?
These research questions are addressed in Chapter 3.

As mentioned previously, one significant factor impeding the capacity increment
is local residents’ resistance which is mostly due to noise disturbance. In effect, noise
pollution has been a constant concern in many airports especially the major ones. In
economic literature, in order to compensate residents in the vicinity of an airport who
suffer from the noise nuisance of planes taking off and landing, some literature are in
favor of setting up an emission license mechanism. Under such a regime, first of all
noise is quantified according to some assessment criteria, then emissions licenses are
assigned to the affected residents. Thereafter airports purchases licenses from the resi-
dents, in order to operate aircraft activities from this airport (Brechet and Picard (2010)).

3In the literature of congestion pricing, non-atomistic refers to airlines that have market power.
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An airline could not emit more noise pollution than its holding of licenses. Chapter 4 of
this dissertation examines the implementation of uniform-price format auction to the
airport noise emission licenses market. Uniform-price auction has been discovered to
lead to low-price equilibria (Wilson (1979), Ausubel and Cramton (2002)), due to the
nature of bidders (airlines) strategic manipulation behavior, which is unfavorable to
the seller (a single representative of all residents in this context). To minimize the ex-
tent of undesirable low-price equilibria, some literature introduces endogenous supply,
i.e., the seller retains flexibility in determining supply quantity after collecting airlines’
bid schedules (Back and Zender (1993), Lengwiler (1999)). Particularly, Chapter 4 com-
pares airlines bidding behavior when the reservation price of emission license is either
revealed or secret, and find that the choice of information relevation depends upon the
magnitude of reservation price and policy maker’s objectives.
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Chapter 1

Airport Congestion and Inefficiency
in Slot Allocation

1.1 Introduction

Over the past decades, airline traffic growth has outpaced capacities at many of the
world’s major airports.! As a result, airport congestion has become a major issue faced
by many airports worldwide. Airport congestion is likely to get worse in the coming
decades, being generated by an expanding demand due to increase of income, and the
growth of some developing countries.?

In the analysis of airport congestion, the economic literature focused mainly on
“congestion pricing” (for which carriers pay a toll according to their contribution to
congestion) as a regulatory tool to deal with congestion.> However, despite its theoret-
ical feasibility, congestion pricing has not been practised in the real world. By contrast,
slot allocation is the usual approach to management of congestion at airports. Accord-
ing to IATA World Scheduling Guidelines, a slot is “the permission given by a manag-
ing body for a planned operation to use airport infrastructure that is necessary to arrive

or depart at an airport on a specific date and time”.* Under a slot system, the airport

1For instance, over half of Europe’s 50 largest airports have already reached or are close to their satu-
ration points in terms of declared ground capacity (Madas and Zografos, 2008).

2The European Commision estimated that half of the world’s new traffic will come from Asia Pacific
region in the next 20 years. They expect that air traffic in Europe will roughly double by 2030, and that 19
key airports will be at saturation. See MEMO/11/857.

3For an early contribution on congestion pricing see Levine (1969). Recent representative studies in-
clude Brueckner (2002, 2005). Under congestion pricing, carriers could place as many flights as they wish
provided they pay the toll, thus the overall level of congestion is determined by airline decisions.

“4See Worldwide slot guidelines.
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authority determines the total number of slots to make available, and slots are distrib-
uted among the airlines according to some allocation rule.> Given the prevalence of slot
systems, a theoretical analysis investigating the interaction between slot allocation and
congestion seems highly policy relevant.

In this chapter we analyse endogenous slot allocation in the presence of airport
congestion, and we investigate the conditions under which the allocation choice is in-
efficient. We refer to a “slot” as the permission granted to a certain airline to use airport
infrastructure for a planned operation at a specific time window of the day.® We exam-
ine a setting where an airport wants to maximize the number of passengers, and sorts
slots according to different departure flights, while airlines compete in the flights mar-
ket. As in Brueckner (2002), we model peak and off-peak slots as products of different
qualities in a model of vertical differentiation.” Peak slots are congested, mirroring the
situation of capacity shortages at peak hours faced by many airports. We analyze both
a private and a public airport being restricted to levy a uniform per-passenger fee for
flight activities, this being pre-determined by administrative bodies.® We consider sep-
arately the case where two flights towards a same destination (hereby denoted by “pair-
wise flights”) are served by two airlines, and where they are served by a monopoly. In
this complete information setting, airlines know the total provision of slots and the fact
that each participating airline receives a single slot. Finally, we define as “allocative
inefficiency” the situation in which not all the slots available are exploited.

Because peak slots are preferred by passengers to off-peak slots, the airport’s slot

5For example, FAA (Federal Aviation Administration) capped peak hour flight movements at New
York La Guardia, J].F.Kennedy, and Neward airports. As for Chicago’s O’Hare airport, FAA persuaded
two major airlines United and American Airlines to reduce peak flight activities while prohibiting smaller
airlines from increasing flights to fill the gap.

®Though in practice congestion is not exclusively confined to runway congestion, and might embody
other capacity dimensions such as environmental concerns, we nevertheless focus on runway congestion.

7Our approach differs from Brueckner (2002) as follows. In Brueckner (2002)’s framework, a monopoly
airport chooses the critical points on the continuum that respectively define whether to fly or not and
whether to fly in peak slots or off-peak slots. Focusing on finding the optimal congestion pricing, he
implicity assumes that airport capacity is sufficient to meet peak hour demands. Unlike Brueckner (2002),
our interest stems from the scarcity of peak hour slots. Thus we focus on the allocation instead of using
the pricing tool.

8The analysis of a private airport also seems relevant. Although airports have long been owned by
governments, there has been a significant worldwide trend towards government facilities privatization
beginning from the middle of the 1980s. Following the United Kingdom, many major airports in Europe,
Australia and Asia have followed suit and have undergone privatization or are in the process of being
privatized. In principle, privatization is characterized by the transfer of ownership structure from state-

owned to private enterprises.
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assignment creates an exogenous quality differential between the carriers when the
assigned slots are for different periods. The carriers compete conditional on this quality
differential, and the resulting prices and passenger volumes therefore depend on the
slot assignments. Depending on parameter values, the total passenger volume (and
hence fee revenue for the airport) could be higher when the airport withholds a peak
slot that it could allocate to the carriers, leaving the slot unused and the airport’s peak
capacity thus not fully exploited. This outcome is inefficient from society’s point, but it
is a possible feature of equilibrium in the model.

When the airport is private and each destination is served by a duopoly airline
market, the results depend on whether the number of slots is lower than the number
of destinations (the airport is “busy”) or not (the airport is “not too busy”). A busy
airport uses all the available peak slots to implement “peak/off-peak” configuration.
The results are driven by differentiation which, on the one hand, increases the number
of passengers, but on the other hand softens competition. The first effect more than
outweighs the second effect, thus the airport prefers to adopt differentiation rather than
to allocate both peak slots for the same destination.

A not-too-busy airport chooses its allocative strategy according to the amount of
per-passenger fee. In particular, it implements a mix of “peak/off-peak” and “peak/peak”
market configuration if the per-passenger fee is high, and “peak/off-peak” configura-
tion in each market if the per-passenger fee is low. In the latter case, given that the num-
ber of destinations is lower than the number of slots, allocative inefficiency emerges.
These results can be explained as follows. Low per-passenger fees imply cheap flight
tickets, thus the airport can allocate slots in the peak/off-peak configuration without
losing passengers, even with less competition. Allocative inefficiency is due to the fact
that a not-too-busy airport does not need the extra slots to reach the optimal slot al-
location. With high per-passenger fees, the airport allocates some peak/peak market
configuration (undifferentiated slots) in order to induce more competition and to keep
the price of flight tickets sufficiently low.

The emergence of allocative inefficiency in our results corresponds to the common
practice in airport management of declaring a number of slots being lower than an
airport’s full capacity (Mac Donald, 2007, and De Wit and Burghouwt, 2008). Indeed,
as De Wit and Burghouwt (2008) point out, “an efficient use of the slots at least requires
a neutral and transparent determination of the declared capacity”.

If each destination is served by a monopolist and one peak slot is assigned to them,
the monopoly airline would choose to operate in the peak slot only, thus leaving unused
the off-peak slot. Indeed, given the same (marginal) per-passenger fee for operating at
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a peak or off-peak hours, the airline prefers to put all seats in the peak flight. Moreover,
if two peak slots are assigned to the monopoly airline, and assuming a preference for
operating one flight at peak slot rather than two (for operating costs not modelled here),
then the monopoly airline would also leave unused the extra peak slot. In turn, the
airport would assign a single peak slot to each destination market, as long as peak slots
are available. Naturally, in this case allocative inefficiency does not occur. Finally, the
results are similar when the airport is public, with the exception than inefficiency does
not emerge.

To illustrate the empirical relevance of this mechanism, we have briefly investigated
the slot allocation in the city-pair markets of the 5 most busiest US airports and of a ran-
dom sample of 10 mid-range US airports (see Appendix A). Table 1 shows the numbers
of origin-destination routes operated by monopoly, duopoly and oligopoly, and the pat-
tern of slot occupancy. While a large bunch of city-pair service is supplied by monopoly
airlines, there exists a significant portion of flight activity served by competing airlines.

# Origin-destinations served by | # Slots occupation(%)
Mon. (%) Duo. Olig. Peak offpeak
Top 5 525 (62%) 161(19%) 157(19%) | 29% 71%
Mid sized 10 | 200 (73%) 53 (20%) 19 (7%) | 28% 72%

Table 1. Pattern of market structure and slot occupation.

Our theoretical analysis claims that slot allocation can be used by congested airports
as a discrimination tool in markets where several firms compete. To highlight this, we
focus on duopoly city-pair markets and construct an index 7 that measures whether the
competing airlines are put in the same slot. Typically, along the discussion in Section 3,
two competing airlines, each operating one flight to the same destination, are allocated
in the same time slot if 7 = 0 and are separated in a peak and an off-peak slot if 7 = 1.
A higher aggregated index Z measures stronger use of a slot discrimination. Excluding
inter-hub traffic and high frequency destinations, we then find evidence consistent with
our model prediction that slot discrimination is stronger in the largest airports, see
Table 2.
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Average Index Z
Largest 5 airports  Mid 10 airports
5-11am 0.38 0.23
11-16pm 0.32 0.2
16-23pm 0.44 0.44

Table 2. Average index 7

So far, slot allocation has drawn relatively little interest in the economic literature,
with few but noteworthy contributions. Barbot (2004) models slots for airline activities
as products of either high or low quality, and carriers choose the number of flights they
operate. She shows that slot allocation improves efficiency according to the criteria for
assessment, and welfare in fact decreases after re-allocation. Unlike the present pa-
per, in Barbot (2004)’s model carriers could operate as many flights as they want. Our
paper limits the number of peak slots, in order to address congestion. Verhoef (2008)
and Brueckner (2009) compare the pricing and slot policy regimes. They show that the
tirst best congestion pricing and slot trading/auctioning generate the same amount of
passenger volume and total surplus. They investigate a single congested period. Their
contributions do not distinguish between peak and off-peak hours, and allow the air-
port to allocate slots without charges. Although this seems a plausible description of
some public airports, non-profit behavior does not seem likely for a private airport. De-
parting from Verhoef (2008) and Brueckner (2009), we assume that each airline operates
a single flight. Our approach models certain time intervals that are most desired by all
passengers as the peak period. In particular, the total number of slots that an airport
could grant in the peak period does not meet the demand of passengers.

The remainder of the chapter is organized as follows. Section 1.2 introduces the
model. Section 1.3 presents the baseline results, in which the airport is assumed to be
private and an airline duopoly serves each destination. Section 1.4 and 1.5 show the
changes in the results when either a monopoly airline serves for each destination or
the airport is publicly owned, respectively. In section 1.6, we show the changes in the
results when density is heterogenous among different flights. Section 1.7 concludes.

1.2 The model

In the baseline model, we consider a private airport that links N destinations d € D.’
Each destination is served by two flights f and f’ € F operated by independent air-

9Section 1.5 analyses the case with a public airport.
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lines.!? There are therefore 2N flights and 2N airlines (#(D) = N and #(F) =2N). For-
mally, we define the mapping I from flights f to destinations d such that I(f) = d. The
inverse mapping from flights to destinations is defined as A(d) = {f : I(f) = d}. We
assume that airports at destinations are uncongested, so that the allocation decisions
do not affect the flight scheduling of destination airports. Furthermore, we focus on the
case of single trip departing flights. Return trip flights can be dealt with by either an
identical analysis with two runways, or simply by adding a scale factor if there is a sin-
gle runway. Destinations are independent in the sense that they are neither substitutes
nor complements; therefore the demand for one destination is irrelevant to demands
for other destinations. We assume that the quality differential is characterized only by
the departing time. Although the quality of an airline depends on many factors, this
approach allows us to concentrate on the congestion issue. There are two travel pe-
riods, denoted as peak and off-peak. A peak period represents the time window that
consists of the most desirable travel times in a day, for instance early morning and late
afternoon. The peak period may contain a collection of disjoint time intervals like 7:00-
9:00 and 17:00-19:00. The off-peak period, by contrast, contains all other time intervals
that do not belong to the peak period. In order to address the problem of peak slots
congestion, the off-peak period is assumed to be uncongested, i.e., airport capacity can
serve all flights in off-peak time intervals. Conversely, the peak period is congested in
the sense that airport capacity cannot serve all flights within peak period. This assump-
tion captures traffic patterns at many airports nowadays. All potential passengers agree
that peak hours (denoted as subscripts h for higher quality) are more preferable than
off-peak hours (denoted as subscripts | for lower quality) at an equal price. At peak
hours the demand to use airport runways is much higher than off-peak hours, so that
the perceived “qualities” of slots, s; and sy, satisfy exogenously s, > s; > 0. Finally, a
slot allocation is defined as the mapping ¢ from airline f to a slot type i, ¢ : F — {I,h},
so that g(f) = i. For instance, g(f) = h reads as airline f is allocated a peak time slot.

We assume that in each destination market the airlines engage in seat (quantity)
11 f
i
d = I(f) that takes off at slot i while its competitor on the same destination takes

competition.”~ We denote p’, as the price charged for flight f flying to destination
off at slot i, i,i = {l,h}. Similarly, q{l-/ denotes the number of passengers served by

this flight. Following the general framework of vertical differentiation (Gabszewicz

19Section 1.4 extends the analysis to the case where a private airport interacts with airline monopolies.

1 The assumption of quantity competition is common in the airline economics literature. See Brueckner
(2002), Pels and Verhoef (2004), Basso (2008). Brander and Zhang (1990) find empirical evidence that the
rivalry between duopoly airlines is consistent with Cournot behavior.
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and Thisse, 1979), in each destination market the demand is generated from a unit
mass of passengers indexed by a type parameter v. Passengers differ in tastes, the taste
parameter is described by v € [0, 1], v being uniformly distributed with unit density.
We assume each passenger flies at most once, and, if a passenger refrains from flying,
her reservation utility is zero. Formally, a potential passenger in the destination market
d with flights f and f’, d = I(f) = I(f’), has the following preferences:

vs; — p{;/ if she takes flight f in slots; at price p{i,

Ut =< vsy — p{/; if she takes flight f’ in slots; at price pi/;
0 if she does not fly.

Without loss of generality, suppose g (f') = h and g (f) = I. Pairwise flights obtain
slots of different qualities. Under our assumption, flight f’ obtains a peak slot, while
flight f obtains an off-peak slot, so that i’ = h and i = I. It follows that the passenger

with a taste parameter v flies with f’ when vs), — p;; > vs) — p{h > 0 and flies on flight
f when vs; — plfh > vSy — pil > 0. The passenger indifferent between f’ and f has taste
fof
Op = M (11)
Sy — S

Likewise, a passenger is indifferent between not flying and flying with airline f when

vs; — p{h = 0, so that
f

oy = P (1.2)
51

Hence with differentiated flights, the demand for flight f’ is 1 — vy, while the demand
for flight f is vy, — vy, (see Figure 2?). Moreover, there are v passengers that do not fly.'2

For g(f') = g(f) = i € {h1}, ie., pairwise flights obtain slots of same quality,
then a passenger is indifferent between flights. In this case, the pairwise flights are
homogeneous and hence evenly share the destination market. There are two possi-
ble configurations: both flights obtain either peak or off-peak slots. In the peak/peak
configuration, a passenger v is willing to fly when

f /!

V> vy = Prn (: phh) , (1.3)
Sy Sy

while in the off-peak/off-peak configuration, she is willing to fly when

f /
v>oy=FU <: p”) . (1.4)

S] S]

12Motta (1993) shows that Cournot competition can be studied only with partial market coverage, since
the demand function can not be inverted with full market coverage.
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Utility

Up =vsp, — Py

U=vs;—p

0 Vin Vi 1

Figure 1: Valuation of slot quality

The demand for each flight is thus 1 ( - f—:) Hence the three configurations are
characterized by the following demand functions, respectively:

o f f

Al ply) =TT P,
" o (15)
/ , p—p
q'hfl(plfh/ Pil) =1- ﬁ’
(if) ql, (pu) + ¢ (pu)) =1 — %l w6
(iid) g, (pun) + 4L, (pn) = 1 — 22 a7
Sh

Solving (1.5)-(1.7) for prices, the inverse demand functions corresponding to the three
possible destination market structures are given respectively as follows:

el =s(i-ah—dh),
W9 sl _ of (18)
P = 5n <1_§ m‘%z)r
(it) pu = s (1 —q) - q{l) : (1.9)
(1ii) ppn = s (1 — q;;h — q£h> . (1.10)

Airlines choose the number of seats in order to maximize profits. It should be
stressed that the one-stage quantity competition can be interpreted as the result of a
two-stage sequential game in the spirit of Kreps and Scheinkman (1983). In the two-
stage game, airlines first simultaneously choose aircraft sizes as well as frequencies,
then compete on flight fares. Aircraft size, once set, is hard to adjust, thus airlines face
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capacity constraints at later stage. Airline costs include airport per-passenger charge ¢,
while marginal operating costs are normalized to zero. We do not consider the entry of
airlines in the airport and assume that fixed costs are sunk. Thus the profit of a flight f
competing in the destination market d with another flight f', d = I(f) = I(f’), is given
by:

mh = (Phahal) — ) aly ifg(f) = land g(f) = h (1.11)
= (piz(qfhfqiz) 4>) 7l i g(f) = hand g(f) =1,

for an peak/off-peak slot configuration and

= (pltalal) — ¢) df ifg(f) = g(f) =i € (L), (112)
ml = (vl alal)—9)al ifg(f) =g(f) =ie{Ln},
for the peak/peak and off-peak/off-peak slot configuration.
The airport earns the charge ¢ for each passenger. It chooses the slot allocation
mapping g(-) that maximizes its profits. We get the following program:
— N f f — I(f) —
maxIl=24_,¢ (Thps0) * Tiinaen) where 1) = 1) =d, - (113

subject to the peak slot capacity constraint

#Hf:g(f)=h} <M, (1.14)

where M is the total number of peak slots. To avoid a cumbersome discussion of ties,
we assume that M is even. Constraint (1.14) implies that the overall allocated peak slots
cannot exceed the total number of available peak slots. Peak capacity cannot accommo-
date all flights (M < 2N), while off-peak capacity can accommodate all flights (there is
no constraint for the off-peak slots).

We then define allocative inefficiency as follows.

Definition 1 Allocative inefficiency emerges when at least one peak slot is not used.

This definition seems natural. In the presence of airport congestion, leaving some peak
slots unused represents a degree of inefficiency.
Figure 2 shows the timing of the game. In the first stage the airport allocates peak

and off-peak slots for a given fee ¢. In the second stage airlines choose number of
f

it

seats to supply ¢4, based on the slot allocation. In the third stage passengers in each
destination decide whether to fly with a peak period airline, an off-peak period airline,

or not to fly at all. The equilibrium concept is the subgame perfect equilibrium.



CHAPTER 1. INEFFICIENCY IN AIRPORT SLOT ALLOCATION 10

° ° °

t=0 t=1 t=2

airport allocates each airline obtains passengers in each

slots a slot, and chooses destination choose
number of seats an airline to fly

Figure 2: Timing

1.3 Results

In this section we show the baseline results of the model. As mentioned earlier, we
tirst focus on a private airport that links destinations operated by duopoly airlines with
symmetric demand and cost structures. We first discuss the competition between the
airlines and then the optimal slot allocation the airport.

1.3.1 Duopoly airlines

In the second stage, airlines set their optimal supply of seats. We analyze each possible
configuration (peak/off-peak; peak/peak; off-peak/ off-peak) separately. Consider first
a destination market d where pairwise flights (f, f') = A(d) obtain different slots. Then
according to (1.11), airlines’ profits are expressed by:

”{h = [51(1 - Q{h - lﬁ,[z) - <P} Jin (1.15)
7[{1 = (Sh - Sl‘hfh - 5h‘7£; - <P> Gnl- (1.16)

Airlines choose the number of seats to maximise profits, for any given ¢. The first-

order conditions are:

anl, ’
=+ (L= g, — giy)s — s = 0, (1.17)
0
Tin
o, 4
= —¢+s,— 2‘7515?1 - %fhsl =0. (1.18)
Oy

Solving (1.17) and (1.18) simultaneously with respect to q{h and q;; yields:

o _susi— @ (255 —s1)
0/1}1 - 5]lh — (4Sh — SZ)SZ 7 (1.19)
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| 1.20
. . . . Sus
To ensure interior solutions, we assume the condition 0 < ¢ < ¢; = 25 h ls Note

that g, < gy forall 0 < ¢ < ¢,. If a destination market obtains dlfferent slots then
the airline with the peak slot serve more passengers in equilibrium than its off-peak
competitor. Since quantities are symmetric across destinations, prices and profits are
also symmetric and we can dispense the variables with the superscripts f and f” in the
sequel without loss of clarity. Plugging (1.19) and (1.20) into (1.8) yields

sn(2¢ +s1)

= , 1.21

e P (1.21)
25% + (3Sh — Sl> (P — SpS]

4Sh — S

P = , (1.22)

both of which are positive, and where

(Sh — Sl) (Sh + Z(P)

Pui — Pin = yr—
Naturally, prices are functions of ¢, with a;qlbh , 3aP (;l > 0.

Given qi;, < qu, pin < pm and (1.11), the airline flying during the peak slot earns
higher profit than its off-peak slot counterpart.

Consider next the optimal number of seats provided in the same destination d mar-
ket where both airlines (f, f') = A(d) obtain the same slots. The airlines face the de-
mand

q{i + qzz =1- ;: (1.23)

Plugging (1.23) and (1.25) into airline profits (1.12) yields:

{nﬁ- = [(1 - ‘7{; ‘75) gb} qi'
715 = [(1 - q{l ‘7{1/) 4)} q{;/

!
The first order conditions of 7'(5 and 7'[{; with respect to qi

—¢—q£5i+5i(1—%fi—‘1£) =0,
—p—qisitsi(1—gl—q)) =
;

By solving the above two equations for g

(1.24)

!
and q{i , respectively, are:

and qifi/ we obtain the optimal number of

seats served by two airlines, which are identical due to symmetry:

o f g =5 ®
qll qzz qii = 3Si . (125)
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To ensure interior solutions, we make the assumptions 0 < ¢ < s;and s; > ¢, i €
{h,1}. Again quantities are symmetric across destinations so that prices and profits are
symmetric and can be dispensed with the superscript f and f’. Hence 0 < ¢ < ¢
is a sufficient condition for gy, g, ;i to be positive. For all 0 < ¢ < ¢, we have
Gni > qnn > qu > qin - Plugging (1.25) into (1.24) and (1.10) yields:

s +2 Sp+2
pPn = l (P, Pnn = ot 4)- (1.26)
3 3
Acai . . . apii
gain, prices are functions of ¢, with 3 > 0.

1.3.2 Airport

In the first stage, the airport maximizes its profit by allocating peak slots subject to con-
gestion. In this set-up, destination markets can have only three types of slot allocations:
ny destination markets have peak/off-peak allocations, n, get peak/peak allocations
and n3 receive off-peak/off-peak allocations. The airport allocation problem (1.13) sim-
plifies to the following linear program:

Jmax [y (qu + ) + 202qm + 213qu] ¢ (1.27)
subject to
n+ny,+n3=N (1.28)
nm+2n <M (1.29)
0 <mnq,nyn3 <N. (1.30)

where N denotes the number of destinations, 2N the number of flights, and M the
number of available peak slots. The first constraint checks the count of destination
markets while the second one expresses the airport peak slot capacity. The optimal slot
allocation depends on how the number of passengers in each type of slot allocation
(G1n + qn1, 29n, and 24;;) compare with each other.
According to (1.19) and (1.20), the number of passengers in a destination market is
given by
sn(3s) — 2¢) — 7

s1(4sy — s1) (1.3

Jin +qu =

whereas with configuration peak/peak, or off-peak/off-peak, the number of passenger
in a destination market is

25i=9) i can . (1.32)

20 =
1111 351‘
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To get intuition, consider that the capacity constraint (1.29) is not binding. Reallocation

of flights must satisfy only the constraint (1.28). The airport can reorganize the slot in

three ways. First it can add a peak/off-peak configuration at the expense of an off-

peak/off-peak configuration (i.e. An; =1, Ang = —1). Since s, > s; > 0, the additional

number of passengers is given by

(sn—s1) (2¢ +51)
3s; (4s, — s1)

Second, it can add a peak/peak configuration at the expense of the same off-peak / off-

Gin + qn — 29 = > 0.

peak configuration (i.e. An, = 1, Anz = —1) and gain
24) (Sh — Sl)
2qm —2q) = ———= >0
Anh — 2411 35,5) >

passenger. As a result, the off-peak/off-peak configuration should never be chosen by
the airport. Finally, the airport may substitute a peak/off-peak configuration for an
peak/peak configuration (i.e. Any =1, An, = —1) and gain (g, + qn1) — 2qu, passen-
gers. Using (1.31) and (1.32), this gain is shown to be positive if and only if
S1SK
< = —
¢= (PZ 6s;, — 2s;

where © )
51 (&5 — 51
4)1 (PZ - 2 (351’1 . Sl)

At low airport fees ¢, the number of passengers is larger when the flights to the same

> 0.

destination are differentiated in their departure times. The opposite holds for high
fees. There are two forces in this setting. On the one hand, competition is softer under
peak/off-peak configuration as each airline targets either the high or low valuation pas-
sengers. In equilibrium they offer seats to “low cost” passengers. On the other hand,
airlines intensively compete for the same high valuation passengers under a peak/peak
configuration. While they attract more consumers with high valuation they do not
reach the “low cost” ones. As a consequence, when the airport fee ¢ is small enough
(¢ < ¢,), flight fares remain sufficiently low to attract many low valuation passengers.
The first effect outweighs the second effect, so that q;, + g, is greater than 2g;;,. The
airport then has an incentive to separate departing schedules. By contrast, if the air-
port fee ¢ is large (¢ > ¢,), the flight fares are too high to attract many low valuation
passengers. The airport favors high valuation passengers and offers the most valued
departure slot to all of them.

Figure 3 plots number of passengers q;; + qui, qun + g and g + g as the fee
¢ € (0,¢,) varies. The off-peak/offpeak configuration is always dominated. When
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g 4 = S;5),
25, —s,
Gy + 4 ¢ _ SiSh
, =
6s, — 2s,
24,

g

9y t \

Figure 3: Passenger seats to a destination in each slot configuration

¢ is small (¢ < ¢,) the airport gets a larger number of passenger in a peak/off-peak
configuration gy, + gy than with a peak/peak one g, + gp.

Consider now that the airport hits its capacity constraint (1.29). Feasible slot changes
must then satisfy An; = — (Any + Anz) and Any = Anz.!3 For the sake of clarity, con-
sider a slot re-allocation such that An; = 2, An, = —1 and Anz = —1, which involves
two destination markets and four slots, including two peak and two off-peak slots.
The airport uses the slots of two peak/peak and off-peak/off-peak destinations and
re-allocate only one peak slot to each destination. Doing this, it increases the number
of passengers by 2 (g5, + gn;) and decreases it by 2g;,;, and 2g;;. The comparison yields:

(sn = s1) [sns1 — (25 — s1) 9]
35hsl <4Sh — Sl)

(qun + qu) — (qnn + qu) = >0 for ¢ < ¢,.

As a result, when the airport reaches its capacity, it always benefits from allocating
peak/off-peak slot configurations. This effect can be visualized in Figure 3 comparing

qun + qn and gup + qu1-
The formal solution of the program (1.27) is derived in Appendix B as it follows:

(i) m =min{M,N},ny =0,n3 =N —mnyif ¢ < ¢,;

(i) my =M,ny=0andnz3 =N - Mifp, <¢p <¢$p,and N > M;

13The constraints yield ny = 2N — M —2nz and np = M — N + n3.
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(iii) n1 = N—mng,np =M —N,n3 =0if ¢, < p < ¢p;and M > N.

When the airport is below capacity (M > N) and imposes a low fee (¢ < ¢,), it
grants a single peak slot for all destinations (17 = N in (i)). This reflects the above in-
centive to set peak/off-peak slot configurations. However, in this case, some peak slots
are inefficiently discarded whereas they have a value to all passengers. As mentioned
above, by differentiating the departure time the airport increases the number of “low
cost” passengers. Thus the airport does not internalize the passengers’ value. By con-
trast, for higher fees, it grants a first peak slot to all destinations and a second one to
M — N destinations (n; = N+ (N — M) and n, = M — N in (iii)). In this case flight
fares are too high to attract the “low cost” passengers and the airport prefers offering
the best departure times to the maximum number of passengers.

When the airport is at capacity (N > M) and imposes a low fee (¢ < ¢,), it gives
a single peak slot for the maximum number of destinations and allocates the rest of
destinations into the off-peak slot pool (11 = M, n3 = N — M in (iii)). The airport
makes exactly the same decision for higher fees (n; = M, n3 = N — M in (ii)).

The foregoing discussion can be summarized in the following proposition.

Proposition 1 Suppose all destination markets are served by duopoly airlines and the airport is
private. For M < N, the airport uses all available peak slots and implements the “peak/off-peak”
configuration in each destination market. For M > N and

o ¢ € (0,¢,], the airport does not use all available peak slots (inefficiency), and the config-
uration is “peak/off-peak” in each destination market;

o ¢ € [, Pq), theairport uses all available peak slots, and implements (M — N)"peak/peak”
and (2N — M) “peak/off-peak” configuration.

Figure 4 describes the equilibria in the space (¢, M). When ¢ € [¢,, ¢,), the airport
favors peak/peak allocations and as a consequence no peak slots would be optimally
left unused. For per-passenger fees smaller than ¢,, the result depends on the relation-
ship between peak slots M and number of destinations N. In a very busy airport where
available peak slots are scarce relative to total demand (M < N), it is optimal to allocate
all available peak slots. When peak slots are not scarce relative to the number of desti-
nation markets (M > N), a private airport would leave a number of peak slots unused
when the pre-determined fee is small, thereby resulting in allocative inefficiency. In re-
ality, such behavior may be expressed by misreporting true airport handling capacity.
This is in line with De Wit and Burghouwt (2008), who find that efficient slot use can be
affected by capping available slots through capacity declaration.
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Figure 4: Equilibria: duopoly airlines and private airport

1.3.3 Airline operating costs

For the sake of completeness, we end the section by discussing the case where airlines
have non-zero operating costs ¢ > 0. The analysis can be developed in a similar vein
as before, where the airline marginal cost is now ¢ + ¢ rather than ¢ only. Naturally, in
both configurations the volume of passengers is larger without operating cost. The con-
clusion drawn from the comparison of peak-off peak configuration also applies here. It
follows that, with positive operating costs airport profit is also smaller in each configu-
ration. The condition required to guarantee positive passenger volumes in equilibrium
is

SnS1

0<¢<(P,1£28h—51

while the threshold determining the preference between peak/peak and peak/off-peak

is
SKS1

/I —
SRR T
Therefore, the above proposition now reads with ¢} and ¢, substituting for ¢, and ¢,.
If the cost ¢ is small enough so that ¢, > 0, the proposition presents the same configu-
rations and the same issue of allocative inefficiency. The configuration peak/off-peak
induces more passenger volume than configuration peak/peak so that the airport does
not distribute all available peak slots and inefficiency arises. However, if ¢ is large
enough so that ¢, becomes negative, all available peak slots are distributed and alloca-

tive inefficiency never arises.
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1.4 Airline monopolies

Having examined competition between duopolists in each destination market, we shall
now investigate the case in which each destination market is served by a single airline
that acts as a monopolist operating two flights. As with the baseline model, we analyze
the second stage in each possible configuration separately, while the analysis of the
third stage remains unchanged.

Suppose that an airline is offered both a peak and an off-peak slot. Its profit is given
by © = n{h + nh; where n{h and 7'[% are defined in (1.15) and (1.16). The airline solves

the profit maximization problem with constraints on the positivity of outputs:

r?a;g T= [Sl(l - q{h - Q£]) - ‘P} Q{h + (sn — 51‘1{;, - Shqil - ‘P)qil (1.33)
TinTni
s.t. q{h >0, q;; > 0.

The maximum profit (see Appendix C) is obtained for

an = 0, (1.34)

m Sp —
an = hZSh‘P, (1.35)

where the superscript m stands for “monopoly”. The monopolistic airline allocates all
seats in the peak flight. Indeed, it does not have any advantage to decrease consumers’
value by offering a flight off peak. This result is due to the fact that the cost of boarding
a passenger (in terms of per-passenger fee) is linear and equivalent between a peak and
an off-peak flight. Given the same (marginal) per-passenger fee, the airline prefers to
put all seats in the peak flight. In the real world, this implies that the monopoly airline
assigns a “big” airplane flying on that destination in peak time rather than put two
“small” airqlé)lanes flying one in the peak and the other in the off-peak slot. Plugging
Sp —

qp = s, into p;; yields

Sy +
pl =2t . ?, (1.36)

Consider next the case where the monopoly airline is offered two slots at the same

time for the same destination.'* A small (unmodeled here) fixed cost per aircraft move-
ment will entice the airline to operate only one aircraft on one slot. We denote the slot

14This configuration is mainly made for the sake of comparison. It is certainly the case in configurations
where there are two (morning and evening) peak slots per day. The case where the airline merges the two
flights is left for future research.
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type (h or I) the monopolist obtains by i. The monopolist’s profit is given by:
i = [(1—qi)si — ¢ q;, withi € {h,1}.

Taking the first-order condition for number of seats we get the equilibrium number of

seats the monopoly would provide:

m m 5; —
T = qn Zsi(PI (1.37)

which is the same result as (1.35) for i = h. The aircraft capacity is larger at peak
time: g;' > g;". To ensure interior solutions, suppose condition 0 < ¢ < s; is satisfied.
Plugging (1.37) into (1.24) and (1.10) yields:

m si +
Pt — 24’- (1.38)

which is the same result as (1.36) for i = h. It is easy to check that peak flights are more
expensive and transport more passengers.

The airport allocation problem simplifies to allocating peak and off-peak slots to the
monopoly airlines:

m m
max [m1qy’ + maq)"] ¢

subject to

my +mpy = N
mlgM
Ogml,ngN.

where m1 and m; are the number of flights in the peak and off-peak slots. Since q;" > g",
the solution is (i) m; = N if N < M; (ii) m; = M otherwise. The airport fills the peak
slots until capacity is reached.

Proposition 2 Suppose all destination markets are served by monopoly airlines. Then, airlines
operate one flight per destination and the private airport uses all available peak slots.

Proposition 2 shows that, if the destination market is served by a monopoly airline,
the optimal slot allocation is to assign one peak slot to each destination market, while
no off-peak flights operate. The intuition lies in the fact that the monopoly airline has
no incentive in exploiting an off-peak slot, given that same marginal cost as operating
during peak hours.
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1.5 Public airport

In this section, we investigate the case of a pubic, welfare-maximizing airport. This
allows us to obtain some insights on how the airport’s ownership influences slot allo-
cation. In this regard, social welfare W is represented by the sum of airport” profits I1,
passenger surplus CS and airlines” profits:

W =TT+ CS + ny (7t + ) + 2 (n27tpy, + namy) -

Since airport and airlines operating costs are normalized to zero, airport profits come
from total per-passenger fees, whereas airline profits are the ticket income less total
per-passenger fees paid to the airport. In turn, passenger surplus is represented by
the total gross utility generated from flying minus all ticket payments. Since monetary
transfers between airlines and airport cancel out, and so do transfers between passen-
gers and airlines, then social welfare equals the sum of passengers’ gross utility in all
N destination markets. Thus W can be rewritten as:

o 1 1 1
W =m (/ N vsydo —|—/ vshdv> + nz/ vspdv + n3/ vs;dv, (1.39)
% Ot %

Ih hh i1

where vy, vy, vy, and vy are given by (1.1), (1.2), (1.3) and (1.4). Note that the sur-
plus in the peak/peak (resp. off-peak/off-peak) configurations includes the value of all
consumers from 1 to vy, (resp. from 1 to vj) as all passengers take the same time slot.

In destination markets with the peak/offpeak configuration, the expression | Z:’ vs;dv
represents the gross passenger surplus from taking the off-peak period flight, while
fvlhl vsydv is the gross passenger surplus from taking the peak period flight in the same
destination market. In destination markets with the peak/peak configuration, the sur-
plus is fvlhh vspdv,which is the second term on the right hand side of (1.39). The last
term of (1.39) thus represents the gross passenger surplus in destination markets with
off-peak/off-peak configuration.

The analysis of the second and third stage remains the same as in the baseline
model. For notational simplicity we define Wy, = fZZ:’ vs;dv, Wy, = fvlm vspdo, Wy, =
fvl;,h vsydv and Wy = fvl,, vs;dv, so that (1.39) becomes

W = ny (Wi, + Wyy) + naWyy, + n3Wi.

We will consider first the case with duopoly airlines and then the case with monopoly

airlines.
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1.5.1 Airline duopolies

Putting (1.21), (1.22) and (1.26) together with (1.1), (1.2), (1.3) and (1.4) yields:

sn (s1 +2¢) 2, + ¢ Sp — 2¢ S| —2¢
— = = = . 14
b s s sy T aey = O 35, 35, (1.40)

U]

Substituting (1.40) into (1.39) and solving the integrals yields:

4sysi(s; — 2sy) + sysy (1252 — Bsys; + s7) — ¢ (4s2 + 5,5 — 57)

W, Wy, = ,
W 2s;(4sy, — 51)?

and

Wii = 209 +Slg£?Si — Cp), ie{hl}.

. s . o, .
Assuming ¢ < ¢¥ = EI ensures that Wj; is positive. By comparing the number of seats

obtained in each configuration, we get (see Appendix C) Wy, > Wy + Wy, > Wy > 0

and (Wi + Wip)

case with ¢ € [¢,,¢,). In particular:

< Wy + Wy,. We thus arrive at a situation similar to the private airport

e n1=M,ny=0and n3 = N — Mif N > M (Case (ii)).
e n1=N—ny,np=M-—N,n3 =0if M > N (Case (iii)).
The following proposition summarizes the features of the equilibrium.

Proposition 3 Suppose all destination markets are served by duopoly airlines, and the airport
is public. For M < N, the airport uses all available peak slots and favors “peak/off-peak”
configuration. For M > N the airport implements a mix of (M — N) “peak/peak” and (2N —
M) “peak/off-peak” configurations.

Figure 5 describes the equilibria in the case of public airport with duopoly desti-
nation markets. The results are qualitatively similar to the case with private airport
for ¢, < ¢ < ¢,. However, now the public airport would use all available peak slots
in any case, hence, inefficiency does not emerge when the airport is public. This can
be explained as follows. The consumers lose when they are presented departure time
away from their preferences. The public airport internalizes this loss and avoids empty
peak slots. The private airport rather implement empty peak slots because it can attract
more (low valuation) passengers, even though those passengers would prefer travel-
ling at peak time.
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=S

Figure 5: Equilibria: duopoly airlines and public airport

1.5.2 Airline monopolies

We now turn to the interplay between a public airport and airline monopolies. Com-
pared to the private case, the market stage in each destination market does not change:
given the opportunity of operating in peak slots, each monopoly airline uses one peak
slot only. Thus W can be rewritten as:

W™ = my W+ ma W}, (1.41)

where W' = fvlh vspdo, W' = fvl; vsjdv, my and m, are the number of flights in the peak

and off-peak slots, and v, and v; are the same as (1.3) and (1.4), respectively, but when

only one flight operates. Putting pj’ = S ;_ ¢ and pJ" = ? from (1.38) into (1.3)
and (1.4), respectively, yields:

Sp+¢ sit+¢
= ,0] = . 1.42
2sy, vl 2s; ( )

Op
Substituting (1.42) into (1.41) and solving the integrals yields:

Wlm — (Si - 4))8(5351 +(P)/ ic {h,l},

where 5
(sn —s1) (Bsusi + ¢?)
SShSl
Since W} > W/", the solution is (i) m; = N if N < M; (ii) m; = M otherwise. The

airport fills the peak slots until capacity is reached, as in the private case (with same

> 0.

intuition).
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Proposition 4 Suppose all destination markets are served by monopoly airlines. Then, airlines
operate one flight per destination and the public airport uses all available peak slots.

1.5.3 Compare social welfares of two market structures

The precedent analysis illustrates that monopoly airlines reduce their demand for slots,
hence the airport congestion problem is solved by a shrinking of demand for peak slots.
Moreover, efficiency is evaluated in terms of the degree of utilization of peak slots. We
now look into the comparison of social welfare levels induced by these two market
structures. The discussion can be divided into two cases: M < N and M > N. When
M < N, according to Proposition 3, there will be M peak/off-peak markets and N — M
off-peak/off-peak markets. While Proposition 4 suggests a number of M markets each
filled with a peak slot, and N — M markets each with a off-peak slot. The overall com-
parison problem then effectively reduces to a simpler version of comparing the social
welfare of a peak/off-peak market (W + Wy,), to that of a single peak slot market
(W/"); as well as an off-peak/off-peak market (W) to a single off-peak slot market
(W/™). We could show:

453 (57 — 4¢?) + 52 (s? + 125/¢%) + 2s,57(s) — 2¢) + s7¢p* -0

—_ m p—
Wi + Wi, — W 8551 (51 — 45,)° '

and ) )
5s7 + 34519 —7¢

7251
for all ¢ < 3. Same argument and proof apply to the alternative case where M >

WII—W]m: >0,

N. Note that the comparison of different slots in duopoly with single peak slot in

monopoly maintains, hence it suffices to look at same slots case only: N — M peak/peak

markets with same amount of single peak markets. It can be shown that duopoly yields

higher social welfare:

552 + 3dsyp — 7¢*
725y,

The intuition is straightforward on the grounds of both competition and passenger

Whh—W;ln: > 0.

type. A duopoly of airlines that offer different slots attract both high and low type
passengers; in addition, because two flights are partially substitutable, the competition
curtails the airlines” market powers. The resulting social welfare in a duopoly setting
hence exceeds that in a monopoly setting where only one flight is offered. Moreover,
given the monopoly nature, it is intuitive that a duopoly providing homogenous goods
would induce higher welfare than a monopoly that provides a single good.
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1.6 Heterogeneous density

In this section, we assume heterogeneous density across destination markets. The point
is to confirm that peak/off-peak slot configurations and allocative inefficiencies also
occur when destination markets differ in sizes. For simplicity we study an economy
with only two destination markets, d € D = {1, 2}, that exhibit different densities: the
small destination market 1 has a lower density J;, the large destination market 2 has a
higher density d, > 1. We discuss three examples with decreasing peak slot scarcities.
Namely, when the airport has either one, two or three peak slots for the two markets.

To begin with, we first look at the duopoly case where peak slots are highly scarce,
where one peak slot is available compared to four slot demands, M = 1, N = 2. Let
us label the small market flights by “11”7,“12” € A(1) and the large market ones by
“217,722” € A(2). There are two ways to allocate the peak slot: (1) one of the two
airlines in the small destination market, and (2) one of the two airlines in the large
destination market.

The demand functions for each airline can be in two possible configurations. First
if the smaller destination market d = 1 has the peak slot we have

12 11 11 12 11
1 _ g Pui =P P 12 _ 5 1_th_ch
Ggn = | ———~ — |91 =% — |
Sp — 51 51 Sp — 51

and for destination market 2:

51

21 22 Plzl1
qn +qii = 02 (1— ) ,

(where p7! = p??). Second, if larger destination market d = 2 has the peak slot we
get the same quantities where 61 substitutes for &, and (g}, 91, 4%, 4% is replaced by
(qlz}}, q%%, qllll, qlllz). In the similar manner with (1.19), (1.20) and (1.25), we could derive
the optimal passenger volumes served by each airline and consequently each destina-
tion market in equilibrium. A comparison of the equilibrium passenger volumes in the

two configurations yields:
1 1 1
ahy +aif + it + it — (all + q? + i+ a3}

. ((51 — (52) [Sl (9 + s —|—251) —|—2(P (Sh — Sl)] <0
B 3s;(4sy, — 51) ‘

implying configuration 2 yields a higher number of passenger than configuration 1.

The ranking in this simple framework suggests
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Proposition 5 Consider an economy with two duopolies with different density levels, a private
airport and a single peak slot. Then the airport allocates the peak slot to one of the airlines in the
large destination market, and inefficiency would not arise.

We investigate next the case where peak slots have a moderate scarcity at the airport.
In this setting there are two peak slots available for two destination markets, M = N =
2. It is straightforward to see that allocation “two peak slots to destination market
2”7 dominates allocation “two peak slots to destination market 1”. Indeed, the large
market has a bigger multiplier for density é, > J;1. This, together with the fact that
off-peak/off-peak is strictly dominated by peak/peak and peak/off-peak, implies that
there are two possible allocations: (1) two peak slots to the large destination market,
and (2) one peak slot to each destination market. The demand functions for each airline
in these two configurations are:

1. Configuration 1. Destination market 1 :
11, 12 Pii
Qi +qi =01 =5

destination market 2:

21 22 P%z%l
Tn + G = 02 (1—5}[> :

2. Configuration 2. Destination market 1:

12 _ 11 11 12 _ 11
1 _ s (P =P _ P 12 _ s (q_ Pu=Pu .
Gin =01 = — T — ;
h = Si S Sn — Si
destination market 2:

R | 2 o1
Pl — P p Pl — P
6/12;11=5z<hl h lh>’q%12:52<1_ l zh>_

Sh = S 51 Sh = S1
Comparing the two configurations we obtain
11, 12, 21 22 11, 12 4 21, 22
Qi + @i+ G+ Go — (‘hh +qn + g+ ‘1h1> >0

for
sps1 (61 4+ 62) (sp +2s1+9)

¢ > 4)3 = 2 (Sh — Sl) [52 (3Sh — Sl) — 51511] '

This result can be summarized as follows.
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Proposition 6 Consider an economy with two duopolies with different density levels, a private
airport and two peak slots. Then, for ¢ < min (¢, ¢p5), the airport allocates one peak slot to
each market; for ¢; > ¢ > ¢, the airport allocates two peak slots to the large market, and
inefficiency would not arise.

When the per-passenger fee is sufficiently small, the allocation is fair and does not
favor any market so that each destination is equally served. For high per-passenger
fees, the denser market obtains all available slots. As a consequence, passengers in
the small market have no chance to fly at peak hours, while passengers in the denser
market cannot fly at off-peak hours. In either case, all available peak slots will be used.

Finally, we examine the example where peak slots are relatively abundant. In par-
ticular, there are three peak slots to be allocated to two markets, M = 3, N = 2. Given
that configuration off-peak/off-peak is strictly dominated, we can set aside the situa-
tion where the airport leaves one slot unused and gives two slots to the big market.
Indeed, the airport could be better off by giving the unused one to the small market. It
follows that there are three plausible configurations: (1) two peak slots to market 2- one
peak slot to market 1, (2) two peak slots to market 1- one peak slot to market 2, and (3)
one peak slot to each market.

1. Configuration 1. Market 1 :
12
11 Phi — Pin _ Pin
S
i ! ( Sy — 5] S| >

12 1— th ch
Sy — 5] '
v;
T + T = ( hh
Phh
2

market 2:

2. Configuration 2. Market 1:

Qo + T = (

market 2:

2
21 _ Pui =P Pu Pui — P
‘71h—52<sh_sl S) Qi =0 (1 h—51>'

3. Configuration 3. Market 1:

12_ 11 11 12 11
1n_ 4 Pui — P P 12 _ 5 1_th_ch )
G =\~ —g 5 | = - |

h—SI 51 Sh —Si
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market 2:
2 _ 21 21 2 _ 21
21 _ s P =P _ P 22 _ 5 (1 _ Pu—Pin
qip = 02 S, — y gur = 02 — .
h — 51 51 Sy — 8;
Comparing the three configurations we obtain

configuration1 > 2 > 3 when ¢ > ¢,;
configuration1 <2 < 3when ¢ < ¢,,

with
sust (sp +2s;1+9)

¢4 = 2 (Sh — Sl> (3Sh — Sl) )

Therefore:

Proposition 7 Suppose an economy with two duopolies with different density levels, a private
airport and three peak slots. Then, for ¢ < min (¢,,¢,), the airport allocates one peak slot
to each market, and leaves one peak slot unused (inefficiency); for ¢, > ¢ > ¢,, the airport
allocates two peak slots to the large market and one peak slot to the small market.

Proposition 7 implies that when markets have different passenger densities, alloca-
tive inefficiency would arise if the per-passenger fee is sufficiently small. On the other
hand, if the per-passenger fee is sufficiently high, the allocation outcome is efficient,
with the denser market obtaining both peak slots and the smaller market obtaining one
peak slot. Such allocation favors the denser market, which is a result of airport’s profit
maximizing behavior.

1.7 Conclusion

We have explored the optimal slot allocation in the presence of airport congestion in a
model where peak and off-peak slots are modelled as products of different qualities in a
vertically differentiated setting. Allocative inefficiency emerges when the airport does
not exploit all its slots. In particular in a private airport, allocative inefficiency may
emerge if the airport is not too congested and the per-passenger fee is small enough. In
a public airport, allocative inefficiency does not emerge. Furthermore we have found
that the airport, regardless of its ownership, tends to give different slots to flights with
same destination if the underlying destination market is a duopoly, and one single slot
if the underlying market is served by a monopoly.
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The current work raises avenues for future research. First, it confines to the study
of a single airport. A more comprehensive analysis can be carried out by extending
the current framework to intercontinental flights where departure and arrival airports
are managed by separate regulators. In particular, the two airports may be subject
to equivalent or different levels of congestion. A recent study by Benoot et al (2013)
investigates the strategic interaction between intercontinental airport regulators that
determine charge and capacity separately. Further investigating how the regulators
coordinate on allocating peak slots, as well as the associated impacts on social welfares,
would make the current work applicable to a broad hub-spoke network.

Second, this work limits attention to passengers that have the same lowest and
highest marginal willingness to pay for quality across all destinations. Admittedly, in
practice some destinations are dominated by leisure travellers while others by business
travellers. What seems to be an interesting avenue for future research, is to consider
markets with passengers that have various average marginal willingness to pay for
quality. The extension can be undertaken to reflect different marginal rate of substitu-
tion between income and quality in destinations which are determined by the dominant
types of travellers.
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Appendix

Appendix A.

For our empirical illustration, we examine the airline market structure and slot occupa-
tion. Towards this aims, we gather data from 15 US airport’s websites on three consecu-
tive weekdays May 18,19 and 20, 2015 for flights” departure information. Weekdays are
chosen to exclude irregular influx for air travel happens on weekends. We adopt the
definition for peak load according to website of O’Hare International Airport (ORD)?®
and apply to all 15 airports. Our dataset contains airport level observations on air traf-
fic: departure airport, service airline, destination airport, departure time. Among the
15 primary airports in our dataset,'® 5 airports are the most busiest airports in US by
total passenger traffic, according to ACI (Airports Council International North Amer-
ica) ranking in calender year 2013. The other 10 mid-sized airports are taken arbitrarily
from the range 30nd-60nd on the same rank, scattered to 9 federal states. We apply
the below rules to filter improper observations: (1) delete all cargo, private jet charter,
aircraft Rental Service, etc.; (2) for code sharing airlines, keep the operating airline and
delete all other (code sharing) partner airlines. The total number of observations used
for our analysis is 5990 departure activities, of which monopoly is the primary feature
of airline market. Table 5 shows per airport market structure. Table 1, reported in
the Introduction, lists the numbers of origin-destination routes operated by monopoly,
duopoly and oligopoly, and the pattern of slot occupancy.

150RD defines 8-9am, 15-16pm, 17-18pm, and 19-22pm as peak hours.
16FAA defines a primary airport as having more than 10,000 passenger boardings each year.
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Airport #Mon. #Duo. #Olig. Rank(2013)
Atlanta International Airport (ATL) 148 33 25 1
Los Angeles International Airport (LAX) 46 31 32 2
O’Hare International Airport (ORD) 101 45 51 3
Dallas/Fort Worth International Airport (DFW) 144 20 18 4
Denver International Airport (DEN) 86 32 31 5
Kansas City International Airport (MCI) 29 11 3 35
Oakland International Airport (OAK) 24 7 0 36
John Wayne Airport (SNA) 17 3 1 38
Luis Mufioz Marin International Airport (SJU) 21 6 6 43
San Antonio International Airport (SAT) 24 5 2 45
Indianapolis International Airport (IND) 28 5 2 48
Kahului Airport (OGG) 10 4 5 51
Buffalo Niagara International Airport (BUF) 15 4 0 55
Jacksonville International Airport (JAX) 18 5 0 56
Eppley Airfield (OMA) 14 3 0 60

Table 5. Per airport market structure

A further deletion was made to exclude all flights between the 5 largest airlines, as
they are mostly inter-hub connection flights; and high frequency flights with frequency
above and equal to 7 flights towards one destination airport. We then construct an

index to measure allocative discrimination:

sl o
2

€ {0,0.5,1},

where the subscripts 1 and I denote peak and offpeak time slots. x} is a dummy that
takes value 1 if airline 2 obtains a peak slot, 0 if not. The same logic applies to n?, x7 and
xf’. Hence when I = 1,allocative discrimination is largest, while, when I = 0, allocative
discrimination doesn’t exist. A higher average value of this index indicates a higher
magnitude of slot discrimination. We then find evidence consistent with our model
prediction that allocative discrimination over 10 smaller airports is smaller than that of
the larger 5 airports, see Table 2 in the Introduction.
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Appendix B

Linear programming

In this section we describe the general problem of the airport without getting into
the specific cases considered in the chapter. The result of each case will depend on
the relationship between M and N and the level of per-passenger fee ¢. This will be
examined and linked to the general solution in the next section. We define as Q1, 2Q»
and 2Q3 the equilibrium number of passengers in a peak/off-peak, peak/peak and off-
peak/off-peak configuration, respectively, for a general problem. The airport has the
following linear programming problem to solve

max IT=n1Qq +2n,0Qs +2n3Q3,
ny,na,ny

s.t.

nq —+ ny + nz = N ’

ny+2n, <M,

0<mnqymnyn3 <N.
Using n3 = N — np — np we can re-write

P = max IT=mn; (Q1 —2Q3) +n2(2Q2 —2Q3) +2NQs,

11,112,112
s.t.

n+2n <M,
0<ny+n <N.

We get the following solution:

1. If (Q1 —2Q3) > 0and (2Q2 —2Q3) > 0, and Q7 > 2Q; then n; = min{M, N},
7’12:0,1’13:N—Tl1;

2. If (Q1 —2Q3) > 0and (2Q; —2Q3) > 0,and Q2 + Q3 > Q; thenny = min{M/2, N},
ni :0,713 :N_nz;

3. If (Q1 —2Q3) > 0and (2Q; —2Q3) > 0,2Q2 > Q1 > Q2+ Q3 and N > M, then
n=M,ny=0and n3 = N — M;

4. If (Q1—2Q3) > 0 and (2Q2—2Q3) >0,20, > Q1 > Q+Q3and M > N >
M/2,thenn; =2N — M,ny = M — N and n3 = 0;

5. If (Q1 —2Q3) > 0 and (2Q2—2Q3) > 0,20, > Q1 > Qo+ Qzand M/2 > N,
thenn; =0,n, = M/2and nz3 = N — M/2.
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6. If (Q1 —2Q3) < 0and (2Q2 —2Q3) > 0, then n; = min{M/2,N}, n; = 0,
ny = N — np.

7. If (Q1 —2Q3) < 0and (2Q2 —2Q3) < 0, then n; = np = 0and n3 = N.

8. If (Q1 —2Q3) > 0and (2Q; —2Q3) < 0, then n; = min{M, N}, n, = 0, n3 =
N — nq.

Note that Solution 5. is not applicable because we assumed M < 2N.

Applications

The relevant results of the linear programming depend on the structure of the econ-
omy (public/private airport, and duopoly markets), the relationship between peak
slots M and destinations N, and the level of per passenger fees ¢. What follows helps
to understand which solution applies to each case considered in the chapter.

Duopolies and private airport
For the duopoly case, let Q; = q{h + gy Q2 = q{;h and Q3 = q{l. We know that

Q1 > 207 > 2Q3 for ¢ < ¢, and 2Q> > Q1 > 2Q3 for ¢, < ¢ < ¢;. Also, Q1 >
Q2+ Q3. If ¢ < ¢, we get Q1 > 2Q», so that checking Section 1.7 result 1. applies:
ny = min{M,N}, n; =0,n3 = N —ny;

If p, < ¢ < ¢y, we get:

i. if N> M,thenn; = M,n, =0andnz3 =N — M ;

ii. if M>N > M/2,thenny =2N—-M,n, =M - Nandn; =0;

Checking the corresponding results in Section 1.7, this yields the solution:

e 1y =min{M,N},n; =0,n3=N—-mif ¢ < ¢p,orifp, < ¢ < ¢, and N > M;

e ny =2N—-M,np=M-—N,n3 =0if ¢, < ¢p < ¢, and M > N.

Duopolies and public airport

For the duopoly case, let Q1 = By, Q2 = Bpy/2 and Q3 = By /2. We know
202 > Q1 > 2Qsif ¢ < @Y and 2Qx > 2Q3 > Qqif ¢ > ¢ Also, Q» + Q3 > Q for
¢ > ¢y

Checking the corresponding results in Section 1.7, this yields the following solution:
for ¢ > 4){’, we have (result 6.) n; = min{M/2,N}, ny = 0, n3 = N — ny. For cpf >
¢ > (,bf, we have (result 2.) n; = min{M/2,N}, n; =0, n3 = N — np. For ¢ < gbff, then
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the relationship between destinations and peak slots matters. For M > N, the solution
(result 4.) isnqy = 2N — M, np = M — N and n3 = 0. For N > M, result 3. occurs,
according to which n; = M, n; = 0and n3 = N — M.

Appendix C

Monopoly airlines
The Lagrangian of problem (1.33) and its derivatives write as
— fo_fof o ff
L= [Sz(%h — qhl — Thah) — ‘quh}

(Sh%[z SIQ{h4£Z 5h51£ﬂ£1 ¢th)

{M{h £lq£l
oL
TF T s1(1— qufh thl) ¢+/\
0
qin
oL
f/ =Sp— 251‘1{]1 ZShth (P + )L
0
T

where Aj;, > 0 and Ay > 0 are the Khun-Tucker multiplicators. The Hessian matrix is
—2g, —
H— S 25; ,
—2s 1 —2s h

with determinant 4s; (s, —s;) > 0. Therefore H is definite positive and we have unique

maximum. oL oL
The unique root of T = O is given by
oy, 9y,
f__ 1 Y f
T = 251 (51 — 51) (Qbsh Ps; — sphy, + Sl/\hl) ’

__ 1 Y
M= 2 (op =) (Sh s1+ Ay /\hl)

The maximum solution /\{h >0, q{h >0, Alh”/{h = 0, and /\f >0, qﬂ >0, /\i;q{; = 0.
Suppose /\fh = 0 and )\fl = 0 while quh > 0and qil > 0. Then, we get q{h = —55 <0
and qil = 1, which is impossible for ¢ > 0. Hence the two flights f and f’ are not
operated together. Suppose A{h > 0 and /\il = 0 while qlh = 0 and qf > 0. Then,

we get qil zih (sp — ¢) and /\il = ¢ > 0,which is possible for s, > ¢. Suppose
A{h = 0 and /\;; > 0 while q{h > 0 and qi, = 0. Then, we get q;, = 251 (s —¢) and
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)\% = - (sp —s;) < 0, which is impossible. Supp(?se A{h > 0 and )\{Z > (0 while q{h =0
and q£ ; = 0. Then, we get )‘{h = —s;+ ¢ and }\il = —s, + ¢, which is impossible for
¢ <sj.

Public airport with duopoly airlines
By comparing the number of seats obtained in each configuration, we get:

2 (s, — 1) (¢* + 2ss1) .

Wi — Wy = 9515)

Win — Whiin =
(sp — s1) (521 (20s), + s1) + 4spsi¢p (2sy, + 51) + ¢* (3657 — 19sy,s; + 4s7) )

0,
188hSZ(Sl - 4Sh)2 -
Wit — Wi =
(sn — s1) (108s2s; + s; (857 — 4s;p — 13¢?) + s, (289 — 6557 — 8s/¢) ) =0

1851(51 — 45;,)2

Hence we obtain Wy, > Wy, > Wy forall 0 < ¢ < 3.
Next, we evaluate the differences in the allocation of two peak slots:

Wi + Wiy — 2Wypp =

(sn — s1) (—sisn (44s2 — 33sys; + 4s7) + 4s;5p¢ (25, + 51) + ¢* (47 — 3sysy, + 257) )
95h51 (Sl - 4Sh)2

forall0 < ¢ < % Hence, Wy, + Wy, < 2Wyiaap-

<0






Chapter 2

Slot Allocation at Congested Airport
with Endogenous Fee

2.1 Introduction

In the past decade, growth in air traffic continues to outstrip runway and other passen-
ger handling infrastructure development. As a result, critical shortages of infrastruc-
ture capacity have been experienced by many airports worldwide. In response to air-
port capacity constraint, some policy makers tempt to micromanage airline flight sched-
ules at busy operating hours. More seemly approaches include congestion pricing and
slot allocation. A slot, by the definition of IATA, is a permit that allows the access to
the full range of airport infrastructure necessary for departure or landing at a certain
airport, within a specified time frame. Economic issue has been raised on how to al-
locate scarce airport slots in an efficient way. The existing literature on slot allocation
is sparse. Barbot (2004) models slots for airline activities as products of either high or
low quality, and carriers choose the number of flights they operate. Her work however
ignores the cap of peak hour capacity. Verhoef (2008) and Brueckner (2009) compare
the pricing and slot policy regimes, but their approach are not directly relevant to the
issues studied in the current chapter.

Chapter 1! formally examines airport’s slots allocation behavior in the context of a
vertical differentiation model, showing that inefficiency may arise at a private airport
if the airport is not heavily congested and the per-passenger fee is small enough, while
with a public airport it does not emerge. Moreover, Chapter 1 is concerned about a
fully regulated private airport, where airport charge is predetermined by policymakers

1Picard et al (2015).
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or authorities. It is worth noting that we use the term regulated to refer to exogenous fee
throughout, conversely the term unregulated refers to endogenous fee. One may argue
that a fully regulated airport seems an unpalatable assumption in some circumstances.
In effect, in recent years there has been a tendency of moving towards less government
involvement, as reflected by advocating dismantlement of regulation and less-stringent
price monitoring. The current chapter is a natural extension of the previous chapter. We
attempt to direct emphasis towards an unregulated fee structure and shed lights on the
potential impact of deregulation on pricing practices. We add additional complexities
to the framework of the previous chapter by accommodating endogenous fee setting, in
order to offer greater realism in relation to the changing regulatory policy in flex, and in
turn derive more insightful policy implications. We find that the allocative inefficiency,?
a possible outcome at a regulated private airport, would vanish at a unregulated private
airport. Though in an unregulated environment the airport charge would never be
set to a low level. For a public airport, instead of charging fee, a subsidy may well
be required to reach first-best outcome. Additionally, when the destination market is
served by a monopoly airline, a subsidy is desired due to monopoly airline’s market
power effect.

The remainder of this chapter is organized as follows. We will briefly introduce the
basic modeling constructed in chapter 1 in section 2.2. The analysis of simultanous fee
setting and slot allocation for a private airport would be carried out in section 2.3, and
for a public airport would be described in section 2.4. Section 1.7 sets forth conclusion.

2.2 Model

It is instructive to first revisit the basic model setting of the previous chapter. Accord-
ing to them, a private airport have connections to N independent destination markets
d € D = {1,2,..,N}, each destination is served by 2 separate airlines. A flight is de-
noted as f: f € F = {1,2,..,2N}. The model deals with only single trip departing
flights, with endpoint airports being uncongested. Furthermore, quality differential
is characterized only by the departing time and there are two travel periods, namely
peak and off-peak. A peak period represents the time window that consists of the most
desirable travel times in a day, whilst an off-peak period contains all the rest time in-
tervals. In order to address the problem of peak slots congestion, the off-peak period
is assumed to be uncongested, i.e., airport capacity can serve all flights within off-peak

2 Allocative inefficiency is defined as the situation where not all available peak slots are used in Chapter
1.
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period time intervals. Conversely, the peak period is congested. All potential passen-
gers acknowledge and agree over peak load hours (denoted as subscripts ) are more
preferable than the off-peak load hours (denoted as subscripts /) at equal price, i.e., slot
qualities s; and sj, are exogenously perceived: s, > s; > 0. We assume in each market

/
i’
airline f that takes off at slot i while its competitor on the same destination takes off at

the airlines engage in quantity competition. We denote p;, as the price charged by an
slot#',i,i' = {I,h}. Similarly, q{i, denotes the number of passenger served by this flight.
Demand in each destination is generated from a unit mass of passengers with a type
parameter v, v € [0, 1], v being uniformly distributed with unit density.

Demand addressed to flight f is defined by the set of passengers who maximize
their utility when flying with airline f, rather than flight f’ to the same destination or
refraining from flying. Accordingly, a potential passenger in the destination market d
with the airlines f and f’ has the following preferences:

Us; — pé, if she flies with airline f in slots; at price p{i,,

ut = Sy — plf,/l if she flies with airline f’ in slots; at price pi,;.,
0 if she doesnot fly.

The airlines choose the number of seats in order to maximize profits. Airline costs
include airport per-passenger charge ¢, while marginal operating costs are normalized
to zero. The entry and exit of airlines are assumed away and fixed costs are sunk. Given
these particular specifications, the profit of an airline f , as well as its counterpart f'3,
are given respectively by:

”{h = (p{h(q{h’qi:;) - ‘f’) ”/{hf
foof

! . ! f/
”il = (Pil(qzwth) - 4’) Thi-
if slots are different in a destination, and
= (pltalal) — ) af,
= (vl @) —9) .
if slots are same in a destination.

Denote the total number of peak slots as M. The airport chooses per-passenger
charge ¢ plus the slot allocation to maximize its profit

maxTl = =g (g + k)

3To be more succint, since destinations are independent, i.e., demand generated in a destination does

not affect demand generated in other destinations, when we say compete we refer to the competition in
the same destination.



CHAPTER 2. SLOT ALLOCATION WITH ENGODENOUS FEE 40

subject to the peak slot capacity constraint
#h < M.

Under this constraint, the overall allocated peak slots can not exceed the total number
of available peak slots, and that peak capacity could not accommodate all flights M <
2N. To avoid a cumbersome discussion of ties, we assume that M is even. Allocative
inefficiency is defined as below.

Definition 1 Allocative inefficiency describes the situation when at least one peak slot is not
used.

The timing of the game is as follows. In the first stage the airport simultaneously
sets charge ¢ and allocates peak and off-peak slots. In the second stage airlines choose
number of seats to supply q{i, based on slot allocation. In the third stage passengers in
each destination decide whether to fly with a peak period airline, an off-peak period
airline, or not fly at all. The equilibrium concept is the subgame perfect equilibrium by
backward induction.

2.2.1 Passengers

In the third stage, a passenger decides whether to fly and, if so, the time of flying.
If two flights in a market obtain different slots, the indifferent passenger’s type (9) is
characterized by 0s; — p{h = Usj, — pi:l Likewise, the marginal passenger’s type (v) is
characterized by vs; — p{h = 0. Thus airline markets are partially covered. Additionally,
if two flights in a single market obtain slots of same quality, the indifferent passenger
coincides with marginal passenger, whose type (vg) is defined by vps; — p{l =0, or
VoS — pih = 0, with pifi, = p{,; in this case. Three market configurations may arise
at equilibrium: (i) the two airlines obtain peak/off-peak slots; and both obtain either
(ii) off-peak slots, or (iii) peak slots. They are characterized by the following inverse

demand functions, respectively:

(0 {plh =i (1 qlh th) (2.1)
pl, =s, (1 ‘hh th)

(ii) pu = s (1 — gl - 515)

(iii) pun = s (1 —qhy — Q£h>
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2.2.2 Airlines

In the second stage, airlines set their optimal supply of seats.* According to (2.1), in

configuration i), airlines’” profits are:

(i) ”{h = [Sl(l - ‘7{11 - qu) - qb} q{h'
! f/

7T£1 = (sn— 51‘1{}1 —Suqy, — ‘P)‘ﬁ;l-

Airlines choose the number of seats to maximise profits, for any given ¢. The first-order

conditions are:

an{h

=+ (L= gf, — dl)s — 4hs1 = 0, (2.2)
0
Tin
ot d
= —¢p+sp— 2‘1£lsh - ‘hfhsl =0. (2:3)
oy

Solving (2.2) and (2.3) simultaneously with respect to q{h and qi} yields:

f o ShSZ—QD(ZSh—Sl)
T =

(4s, — s1)s1
f_ 28— ¢ —si
th 4Sh — 5] ’

!
To ensure interior solutions in terms of seats, i.e., q{h, qil > 0,the condition 0 < ¢ <

_ _ SuSi f f :
¢1:25h—51 m < gy forall 0 < ¢ < ¢y

is assumed to hold. Note that g
f_ (2 +s1)
Pin = " 4g), —
h—SI

f’ _ 25% + Sh(3¢ — Sl) — ¢Sl
phl 4Sh — 5] !

being always positive.
In configuration ii) and iii), analogously the airlines face the demand

7l + al, :1_&'

5i
{ f=|a-di-a)si—e|d,

mh = (=g —al)si— 9] af

# Assuming airlines simultaneously choose seat supply is equivalent to assuming a two stage sequential

Airline profits are:

game where they choose capacity at the first stage and compete in flight fare at the second stage (Kreps
and Scheinkman, 1983).
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The first-order conditions with respect to the number of seats yield:
—¢—dlsi+si(1-qf—d}) =0,
~¢—qlsi+si(1—qh—q})=0.

Solving for q£ and qiil lead to:

fogf ST ® 24
Tii = Tii 3s; (2.4)

Fares are derived via the inverse demand functions:

s +2¢ st 2¢
pu = 3 Phh—73 .

Equation (2.4) specifies that condition 0 < ¢ < s; must hold for qé, q{i/ >0,i€ {hl}.
To ensure interior solutions, we assume 0 < ¢ < s; and s; > ¢, it then follows that
0 < ¢ < ¢, is sufficient condition for ‘7{71/ qil, and q{i,

verified that qil > qih > q{l > q{h hold forall 0 < ¢ < ¢,.

to be positive. Moreover, it can be

2.3 Private Airport

2.3.1 Duopoly airlines

The previous section looks at the last two stages of the game. The situation of per-
passenger fee ¢ taken as given by the airport implies that the airport is subject to ex-
ante government regulation. In this section, we investigate the first stage of the game
with a private airport. In particular, the airport both sets ¢ and allocates slots so as
to maximize its profits, respectively. The last two stages of the game do not change
relative to the analysis conducted in Chapter 1: in the second stage, airlines compete in
quantities, in the third stage, passengers buy (or not) one ticket for their destinations.

Recall that overal destination markets N can have three types of slot allocations.
Let M denote the overall peak slot number, 17 the number of destination markets with
peak/off-peak configuration, 1, destinations markets with two peak slots, and n3 des-
tinations markets with two offpeak slots. It follows that the airport allocation problem
is given by:

max (m (gf, +ay) +n2 (ah+al) +ms (7 +al)) ) 9

ny,12,13,
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subject to

n+ny+n3=N
ny+2n, <M
0<mnq,nyny <N
0<¢.

The first equation regulates that aggregate number of various configuration markets
to be equal to the number of existing markets. The second constraint restricts overall
allocated peak slots not to exceed smaller than the number of available peak slots. The
rest constraints are imposed to preclude negative fee and the number of each market.

As pointed out in the first chapter, when per-passenger charge is exogenous, the
airport profit maximization problem coincides with the quantity maximization prob-
lem. When the charge is endogenous, the equilibrium airport allocation choice does
not change relative to the baseline case, hence the allocation scheme derived for the
exogenous fee setting still holds. Follow the lead of last chapter, we again denote

¢, = 6th—5 55 as the critical point where passenger number in peak/peak market sur-
passes peak/offpeak market. Recall that Proposition 1 of last chapter stresses three

cases for a private airport with duopoly airlines:

a. for 0 < ¢ < ¢,, the configuration is “peak/off-peak”in each destination mar-
ket. The airport uses all available peak slots when M < N; and does not use all

available peak slots (inefficiency) when M > N;

b. for ¢, < ¢ < ¢; and M < N, the airport uses all available peak slots and as-
signs all M peak slots to M markets, resulting in a mix of M “peak/off-peak”and
(N — M) “off-peak/off-peak” markets;

c. for ¢, < ¢ < ¢, and M > N, the airport uses all available peak slots, and imple-
ments (M — N) “peak/peak”and (2N — M) “peak/off-peak” configuration.

More importantly, Proposition 1 states that for a private airport with duopoly air-
lines, if Case a occurs, then inefficiency arises at the mildly congested airports, while
the heavily congested airports are exempted from the inefficiency concern. When the
pre-determined fee is set at a relative high level, as depicted in Case b and c, allocation
is always efficient.

Airport’s profit in all three cases can be characterized as:
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IT(¢)  for (¢,N) € [0,¢,] x RT,
[(¢) = { T(9) for (¢,N) € [¢y, ¢1] X [M, 0],
I(¢) for (¢,N) € [¢pg, ¢4] x [0, M).

Profit I1(¢) is linear in 1y, ny and n3, therefore choosing each of 11,1, and n3 is equal to
choosing the linear combination of the others.
With exogenous fees setting they could be reformulated as the following.

Ma(9) = [min{M, N} (g}, + 4}, ) + (N —min{M,N}) (q, +a} )| ¢,
I(¢) = [M (af, + ) + (N =) (af +af )| &,
[Le(g) = [(2N - M) (g}, +ai;) + (M~ N) (g}, + 4}, ) | o

For each possible allocation choice, the airport (i) maximizes its objective function with
respect to per-passenger fees ¢, (ii) verifies if the optimal level of per passenger fees is
consistent with the allocation choice, (that is, if ¢ lies in the range determined by the
equilibrium allocation) and (iii) evaluates whether the optimal ¢ ensures an interior
solution in the market stage (¢ < ¢,). The ensuing steps are developed separately for
each case. In the interest of brevity, many of the technical details as well as proofs are
relegated to the Appendix.

e Casen

Case a describes 0 < ¢ < ¢,, which can be classified into two possible situations
according to whether N > M or N < M. The analysis begins with the scenario N > M,
where the airport’s problem can be stated as:

sn(3s1 — 2¢) — s 2(s1 — ¢)
Sl(4Sh — S[) * (N B M) 351

max I, (¢) = max ¢. (2.5)
¢ ¢

The second-order condition fulfills so that IT,(¢) is concave in ¢. The optimal fee is

determined by the first-order condition of (2.5) with respect to ¢. Denote this optimal

fee as ¢, then ¢, can be written as:

_ S| [SZ(M+2N) —Sh(M+8N)]

a1 = 4[5, (M = 4N) + 51 (N = M)] 26)

The next step is to verify if ¢, is consistent with the allocation considered, more pre-
cisely, whether the necessary condition to ensure equilibrium allocation (0 < ¢,; < ¢,)
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holds. It can be verify that the optimal per-passenger fee falls out of the parameters’
range which supports this allocation pattern:

$p1 > Py (2.7)

Therefore the optimal fee is ¢, in this case. Next we examine the scenario of N < M,

where the airport’s problem is formulated as:

sn(3s) — 2¢) — s
max [T = max
g la(9) = mg s1(4sp — s1)
The second-order condition is satisfied, and the optimal per-passenger fee, denoted as
¢, can be derived from first-order condition:

S] (3Sh — Sl>

S

4Sh
In order for ¢, to be the optimal fee, it is essential to ensure that ¢, lies inside its
allowed range: 0 < ¢, < ¢,. Likewise, upon checking ¢, and ¢,, we discover:

o > Pos

the optimal per-passenger fee violates the parameters’ allowable range that sustains
this allocation pattern. For this scenario the optimal fee is again ¢,. The analysis can be
summerized in the below Lemma.

Lemma 1 Suppose all markets are served by duopoly airlines, and the airport is private. When
airport could determine the charge imposed on airlines, allocative inefficiency would not occur.

Case a describes the case where fee is set to be low in the regulated environment.
Lemma 1 highlights the contrast of unregulated environment to the regulated environ-
ment in terms of allocation pattern: that allocative inefficiency completely vanishes if
fee is endogenously determined by the airport. A low level of fee is not sustainable at
the unregulated airport. The intuition is as follows. Within the context of exogenous
fee, airport has only one instrument to manipulate: the peak slot allocation. Hence
in maximizing profit, airport distorts the allocation pattern from social optimum level.
Whilst when the fee becomes endogenous, airport has two substitutable instruments
to extract airlines” surplus: fee and slot allocation. It can either phase out a low level
of fee, or leave some peak slots unused, or use both instruments. In this case, the air-
port manipulates the fee rather than allocation, therefore the allocation inefficiency is
precluded.
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e Caseb

We now turn to Case b where ¢, < ¢ < ¢; and N > M. The analysis is identical
to the scenario corresponding to N > M in Case a, with airport problem stated by (2.5)
and optimal fee by (2.6), respectively. In order to distinguish optimal fee for different
cases, let ¢, denote the optimal fee under the current case, obviously ¢, = ¢,,, and it
follows from (2.7) that ¢, < ¢,. To complete the analysis for Case b, it remains to be
checked whether ¢, < ¢,. We show that

Py < ¢y
. _ 517 517
for either M < M, = % and 5; < ( 5 )sh; ors; > ( 5 >sh. For later
h 1 1

reference, we introduce the notion of peak slot scarcity % Peak slot scarcity represents
the ratio of the number of available peak slots to the number of markets. We could
express peak slot scarcity under Case b as

M, 25 (4sp —s1)
N 6s7 —7sys; + 57

2.8)

with M, indicating the maximum number of peak slots that an optimal fee ¢, could
sustain. Under such specification, % represents the maximum peak slot scarcity that
supports an optimal fee equal to ¢,,.

e Casec

Finally we examine Case c, which sketches ¢, < ¢ < ¢; and N < M. The airport’s
problem is now:

sn(3s) — 2¢) —s7
si(4sp — 1)

maxI1.() = max | (2N — M) FMoNy 2=y,
¢ ¢ 3Sh
Solving first-order condition for ¢ yields the equilibrium fee, denoted as ¢, :

4) _ SpS] [ShM — 1OShN — SIM +4SIN]
¢ 4 [4sys (N — M) +3s2(M —2N) + (M — N)]’

One can check that ¢, lies in the valid range for parameter values M < M, = 2Nsy (29 +5))

— (10s,—3s;) (s, —s1)
5-/17 . .
and ( ;ﬁ) sp < 51 < %sh; ors; > %sh. Finally, we denote the maximum peak slot

scarcity which sustains an optimal fee equals to ¢, as % The appropriate expression
of % is then:

M. 25y, (2, + 1)
— = . 2.9
N (10s; —3s;) (s — s1) 29
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Figure 1: Optimal Per-passenger Fee

The following proposition summarizes the equilibrium per-passenger fee:

Proposition 1 Suppose all markets are served by duopoly airlines, and the airport is private.
Then the airport never sets the per-passenger fees below the critical point where passenger num-
ber in peak/peak market surpasses peak/offpeak market. Moreover, the optimal per-passenger fee

18
§

(5=¥17)

M, M
for 3 < § < 2,ands) € ( sh,3sh

o)
or Mb < % <2ands € <0 5 \/ﬁ)sh

2
‘P*(M): f0r1<%<%andsl€<( ) §5h>/
N ¢

[
0r1<M<2andsl> 5Sn;
(5- f)

7

foro< M < Mb and s; <

Shs

P 0r0<N<1andsl€<(5 [)sh,sh>,

\

where % and % are given by (2.8) and (2.9), respectively.

Figure 1 depicts the equilibria, see Appendix B for the derivation of the graph and
a discussion of peak slot scarcity. Proposition 1 immediately generates intuitively ap-
pealing comparison with exogenous fee framework and moreover, is crucial in the later
comparison with a public airport. Unlike in a regulated fee situation, when the airport
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has the power of setting per-passenger fees, it never chooses a too low per-passenger
fee (Case a) and essentially no peak slot would be left unused. In contrary to the exoge-
nous fee case, the airport now has two instruments at disposal. It may use its dominant
position to either exploit slot allocation or raise fee above the social optimal level, or
both. Proposition (1) has stated that it would choose to distort fee rather than alloca-
tion. Note that distortion refers to the shrink of the range of fee. To be more precise,
when fee is regulated, the range of fee is (0, ¢,); while when fee is endogenous, the
range of fee is (¢, ¢;) .

2.3.2 Monopoly airline

We next examine the case of private airport with monopoly airlines.The equilibrium
configuration with exogenous fees are (for details see section 1.4 of Chapter 1): monopoly
airlines operate one flight per destination and the private airport uses all available peak
slots. In light of this statement, m; = min{N, M}, m, = max{N — M, 0}, where m;
and m; are the number of peak and off-peak slot markets, respectively. Moreover, the
condition ensuring interior solutions, i.e., positive passenger volumes in all markets
is 0 < ¢ < s;. The ensuing analysis will be devided into two parts, depending on
whether M < N or M > N. We will discuss the two cases separately.

e If min {N,M} = M :m; = M, my = N — M. The second-order derivative is neg-
ative, details are placed in Appendix C. Solving for ¢ from first-order derivative
yields:

Ms _ Nsys)

o Z(NSh—MSh—FMSZ)'

Next we check that ¢* lies in the admissible parameter range of ¢ : (0,s;) when

Sy < 2sp;0rsy > 2s;and M < % On the contrary, {VI* lies outside the admis-
NS;,
2(sp—s1)”

on a combination of quality difference and relative scarcity of peak slots. When

sible parameter range when s, > 2s; and M > The optimal fee depends

the quality difference is small, the optimal fee is $**; while when the difference
is large, the optimal fee is ¢M* if airport is not busy, and s, if the airport is busy.

o If min{N,M} = N :my = N,my = 0. We first check that the second-order
condition holds, then solve for ¢, yields:

o= (2.10)
When the quality difference is large (s, > 2s;), the optimal fee lies beyond the

permissable region: $p}* > s; ; while on the contrary, when the quality difference
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is small (s;, < 2s), the optimal fee lies within the region: ¢p}** < s;. Therefore, the
optimal fee is s; when the quality difference is large and ¢3'* when the quality
difference is small. The ongoing analysis can be summarized as:

Proposition 2 Suppose all markets are served by monopoly airlines, and the airport is private.
Conditional on peak slot scarcity and parameter values, the airport sets ¢* = min {s;, pM* }.

2.4 Public airport

In this section, we investigate the first stage of the game in the context of a public air-
port. The airport authority now represents a social maximizer and is concerned about
social welfare, which is the sum of airport’ profits, passenger surplus and airlines’ prof-
its. Since airport and airlines operating costs are normalized to zero, airport profits
come from total per-passenger fees, whereas airline profits are the ticket income less to-
tal per-passenger fees paid to the airport. In turn, passenger surplus is represented by
the total gross utility generated from flying minus all ticket payments. Since monetary
transfers between airlines and airport cancel out, and so do transfers between passen-
gers and airlines, then social welfare equals the sum of passengers” gross utility in all
2N destination markets.

Letting the number of destination markets with peak/off-peak allocation be de-
noted by n;, with peak/peak allocation by 1>, and offpeak/offpeak allocation by 3.
Furthermore, in destination markets with the peak/offpeak configuration, the passen-
ger type who is indifferent between taking the peak hour flight and the offpeak hour
flight is denote as vy,;, and the passenger type indifferent between taking the offpeak
hour flight and not flying is denoted as vj,. The expression f;:l vsjdv thus gives the

gross passenger surplus from taking the off-peak period flight, while fvlm vsydv is the
gross passenger surplus from taking the peak period flight in the same destination mar-
ket. Likewise, in a peak/peak (resp. offpeak/offpeak) destination market, let’s denote
the indiflferent passenger as vy, (resp. vy;),the gross passenger surplus is thus [ vlhh vsydv
(resp. [, vsidv).

Total welfare, denoted as W, then emerges:

Uhl 1 1 1
W =m (/ vs;dv + vshdv> + nz/ vspdo + 1’13/ vs;dv,
D, v,

Ih Oni i 2]

Pf/ - Pf Pf Pf Pf
where vy, = %,UM = %,vhh = % and v = S—”, the derivation has been
— 51 !

!
presented in section 1.2 of Chapter 1. We will consider first the case with duopoly
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airlines and then with monopoly airlines.

2.4.1 Duopoly airlines

Under exogenous fees and M < N, the airport allocates all peak slots according to
peak/off-peak configuration, while for M > N the airport implements (M — N) “peak/peak”
and (2N — M) “peak/off-peak” configurations. In both cases, all peak slots are used.
Moreover, the condition

p_ 5
must hold to ensure interior solutions. We will compute for the optimal fee in the first
place, then check whether the fee lies in the allowed range.

e Casel. N > M.

In this scenario, the solution is ny = M, n, = 0, n3 = N — M. As explained before,
the public airport maximizes welfare, which is equivalent to gross passenger surplus
in altogether three market configurations. Under this case, the gross passenger sur-
plus refers to the sum of gross passenger surplus in peak/offpeak configuration and
offpeak/offpeak configuration markets:

1 1
Ivsldv + vshdv> + (N — M)/ vs;dv.

Ih Uni o

Op,

max W(p) = M </

We solve for optimal fee, denoted as ¢f *, from first-order condition:

pe _ 251 (M (34 — 17545, +s7) — N(s; — 4s4)?)

: 2.11
U M (2852 — 4lsys; + 1357) — 4N(s; — 4s))2 @11)

The sign of $I* depends on the relative magnitude of M. Deviating from the case of a
private airport, the optimal fee for a public airport can be negative, for some parameter
value that M might take. It is hardly surprising that subsidies may be required to reach
the first-best welfare outcome. We check that optimal fee takes the form of a charge
when M is sufficiently small, and a subsidization otherwise, as shown below:

P >0 whenM < M,
17 ) <0 whenM< M<N.

_ (165} —8sys4s7 )N " P . .
where M = “25—--——5— < N. The case of a positive ¢; * needs more illustration
I S ]

therefore we focus on a positive ¢}*. By some computation it can be verified that:

P P
1< 9.
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Apparently ¢F* lies inside the feasible region, therefore the optimal fee in this case is
indeed ¢1*.

e Case2. N < M < 2N.

In this instance, the solution is 1y = 2N — M, n, = M — N, n3 = 0 in the exogenous
case. The public airport maximizes gross passenger surplus in peak/offpeak configu-
ration and peak/peak configuration markets combined:

1 1
’vsldv + vshdv) + (M — N)/ vsy,dv. (2.12)

Ih Oni Onh

Oh

max W(g) = (2N ~ M) </v

The optimal fee, denoted as ¢L*, is characterized by the first-order condition and

can be written as:

Py —2sys; (34Msz — 17Msys; + Ms? — Ns7 — 52N + 26Nsys; )
> 36Ms; — 72Ns; — 55Ms?s; + 46Ns2s; + 23Msy,s? — 14Nsy,s? — 4Ms; + 4N}’
(2.13)

We are now concerned about the sign of ¢£* as well as whether ¢£* lies inside the
feasible region, i.e., ¢* < ¢F = % We check that both the sign and the relationship

to ¢* are contingent on M, the lengthy proof is relegated to Appendix 2.5. We hereby
present three scenarios regarding ¢5* and the corresponding relative magnitude of M :

P <0 when M < M,
0<¢y* <% whenM<M<M,
oy > 3 when M > M,

(280s; — 150s7s; + 185,57 — 4s7) N M= (5257 — 2655+ s7) N Ad
3 2 2 ;—and M = 2 7 - Ads
172s; — 123s;s; + 27,87 — 4s; 34s;, — 1758 + s7

ditionally, it is useful to examine that (see Appendix D):

where M =

M> M.

When M < M, instead of imposing a charge, a subsidization equals to ¢3* should
be implemented to correct for the market failure, because duopoly airlines undersupply
passenger volume relative to social optimum outcome. When M lies between M and
M, ¢F* locates in the interior of the feasible region and thus the optimal fee is precisely

P*. While when M > M, the optimal price is Z—Z
Combining the above analysis, the following results can be established:
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Proposition 3 Suppose all markets are served by duopoly airlines, and the airport is public.

1. If N > M, then airport subsidizes airlines when M is relatively large and charges a fee
P when M is relatively small. All peak slots are used for M peak/offpeak and (N — M)
off-peak/off-peak configuration.

2. If N < M, then airport subsidizes airlines when M is small, charges ¢pL*for a moderate
M, and 3} for a large M. All peak slots are used for (2N — M) peak/offpeak and (M — N)
peak/peak configuration.

A negative fee implies that the duopoly airlines exert market power and undersup-
ply passenger volumes, relative to social optimum level. The public airport acts as a
social welfare maximizer, thus subsidizes airlines an amount equals to |$1*| in order
to correct for this failure in seat supply.

We are now in a position to discuss two ranges of M, namely, (M, N) and (N , ﬂ) ,
within which airport subsidy is required. Both ranges result in the configuration com-
prises a relatively large number of peak/offpeak slot markets, and a small number of
different slots (offpeak/offpeak for the former, and peak/peak for the latter). To see
that, note that for the former case, when M increases, more offpeak/offpeak markets
will be replaced by peak/offpeak configuration. As for the latter, likewise, when M
increases, more peak/offpeak markets will be replaced by peak/peak configuration.
We could thus argue that peak/offpeak configuration leads to a more pronunced un-
dersupply behavior, relative to same slot configuration. The proposition implies that
peak/offpeak configuration requires more subsidies than peak/peak or offpeak/ offpeak.
The intuition is, when airlines compete with different slots, their quality differs and the
two could thus exert more market power, and distort the equilibrium quantity from
first-best outcome to a greater extent than they would otherwise with same slots.

2.4.2 Airline monopolies

Under the exogenous per-passenger fee regime, if all markets are served by monopoly
airlines, then a public airport allocates one peak slot to each monopoly until all peak
slots are used up (see section 5.2 of Chapter 1). The market stage in each destina-
tion market does not change: given the opportunity of operating in peak slots, each
monopoly airline uses one peak slot only.

1 1
m(;ax W(¢) = ml/ vsydv + mz/ vsdv. (2.14)
Yh v
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Accordingly, the equilibrium allocation is m; = min{N, M}, m, = max{N — M, 0},
where m; and m; are the numbers of flights in the peak and off-peak slots, respectively.
The airport problem can thus be reformulated as:

e Case 1. When min{N, M} = N,

1
m(?x W(¢) =N / vsdv. (2.15)
Op

e Case 2. When min{N, M} = M,

1 1
max W(¢p)=M- / vspdv + (N — M) / vs;dv,
Up %

1

_ St _ sit
where v, = Tf/vl = 2514’.

We could check that the optimal fees in the two cases, denoted as ¢"* and ¢p5M*

respectively, can be derived from first-order conditions:

4)11)M* = —5, <0,

Nsys
PMsx hSI
= O/
92 M (s, — s;) — Nsy, <

where subscripts denote for Case 1 and 2, respectively. In order to maximize welfare,

the public airport subsidizes monopoly airlines, otherwise they undersupply traffic
from the social point of view. Moreover, it can be shown that

o3| > 17 l.

Recall that Case 2 represents a mix of M peak slot market and (N — M) offpeak slot
market, while Case 1 represents N peak slot market, the above relationship implies that
the airport subsidizes offpeak slot market more than peak slot market.

Proposition 4 Suppose all markets are served by monopoly airlines. Then a public airport uses

all available peak slots, and subsidizes monopoly airlines an amount equals to |¢p5M*|.

2.5 Conclusion

This chapter contributes to the understanding of a peak period congested airport’s op-
timal fee setting behavior when it has power to allocate slots. It is a natural extension
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of the previous chapter, while explicitly incorporating the endogenous fee setting be-
havior into the previous framework. We have found that allocative inefficiency is com-
pletely precluded at a private airport if fee is endogenously chosen by the airport. In
the context of exogenous fee, in order to maximize profit the airport has only one in-
strument to exploit, which is the peak slot allocation. In the current chapter the airport
has one more instrument at disposal -the fee, and hence it could distort the fee instead
of allocation.

Furthermore, at a public airport with duopoly airlines, subsidization may be called
for when the fraction of markets having different slots is relatively large. Having differ-
ent slots impairs competition between airlines, which enables airlines to exploit more
market power. When is market is served by a monopoly airline, subsidization is defi-
nitely required to reach social optimum. The result is hardly surprising. Without com-
petition, the monopoly airline exploits market power at the cost of a reduced passenger
surplus. In order to correct for this distortion, the public airport should subsidize the
monopoly airline so that it would supply the socially optimal level of seats.

For model tractability, the present work has intentionally abstracted away from the
possibility that passenger groups could be heterogenous, in the sense that the lowest
as well as highest willingness to pay for quality differ across markets. An interesting
extension of the present analysis would be to consider some destinations are primarily
filled with business travellers while others with leisure travellers. The two types entail
different average, as well as distribution of marginal willingness to pay for quality.
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Appendix

Appendix A. Private airport with duopoly airlines
o Casen

For N > M, airport’s profit maximization condition is

BHu(tp) S] [SI(M + ZN) —|—4(P(M — N)]

= — 2.1
a(P 351 (Sl — 4Sh) ( 6)
sy [si(M + 8N) —|—4¢(M —4N)] —0
3s; (s1 — 4sp,) o
The second-order condition writes as:
2 _ _
d Hﬂ§¢) _ 4[sp(M —4N) +s;(N — M)] < 0for N> M.
84) 3s; (4Sh — Sl)
. _ si[si(M+2N)—s;,(M+8N)] .
Since ¢ = SAIL[SSI;I(M—4N)—¢—S:Z(N—M)} , we have:
2(5M + 16N) — 6sy,5;(M + 2N) + s>(M + 2N
a1 — 2:Sl[sh( - ) — 6ssi(M+2N) +5/(M + )}>0forN>M.
4 (35— 1) [sn (4N — M) —si(N — M)]
For M > N, the airport’s problem is
su(3s1 —2¢) — s7
max 11 =max N .
¢ () ¢ s1(4sp — 1) ¢
The first order condition with respect to ¢ is:
N [s; (49 — 3 2
a]-_-[a((P) — _ [Sh ( (P Sl) + Sl] — O, (2.17)
84) S| (4Sh — Sl)
while the second order condition is
82Ha§<p) _ 4Ny, o< 0.
op 4sys; — 8
Solving (2.17) for ¢ yields
o = (s1 —3sn)
a2 4Sh .
Checking whether ¢, lies in the feasible range of ¢ :
s; (7s7 — 6sps; + 57)
_ — f .
G — s 45y, (Bon —5)) >0for N > M

Hence ¢, falls beyond the allowable range.
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e Caseb

Since ¢, = ¢, it follows that:

51 [6Ms] — sy5/(7M 4 8N) + 57 (M + 2N))]
Po =1 =~ 4 (25, — ;) [sp(M —4N) +5,(N — M)] ’

(5-v17)

2Ns; (4s;,— 5—/17
Mandsl<( 5 )sh;ors,> 5—5).

652 —7sy5,+57

which is negative when M < M, =

(5—\/ﬁ) __ 2Nsj(4s,—s))
Moreover, ¢, — ¢; > 0 when s; < >—spand M > M = [

e Casec

Finally, consider Case ¢, under which ¢, < ¢ < ¢; and N < M. The airport’s
problem is now:

@ =20) —sp |y 2s=9)]

maxII =max |(2N - M
9 () ¢ ( ) si(4sy, —s1) 3sy,

The first order condition of I1.(¢) with respect to ¢ is:

Al (¢)  s2[12¢9(M —2N) —s;(M — 10N)] + 4¢s? (M — N)
o N 3sys; (4sy, — s1)
+Sh51 [SI(M — 4N) + 164)(N — M)]

3Sh51 (4Sh — Sl)

=0,

while the second order condition is

*T1(¢) 4 [4spsi(N — M) +3s7(M —2N) 4 s7(M — N)] ~ 0
apr 3sysi (4sp — s1) ,

for M < 2N. Solving first-order condition for ¢ yields the optimal fee, denoted as ¢, :

B spsi [17s,M — 265, N — 55;M + 8s; N
Pe = sy (N - 7(M—2N) —sf(M—N)]’
w1 (N — M) +3s2(M — 2N) — s7(M — N)]

Like before, we verify if the optimal per-passenger fee is consistent with the allocation

considered. We get

_ sysy [353(M + 6N) — 25;,5/(2M + 7N) + s7(M + 2N)]
2 4(3sy—s;) [4sp51(M — N) +3s52(2N — M) — s?(M — N)]

(Pc_ >0,
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for M < 2N. Therefore the optimal allocation and optimal per-passenger fees are con-
sistent. To complete the analysis, we have an interior solution in the market stage for

- sps1 [s2(4N — 10M) + s,5;(13M + 2N) — 3Ms?]
et =] (25, — s1) [4spsi(M — N) +3s2(2N — M) — s?(M — N)]

5—4/17
for M < M. and s; € (( 5 )Sh/§5h> ;Or sy > 51 > %Sh-

<0,

Appendix B. Discussion of peak slot scarcity A—I\/II

As shown before, the optimal fee is contingent on the number of available peak slots,
which translates into a dependence on the peak slot scarcity. We now probe into the
dependence of optimal fee ¢ on the peak slot scarcity X. To start with, let us first focus
attention on ¢ (4) for 0 < 4 < 1. Within this range of peak slot scarcity, note that

5]

¢b|%:0 = Er
where ¢, < ¥ < ¢, while
P (3sn —s1)
b N=1 4Sh ’

By evaluating the first and second derivatives of ¢, with respect to ¥ we get

a(pb _ 3Sl (4.Sh — Sl> (Sh — Sl) =0
I(N) 4[(F-ds—(F-Dsi]2 " 7
¢, _ Bsy(su—s1)% (451, —s1) -0

a(4)*  2[(§ —Ysu— (¥ —Dsi] 3
The second-order condition is fulfilled, which guarantees a unique maximization. We
now address the case where 1 < % < 2 (since our maintained definition of congestion
assumed away M > 2N, the possibility of & > 2is precluded). Evaluating ¢, at ¥ =1
and % = 2, respectively, yields:

Sn 2
(rbc|%:l = ¢b‘%:1/¢c|%zz = o > ¢y fors; < gsh'

The first and second derivatives of ¢, with respect to % are shown as:

op. 3sys) (853 — 14s2s + 7sys7 — 57) .
0(N)  4[B(g—2)st—4(g—Vsisi+(g—1)s}]”
a2¢c . _3ShSl (sn — 51)2 (3sy, — s1) (85%Z — 6sp,5; + 512)

3 (M4)? 2(3(g —2)s7 — 4(g — Vspsy + (g — 1)s7]°
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Appendix C. Private airport with monopoly airline

If M < N,my = M,my = N — M, the airport problem is:

B N VA B
mq?xcp M % + (N - M) 55 | (2.18)

The first order condition with respect to ¢ yields

Al(p)  ¢M  2pM —2¢N + N
=—-1T—+
agb Sy 281
NShSl
2 (Ns, — Msy, + Ms;) ’

=0,

M _
= ¢ =

The second-order condition is

2 _
Pr(g) M M-N

84)2 Sp 4s, <0.

Checking for the range of ¢M* :

oM s __s1 Nsp+2M(s; —sp)
1 P 2 Nsh—i-M(Sl—Sh)’

Ns.__. and negative for s, < 2s;; or s, > 2s;

which is positive for s, > 2s; and M > rs)

Ns
< h X
and M < 2(sp—3y)

If M > N, my = N,my = 0,the airport problem is:

¢N (s — ¢)
mq?x s (2.19)

The first order condition with respect to ¢ yields

A(p) _ N _gN _
a(l) 2 Sp ’
* Sh
= ¢ >
We next compare s; and ¢3*:
. s
s = s, (2.20)

the comparison of $p}!* and s; is straightforward. Finally we check the second-order

condition: 5
oIl N
) N
a(l) Sy
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Appendix D. Public airport and airline duopolies
e Casel. N > M.
In this instance, the allocation pattern is ny = M, np = 0, n3 = N — M. We have

already stated airport maximization problem in subsection 2.4.1. The optimal fee ¢1* is
characterized by the first-order condition:

pe _ 251 (M (345} — 175y5; +57) — N(s — 454)%)

. 2.21
1 M (2852 — 41sys; + 13s7) — AN (s; — 4s)2 @21)

The second order condition for a maximum is satisfied:

M (—4s; — sys1 + 57)

PW(p) ~ _AN-M)
8472 S] (Sl — 4Sh)2 951 .

We show that:

9Ms (12s}, — 3sy8; — 57)

s 0
P*_i: > <0

' 2 2(28Ms? — 41Msy,s; + 13Ms? — 64Ns? + 32Nsy,s; — 4N) 57

<0

for N > M.
e Case2. N < M < 2N.

The allocation pattern in this scenario is 1y = 2N — M, np = M — N, n3 = 0.
Airport’s maximization problem is stated in (2.12) and 4)123 * is derived in (2.13). We

check that:
(3652 — 18sy5) N

34s2 — 17sps; + 57
(21657 — 54525 — 18s;,57) N
17253 — 17sy8; + 57 '

§*>OforM>Mz

Py < %WhQHN<M<ME
To see the ranking of M and M, we show that:

N (20s; — 10sp,s; — s7)

M—M= -0 >0,
= - 34s2 — 17sps; + 57

foralls, >s; >0and 2N > M > N.
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It is thus clear that:
M > M.
We also check that the second-order condition is negative:

PW(P) (2N —M) (—4s; —sis1+57)  4(N—M)

9¢? s (s; — 4sp,)* 9sp

< 0.
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Chapter 3

Per-flight and per-passengers
congestion pricing when airline
quality differs

3.1 Introduction

Air traffic has grown rapidly in the past decade, the growth of traffic has outstripped
airport capacity during some time windows of the day at many airports worldwide.
Airport congestion, as a result, has increased relentless. For instance, from the year
2000 to 2007 alone, 20% of U.S. commercial flights experienced delay (Rupp (2009)).
Moreover, with an expansion of demand due to the increase of income, as well as the
growth of some developing countries, more airport infrastructure capacities will fail to
keep pace with demand and congestion is expected to get worse in the coming decade.
According to European Commission’s estimation, half of the world’s new traffic will

come from Asia Pacific region in the next 20 years.!

As a consequence, air traffic in
Europe will roughly double by 2030, and that 19 key airports will be at saturation, with
50% passengers and cargo flights will be affected by congestion.

At many major airports, current capacities are unlikely to accommodate the esti-
mated increase in traffic, and will fall short of flight activity demand. A persisting
congestion problem is socially costly, and solutions are widely discussed. Constructing
new runways and infrastructure may be one remedy, though the time-consuming plan-
ning horizon as well as gestation period make it hardly an effective short or interim

solution. Alongside other factors that hamper increment of capacity including environ-

1See MEMO/11/857.
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mental concerns (e.g. noise emission, global warming), political disagreement, public
resistance,” etc. Given the many difficulties to alleviate the congestion problem, econo-
mists actively engaged in trying to alleviate this problem by introducing the congestion
pricing mechanism.

The economic principles behind congestion pricing is derived from charging road
travellers for the externality they create.® In the arena of road traffic, the theory of con-
gestion pricing says that usage of a road is excessive since users don’t consider the con-
gestion they impose on other users. From the economic viewpoint, charging a toll based
on a flight’s contribution to congestion would relieve the congestion problem. How-
ever, when one extrapolates road-pricing framework to the context of airport, a clear
distinction between the two markets should be noted: unlike road travellers, airlines
are nonatomistic due to their market power. Agents should be charged atomistic toll
in sofar as they are atomistic. Due to their self-internalization behavior, nonatomistic
agents already take the internal congestion effects into account when choosing optimal
prices and frequencies, optimal toll should contain only the cost they impose on other
agents (Daniel (1995)). As a result, a reduction in congestion pricing should be made
for airlines with market power (Brueckner (2002, 2005)).

With concerns regarding airline’s market power, it then comes along naturally that
subsidization may be required to reach the first-best welfare result (Pels and Verhoef
(2004)). Important recent theoretical advances in mix of per-passenger and per-flight
based airport charges include Silva and Verhoef (2013) and Czerny and Zhang (2015).
Silva and Verhoef (2013) consider the mix of per-flight and per-passenger charges at
a congested airport. According to them, the public airport is confronted with two
sources of inefficiencies: congestion externalities and airline market power. To reach
the first-best outcome, congestion externalities should be corrected via charging con-
gestion pricing toll, and market power via subsidization. With all its advantages of
clarity and universality, congestion pricing is widely endorsed as an efficient means to
alleviate traffic problems.

In an application of a congestion pricing regime, one should bear in mind that a
fundamental characteristic of nowadays airline markets entails vertical differentiation
of products, because many airlines operating on the same origin-destination routes are
not considered as homogeneous products. This is especially relevant to the rivalry

%In year 2012 alone, Fraport received 2.2 million complaints against aircraft noise, which amounts to
6,100 complaints per day.

3 After Pigou (1920) and Knight (1924) initiated the concept, Vickrey (1969) promoted this mechanism
and applied it on road traffic. Other important earliest works include Levine (1969), Carlin and Park (1970)
and Morrison (1983).
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between traditional carriers and low-cost carriers (LCC). Traditional carriers are typi-
cally distinguishable from LCC in terms of ticket fares and flight frequency. Though
the rapid growth of LCC in the past decade has reshaped the world wide aviation in-
dustry, a relatively small attention has been devoted to congestion pricing for heteoge-
nous carriers. This chapter aims to help fill the void by studying frequency and traffic
competitions in a vertically differentiated duopolistic airline market. Setting in a single
origin—destination route context, the framework captures the rivalry between vertically
differentiated airlines, and provides a realistic specification in many airline markets.

Another motivation for studying per-passenger and per-flight stems from the diver-
gence of oversight towards airport charge. Traditionally, airport charges are levied pri-
marily through airlines. More specifically, charges are established based upon aircraft
weight.* There has been a great deal of discussion in favor of transition from leving tolls
through passenger rather than per-flight aeronautical activities (IATA (2010)). Given
these opposing opinions, we wonder what difference would it make to levy passenger-
based charge or flight-based charge, and which type of charge would be more favorable
to the society.

The purpose of this chapter is to provide insights into the potential implementa-
tion of congestion pricing to asymmetric airlines, with the goal of helping to inform the
regulators. We conduct comparative analysis of different competition regimes, traffic
or ticket fare, between vertically differentiated duopoly airlines that serve a destina-
tion market, along with the corresponding first-best congestion price. As long as fre-
quency is considered to be relating to service quality, the frequency setting choices of
the duopoly airlines notably deviate from conventional wisdom. Under price compe-
tition, the low-quality airline internalizes less than self-imposed congestion, and the
high-quality airline does not internalize congestion. The two airlines internalize more
congestion delays under traffic competition. Moreover, if instead of duopoly airlines,
the destination market is served by a monopoly airline, then he would undersupply
frequency relative to the social optimum.

Follow the leads of Brueckner and Flores-Fillol (2007), we will use flight frequency
as a proxy for airline quality. Controlling for other factors, a higher flight frequency
increases the value of flying to the consumers, on the grounds that it reduces the dif-
ference between individual’s desired departure time and actual departure time. The
conventional airline industry wisdom contends that convenience of airline schedules,
along with airfare, are often of paramount concern for consumers in ticket purchasing

decision. Relating to practical observations, major carriers often times provide more

4For a thorough illustration see International Civil Aviation Organisation (ICAQO, 2012).
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Figure 1: Frequency of traditional and low-cost carriers

frequent operations than their low-cost counterparts as they address primarily busi-
ness travelers who attach higher values to the convenience of more frequent schedules.

In order to examine airline market structure and slot occupation, we gather data
from four busiest airport’s websites on a weekday (May 19, 2015) for flights” depar-
tures: Atlanta International Airport (ATL), Denver International Airport (DEN), Dal-
las/Fort Worth International Airport (DFW) and O’Hare International Airport (ORD).>
Our dataset contains airport level observations on passenger air traffic: departure air-
port, service airline, and destination airport. We exclude all cargo flights, private jet
charter and regional airlines. As for code sharing airlines, we record the operating air-
line and delete all other code sharing partner airlines. Figure 1 shows the portions of
destinations served by traditional and low cost carriers separately that has frequency
once, twice, three to above five times on a daily basis. As is clearly displayed, a high
portion of low cost carriers destinations involve low frequency activities, while a small
portion are served on a high frequent basis. On the contrary, major airlines offer more
high frequent services.

Regarding airline level competition, modeling airline interaction in Cournot behav-

5The rank is according to ACI (Airports Council International North America) ranking in calender year
2013. LAX is ranked the second place, however since we focus on domestic destinations, while LAX has a
high international passenger portion (53.8% of its total passenger number is international passenger), we
consider it to be inproper for our purpose of study.
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ior used to be the norm,® motivated by earlier empirical findings such as Oum et al
(1993) and Brander and Zhang (1990). Quantity competition may be adequate when
competing airlines offer homogeneous or horizontally differentiated products,” how-
ever when products are vertically differentiated, it can be well off the mark. Particu-
larly, recent empirical studies by Fageda (2006) and Nazarenus (2011) suggest that price
competition may be as pertinent for describing airline market as quantity competition.
In light of this, this chapter analyses both traffic and price competition at airline level.

Closely related works include Silva and Verhoef (2013) and Brueckner and Flores-
Fillol (2007). The current chapter is similar in its broad outlines to the framework used
by the former, though we give explicit treatment for quality, which is absent in theirs.
Our work has a flavor of the latter, but substantively distinct from their framework
in the way we model quality, downstream passenger market and congestion cost. We
find out that the two airlines oversupply flight frequeny under both types of competi-
tion, with the magnitude of overprovision being greater under price competition. More
specifically, under price competition the high-quality airline does not internalize con-
gestion delay at all, while its low-quality counterpart partially internalizes it. The find-
ings of this work enables new insights into the competitve behavior of airline industry
as well as congestion pricing charge, and may serve as a guidance on discussions of
policy implications regarding traditional and budget airlines.

The remainder of the chapter is organized as follows. In Section 2 we introduce the
model setting comprises of the airline side and the airport side. Section 3 is devoted to
equilibrium outcome of airline competition in a laissez-faire context. Section 4 presents
regulator’s maximization problem. The extensions to monopoly airport is sketched in
Section 5. And Section 6 presents concluding observations.

3.2 The model and notations

To keep the simplest possible focus on congestion internalization results, the model por-
trays a congested airport with a single origin—destination market served by a duopoly
of airlines. This simple structural assumption allows to focus on most pertinent issues
and achieve a clear exposition that brings out the line of the argument.® On the de-

6Theoretical papers assuming Cournot-type competition include, among others, Pels and Verhoef
(2004), Zhang and Zhang (2006), Basso (2008), Brueckner (2005, 2009).

7A few works look into asymmetric airline competition. Brueckner (2009) assumes two airlines offer
products at two fixed price levels and hence each faces perfect elastic demand. Basso and Zhang (2008)

consider peak and off-peak slot as products of different qualities.
8Extensions to multiple independent destinations can be dealt with by adding a scale factor.
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mand side, the construction of our framework is inspired by the vertical differentiated
duopoly model initiated by Gabszewicz and Thisse (1979). Two airlines deliver differ-
ent quality levels, as agreed by all consumers, and the revelant demand is generated
from a unit mass of heteogenous consumers. In adopting this setting to the airline
industry, we follow the convention in the literature to consider flight frequency as be
the best proxy to service quality, on the grounds that higher frequency reduces passen-
gers’ waiting time for next flight. Instead of incorporating peak and off-peak slots into
quality consideration, we will consider a single congested period. Henceforth partic-
ular individual flights departure time are of no concern, the only pertinent element is
frequency. Moreover, prices take the form of airfares.

Subscripts are employed to distinguish between airlines {/,/1}, where [ indicates
low-quality airline, and / high-quality airline. Hence, flight frequencies are denoted as
frand fp, with 0 < f; < fj,. Passengers differ in their valuations of product quality, the
preference parameter is described by v € [0, 1], v being uniformly distributed with unit
density.

3.2.1 The demand side

On the demand side, we first analyze the downstream passenger market. The general-
ized fare of travelling with airline 7 takes the form:

0 = pi+ D(fi+ fu) + 8(f)- 3.1)

The first term p; is the ticket fare. D(-) represents passenger’s cost of congestion delays
experienced from flying valued in monetary terms, and is identical to all passengers.
It is a function of the total flight activities and is invariant to seats. Finally, ¢(f;) de-
notes the schedule delay cost faced by a passenger who travels with airline i, which
depends only on the flight frequency of this airline f;. Schedule delay cost represents
the monetary value of time between passenger’s most desired departure time and the
actual departure time scheduled by the airline, and therefore is related to the expected
gap between passengers’ actual and desired departure time, which depends solely on
the frequency chosen by the airline i. It is thus natural that g(f;) is decreasing in f;: the
higher the frequency, the smaller the gap, and therefore the higher the generalized fare.

As is customary in literature (see Brueckner (2004), Basso (2008), Silva and Verhoef
(2013) for an account), we make standard assumptions that:

9See among others, Douglas and Miller (1974), Brueckner (2004), Brueckner and Flores-Fillol (2007) for
an account.
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dD _ D _ dg(fi) _ . d’g(f) .
— . 2
dﬁ>0’dfl?~>o’ if <0, dfiz >0, Vi (3.2)

This assumption basically requires that: 1) congestion delay increases with traffic

volume, and the severity is more pronounced when the congestion level is already
high. Moreover, the marginal contribution of placing one more fight on all existing
flights is the same for the two airlines; 2) schedule delay cost is associated with own
frequency alone. This cost decreases with own frequency, and the marginal gain from
cost saving is more significant when the existing frequency is placed at a low level. To
ensure the existence of interior solutions, we further assume that the convexity of g(f;)
is sufficiently large, whilst the convexity of D is sufficiently small.”

The demand addressed to an airline is defined by the set of passengers who max-
imize their utility when flying with this airline. Passengers differ in their valuations
of airline quality. Each passenger flies at most once, and purchases a flight ticket that
maximizes her utility vf; — 6;, i = {I,h}, unless this yields negative utility in which
case she purchases nothing. Potential passengers take into account the generalized fare
instead of solely ticket price. If a passenger does not fly, her reservation utility is zero.
It follows that the higher the quality of an airline, the higher the utility obtained by
passengers for a given ticket price. Formally, a potential passenger has the following
preferences:

vf; —0; ifsheflies with quality f; at price 0,
U= qvf, — 0, ifsheflieswithquality f} at price 0}, -
0 if she doesnot fly

All passengers flying with one of the two airlines suffer from same congestion cost and
schedule delay cost, though their gross utility differs, given their various tastes. We de-
fine the passenger who is indifferent between flying with the low-quality airline and the
high-quality airline as the indifferent passenger, and the passenger who is indifferent
between flying with the low-quality airline and not flying at all as the final passenger.
From the utility function, the indifferent passenger is determined by of; — 6, = of;, — 0y,
implying that for this single passenger, the marginal gain in comfortness from switch-
ing from the low-qualtiy airline to the high-qualtiy airline is precisely offset by the fare
increase generated from such a switch. Finally, the final passenger v is characterized by

10Corner solutions, for instance one of the airline becomes inactive, may arise if we don’t impose as-
sumptions on the convexities of the two cost structures. Should that happen, the market would be served
by a monopoly airline.
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Utility
S Up =vfp — 6y
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Figure 2: Passenger valuation of airline quality

vf; — 6; = 0. Hence the indifferent and final passenger has taste:

0,—0, 6

=R TR
Our specific formulation of the model refers to a market that is not fully covered. Hence
with differentiated flights, the demand for flight / is 1 — 9, while the demand for flight
| is 0 — v. Moreover, there are v passengers that do not fly.!! Equation (3.3) realistically
alludes to 6, > 6;, which in turn implies p, + g (fy) > p1 + g (f1) . Since g (fn) < g (f1),
it must hold that p;, > p;. Airline h charges a ticket fare that is substantially higher

5= (3.3)

than airline /, the ticket fare gap more than offsets the difference in schedule delay
cost, as a result, the generalized price associated with airline / is greater than with
airline [. Passengers valuation of airline quality is sketched out in Figure 2. Because
v is uniformly distributed on [0, 1] by assumption, the utility function gives rise to
the demands that accompany differentiated airlines, denoted by g;(6;,6),) and g,,(6;,6;,)

respectively:
0,—6, 0
q0L0) =0-0v =1—1—,
fh _9fl 9fl (3.4)
0,0,)=1—0 =1— "]
qn (61, 61) i

Alternatively, the inverse passenger demands expressed as generalized fares can be

HMotta (1993) shows that Cournot competition can be studied only with partial market coverage, since
the demand function can not be inverted with full market coverage.
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derived:
0, =f1—q —qn),
On = fn— fi91 — fuln-

Some clarifications should be made here. Here and throughout this chapter we will use

(3.5

the terms traffic and passenger volume (g;) interchangeably, both refer to seats.
Combining (3.5) and (3.1) yield the inverse demand function associated with flight
fare:

p = —aq—aqu) —D(fi+fu) —8(fi),
P = fu— fuqn — fiq — D(fi + fu) — 8(fn)-

(3.6)

3.2.2 The supply side

Having formulated the passenger behavior, we now analyze airline competition. First
of all, assume the load factor to be identical across airlines, we allow airlines to choose
aircraft size.!> Because having idle seat capacity is not beneficial, it is natural that an
airline will choose the aircraft size such that all seats are just filled. Airlines have three
decision variables: traffic, aircraft size and frequency. Two of these are independent
while the third is determined by the relation:

traffic = aircraft size x frequency.

More specifically, it should be noted that once aircraft size is simultaneously chosen by
the duopolists at the second stage, it can not be modified afterwards, representing a
form of commitment. Formulating in such way, choosing aircraft size and frequency
would be equivalent to choosing traffic and frequency in Cournot game. We use T to
denote toll, and superscripts g, f to denote per-passenger and per-flight, respectively.
Finally, given airport per-passenger and per-flight charges <T?, T{ ) ,i € {l,h}, each
airline chooses frequency and either traffic or ticket fare, depending on the nature of
competition.

The last ingredient before constructing airline profit is cost structure. Follow Brueck-
ner (2004) and Silva and Verhoef’s (2013) lead, we make assumption that airlines” oper-
ating cost C; is a function of aircraft size and frequency:

Ci=fi- (¢ +4]- ),
fi

12Unlike Brueckner(2002), Pels and Verhoef (2004), Zhang and Zhang (2006), and Basso (2008), we do
not assume "fixed proportions". Fixed proportion means the traffic per flight activity, i.e., product between

load factor and aircraft size, is constant and identical among airlines. While in our model airlines choose
aircraft size.
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where ! and t{ are per-passenger and per-flight operating cost, respectively. It follows
that % represents the aircraft size,!> and the bracket term represents the per-flight oper-
ating cost. As is common with conventional wisdom, airline / has cost advantage over
airline i, we thus normalize the operating costs of airline / to be zero for tractability,
and employ 1 and #/ to airline & to reflect the cost differences. It is worth stressing
that throughout this chapter congestion delay cost is borne by passengers alone. The
argument is, as congestion delay cost is formulated as a monetary measure for passen-
ger’s discomfort from flight delay, the generalized fare that a passenger would accept
for a given quality level is reduced. As a result, though this cost is born by consumers,
the magnitude of its impact on airlines (via the generalized fare) and consumers are
precisely identical. Suppose on the contrary, congestion cost is incorporated into air-
line cost function, this term would enter airline objective function in the same way as
would passenger’s congestion cost and hence would not bring new insights into the
model.
With these specifications, the profit of airline / and & can now be constructed:

o= QI'Pl—ql'T?—fZ'T{, (3.7)
Ty = lIh'Ph—qh'(Tq+tq)—f-(Tf+tf).
h h h

Airline’s profit equals flight fare income gross of airport charge. We first address traffic
competition then price competition.

The timeline of the model is as follows. In the first stage a duopoly of airlines com-
pete in frequency and either quantities or airfares. In the second stage, consumers de-
cide which airline to fly with, or not to fly at all. The equilibrium concept for this
two-stage game is the subgame perfect equilibrium.

3.3 Equilibrium of airline duopoly market

Having introduced the basic model setting, this section investigates rivalry between
the two airlines, each of which either simultaneously choose frequency and traffic (in
Cournot competition), or frequency and ticket fare (in Bertrand competition) to maxi-

mize own profit.

131n this formulation of total cost, cost per flight is linear in the aircraft size (Swan and Adler (2006)).
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3.3.1 Traffic competition

Under this market structure, airlines” strategic variables are traffic and frequency, and
both airlines choose the two variables simultanously. Our specification of the relation
traffic =aircraft size x frequency displays an attribute of independency between strategic
variables traffic and frequency, in the sense that when traffic is set, airlines can accom-
modate frequency choice by precisely choosing the proper aircraft size.

Reformulating (3.7) by using (3.1) and (3.5), together with the relation traffic =aircraft
size X frequency, we obtain airline profit as a function of frequency and traffic.

7= g (il—q—q) ~D—g(fi) — 7)) — fi- 1], (3.8)
T, = qh'(fh—flql—thh—D—g(fh)—TZ—tq)—fh'<T£+ff>- (3.9)

Equations (3.8) and (3.9) state that each airline’s profit is affected by its own and its
rival’s frequencies. Intuitively, the rival’s frequency choice influences its own profit
via generalized fares, which comprises a congestion cost term borne equally by both
airlines. With simultaneous choice, airline / chooses g; and f; to maximize (3.8), viewing
qn and f; as parametric, and conversely for airline /. The first-order conditions are
displayed as below.

I
aql
97t
aqh
om
ofi
aﬂ'h

U

The second-order conditions are satisfied by inspection. We will first discuss airlines

= —D-g(fi) +fi—aufi—2qfi—7] =0, (3102)
= —D—g(fu) + fu — afi = 2anfu — T, — 7 =0, (3.10b)
= 1+ qDj+g—(1—q—a) =0, (3.10c)
= T+ (D) + g — (1— ) =0. (3.10d)
traffic choice, followed by frequency choice, though the order of discussion does not

imply a sequence of choices for strategic variables. The two airlines’ best-response
functions can be derived from first-order conditions.

i @0 = 57 | DU +5i—71 | - 30
>0
i) = 57 | D=t fi=rh—t| =52
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Figure 3: Quantity setting best-response functions

Both bracketed terms are positive by (3.6), and slopes of best-response functions are
negative. The downward sloping best-response functions demonstrate that quantities
are strategic substitutes. Recall that it has been assumed f; < f;,, hence the slope of
the low-quality airline’s best-response function is steeper than the high-quality air-
line’s, as 1 > 1- ﬁll This means the low-quality airline responds more aggressively
to any increase of traffic imposed by the high-quality airline, than the other way round.
Having derived the slopes, yet the intercepts are less straightforward to see. Denote
7 (=D —g8(fi) + fi—t]) = Arand 5 (=D —g(fu) + fu — T, = 17) = Ay. Then the
difference of A; and Aj, can be shown as:

A = (D DN (s _glf) AT
s-m= (57~ 7) (% 2fz>+< 2 Zﬁ)'

Note that the first two terms are both negative. Keeping other things constant, the value

of the third bracket is increasing in #9. Recall that t7 is the per-passenger fee difference,
when #1 is significant, it is more likely that A; > Ay, a scenario corresponding to (a)
in Figure 3. The intercepts of two best-response functions clearly indicate g; > g; in
equilibrium. On the contrary, when the cost difference is sufficiently small, A; < Ay, a
case depicted in (b) of Figure 3, in equilibrium g; < g;.

To derive the optimal flight fare, we rearrange first-order conditions and obtain:

pr = T+ fin (3.11)
pn = TZ +t1+ fuqp. (3.12)
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The first RHS-term (first two) of (3.11) (resp., (3.12)) is airline’s charge, whereas the
second (resp., third) term is a pure markup that reflects market power effect.

Now we are interested in frequency setting. Again, we check that the second-order
conditions are satisfied, which guarantees the existence of a unique and interior so-
lution to the sub-game. After rearranging first-order conditions, we could derive the
conditions under which the equilibrium frequencies should fulfill:

tf = q(=Dj—g+1—q—q)) (3.13)
_\/_/
>0
= qu(=Dj— g+ (1—q)): (3.14)
‘\r
>

At the airline optimum, the marginal frequency benefit, shown by the right-hand
side of (3.13) and (3.14), is just offset by the airline’s marginal frequency cost T{ (or
T£ + t/ for airline /). The marginal frequency benefit comprises of marginal cost saving,
— D} — g/; and marginal quality improvement benefit 1 — g; — q;, (or 1 — gy, for airline ).
Marginal cost saving gives the joint effects of an increase in congestion delay cost and a
decrease in schedule delay cost. And the marginal quality improvement benefit shows
the increment of monetary benefits of a flight to last passenger who is just willing to fly.
Multiplying this benefit by own traffic yields the revenue increase. Clearly, congestion
is only partially internalized. To see this, note that instead of multiplying by total traf-
tic q; + g5, marginal frequency effects for the two airlines are multiplied by their own
traffic. Hence in deciding frequencies, each airline only accounts for the congestion he
induced to himself, a result in consistent with Brueckner (2002). More specifically, the
internalization behavior is intrinsic and can be attributable to the exploitation of market

power. The foregoing analysis can be summarized by the below proposition.

Proposition 1 Under traffic competition, both airlines undersupply passenger volume; and
internalizes only the congestion delay it imposes on itself.

3.3.2 Comparative static analysis

We could now solve for equilibrium supply quantities taking 7/ and 7 as given:

_ =2fiD+ fiD + fifu + fig (fu) — 2fug (fi) + fith — 2fut] + fit?
"= fr &fi = f) '
- —D+2fy — fi — 28 (fu) + g (fi) — 27}, + 7] — 217

4fy — fi '
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The demand confronted by the two airlines depend directly on airport charge, conges-
tion delay cost and schedule delay cost. We now dwell upon the question about how
congestion cost and per-passenger cost difference would impact equilibrium quantities.
The main results are presented below while the details are relegated to Appendix A.
aqi aq 1 8q h

>0’@<0’ﬁ>0’ﬁ<0'

aqi
q
aT].

aqi
ot!

1

<0,

These comparative static effects are displayed in the below lemma.

Lemma 1 Under traffic competition, (i) an increase in the congestion delay cost reduces traffic;
(ii) an increase in the per-passenger cost difference reduces airline h’s seat, while increases airline
I's traffic; (iii) each airline’s congestion pricing reduces own quantity and increases the other’s

traffic.

Recall that t7 stands for the per-passenger cost advantage airline [ has over airline
h, it is natural that the traffic supply of airline / increases with 7, and conversely for

airline h.

3.3.3 Assessment of market power in Cournot competition

Market power is defined as a firm’s ability to charge and maintain a price that exceeds

the marginal cost. A most immediate approach to measure market power focuses on
the percentage markup of price over marginal cost as a fraction of price, as suggested
by Lerner index. The Lerner index (L;) signals the magnitude of price-setting discre-
tion that steers away from zero profit marginal-cost pricing. It is an appropriate assess-
ment for homogenous as well as differentiated product oligopolies. Discerning that
direct application to vertically differentiated product market entail problems, we adapt
Lerner index with special attention paid to treatments for congestion delay and sched-
ule delay costs. These two terms enter demand function much as cost terms that affect
actual price elasticity of demand, for which price is measured at generalized price level.
Though theoretical relationship indicates that Lerner index corresponds to the inverse
elasticity of demand faced by the firm, econometricians estimate firm’s price elasticity
of demand by constructing a full demand system for all interrelated products. As the
attainable data is collected at actual demand elasticity level, we are interested in finding
out how airline’s price-cost margin is related to actual demand elasticity.
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Let ¢ and ¢, denote the price elasticity of demand for airline I and / measured at
ticket price respectively; and €] and €] measured at generalized price. It follows that

991 90 pi O, Om 6

g = — - — —, & = , 3.16
! 891 apl 91 q ! a91 qi ( )
e, = 0T O pu O 94 O
89h aph 9h qh, h 89h qh
Because (3.5) indicates g% = S—Z’; = 1, moreover our maintained assumption (3.3) indi-

cates g—l’ <land 5—: < 1, we thus obtain ¢ = ¢] - ’9’—;, & =€ - S—Z, which implies
g <¢andeg, < ¢,

The price elasticity of demand measured at ticket price level (g and ¢,) is less elastic
than the actual price elasticity of demand measured at the generalized price level (g
and ¢;). This says that consumers are less sensitive to a change in ticket price than to
a change in generalized price. From a practical perspective, on the market level we
typically observe ticket price elasticity, henceforth we argue that attainable data leads
to an understatement of generalized price elasticity of demand.

Note also that upon some rearrangements of the first-order conditions with regard
to traffic we obtain:

q
-7
nono_ fun (317)
pi pi
Pi—Th =t fudn
Ph Ph
The left-hand side term corresponds to price-cost margin in Lerner index. Because (3.5)
indicates g—gi = gTZII = _fhlfl - %, and g%: = gzz = _,ﬁ’ we obtain:
o = P
filhh=f1) @
L pn
&, = - —.
fo—=fi an

Now we compare slz and i to actual price-cost margins, as indicated on the right-hand
side of (3.17). It is straightforward to see

pi—1 J1 pn—Tj— 7 S 1
pi € Ph &n

The price-cost margin exceeds a conventional monopolist’s markup.
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3.3.4 Price competition

The precedent analysis has outlined the principles of congestion pricing in the con-
text of seat competition. In this section we study airline market in the context of price
competition. Under this market structure, airlines” strategic variables are airfare and
frequency, and airlines choose the two variables simultanously. To start with, we re-
formulate airline’s maximization problem as described in (3.7), and use equivalent
formulation in terms of the levels of airfare and frequency. We check that second-
order conditions are satisfied, and thereby we can solve for equilibrium from first-order
conditions with respect to fares. According to (3.1) and (3.4), it can be derived that

3%1, = - sz 7 %, ;% = —ﬁi—fh, then the resulting equilibrium prices are
o= W q+ 1], (3.18)
po= (fu—f) -+ 1+t (3.19)

The first RHS-terms of (3.18) and (3.19) are the positive markups which reflect market
power effect, while the rest terms represent payments for per-passenger charge. The
ability to maintain a markup over marginal cost is attributable to airlines market power
in their differentiated products.

Finally, we dwell upon the frequency choice in price competition. Having checked
that the second-order conditions are satisfied, the first-order conditions determine air-

line I and h’s profit-maximizing choices of frequencies, f; and f;, respectively, which
fulfill:

om 0:>T1f:_q1<< _ﬁ)D;+g;_fl(9h_91)_el(fh_fl)>,(3.20)

ofy fu fulf = f1) fifu
omy, Y r o, O =0
o = 0= qh<gh—|—fh_fl>. (3.21)

These conditions differ from traffic competition conditions (3.13) and (3.14) in two
critical ways. First, the absence of congestion delay cost Dj in (3.21) clearly states that
airline 1 does not internalize the congestion incurred by its passengers. It should be
stressed that the term internalization employed throughout this chapter refers specifi-
cally to airline’s direct response to the change in congestion cost. Admittedly, when
choosing optimal f},, airline & takes into account the impact of its choice on airline I's
choice of f;, which in turn influences f;. Nevertheless, such strategic interaction affects
the optimal f; indirectly and should be distinguished from the concept of internaliza-
tion we adopt here. In particular, it is typical in the literature to apply the notion of
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internalization to account for frequency choice that is directly affected by congestion
cost.!4

Our finding seems somewhat surprising and runs counter to many existing models.
To understand these results it is important to recall the nature of market stage where
vertically differentiated airlines are involved. It is worth noting that by model specifica-
tion, all passengers regardless of preference types, suffer from identical congestion cost
D. In airline h’s passenger market, the highest-valuation passenger has a fixed taste
parameter normalized to 1 due to model assumption. Whereas the lowest-valuation
passenger of airline / incurs identical congestion cost invarient to the flight he takes,
as indicated by (3.1) and (3.4). Airline / hence has no incentive to internalize conges-
tion cost as doing so would not attract additional passengers. On the other hand, it
internalizes schedule delay cost, as this cost has direct impact on its derived demand.

The second difference is associated with the magnitude of partial internalization by
airline / in the two market structures. An inspection of the coefficients associated with
Dj in (3.20) and (3.13) reveals that airline / internalizes more congestion delays under
traffic competition relative to price competition, since 1 > 1 — }(—l > 0.

h
A summary of the above analysis leads to the below proposition.

Proposition2 1) Under price competition, both airlines charge markup for flight fare;

2) the high-quality airline does not internalize congestion delay, whilst the low-quality air-
line partially internalizes it;

3) both airlines internalize more congestion delays under traffic competition.

3.3.5 Assessment of market power in price competition

In the analogous way as for traffic competition, we rewrite (3.18) and (3.19) to obtain
price-cost margin:

=1 _ (h=ffi @

- L (3.22)
Pt
Ph = U= f) Pn

A comparison of (3.22) and (3.17) suggests that for both airlines, the price-cost margins
are higher under traffic competition than under price competition.

Lemma 2 Both airlines charge higher markups on flight fare under traffic competition.

14Gee Pels and Verhoef (2004), Brueckner and Verhoef (2010).
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3.4 Regulator’s maximization problem

In the preceding analysis, we investigated airline competition and the resulting pricing
and frequency setting behavior taking airport charges as parametric. From now on, we
examine a public airport who acts as a regulator, and pursuits first-best optimum by
dictating airline choices of both frequency and seat. Assuming that the airlines view
the tolls as parametric, as discussed in the introduction. The outcome is a first-best
optimum and will serve as a benchmark.

We shall confine our attention to the case of fixed airport capacity and henceforth
focus on short-term equilibrium. The reason for studying short-term equilibrium stems
from real world practice, simply put, that expanding capacity often takes up long time
horizon. Therefore, we contend that focusing on short-term equilibrium is more imper-

ative and offers greater realism.

3.4.1 The first-best optimum

It is useful to begin by considering a base case where a public airport whose mandate is
to maximize social welfare, and has perfect seat regulation on the airline markets. The

maximization problem is formally characterized as

max SW
(q09n.f1.fn)

As is customary in literature, welfare is the sum of net benefits for all agents: con-

sumer surplus, airlines” profits and airport’s profit.
SW=CS+m+ m;, + 11 (3.23)

Consumer surplus can be formulated as:

1
CSs = /Ufld’() + /’(thd’() —q10;1 — q,0p.

4

Recall that v respresents the final passenger, and ¢ the indifferent passenger, whose
definitions are provided in (3.3).

Substitute the expressions of v , 7, 8, and 6; according to (3.3) and (3.5) into the
consumer surplus equation yields:

CS = 5 (fudi, + 2fiqu4n + fi7) - (3.24)

N[ =
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In addition, airlines profits are already specified in (3.7). Airport profit, denoted as I1,
comprises of total charge income net of operating costs. Assume airport incurs constant
per-passenger marginal operating cost which is denoted by ¢, as well as constant per-
flight marginal operating cost ¢/, with both ¢7 and ¢/ being invariant to airlines. Such
assumption is backed by the estimation studies of cost functions conducted by Mor-
rison (1983) and Pels et al (2003), who find out that airport runways display constant
return to scale. Therefore Il can be expressed as:

1T = (7! — &) + qu(t] = ) + fi(] — ) + fiu(d] = ). (3.25)

The welfare expression and first-order conditions are presented in the Appendix B.
Solving explicitly for g; and g, from first-order conditions, we get a social planner’s
choice of quantities:

o —fg (i) +fig(fu) + fith ¢ D

U filh 1) FR 020
o g(fu) —g(fi) +17

gt = 1 slostien (3.27)

The airport operating cost and congestion delay cost affect only airline I’s traffic
supply. The assignment of flight consumers between two airline, however, is irrelavant
to these two costs, rather, it is affected by the cost difference. To guarantee interior

solutions 1 > q{ ’, qib > 0, a necessary condition must hold:

E>H >t (3.28)

where f = f, — fi —¢(fy) + g (f)) and t = Un=f)"+(fn=f)D+fig(f1)=fig(f)  The literal

fi
interpretation is two folds. For one thing, cost gap between two airlines should be

sufficiently large, otherwise the regulator would optimally drive out the low-quality
airline and keep only the high-quality airline in the market. For the other, if on the con-
trary the cost gap is excessively large, then the low-quality airline enjoys a significant
cost advantage and wins the whole market. A comparison of q{ " and qib can thus be

established. It could be verified that:

qlfb > qibwhenf> t > 1,

q{b < q{:b when't > t1 > t,

(fh*fl)D+fhfl71(1272f1g(fl12)f+fhg(f1)+flg(fl)+(fh*fl)cq
1

where t = . When cost gap is not substan-

tial, it is socially optimal for the high-quality airline to serve more passengers than
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its low-quality counterpart, and vice versa. It is straightforward to see a% =/ h;,ﬁ ,
a% =/ hz;’f L, hence % > a% > 0. More interestingly, f is irrelevant to c7.

Now we make an attempt to relate a change in ¢ to the optimal quantities. With an
increase of c7, the feasible range of t7 to ensure internal solutions shrinks, i.e., the lower
bound of ¢’ is higher than before: t' > t. In turn, the two airlines” optimal seat curves
intersect at a critical point # that moves along to the right of the previous one t : ' > t,
though the increase in critical point is smaller in magnitude relative to the increase in
lower bound. Therefore, in order to accomodate an increase in airport operating cost,
the lower bound of cost difference should increase. Moreover, when that cost difference
is given, a larger airport operating cost makes it more likely that the low-quality airline
should serve more passengers, from a social optimal point of view. The argument is,
provided that operating cost is already high, yet the social planner aims to reach both
types of consumers, in making price-quality combination affordable to the low type
consumers, the benefit of being cost-efficiency appears prominent, and thus the low-
quality airline attracts more passengers.

In addition, the total passenger volume is:

v, fo_ fi—g(fi) —D—1

of o = ISR,
)

The operating cost and congestion delay cost are inversely related to total frequency.

While airline % ’s schedule delay cost doesn’t have an impact since this cost only plays

a role in allocation of traffic. As for frequency choice, the socially optimal frequencies
should fulfill:

ISW 1
on 0= ¢/ =~ (qu+q) Dj— gl +a <1—2ql—qh>, (329)
ISW 1
57 = 0:>cf+tf=—(%+IJ1)'DL—%82+%(1—%)-
fi 2

The socially optimal frequency is determined by taking into account the congestion
delay costs imposed on two airlines together. Recall that with laissez-faire competi-
tion, airlines either don’t internalize, or internalize only the congestion they impose on
themselves. For that reason, both airlines should be charged for the part of congestion
they do not internalize.

3.4.2 Congestion pricing

The problem with laissez-faire is that it steers outcome away from first-best. In order
to achieve an efficient outcome regarding seat (or price) and frequency, the regulator
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charges a Pigouvian toll to bring the market to first-best outcome. Pigouvian toll should
be imposed in the first stage and charges each airline for the congestion damage that it
does not internalize. Since there is market power effect, which should be treated with
a subsidy when considered in isolation, the resulting optimal toll might turn out to be
negative. We will derive and interpret the congestion pricing in the ensuing analysis,
for the cases of traffic and price competition separately.

Quantity competition at airline market

In the Cournot competition model, the ticket price is established to clear the market

lq’ TZ, Tlf , T£ ) are determined in

after traffic supply is chosen. Indeed, airport charges (T
order to induce the optimal outcome in later stages. In particular, 7] should hold for
(??), whereas gq; should satisfy both (??) and (3.45). Hence, substitute (??) and (3.10b)

into (3.45) and rearrange terms yields the per-passenger congestion pricing:

U _ = —fg <0, (3.30)
’L’Z(fb) - = —fuqn <0,
where superscript fb denotes for first-best outcome. The first-best net per-passenger
toll takes the form of subsidy if the right-hand side of the equation is negative, and
charge if positive. In this case, it is clear that first-best outcome is attainable via a subsi-
dization which corrects for market power markup. According to (3.30), the subsidiza-
tion fiq; < fngn, when Z—i < %’1 < 1; whilst f;q; > fngqn, when % > %’l > 1. That is, the
degree of subsidization depends on relative supply seat.

Similiarly, regarding per-flight charge, we substitute (3.13) and (3.14) into (3.29) and
obtain:

1
o _of = 2D}~ 507, (3.31)

(fb) of

1
7] = qDj, — 5‘1%-

First-best per-flight toll net of operating cost has two components: uninternalized con-
gestion delay cost and a term related to own passenger volume. The sign of the right-
hand side terms determines first-best congestion pricing should take the form of a toll
or a subsidization. In this case it can be either of two. Since D{ = D;l, for ease of com-
parison let us denote D’ = Dj = D;. When marginal congestion delay cost is small, for
instance a polar case D’ = 0, the right-hand side of equation is negative, which implies
that laissez-faire mechanism unambiguously leads to undersupplies of frequency from

the social perspective.
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Now we attempt to compare T{ ) and T£ (f0),

1
oV - = (D/ +5 (@t m)) (@n—a1)-

The first bracket is clearly positive, the second bracket is contingent on the comparison
f(fb) f(fb) f(fb) f(fb)

of g, and q;. If g, > q;, then 7; V™ > 7,7, whilst if g;, < g;, then T/ <70
Proposition 3 Under seat competition, in order to reach first-best outcome, social planner sub-
sidizes airlines for passenger, and may subsidize or charge airlines for flight frequency.

Having derived congestion pricing, we now proceed to compare airlines profits in
the first-best outcome. The proof is presented in Appendix B.
Price competition at airline market
According to the expressions of p; and pj, given by (3.6), conditions for flight fares
equilibrium can be reformulated as
hn— JJi
fil—gi—q) - D—g(f) -1 - L fhf)f =0,
fu— fuan = frqr = D = g(fu) = T}, = (fu = fi) -an = 0.

Substitute the above two equations into (3.45) generates the first-best per-passenger toll
for price competition:

P o _qu<0’ (3.32)

=t = —(fi— fi)au < 0.

Analogously, we could compute first-best per-flight toll from (3.20) and (3.21), as

f(fo) f_|_D’.< +ﬁ )+ Zﬁ_l 3.33

T c 1| 9n thl fh(fh 2), ( )
1

o = &+ Dj - (gt ar) + aulfi — fi— 5an)- (3.34)

The first term of RHS of both equations are clearly positive, though the signs of second
terms remain ambiguous. The low-quality airline partially internalizes congestion cost,
hence the first-best congestion toll imposed on him is scaled down by a factor smaller
than one. In addition, the high-quality airline essentially does not internalizes conges-
tion cost at all, and hence should pay for the full congestion delay cost. Note also the
sign of the second term of the RHS depends on the difference of f, and f;. The first-best
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congestion toll for airline / decreases with the frequency difference, and conversely for
airline h increases with frequency difference.

From what has been shown above, it is explicit that for both market structures, a
public airport subsidizes passengers, otherwise airlines would undersupply. As for
frequency, the first-best charge or subsidization is less clear-cut. Prior analysis is sum-
marized in the proposition below.

Proposition4 1) First best per-passenger subsidies are smaller for both airlines in price
competition than in seat competition;

2) first best per-flight charges imposed on the high-quality airline decreases with the quality
difference, whilst on the low-quality airline increases with the quality difference.

3.5 Monopoly airline

An extension to monopoly airline is sketched out in this section. With the optimal con-
gestion pricing in duopolistic airlines understood, attention now shifts to an alternate
case where the origin—-destination market is served by a nondiscriminating monopoly
airline. This monopoly can not charge a different fare to each passenger, rather it is
restricted to charge a uniform price to all passengers. The main issue at stake here is
whether a monopoly airline would provide the same quality that would be available
by a social planner.

The primitive model setting from prior analysis maintains here, except for the ab-
sense of interplay between airlines. In this respect, we look into a low quality airline
acting as a monopoly, though the analysis and results continue to hold in the case of
a high quality airline. Since the monopoly airline charges a single price, the previous
notions of indifferent passenger and final passenger coincides. Deriving from utility
function, the final passenger v’ is now determined by the equation v'f,, — 6, = 0,
hence in this setting, the final passenger is specified as:

v’:e—m
v fm‘

The utility function generates the demand for the monopolistic airline, denoted as

G (Om):

(3.35)

Om
Gm(Om) =1 — f—m
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Alternatively, inverse demand functions in terms of generalized fare can be ex-
pressed as 0, = fi (1 — g ) , and the airfare can be written as

pm = fm (1 —qm) — D(fu) — §(fm)- (3.36)

The monopoly airline chooses traffic and frequency to maximize profit. Denote its profit
as 71, upon checking that second-order conditions are fulfilled,*® the equilibrium traf-
fic and frequency can be characterized by the first-order conditions:

Pm = T+ fulms (3.37)
Th = —Gu (Dj+ g — (1))

It is hardly surprising to see the monopoly airline sets a markup on flight fare. For
a given quality, the social welfare is maximized with respect to seat when the flight
fare is equal to marginal per-passenger cost. Airline profits, however, are maximized
when there is a price markup. The failure on traffic is familiar which is attributable to
monopoly’s exploitation of market power over price.

3.5.1 Congestion toll

We now consider the choices of an social planner who has the power to dictate airline
make choice on flight frequency along with passenger volume for the airport. Anal-
ogous to previous analysis, the planner aims to maximize social welfare. Given the
market is served by a single airline, the passenger surplus expression now simplifies

to:
1

CS = /vfmdv — qmOm,
o
where v’ is equivalent to 1 — g,,. Consumer surplus can be rewritten by plugging in
equations (3.35) and (3.46):

[l
cs = Il

Airport profit comprises tolls collected from the monopoly airline alone, which takes
the form:

T = gu(th — ) + f (T{;—cf).

15see Appendix C.
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Social welfare is the sum of passenger surplus and airport profit, see Appendix C. The
equilibrium seat supply of a monopoly airline could be derived from first-order condi-
tion with regard to seat:

qﬁ: —D(fm)_g}fm)+fm_cq_ (3.38)

In a similiar fashion as in the duopoly case, first-best congestion toll under the monopoly
case is derived by substituting equation (3.37) into the above first-order conditions:

TZ1 —cl = ~qmfm <0, (3.39)
q2
o = —a <. (3.40)

To generate social optimum outcome, the social planner should subsidize the mo-
nopolistic airline in both per-passenger and per-flight charges. This argument trans-
lates into the contention that an unregulated monopoly undersupplies both frequency
and passenger volume relative to the social optimum. The underprovision of passenger
is more familiar, while the undersupply of frequency is less straightforward. The re-
sult departs markedly from conventional literature on congestion pricing, which states
that a monopolistic airline would internalize congestion it imposes on itself, hence
there is no scope for congestion pricing.!® An alternative explanation for the distor-
tion of frequency is illuminated by the argument associated with the inability of uni-
form monopoly price to convey information about marginal passenger’s valuation of

frequency %.17 Note that with our model specifications, for given g;,, the marginal

valuation of frequency falls when one more passenger is attracted to fly: agi%'}m < 0. As

a result, the airline sets frequency too low for given g,,.

We turn now to the comparison of traffic and frequency supply under regimes of
monopoly and duopoly. Even though the sign of (3.31) is ambiguous, a comparison is
still valid. A closer inspection of (3.40) in reference to the regime of duopoly (3.31)!®
indicates that the first term of (3.31), which is positive, doesn’t appear in (3.40), clearly
suggests the congestion toll is unambiguously smaller under monopoly regime. The
intuition is as follows. Given that frequency represents quality, for duopoly airlines
frequency choice has the direct effects on demand in the sense that an increasing in

frequency precludes some low valuation passengers to travel with this airline.

16See Brueckner (2002).

175ee Spence (1975) for a more complete discussion.

18 A comparison with Pigouvian tax for price competition is analogous, and the primary result generated
from quantity competition case holds for price competition case as well.
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Moreover, several indirect consequences include: 1) increase own congestion cost,
which is negatively related to own demand; 2) reduce own schedule delay cost which
obviously has a positive impact on demand; 3) increase rivalry’s congestion cost, which
in turn has a positive effect on its own demand. The last point is relevant only to
duopoly airlines. In this respect, duopoly airlines have extra incentives to place higher
frequency relative to a monopoly, for the purpose of increasing the rival’s congestion
cost.

The characterization of monopoly airlines” supply behavior along with the partial
effects are highlighted in the below proposition.

Proposition 5 The monopoly airline undersupplies both traffic and frequency relative to the
social optimum. In order to reach social optimum, airport should subsidize both.

3.5.2 Comparison with duopolistic airlines

Though we could not compute equilibrium seat and quality for the monopoly and
duopoly airlines without proposing structural forms, it is still feasible to establish com-
parison between the two market structures. We are interested in the questions such as,
if the monopolistic airline has a fixed quality, either f; or f;,, would he supply more than
the duopolistic airlines with same quality level? Or the two combined? The ensuing
analysis is devoted to answer these questions.

Note that the first-best supply seat evaluated at quality level / and /, denoted as
qﬁ (f1) and q{;b (fn) respectively, are characterized as:

i) = _D(fl)_g;lfl)—f-fl—cq’ -
i) = —D(fh)_g;{h)—{—fh—cq'
It can be verified that

an (f) > af',
where q{ Yis given by (3.26). The proof is relegated to Appendix D. Analogously we
verify that q{nb (fn) is greater than the first-best supply seat of the high-quality airline,
7

aw (fi) > 4
We then proceed to compare the aggregate market seat. Aggregate seat in the duopoly
market, denoted as ¢/?, is attained by summing up (3.26) and (3.27):

g = fi—=D(fi+fu) —g(fi) +
7 .
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From inspection of the above expression it is obvious that the first-best supply seat is
irrelavant to cost difference. We could show that:

. b b
min (qf (), % (fi)) > 4.
The analysis can be summarized in the below Lemma.

Lemma 3 If the monopoly airline could take either low or high quality that are chosen by the
duopoly airlines, then he serves more passengers than the duopoly airlines combined, regardless

of frequency.

3.6 Conclusion

A description of congestion pricing applied to price-quality differentiated airlines re-
quires an understanding. In the airline industry, a proxy for quality characteristic is
flight frequency. The present chapter is devoted to investigate the endogenous relation
between airline choice of frequency and airfare. What we attempt to show is that when
adopting first-best toll, the price-quality relationship should be taken into considera-
tion.

This chapter presents a model of vertically differentiated airlines engaging in fre-
quency and traffic competition. The analysis provides useful comparative-static pre-
dictions, and formally shows that under both quantity and price competition, airlines
undersupply passenger volumes relative to first-best outcome. More importantly, we
argue that first-best per-passenger congestion charge, which takes the form of subsi-
dies in our context, are smaller for airlines in price competition than in quantity com-
petition. The low-quality airline partially internalizes congestion delay cost, while his
high-quality counterpart does not internalize congestion cost. An extension to monopo-
listic airline suggests that the monopolistic airline would undersupply flight frequency
as well as passenger volume.
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Appendix

Appendix A

Traffic competition
Check for second-order condition:

827'[1 azﬂ'h
— = —2f1 <0, = = —2f, <0.
oq; o
It can be easily verified that the second-order conditions with regard to frequency is
negative:
027
oy — % (=Dl —gi) <0
Comparative statics
) 2 0 1 0 1
i,l]:_ fh li,;: >O/i: >0/
T fi(4fu = fi) oty  4fu—fi ot 4fy—fi
aqh 2 8qh 1 aqh 2
" = <0,7: >0,7:— <0.
oty Afu—fi o] 4fu— £ o Afy—fi

Price competition
The corresponding first order conditions for a maximum in price are:

am aq

! a\ _
= + —1,) =0, 3.43
amy, o9y q
-— = + — — 1! —t1) =0.
opn n P (P h )

Appendix B. First-best optimum

Analysis of first-best optimum
Since airport’s charge income cancels out against airlines” charge payment, plus
airline’s ticket income cancels out against passenger’s ticket payment, social welfare is

constructed as:
1
SW(qu qw fis fu) = 5 (fudh + 2fiiqn + f197) + a1(=D — gi(f1) + fi — fran — frqy — )
(3.44)
+qn(=D — gu(fu) + fun — fuqn — fiqr — 7 —t7)
_ﬂg_ﬂ<g+g)
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First-order derivatives associated with quantities read:

oSW

o~ PosUi)tfimafi—afi-c =0, (3.45)
JdSW
W =-—D—-g(fu)+fu—qufn —qifi —c"—t1=0.

Analysis of profit comparison
By substituting (3.11), (3.12), (3.30) and (3.31) into (??), we obtain:

1
m=q- fiqi — fi <Cf + gD’ — 25112> ,

1
T = qn - fudn — fa <Cf+qlD’—2q%+tf>.

3¢ —2q,D'—2c/
2

7

In order to have interior solutions: 71;, 77, > 0, it should hold that t; <
of < M2 for g > grand of < 2222 for g, < g, In other words, both per-flight
> qgn > qrand ¢/ < > or g, < q;. In other words, both per-flig
cost difference and airport operating cost should be sufficiently small.
3197 — 3fuq>
e fqlzfqh + (fu = fi) + (fut = fign) D'+ fit!.

A direct comparison of 7r; and 71, is complex. For ease of exposition, we discuss two
cases where q; > ¢, and gq; < g;. Imposing condition 3.28 to ensure interior solution,
together with the conditions for 7r; > 0 and 71;, > 0, it can be verified that:

o ifgy > q; : 1y > 7, when

4

—2fucp+2fics—2D' frqi+2D figu+3fuqa—3/197 <t < 3q2—2¢;D'—2cf
2/, f 2

—2fnce+2fics—2D' frq;4+2D' fign+3fug? —3£14?
and 71; < 77, when 0 < b < fucr+2ficy fhng} f1an+3fu9;—3f1q; .
1

° 1f6]l < qn : T > nhwhenfh gfhandO < tf < % (3q%—2cf—2q1D’);orfh >ﬁ1
andz? <t < : (3q7 — 2cy — 2q;D’); while 71, < 7, when f, >ﬁ,and0 <t < Er,

~ _ =2fuep2fic —2fuq D' 42f1q, D' +3fuqs—3f107 7 _ 2ficg+2f1q,D'—3fi4?
Where tf = th 7 fh 2Cf+2qlD,_357i .

Analysis C. Monopoly airline

Equilibrium quantity and quality chose by the airline
Assume the monopoly airline incurs zero operating cost, hence his profit is:

7on = (fr (1= qm) = D(f) = 8(fn) = Th) Gus = fuTh- (3.46)
First-order condition with regard to g, yields:
97Ty,

W:fm<1_qm)_D(fm)_g(fm)_'frqn_mem:0~ (3-47)

m
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According to (3.36), we could write
Pm = T + finlm- (3.48)

Checking for second-order derivatives:

07Ty,
2
aa}? = —qu (Djy + &) <0.

Hence there exists a unique and interior solution to the sub-game. The equilibrium
condition for frequency can be derived analogously.

Congestion pricing for the monopoly airline

Using pm = fm (1 — gm) — D(fm) — §(fm) and rearrange, social welfare can be writ-

2
SW = gy (=D (fu) = &(fn) + fn = fnlln — ") = func/ + fmzqm

First-order conditions with respect to quantity and frequency read:

ten as:

T = =D (fu) = (o) + fi = nfon — 1 =,
S (0 i+ 1)~ 0.
Appendix D. Comparison of monopoly and duopoly
fooen o DUi+fu)=D(f)) &) &) . fug(fi) o
(1)~ i A A
Upon some calculations, this can be rewritten as:
fooen o _DUi+fu)=D(fi) &) —g(fw) ,
g (fr) —ap = 7 T

Clearly, the first term of the right-hand side of the equation is positive, as D (f; + f;,) >
D (f). The second term is also positive since ¢ (f;) > ¢ (fy,). Recall that f, — f; —
¢ (fu) + g (f1) > #1 must hold to ensure interior solution, hence we have

ot gh) =g ()

i f fo—fi
Thus we obtain
2 () = — DUfitfu) =D(fi)  8Uf)=8(fu) 1" 4

fi fn—fi fn—fi






Chapter 4

Uniform-price auction with
endogenous supply: Should seller’s
reservation price be kept hidden?

4.1 Introduction

Airport noise is an externality. With the expansion of air traffic in the past decades, a
lot of nearby local inhabitants have been painfully suffered from noise nuisance around
airports. Those residents who live under the flight path of airports are affected by the
sound of planes taking off and landing. Indeed, for most who do not live close to an
airport, air transportation is exclusively a social benefits; whereas for the residents who
live in the vicinity of an airport, flight noise is an imposition. Noise pollution adversely
affects the lives of local inhabitants, which is supported by some medical research that
suggests direct links between being exposure to aircraft noise and health. The public
relations war with those waterfront residents are even fierce when the airport needs
additional runway capacity to accommodate demand growth and seeks expansion. In
recent years there is a calling for airport noise ombudsman who is responsible for advis-
ing on how best to compensate the residents. An independent ombudsman could play
a fundamental role in establishing a fair and reasonable balance between demand for
flight movements and noise control. A similiar body has already existed in Australia
since 2010, and in France since 2009.

In economic literature, in order to compensate those who suffer from noise dam-
age, some authors propose to assign property rights to the residents, see among others
Brechet and Picard (2010). Inspired by their paper, the present chapter seeks to employ

97
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uniform-price auction to the airport noise emission licenses market. Within uniform-
price auction regime, all trade is cleared at the same price. Uniform-price auction is
widely used to allocate multiple identical objects, for instance Treasury bonds, online
initial public offerings, electricity procurement, and emission permits such as EU ETS
(CO2) and RGGI CO2. In these auctions, bids are instituted as demand schedules, air-
lines who make highest bids win, and all winners pay an identical price. In some re-
spects such auctions seem to be analogous to Walrasian markets. If we take a Walrasian
point of view, market clearing is ubiquitous as long as preference and cost functions are
given. A Walrasian auction perfectly matches the demand and supply and as a result
the uniform-price auction appears a practical auction format that resembles Walrasian
auction. If trading airport noise license is conducted in a Walrasian fashion: airlines
submit demand schedules, a benevolent auctioneer collects individual demand sched-
ules and sum them up to produce an aggregate demand schedule, then noise victims
find the market clearing price, and all airlines bidding higher than this pay for this
price and obtain the amount of licenses indicated in their individual demand schedule.
Nevertheless, the typical assumption on the large number of airlines is not innonu-
ous and is not well suited for certain auction environments, in particular for the noise
license market where airlines are non-atomistic airlines. For instance in Treasury auc-
tions the top five airlines typically acquire almost one-half of the issue (Malvey and
Archibald (1998)). Electricity and spectrum markets in general also exhibit high lev-
els of concentration. When one or two sides of the market has (have) market power,
the uniform-price auction differs substantively from Walrasian market in that airlines
strategically misrepresent their true demand. The consequence is that price finding pro-
cedure departs from that of the Walrasian auction on the grounds that agents execute
market power, which is particularly true when both sides are relatively concentrated
oligopolies.

The susceptibility of uniform-price auction to collusive-seeming behavior has been
extensively studied. Traditionally the major concern with uniform-price auction refers
to the existence of low-price equilibria. Low-price equilibria was first observed by Wil-
son (1979), followed by ensuing studies including Back and Zender (1993), Engelbrecht
and Kahn (1998), and Ausubel and Cramton (2002), among others. The arise of low-
price equilibria is mainly generated by two factors. On one hand, bidders have incen-
tive to shade bids, since a bid for an additional unit affect the price for units that are
obtained earlier. On the other hand, there is no strategic role for the representative.
Adding up the two effects which flow in the same direction, bidder’s strategic demand
curve lie beneath true demand curve for all positive quantities. Given the nature of
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airlines strategic manipulation behavior, in noise licenses market the existence of low
price equilibria will be unfavorable to the residents.

More recently a varied literature looks at ways to minimize the extent of low-price
equilibria, and introducing endogenous supply is one of them. Endogenous supply
means the quantity supplied is not fixed a priori, rather seller is granted the right to
determine supply quantity after collecting the submitted bid schedules. Literature on
endogenous supply has been fast-evolving. Back and Zender (1993) show that fixing
quantity beforehand and revealing it ex-ante is detrimental to the seller, whereas if
seller can reduce supply after knowing aggregate demand schedule many collusive
seeming equilibria would vanish. Lengwiler (1999) explores that in equilibrium all
oligopolistic bidders overstate true demand at low price and understate true demand
at high price when the seller is monopolistic. LiCalzi and Pavan (2005) propose that the
seller commits to a supply curve that is more elastic than true supply. Taken together,
a major conclusion of many studies pertaining to endogenous supply , by varying sup-
ply ex-post, low price equilibria is significantly reduced or even eliminated. Yet much
remains to be learned about endogous supply format auction when the seller has a
reservation price.

This chapter contributes to the traditional uniform price auction theory by consider-
ing endogenous supply format auction when the seller has a random reservation price.
Random reservation price has been used, but not exclusive to natural-resource auc-
tions.! The provisions for reservation price are showed in recent legislative proposals
for emission trading. For example, calling for an auction reservation price to be intro-
duced to the EU Emissions Trading Scheme (ETS) was highlighted when the traded
price crashed to a record low. The statement is that the imposition of a reservation
price is consistent with EU interest of dissuading polluters to emit. The US Regional
Greenhouse Gas Initiative (RGGI) scheme has a reservation price in place, Belgium
has a minimum price for renewable energy certificates.> In the random reservation
price literature, Hendricks, Porter, and Wilson (1994) discuss the bidding behavior of
asymmetrically informed airlines confronting a random reservation price under the
common-value framework. Li and Perrigne (2003) consider a random reserve price
model within independent-private-value context, and compute the winners” informa-
tional rents as well as the optimal reservation price.

The present work has several features:

1Random reservation price is also encountered in wine auctions, see Ashenfelter (1989); and Web auc-
tions, see Bajari and Hortacsu (2000).
2Belgium Renewable Energy Fact sheet, 2007. Energy EU Europe’s Energy Portal.
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1. It discard the usual assumption of a large number of airlines (airlines are buy-
ers), and accounts for duopolistic airlines. The single seller (seller is the single
representative of residents) nevertheless acts as a monopoly. This framework is
appealing in many applications when both sides of markets are relatively concen-
trated.

2. Specifically, the representative of residents retains flexibility in determining sup-
ply quantity after collecting bid schedules. She is allowed to decide supply quan-
tity ex post, which is essentially equivalent to committing to maximize her ex
post profit. Airlines, anticipating the adjustable supply scheme, will alter their
bids accordingly.

3. Moreover, it examines airlines behavior when confronting with two distinct in-
formation settings: revealed and secret reservation price. In particular, we shed
some light on how varing the amount of information available to airlines affect
total amount of licenses traded, and in turn, representative’s expected utility. At-
tempting to investigate the role that information revelation would play, we char-
acterize equilibrium strategies for the two schemes separately. We find out that
the information revelation decision depends upon both the relative magnitude of
reservation price, and also policy maker’s objectives. When the policy objectives
involve reducing the amount of issued license to a certain target level, or maxi-
mizing social welfare, then it is best to reveal the reservation price before auction
takes place when the reservation price is small. Conversely, when the reservation
price is relatively high, it is optimal to keep reservation price secret ex ante.

Lengwiler (1999) is perhaps the closest in spirit to the present paper, though dif-
ferences between the two is substantive. His work was the first to analyze adjustable
supply, but in a restrictive setting where bids are limited to two prices. Ours aims to
examine adjustable supply in a broader setting allowing for continuous price. Instead
of discrete price-quantity pairs used in his model, the present paper takes a step further
and adopts linear downward-sloping demand schedules.®> Albeit its simple structure,
linear demand schedule captures the essential features of continuous demand sched-
ules, more importantly it fulfills another property of uniform-price auction, that airlines
claim lower unit prices for larger quantities than for smaller quantities. Furthermore, in
order to better address the paricular property of emission license market, seller’s reser-
vation price is imposed. In addition, in our formulation representative could either

3Linear demand schedule is adopted in Brechet and Picard (2010).
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reveal or hide her reservation price, a distinct departure from complete information
assumption. We demonstrate in generality that a airline who desires multiple units of
goods has an incentive to understate his demand at all prices. Moreover, we show that
this demand reduction necessarily leads to inefficiency from a social planner’s perspec-
tive.

The rest of the paper is organized as follows. Section 4.2 presents the model and
environment. Section 4.3 analyzes the case of announced reservation price. Section 4.4
determines the symmetric equilibrium strategic bidding behavior for the case of secret
reservation price. We discuss the policy implications of the two information disclosure
schemes from a social planner’s perspective in Section 4.5.

4.2 Model

This paper considers an auction model with one seller and two homogenous bidders
within the independent-private-value paradigm, i.e., each airline’s valuation of emis-
sion licenses is independent of the other airline’s. To begin with, we introduce notations
and describe the basic model ingredients, then proceed to present strategies. Finally we
set forth the timing of the auction.

4.2.1 Airlines demand and bid schedule

On the demand side, two (male) airlines i, j act as bidders. As is common in auction
literature, each airline has a value function that is continuously differentiable, monoton-
ically increasing and concave, denoted by Vi (g, f¢), k = i,j, where g is the amount of
licenses each airline obtains, and t; denotes the type of each airline. Formally, if type t
of bidder k obtains q € [0, 1] units of the licenses at a price p, his surplus is given by

Vi(9, t&) — pg- (4.1)

Because in our formulation bidders are homogenous, they both acknowledge their own
and the other’s type from the outset: ¢; = t;. Simply put, the second argument in the
value function t; can be suppressed. The value function Vi (q) patterned after Ausubel
and Cramton (2002) has continuous derivatives with respect to g, which is effectively
the marginal value function and is denoted by vy (g) = dvdk—y). vk (q) satisfies: dvg—;q) <0
forallg € [0,1].

For the sake of analytical simplicity, we propose a linear marginal value function
v (q) that takes the form

u(q) =1—q.
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Intuitively, the demand schedule is derived from marginal value function. Hence by
imposing a structure as such, his true demand schedule, denoted by cf]: 1(g), can be
explicitly identified:

d, *(q) = max{1—gq,0}.

Hereby we place a hat notation over 4 to distinguish the true demand schedule, in con-
trast to individual bid schedule which is denoted by di(g). The bid schedule is written
as:

d(p) =1L, 42)
Pr
At some points, our analysis is facilitated by inverting bid schedule as:
d. ' (g) = B (1—q). (4.3)

The advantage of the particular choice of the marginal value structure is that it allows
for an explicit computation and comparison of the outcomes of two information rev-
elation schemes. Departing from true demand schedule, airlines simultaneously sub-
mit a continuous and downward sloping schedule that specifies his demand at each
price. To distinguish airline’s true and submitted demand schedules, we employ the
term demand schedule to indicate true demand schedule, and bid schedule for submitted
schedule. It is imperative to define the term shade.

Definition 1 Shade means airline optimally shifts down his bid schedule relative to true de-
mand schedule.

More specifically, airline’s bidding price for the first unit of license, equivalent to
dr(q = 0), is called the highest bid. Thus, on grounds of literal interpretation, the
highest bid exhibits to which extent an airline shades.

Aggregate bid schedule specifies the aggregate demand quantity confronting the
representative at each price, which is the horizontal summation of two bid quantities at
that price, and is denoted as Q(p):

Q(p) =di(p) +4d;(p).

Whereas a bid specifies a maximum price that airline i is willing to pay for the g;-
th unit, a strategy, denoted as B, (vx(q)), specifies a mapping from value function to
bid schedule, B, (-): [0,1] — [0, B;]. following the common in literature B, () should be
continuous and monotonic. The simplest exposition suggests an imposition of linear
strategies B;(vi(q)) = B, - vi(q) and ﬁj(v]-(q)) = B;- vj(q). Since each airline knows his
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counterpart’s valuation, which is equivalent to his, we safely drop the subscript i and
j of v;(+) function to save notation. Denote S as airline k’s surplus, which is always
non-negative,* therefore airlines would strategically choose B, < 1 to maximize their
surplus. Recall that shade behavior imposes 8, < 1, whereas B, = 1 indicates a truthful
bidding behavior. The problem for each airline is to determine B, that maximizes his
expected surplus. Rewriting (4.1) yields:

maxSk:/OEIde;l(q”)dq—pﬂk, ked{ij},

Pr

where both p and g are functions of (B,, B j>' but we omit the arguments here.

4.2.2 Representative’s utility maximization

On the seller side, the single seller is a representative of a group of homogenous res-
idents who live in the vicinity of an airport. The term homogenous alludes to their
identical marginal disutility from being exposed to noise. As in Brechet and Picard
(2010), the representative is responsible for participating in the auction on behalf of all
residents. The representative offers a bunch of identical noise licenses to the two risk
neutral airlines.

Assume representative’s marginal disutility is constant and denoted as c. Hence
c stands for marginal disutility evaluated in monetary term, which is analogous to a
reservation price in standard auction theory> Both terms will be used interchange-
ably in the ensuing analysis. Upon observing the bids and then establish aggregate
bid schedule, the representative decides on market clearing price p, and in turn actual
supply Q, to maximize her utility. A critical element should be emphasized that the rep-
resentative should commit to stick to this price finding rule, i.e., market clearing price
is found on the aggregate bid schedulet. With such a commitment in place, represen-
tative’s knowledge about airline’s true demand schedule doesn’t play a role. Besides,
once the representative receives the aggregate bid schedule, even if she could size up
airlines real demand schedule through her reasonable calculation, she could not switch
to other pricing rules, on the grounds of irreversible commitment. Finally, bids above
and equal the stop-out price are awarded. In the uniform-price auction, airlines pay
p for each unit of license they receive. In particular, if an airline’s highest bid is lower
than the stop-out price, then he would obtain zero license, a case demonstrated in Fig.1.
Intuitively, if ¢ > 1, both airlines obtain zero license with probability one and would

“The non-negativity implies v;(q) — B; - v;(q) > 0.
5A constant marginal cost of the seller has been assumed in Lengwiler (1999) and Damianov (2008),
among others.
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— Realization of ¢
N — Airline's true demand

N --- Airline's report demand

Figure 1: Shading behavior and the realization of c

thus exit the market. To ensure that both airlines are active in the auction, c is restricted
to take value in the range [0,1).

A supply rule, denoted as S(-), defines a mapping from the aggregate bids into a
supply quantity Q >0, S (-) : Y2_, di(p) — Q.

When determining the market clearing price, and in turn supply quantity, the rep-
resentative cares about aggregate demand schedule rather than individual demand
schedule :

S(di(p).dj(p),c) = S(Q(p),c)vp = 0.

4.2.3 Timing

The timing of the auction is demonstrated in Fig.2. In the first stage, airlines simulta-
neously submit bid schedules to the auctioneer. In the second stage, upon receiving
submitted bid schedules and the realization of her reservation price, the representa-
tive decides on a supply quantity to maximize her utility. We distinguish between two
types of information settings regarding the representative’s reservation price: revealed
and hidden. Acknowledging that the representative would choose a profit maximiz-
ing supply quantity,® airlines adjust their bids strategically so as to counterbalance the
power of the representative. The payoff of each airline depends on his own and the
other airline’s bid, as well as the realization of representative’s reservation price. The
equilibrium concept in this complete information setting is subgame perfect nash equi-
librium hence we will employ backward induction to analyze the equilibrium strategic
shades of two airlines.

6The utility maximizing behavior of the representative serves as a commitment.
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t=0 t=1
Airlines simultaneously Representative collects bid schedules
submit bid schedules and determines supply quantity

Figure 2: Timeline of the auction

4.3 Revealed reservation price

4.3.1 Equilibrium

Under a revealed reservation price scheme, the representative pre-announces a reser-
vation price ¢, and commits herself to sell any amount of noise licenses no lower than
c. A bidder obtains a positive number of licenses when only his highest bid exceeds the
stop-out price. In this section we will characterize equilibrium bids when the policy is
to reveal the reservation price.

To illustrate our analysis, we apply backward induction and first examine the rep-
resentative’s utility. Airlines” true demand schedules are known to themselves but not
the to seller. Given that the two bid schedules take the form as indicated in (4.2), it
follows that the aggregate bid scheduleis Q =1 — £ +1 — 5%. The representative is an

Pi
utilitarian and considers the following utility function:

U= (p—0)Q, (4.4)

which states that her utility is measured by the difference between total airline pay-
ments and disutility generated by noise. The representative behaves like a monopolist
that maximizes her utility with respect to Q:

manU(Q) = %—c Q.
B F

The first-order condition is both necessary and sufficient for setting forth the fol-
lowing optimal solution:

26,8~ (B, +B)
288,

Q*(Bi Bjrc) = (4.5)
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The above expression shows that the optimal quantity the representative would offer in
the second stage is determined by her marginal disutility and airlines shading behav-
iors. It is straightforward that Q* is decreasing in ¢, which shows a negative relation
between marginal disutility and optimal supply quantity. This statement is in line with
the standard monopoly theory.

Furthermore, the corresponding market clearing price p(Q*) is found on the aggre-
gate bid schedule:

0y C=Q _ 28,8+ (B, +B)
PRIT T T T T 208+ B)
B B

Given the above price p(Q*), airline k acquires g5 (p(Q*)) units of license, which is

(4.6)

found on his own bid schedule at price p(Q*). It follows that

. _ 27 — c(; +5) . _ 25]2 —c(B;+B;)
T e ) T 2B B

Atstage 2, airline i and j choose B, to maximize their respective surplus Sy, k € {i, j}:

(4.7)

Tk e s
IIIﬁ?XSk:/O (1—4)dqg—p*-q;, (4.8)
k

Exploiting symmetry, calculation is facilitated by recognizing ; = p; = p. The stan-

dard first-order condition with respect to B leads to the following optimal condition: ”

asé(ﬁ@ _ 4/132 (c _eg C; - 52> o, (4.9)

The above analysis can be summarized in the following proposition, the proof is
provided in Appendix A.

Proposition 1 For any given reservation price c,

2

o there exits a unique optimal strategy for each airline, B* € (B* = \/ 5, 1), which is
the unique positive solution of polynomial
FB)=p —(c—P)p—c=0; (4.10)

7Tt is easy to check Sy is strictly concave in term of B, thus the first order condition is necessary and
sufficient for the optimization.
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Figure 3: Optimal bidding with two bidders

e representative’s optimal price and suppy quantity are given by

B* 1 c

pB) =5+ (B = 5 5

NI o

e given the optimal choice of B*, representative’s utility is characterized by
U(p") = ~—ge

We check that the representative’s utility is decreasing in the highest bid:

dugpy 1 &

B2 app
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(4.11)

(4.12)

(4.13)

which implies that given a constant marginal disutility, the more truthful airlines reveal

their demand schedules, the higher is the representative’s utility.

Fig.3 illustrates the optimal bidding behavior of a two-bidder game. A closer in-

spection of the figure suggests that shading phenomena is an inevitable consequence

of surplus maximizing decision at any price level. Recall that shade depicts a devi-

ation from demand schedule to bid schedule, henceforth 1 — B can be interpreted as

a measure of the magnitude of deviation. As indicated by Fig. 3, optimal bid B is

monotonically increasing with ¢, or equivalently, shading behavior (1 — ) is monoton-

ically decreasing in ¢ for all ¢ € [0,1). The intuition is as follows. Knowing that their
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behavior contributes to the choice of market clearing price, airlines strategically under-
state demand quantity at all price levels so as to affect price setting. By claiming to
be a weaker bidder, airlines demand fewer units at all price levels, the representative
chooses a market clearing price that is lower relative to a truthful bid situation. Airlines
hence pay less for all inframarginal units, at the cost of obtaining fewer units than they
could if they bid truthfully. The shading behavior results in a reduced supply quantity

and a lower market clearing price.

4.3.2 Comparative static analysis

To illustrate the properties of the equilibrium, we undertake a comparative-static analy-
sis. Aiming to find out how shading behavior affects the amount of licenses that airlines
get in equilibrium, as well as the price they pay for each license, the first-order deriva-
tives are checked. Mechanical calculation yields:

* 2 * 2
op)_ B 0,9PQ) _ B (4.14)

9B, (BB B, (Bith)r

The strict positive signs suggest that the less an airline shades, the higher per-license

price he would pay in equilibrium.

o; _ 2B +e(Bi+B)’ 9 2BBi+c(Bi+ )’
B 2B7(Bi B T B 2B(Bi B

The strict positive signs of both expressions are intuitive, because a airline obtains

> 0. (4.15)

more licenses in equilibrium if he bids more truthfully. This result is rather intuitive.
By bidding more aggressively, airlines elicit a higher supply quantity from the repre-
sentative side and pays a higher price for each license they obtains.

We proceed to derive the first-order derivative of q; with respect to g_,, which are:

* , oq; :
W _ B M B (4.16)

B, (Bi+B)? B, (Bi+B)?

The first-order derivative of g; with respect to f_, is negative, suggesting that an air-

line’s truthfulness in bidding negatively affects its counterpart’s obtained quantity in
equilibrium. This result is hardly surprising. If airline j bids less truthfully, in the sense
that he claims a smaller amount of licenses at all price levels, the representative would
decide on a lower market clearing price compared to what he would choose if j bids
true demand schedule. Therefore airline j’s shading behavior is favorable to airline i,
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because i benefits from the impact of j’s shading behavior on the representative’s choice
of quantity and in turn price.

In the ensuing analysis, we probe into the impact of c on the optimal choice of
airline strategy B, supply price p, number of licenses traded g} and representative
utility U(B;).

o Take total differential of B; with respect to ¢, the polynomial equation (4.10) reads

dp;  (1—2c)B; +2c
de — 3(B/)2—c+c2’

4.17)

Rearranging the numerator reveals that the numerator is non-negative: (1 —2c)g; +
2c = B7 +2c(1 — B7) > 0. By further inspection of the denominator, we find out
that 3(8;)? — ¢ + ¢* > 0, the proof is presented in Appendix B. Hence,
dp;

. 4.1
e 0 (4.18)

The airline’s optimal strategy B increases with ¢, which implies a higher reserva-

tion price induces less shading behavior.
e Revisiting equation (4.11), it is easily observable that %(f*) > 0.

e In order to observe the impact of ¢ on the number of licenses obtained by each
airline, we now take total differential of 47 with respect to c:

dq; dp;

dgi _ 94
de  _dc dpF dc
~—~ ]

Direct Eff —
rect Effect Indirect Effect

The total impact of ¢ on the units of licenses obtained by each airline is ambiguous
at the first sight: the direct impact is negative, shown by % = —ﬁ < 0; while the
indirect impact is positive % dd—ﬂj = 2(13#)2 > 0. On one hand, the negative direct effects
comes from airline k’'s downward sloping marginal valuation function. On the other
hand, the positive indirect impact is intuitive. Note that each individual airline’s opti-
mal bidding strategy is decreasing in reservation price and increasing in total units of
licences the other airline obtains. As a consequence, the other airline’s bidding strat-
egy is indirectly decreasing with reservation price. Interpreting the combined impact
of the two effects is not straightforward, however, using (4.11) and (4.17), after careful
manipulations we derive total effect of ¢ on g}, the proof is provided in Appendix C.

dg; —20)p*
i1 ¢ (él( ﬁ*;c)_ﬁcifzc > <0, (4.19)

dc ~ 2p 2R
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Thus, higher marginal disutillity leads to fewer licenses supplied in equilibrium.
Direct impact outweighs indirect impact and decides the overall sign, which is reason-
able: each airline’s payoff is typically influenced more by his own strategic behavior
than by his counterpart’s.

o Likewise, total differential of U(B;, ¢) with respect to c is performed to unveil how

¢ affects U.
du(g;,c) _ oU(B;,c) oU(B; c)dp;
i o op de (4.20)
Direct Effect

Indirect Effect

c 1 c? dp;
= 5 ()
&\H

Direct Effect Indirect Effect

In exploring the sign of %ﬂj’c), note that ¢ affects U in both direct and indirect

ways. By our construction of the model, an airline wins a positive number of licenses
only insofar as his highest bid exceeds representative’s reservation price, hence f > ¢
/SL* — 1 < 0, the direct effect is
negative. Following equation (4.4), the direct impact is immediate. Holding price and

holds over all feasible ranges of B and c. It follows that

quantity constant, an increase in ¢ induces a smaller utility.

Consider now the indirect effect. It is easily observable that the multiplier is posi-
tive: 1 (1—%) > 0. Moreover, (4.18) impllies dfcf > (. Taken together, the indirect ef-

fect is positive, which is hardly surprising. For one thing, a higher c fosters more truth-

ful bidding, because both airlines prefer to be served, and the feasible range for shading
is more restricted if c is already high. For the other thing, shading less demonstrates a
milder execution of market power, and is therefore favorable to residents. However, the
overall effect appears less straightforward, and we verify that it depends on parameter
values. The mathematical proof in established in Appendix D. The above analysis can
be formalized by means of the following proposition.

Proposition 2 The optimal shade B* and equilibrium market clearing price are monotonically
increasing in reservation price ¢, while the number of total licenses traded is decreasing in c.
Representative’s utility increases with c when 0 < ¢ < % and B, < B* < 1; while decreases
with c when 0 < ¢ < Yand 0 < B* < Byorif 3 < ¢ < 1; where B, is the positive root of

2
52 —cp— 14—Czc = 0.

Proposition 2 portrays regions in the two-dimensional (B,, c) parameter space for

the overal impact of ¢ on U to be either positive or negative, as shown in Fig. 4. When
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Figure 4: Impact of ¢ on representative’s utility (Grey +, Yellow -)

the representative has a high marginal disutility for being exposed to noise, her overall
utility decreases with the marginal disutility. While when her marginal disutility is
relatively small, her overall utility might increase in her marginal disutility, should the
magnitude of shade being not significant.

4.4 Secret reservation price

44.1 Equilibrium

Up to this point we have discussed subgame perfect nash equilibrium of a two stage
game in a complete information setting. From now on we reconsider the auction and
probe into hidden reservation price.> We will discuss at length that changing informa-
tion setting drastically alters our precedent conclusion. The primitive setting is essen-
tially analogous to the preceding section, apart from ¢ now being private knowledge to
the representative. Airlines, however, know that c is uniformly distributed on support
[0,1), whose cumulative distribution is denoted as F(c), and probability distribution as
f(c). Though the realization of ¢ is known only to the representative.

The timeline of the auction developed precedently still applies, with the only minor
difference being here airlines know only the distribution of c at the outset of the game.
Formally, at stage 1, based on the knowledge of F(c), airlines submit bid schedules
dr(p). At stage 2, representative decides on market clearing price and supply quantity,

8 A secret reservation price is frequently used in France to sell timber, see Li and Perrigne (2003).
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and airlines receive licenses as indicated by their submitted demand schedules.

To begin with, note that when c is hidden from the airlines, airlines acknowledge
that the more they shade at stage 1, the more likely that his highest valuation shall be
higher than the realization of c at stage 2, and he shall get zero license if this should
happen. The assumption to exclude inactive airlines, i.e. v(q = 0) > ¢ is again imposed
to make our model meaningful. In this circumstance, airline faces a tradeoff between
benefiting from shading and running the risk of getting zero license. The latter case
occurs if the realization of ¢ turns out to be higher than his highest bid, a case depicted
in Fig. 1.

Again we employ backward induction to characterize equilibrium bids. At stage 2,
given the optimal supply price chosen by the representative, airlines’” optimal quantities
are derived in the similar fashion as in the previous section, which are written by (4.7).

Particularly, we demonstrate non-existence of asymmetric equilibria for the ho-
mogenous airlines and show for this case, airlines behavior can only be symmetric in

equilibrium. At stage 1, airline i and j choose f; and f; simultaneously to maximize

1
pi=omm [

B = argmﬁ?X/Ol (/Oqjﬂ —q)dj—p- ’7j> dF(c),

with 0 < B;; < 1. Note that the lower bound of outside integral being zero, implying

surplus:

[l - pea) drc) @)

0

that one or both of the airlines may win zero license.

As a point of departure assume there is asymmetric equilibrium in which the two
airlines bids differently, we then check that asymmetric equilibrium does not hold.
Without loss of generality, suppose airline i shades less than its counterpart j : 1 >
Bi > B; = 0. The aggregate demand structure is shown in Fig 5. The line §;AQ rep-
resents the horizontal sum of the two demand curves.The marginal revenue curve is
given by the broken curve B,GFB. Three cases should be examined separately.

Case 1. If constant marginal cost exceeds B;, no airline is served.

Case 2. If constant marginal cost cuts the ;H portion, only one airline, namely
airline i, is served.

Case 3. If constant marginal cost cuts the FB portion, then both airlines are served.

Apparently, of the three cases, Case 2 and 3 are more relevant to us. The piecewise
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Figure 5: Aggregate demand of two asymmetric bidders

aggregate demand function can be characterized:

0 ifc > B; (Case 1)
Q=1 di(p) if ; > ¢ > |OD| (Case?2)
di (p) +d;(p) ifc <|OD| (Case 3) .

113

The kink (point A) has horizontal axis length equals to |OE| and vertical axis length

equals to ;. Note that because the representative can not discriminate airlines, if mar-

ginal cost c lies in the price region \ﬁjD], airline j's highest bid §; exceeds ¢ but the

representative would set a price that exceeds §; and serves i only.

Hence we could characterize each airline’s utility, which breaks down to two parts.

Denote airline’s surplus as S, the number in the subscript for Case 2 or 3.
|OD| B
B = argmax (/ SizdF(c) +/ SizdP(c)> ,
0 |oD|

|OD
B = argmax (/0 SizdF(c) + szdF(c)) ,

|OD|
where
75

P N % N g % %
Siz:/o (1—-4)dd — p; 'qi215i3:/0 (1—4)dq—p* - a3,

"
93

S;» = 0 by assumption, Sj3 = / (1—-¢§)dg—rp*- q}‘3.
0

(4.22)

(4.23)
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Now it remains to derive |OE| and |OD)|. In case (2), i is the monopoly airline, and
the marginal revenue function of i, denoted as MR;, corresponding to line segment 3,G
on Fig. 5. It can be derived from i’s demand function (4.3) and (4.4):

MR; = B; (1 —24;) .

In Case 3, i and j both obtains a positive number of licenses, and the marginal revenue
function of i and j combined, denoted as MR;;, which corresponds to line segment FB
on Fig. 5, can be derived from i’s demand function (4.6) and (4.5):

MR;; = % (4.24)
B B

Note that |OE| equals inverse demand function of i ,which refers to (4.3), evaluated at
pi=p;:

_ . B
IOE| =1 5

While |OD| is determined by the intersection of line MR;; and line AE, hence equals to
MR;;j evaluated at Q = |OE| :

262~ B,p;
Bi + B; .

Having derived |OE| and |OD|, this next step is to derive airline surplus. Before

|OD] =

proceeding, it is worth notifying that choosing f; = 0 is dominated by choosing any
positive B, lies between [0,1]. If he chooses 8, > 0, his utility is max{0, I oDl 3dE(c)},
where fo Pls. j3dF(c) > 0. On the contrary, if he chooses §; = 0, then [OD| = 0, and

I Obl g ;3dF(c) = 0. Hence airline j would not submit B; = 0, rather he would choose a
B; that maximizes his overal utility.

Under Case 2, airline i’s obtained quantity, by backward induction, is deduced by
setting MR; = c:

Bi(1—2q)) =c=qjp = % (1 - g) , (4.25)

=B (1—qn) ‘qi:%’-‘z = % (Bi+c).

Consequently i’s maximization problem can be characterized as

U
So= [ (1= Dd7—p; -gix (4.26)
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Under Case 3, Airline i and j act as duopoly and choose f8;; and f;; simultaneously
to maximize surplus.

7
So= [0 -Ddg—p g5, (427)

‘7}3 ~\ 7~ * *
Siz = /o (L—9)dg—p" - qj.
The expressions of p*, q7; and q;‘s are given by (4.6) and (4.7).
Solving for (4.22) using Sj», Si3 and Sj3 as calculated above, yields

The corresponding surplus are 0.065 and 0.05 for i and j respectively. We are now in a
position to investigate the simultanous choice of two airlines. If both choose p; = ; =
0.86, then they end up with being in a symmetric duopoly case, the surplus for this case
is 0.055 for each. While if both choose p; = ; = 0.73, the surplus for each is 0.057. The
bidding behavior can be described in the below matrix.

j
B =086 B =073
i | B=086 | (0.055,0.055) | (0.065,0.05)
B=0.73| (0.05,0.065) | (0.057,0.057)

It is straightforward to see that the cell corresponds to strategy (0.86,0.86) is the
nash equilibrium. This result shows that if the residents marginal disutility is hidden
to airlines, the airlines optimally submit bid schedules 0.86(1 — g), a clear evidence for
exertion of market power. That is, at any price airlines ask for fewer licenses compared
to their true demand. Compare to the case where c is revealed, airlines shade to a
lesser degree for a wide range of ¢, implies their submitted bid schedules are by and
large closer to true demand. We conclude this section with the following equilibrium
characterization result.

Proposition 3 When both airlines have value schedules v;(q) = v;(q) = 1 — q, and represen-
tative’s reservation price is secret, airlines optimally bid 0.86(1 — q).

When c is secret, choosing an optimal p, reflects a combination of two factors,
namely probability of winning some licenses and payment in case of winning. On
the one hand, by shading less, or in other words bidding more truthfully, airlines di-
minishes the risk of losing out the auction. This concern is more relevant when the
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realization of reservation price turns out to be relatively high in the second stage. How-
ever, his payment is comparatively higher if he shades less and is still served. On the
other hand, shading less increases the payment, and in turn decreases the surplus an
airline could get if the realization of reservation price is sufficiently low. Hence there is
a tradeoff between probability of winning and payment in case of winning. Combining
these two effects mitigates the magnitude of low price equilibria.

It is necessary to point out that the existence of a clear-cut outcome is in part led
by our simple formulation of the problem. One should recognize the importance of the
assumption of uniform distribution of ¢ and airlines linear value schedules, which fa-
cilitate the derivation of a unique Nash equilibrium. The equilibrium outcome suggests
that airlines scale down true demand function by a factor of 0.86. When other forms of
distributions are imposed, more complex equilibria may be expected.

4.4.2 A comparison of revealed and hidden reservation price

A revealed reservation price can create greater certainty for airlines, and greater sta-
bility for the auction itself. However, when the reservation price is low, revealing it
would entice airlines to exert market power and is thus detrimental to the residents.
Having analyzed both the revealed and the hidden cases, we now turn to compare the
outcomes of the two settings.

A closer inspection of Eq. (4.17) discloses that in the revealed case, f*(c) is monoton-
ically increasing in ¢ in the range (0,1) . Due to the monotonicity relationship of f*(c)
and ¢, we could find out a unique c that corresponds to the coefficient § = 0.86,1i.e., a
reservation price in the revealed case that induces same degree of shading in the un-
revealed case. Recall Eq. 4.9, a scale factor evaluated at 0.86 is found out at ¢ = 0.44.
The implication is as follows. When representative’s marginal disutility is sufficiently
low, i.e., smaller than 0.44, in this circumstance if she announces her marginal disutil-
ity, airlines’s bid would deviate significantly from his true demand schedules. On the
contrary, if she hides her marginal disutility, she would foresee each airline report to a
factor of 0.86 of their true demand. Conversely, when her marginal disutility is above
0.44, airlines shade less if marginal disutility is revealed. The decision to whether dis-
close or hide reservation price is up to the political objective of the ombudsman. If the
ombudsman targets to achieve a license cap constraint, he would opt to hide the reser-
vation price rather than announcing it when the reservation price ¢ > 0.44. Whereas if
he aims to encourage more truthfull bidding, he would announce the reservation price
when ¢ > 0.44. And similiar argument applies for ¢ < 0.44.
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4.5 A social planner’s choice

The precedent sections have investigated and compared the equilibrium outcome of
auction under two different information settings. Yet the preceding analysis are formu-
lated out of the residents’ perspective. In this section we are in a position to look for the
social planner’s choice. A social planner, for instance the city government or federal
state where the airport locates, maximizes total welfare. As is conventional among lit-
erature, welfare is the summation of airline surplus and representative utility. Denote
by gi the amount of licenses obtained by each airline when the objective is to maximize
welfare, and WV the social welfare. Since the payment between airlines and represen-
tative cancels out, the social welfare equals airlines” gross surplus less representative’s
total disutility.
Thus WV can be written as:

ai
max W = 2/ (1—g)dg — 2cqy.
0

First-order condition yields

w*

g, =1—c.

Denote total supply quantity chosen by the social planner as Q¥. It follows that Q% =
207 =2(1—c).
Recall in the revealed c case, see (4.5), a utility maximizing representative optimally

—cB. —cB.+ 2B.8.
chooses Q* = P 5 ﬁﬁ]ﬁ '3“31 . It can be verified that for all (c, B;, ﬁ]) :
il

Q< Q"
We conclude the above analysis in the following proposition:

Proposition 4 A welfare maximizing social planner supplies more licenses than a representa-
tive in an auction.

The fact that a welfare maximizing quantity exceeds the auction outcome suggests if
the primitive policy objective is to curb noise pollution (rather than maximizing social
welfare), then an auction mechanism performs better than appointing the allocation
task to a public omnibusman. In practice this scenario is not rarely seen, for instance
the imposition of Kyoto Protocol, among others. Governments face an emission ceiling
and are compelled to restraint noise or a broad variety of other pollutions to below
the target level, despite at times at the cost of impairing social welfare. Should this
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happen, the purpose of setting up the target may run counter to its initial goal. If, on
the contrary, licenses are allocated by a public omnibusman, then the allocation may
run counter to its initial purpose, and the target would not be met eventually.

4.6 Conclusion

The present analysis shows that when two airlines bid for noise emission licenses against
a representative of airport nearby residents, both airlines optimally misreport their true
demand in order to maximizes profits. The outcomes of two cases where the represen-
tative’s reservation price is pre-announced and hidden, are presented. The following
comparison of these two cases provides novel insights for the policy makers. On that
grounds we suggest the present paper could be served as a guidance for policy makers
in considering allocation approach to distribute emission licenses.

From the analysis, a number of issues emerge for future research. One basic as-
sumption of our model relies on symmetric airlines and, although this is a common as-
sumption in airline literature, a more realistic demand structure could be considered for
studying interactions between asymmetric airlines. Indeed, studying airlines that are
either symmetrically differentiated® or vertically differentiated!? require a more elabo-
rate specification of the demand schedules. Another natural extension of the present
analysis involves other assumptions on the distribution of reservation price. Finally,
the present paper has confined the analysis to a single airport for simplicity and to fo-
cus on the main insights. But each flight operation involves a take-off and a landing
airport, thus network effects is also seen as a logical extension for future research.

9For instance, Air France vs. Lufthansa.
10For instance Lufthansa vs. Easyjet.
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Appendix

Appendix A. Proof of Proposition 1

From the definition of the polynomial, F(8) = B° — (c — ¢2)B — c2, we can easily state
that 3rd degree polynomial has at least one real root. Furthermore, it is easy to check
that F(8 =0) = —c?> < 0and F(1) = 1 — ¢ > 0. Thus, there is at least one positive root
for F(B) = 0in the interval B € (0,1).

In the following, we will show that this is the only positive root.

From the Descartes’ rule of sign11 , we can state that if there are only real roots, then
there are one positive root and two negatives roots.

And if there is only one real root, then this root is positive and locates in interval
B € (0,1), and the other two are conjugate pair complex roots.

We denote this unique positive root by p*.

Furthermore, given function F(p) is strictly convex for § € (0,1), the positive root
B* must lie in the increasing part of the convex curve. That is, B* € (8%, 1), in which *

is the minimum point of F(B) and given by g = /<< (< 1), such that F/(%) = 0 and

F(B*) <O.
That finishes the proof of Proposition 1.

. dg*
Appendix B. Proof of d—ﬁc >0

We need to prove that
dg” _ (1-2¢c)p" +2c
de  3(B*)2—c+c?

As stated before, the numerator is always positive. So we have to show that the

denominator is also positive. Noticing that the denominator is the first order derivative

"Descartes” Rule of Signs is a method of determining the maximum number of positive and negative
real roots of a polynomial. Let P(x) be a polynomial with real coefficients written in descending order of
x. Then it follows that :

(1) the number of positive roots of P(x) = 0 is either equal to the number of variations in sign of P(x),
or less than this by an even integer.

(2) Number of negative roots of P(x) = 0 is either equal to the number of variations in sign of P(—x),
or less than by an even integer.
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of F(B) evaluated at 8*, that is, F’*) = 3(B*)? — ¢ + c%. In the above proof of Proposition
1, we already showed that * can only appear at the increasing part of polynomial F(p)
for B € (0,1). In other words, we must have F’*) > 0. That finishes the proof.

: dg*
Appendix C. Proof of - > 0

Rewrite the total differential as following

dg* 1 c <(1—2c)ﬁ*+2€> 1 [C <(1—2C)5*+2C>_1}

32 —c+c2) 2 |B\3(F)—c+C

dc ~ 26" 2(F)

p

Denote (1 ) ),3* +o
o= & (A=20)p 2
HigL0 = 5 (S i)
From the fact that
(B —(c—c)p =2 =0,
we have

3(B*)® = 3(c — ?)B* +3c* > 0.
Substituting the above into H(", c) and rearranging terms, we obtain
. B*(c —2¢?) + 2¢?
H = -1
(<) 3(c—c2)B* +3c2— (c—c?)B"
2%+ (e 2"
© 3c2+2(c—c2)p*

1

P tcp
32 +2(c—c?)B*
<0

Thus, % < 0. We finish the proof.

Appendix D. Proof the sign of %

(4.20) can be rewritten as

du(ﬁ;‘,c):< c)_((% )ﬁ?+6)(1+5y)_1

—c
ac 1_Ff 3(B7)2—c+c?

:(1_C) (Bi +¢) ((z—¢) Bf +¢) = B (3(B])* —c+¢?)
* ” ) 5
S B/ B (3(B)) —c+ )

>0 >0
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Denote the numeratoras H: H = (8] +c¢) ((3 —¢) B; +¢) — B (3(B])* — ¢+ ¢?) .Then
after some manipulations we get:

42

H(B;,c) = (2—c> (B})* —cB; — o0

=h

We discuss two cases when 0 < ¢ < 1 and when 1 < ¢ < 1 separately. First denote the

second bracket in RHS as i : h = (B})? — cp! — 14_C;C. It follows that A(h) = ¢* + ffc;c =
2. 17-2

R 7

. It can easily be verified that

e when0 < c< J:A(h) >0.

To see this, note that when 0 < ¢ < % :1—2c¢ > 0and 17 — 2¢ > 0. In this case K
has two real roots:

c— A(l’l) c+ A(h)
o=y <OR=—y >0
Therefore,
du(g;,
(é[ilC><0when0<c<;andO<ﬁ;k<.31

1
e >0when0<c<§and,81<ﬁ:-‘<1.

e when } <c<1:A(h) <0,

This comes from the fact that when % <c<1:1-2c<0and 17 —2¢ > 0.In
this case h has no real roots, thus h > 0, Vc. As a consequence H ([51*, c) < 0and

4u(p;.c)

Summerizing the above analysis:

1 and *
du(p:,c) | <Owhen{ 0= 2and0<hi<f
§<C<1,

> 0when0<c< tand g, < <1

dc

We thus finish the proof.
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