Enumerating chordless circuits in directed graphs

Raymond Bisdorff
Université du Luxembourg
FSTC/ILAS
ORBEL 24, Liège January 28–29 2010

Example of chordless circuits

Two chordless circuits:
1. \(1 \rightarrow 5 \rightarrow 6 \rightarrow 3 \rightarrow 1\)
2. \(2 \rightarrow 6 \rightarrow 4 \rightarrow 2\)

The absence of chordless circuits of odd length guarantees the existence of kernels – independent outranking choices – in an outranking digraph.

Seminal and similar recent work

• Finding or enumerating the elementary circuits: Tiernan (1970), Weinblatt (1972), Tarjan (1973)
• Detection of holes, i.e. chordless cycles in (non oriented) graphs; Nikolopoulos (2007)
• The strong perfect graph theorem: A graph is perfect if, and only if, it contains no holes or antiholes (holes in the complement graph) on an odd number of vertices; Chudnovsky, Robertson, Seymour, Thomas (2006).

Notation

• \(G\) is a directed graph (digraph) with no multiple arcs.
• \(G(V)\) and \(G(A)\) are respectively the vertices and the arcs set of \(G\).
• The number of its vertices is called the order and the number of its arcs is called the size of the digraph.
• A (directed) path \(P_k\) in \(G\) of length \(k > 0\) from \(v_0\) to \(v_k\) is a list of vertices \([v_0, v_1, \ldots, v_k]\) such that \((v_i, v_{i+1}) \in G(A)\) for \(i = 0, \ldots, k - 1\).
A path is called **simple** if none of its vertices occur more than once.

A directed path P^\rightarrow_k is called **chordless** if neither $(v_i, v_j) \in A$ nor $(v_j, v_i) \in A$ for any two non-consecutive vertices v_i, v_j ($i, j = 0...k$) in the path.

A **chordless circuit** C^\rightarrow_k is a closed directed path P^\rightarrow_k without chords, i.e. $v_k = v_0$ and no $(v_i, v_j) \in A$ such that $i - j \not\equiv k - 1 \mod k$.

- We say that a path $[v_0, v_1, \cdots, v_k]$ is **adjacent** to a path $[w_0, w_1, \cdots, w_k]$ if $v_k = w_0$.
- We call a **pre-chordless-circuit** (of length k) a list of vertices $pC^\rightarrow_k := [v_0, v_1, \cdots, v_{k-2}, v_{k-1}]$ from V with $k \geq 3$ when both partial sublists $[v_0, v_1, \cdots, v_{k-2}]$, as well as $[v_1, \cdots, v_{k-2}, v_{k-1}]$, are chordless paths of length $k - 2$.
- The (dominated) **strict neighbourhood** $N(v_1)$ of a vertex $v_1 \in V$ is the set of all vertices $v_2 \in G$ such that $(v_1, v_2) \in A$ and $(v_2, v_1) \not\in A$.

Detecting a chordless circuit

Example (prechordless circuit condition)

![Graph](image)

Lemma (1)

A digraph G contains a chordless circuit C^\rightarrow_k of length $k \geq 3$, starting from a vertex v_0 if, and only if, there exists a pre-chordless-circuit $pC^\rightarrow_{k-1} = [v_0, v_1, \cdots, v_{k-1}]$ starting from v_0 which is followed by an adjacent chordless path of length 1 from v_{k-1} back to v_0.

Associated pre-chordless-circuits digraph

We consider now the auxiliary chordless line digraph L with vertices set $L(V)$ gathering all chordless paths of length 1 and all possible pre-chordless-circuits $[v_0, \ldots, v_{k-1}]$ of length $k - 1 \geq 2$ in G, with edges set $L(E)$ defined for $k \geq 2$ as follows:

$L(V) := \{[v_i, v_j] : (v_i, v_j) \in G(A) \land (v_j, v_i) \not\in G(A)\}$

$\cup \{pC^\rightarrow_k : pC^\rightarrow_k$ is a pre-chordless-circuit in $G\}$

$L(E) := \{([v_0, \ldots, v_{k-1}], [v_0, \ldots, v_{k-1}, v_k]) \in L(V)^2 \}$

s. t. $[v_{k-1}, v_k] \in L(V)$
Running a DFS on the pre-chordless-circuits digraph

Lemma (2)

Let G be a digraph and let L be the associated pre-chordless-circuits digraph defined before.

1. G contains a chordless circuit C_k if, and only if, the DFS algorithm, when running on L, finds a sequence of increasing pre-chordless-circuits pC_i for $i = 2...k - 1$ that eventually meet the conditions of Lemma (1).

2. Running the complete DFS algorithm on L will in turn deliver all chordless circuits to be found in a given digraph G.

The

Chordless-Circuit-Enumeration (CCE) algorithm

1: Input: a digraph G; Output: a list of chordless circuits.
2: def enumerateChordlessCircuits(In : G):
3: chordlessCircuits ← []:
4: visitedLEdges ← {}:
5: toBeVisited ← a copy of V:
6: while toBeVisited ≠ {}:
7: v ← toBeVisited.pop()
8: P ← [v]
9: vCC ← []
10: if chordlessCircuit(P, v):
11: chordlessCircuits ← chordlessCircuits + vCC
12: return chordlessCircuits
13: Input: a path $P = [···, v_{k-1}]$, and a target vertex v_k.
14: Output: a Boolean variable detectedChordlessCircuit.
15: def chordlessCircuit(In : P, v_k; Out : detectedChordlessCircuit
16: v_{k-1} ← last vertex of P
17: visitedLEdges ← add $\{v_{k-1}, v_k\}$
18: if $v_k \in N(v_{k-1})$:
19: detectedChordlessCircuit ← True
20: print 'Chordless circuit's certificate : ', P
21: vCC ← append P
22: else detectedChordlessCircuit ← False
23: N ← a local copy of $N(v_{k-1})$
24: while N not empty:
25: v ← pop a neighbour of v_{k-1} from N
26: if $\{v_{k-1}, v\} \notin \text{visitedLEdges}$:
27: NoChord ← True
28: $P_{current}$ ← a copy of the current P
29: for $x \in P_{current} \setminus \{v_{k-1}\}$:
30: if $x = v_k$:
31: if $(x, v) \in A$:
32: NoChord ← False
33: else
34: if $(x, v) \in A \lor (v, x) \in A$:
35: NoChord ← False
36: else NoChord ← True
37: if NoChord:
38: $P_{current}$ ← append v
39: if chordlessCircuit($P_{current}$, v_k):
40: detectedChordlessCircuit ← True
41: return detectedChordlessCircuit
The CCE algorithm yields a time complexity in $O(|L(V)|)$;

A lower bound in $\Omega(4^{\sqrt{n}})$ for digraphs of order n has been provided on round grid graphs by Pierre Kelsen (UL);

Space complexity is roughly in $O(n(n + m))$ for digraphs of order n containing m chordless circuits.

Varying the arc probability with constant order 50

<table>
<thead>
<tr>
<th>arc prob.</th>
<th>time (sec.)</th>
<th>(stdev)</th>
<th>total freq.</th>
<th>mean length</th>
<th>frequency (in %) per circuit length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 4 5 6 7 8 9 ...</td>
</tr>
<tr>
<td>0.8</td>
<td>0.015</td>
<td>0.001</td>
<td>181</td>
<td>3.01</td>
<td>99 1</td>
</tr>
<tr>
<td>0.7</td>
<td>0.031</td>
<td>0.003</td>
<td>410</td>
<td>3.07</td>
<td>97 3</td>
</tr>
<tr>
<td>0.6</td>
<td>0.061</td>
<td>0.006</td>
<td>691</td>
<td>3.21</td>
<td>80 19 1</td>
</tr>
<tr>
<td>0.5</td>
<td>0.115</td>
<td>0.013</td>
<td>1035</td>
<td>3.47</td>
<td>59 35 6</td>
</tr>
<tr>
<td>0.4</td>
<td>0.234</td>
<td>0.028</td>
<td>1469</td>
<td>3.90</td>
<td>36 42 19 3</td>
</tr>
<tr>
<td>0.3</td>
<td>0.489</td>
<td>0.077</td>
<td>1981</td>
<td>4.58</td>
<td>17 32 31 15 4</td>
</tr>
<tr>
<td>0.25</td>
<td>0.671</td>
<td>0.117</td>
<td>2194</td>
<td>5.07</td>
<td>11 23 30 23 10 3</td>
</tr>
<tr>
<td>0.2</td>
<td>0.888</td>
<td>0.177</td>
<td>2215</td>
<td>5.70</td>
<td>6 15 24 26 18 8 2</td>
</tr>
<tr>
<td>0.15</td>
<td>0.946</td>
<td>0.240</td>
<td>1816</td>
<td>6.53</td>
<td>4 9 16 21 21 16 9 ...</td>
</tr>
<tr>
<td>0.1</td>
<td>0.535</td>
<td>0.218</td>
<td>728</td>
<td>7.40</td>
<td>3 6 10 14 17 17 14 11 9 ...</td>
</tr>
<tr>
<td>0.05</td>
<td>0.025</td>
<td>0.022</td>
<td>22</td>
<td>6.19</td>
<td>9 14 14 9 9 9 9 ...</td>
</tr>
</tbody>
</table>

Average execution statistics for the CCE algorithm

Apparent time complexity in $n^{4.5}$ for random digraphs

![Graph showing apparent time complexity vs $O(n^{4.5})$](image-url)
Chordless circuits in tournaments

- A tournament, i.e. a complete asymmetric digraph, may only contain chordless circuits of length 3;
- The maximal number of such chordless 3-circuits (oriented cyclic triples) in any tournament of order \(n \) is \(O(n^3) \) (Kendall and Babington Smith, 1940);
- Expected number of chordless 3-circuits in a random tournament of order \(n \) and arc probability 0.5 is \(\frac{1}{4}(\frac{n}{3}) \) (Moon, 1968).

<table>
<thead>
<tr>
<th>order ((n))</th>
<th>expected # frequency ((#)) (stdev)</th>
<th>run time ((\text{sec.})) (stdev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>285</td>
<td>286</td>
</tr>
<tr>
<td>30</td>
<td>1015</td>
<td>1015</td>
</tr>
<tr>
<td>40</td>
<td>2470</td>
<td>2470</td>
</tr>
<tr>
<td>50</td>
<td>4900</td>
<td>4897</td>
</tr>
<tr>
<td>60</td>
<td>8555</td>
<td>8553</td>
</tr>
<tr>
<td>70</td>
<td>13865</td>
<td>13864</td>
</tr>
<tr>
<td>80</td>
<td>20540</td>
<td>20544</td>
</tr>
<tr>
<td>90</td>
<td>29370</td>
<td>29365</td>
</tr>
<tr>
<td>100</td>
<td>40425</td>
<td>40430</td>
</tr>
<tr>
<td>110</td>
<td>53955</td>
<td>53949</td>
</tr>
<tr>
<td>120</td>
<td>70210</td>
<td>70207</td>
</tr>
</tbody>
</table>

The maximum number of chordless circuits in a digraph of order \(n \) is at least equal to

\[
\frac{4^2\sqrt{n} - 2}{(\sqrt{n} - 2)^4}
\]

(Pierre Kelsen, 2010).
Concluding remarks

- We provide a chordless circuits enumeration (CCE) algorithm with a time complexity that is proportional to the number of pre-chordless-circuits contained in the digraph.
- Lower bound time complexity of CCE is at least exponential in \sqrt{n}.
- The space complexity of CCE for a digraph of order n containing m chordless circuits is $O(n(n + m))$.
- Average time complexity of CCE is apparently polynomial – $O(n^{4.5})$ – for random digraphs with arc probability 0.5.
- Average time complexity of CCE for random tournaments is apparently $O(n^4)$.