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enhancements one may get when working in a bipolar-valued logical framework, like easily
coping with missing data and uncertain criterion significance weights, computing valued
ordinal correlations between bipolar-valued outranking digraphs, solving bipolar-valued
Berge kernel equation systems, and testing for stability and confidence of outranking
statements when facing uncertain performance criteria significances or decision objectives’
importance weights.

1 Coping with missing data and indeterminateness

� A motivating data set (page 2)

� Modelling pairwise bipolar-valued rating opinions (page 5)

In a stubborn keeping with a two-valued logic, where every argument can only be true or
false, there is no place for efficiently taking into account missing data or logical indeter-
minateness. These cases are seen as problematic and, at best are simply ignored. Worst,
in modern data science, missing data get often replaced with fictive values, potentially
falsifying hence all subsequent computations.

In social choice problems like elections, abstentions are, however, frequently observed and
represent a social expression that may be significant for revealing non represented social
preferences.

In marketing studies, interviewees will not always respond to all the submitted questions.
Again, such abstentions do sometimes contain nevertheless valid information concerning
consumer preferences.

1.1 A motivating data set

Let us consider such a performance tableau gathering a Movie Magazine ‘s rating of some
movies that could actually be seen in town1 (see Fig. 1).

1 >>> from outrankingDigraphs import *

2 >>> t = PerformanceTableau('graffiti07')

3 >>> t.showHTMLPerformanceTableau(ndigits=0)

1 Graffiti, Edition Revue Luxembourg, September 2007, p. 30. You may find the data file graffiti07.py

(perfTabs.PerformanceTableau Format) in the examples directory of the Digraph3 ressources.
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Fig. 1: Graffiti magazine’s movie ratings from September 2007

15 journalists and movie critics provide here their rating of 25 movies: 5 stars (master-
piece), 4 stars (must be seen), 3 stars (excellent), 2 stars (good), 1 star (could be seen),
-1 star (I do not like), -2 (I hate), NA (not seen).

To aggregate all the critics’ rating opinions, the Graffiti magazine provides for each movie
a global score computed as an average grade, just ignoring the not seen data. These
averages are thus not computed on comparable denominators; some critics do indeed use
a more or less extended range of grades. The movies not seen by critic SJ, for instance,
are favored, as this critic is more severe than others in her grading. Dropping the movies
that were not seen by all the critics is here not possible either, as no one of the 25 movies
was actually seen by all the critics. Providing any value for the missing data will as well
always somehow falsify any global value scoring. What to do ?

A better approach is to rank the movies on the basis of pairwise bipolar-valued at least as
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well rated as opinions. Under this epistemic argumentation approach, missing data are
naturally treated as opinion abstentions and hence do not falsify the logical computations.
Such a ranking (see the tutorial on Ranking with incommenduarble performance criteria)
of the 25 movies is provided, for instance, by the heat map view shown in Fig. 2.

>>> t.showHTMLPerformanceHeatmap(Correlations=True,

rankingRule='NetFlows',

ndigits=0)

Fig. 2: Graffiti magazine’s ordered movie ratings from September 2007

There is no doubt that movie mv_QS, with 6 ‘must be seen’ marks, is correctly best-
ranked and the movie mv_TV is worst-ranked with five ‘don’t like’ marks.

4



1.2 Modelling pairwise bipolar-valued rating opinions

Let us explicitly construct the underlying bipolar-valued outranking digraph and consult
in Fig. 3 the pairwise characteristic values we observe between the two best-ranked movies,
namely mv_QS and mv_RR.

1 >>> g = BipolarOutrankingDigraph(t)

2 >>> g.recodeValuation(-19,19) # integer characteristic values

3 >>> g.showHTMLPairwiseOutrankings('mv_QS','mv_RR')

Fig. 3: Pairwise comparison of the two best-ranked movies

Six out of the fifteen critics have not seen one or the other of these two movies. Notice
the higher significance (3) that is granted to two locally renowned movie critics, namely
JH and VT. Their opinion counts for three times the opinion of the other critics. All
nine critics that have seen both movies, except critic MR, state that mv_QS is rated at
least as well as mv_RR and the balance of positive against negative opinions amounts
to +11, a characteristic value which positively validates the outranking situation with a
majority of (11/19 + 1.0) / 2.0 = 79%.

The complete table of pairwise majority margins of global ‘at least as well rated as ’
opinions, ranked by the same rule as shown in the heat map above (see Fig. 2), may be
shown in Fig. 4.

1 >>> ranking = g.computeNetFlowsRanking()

2 >>> g.showHTMLRelationTable(actionsList=ranking, ndigits=0,\

3 tableTitle='Bipolar characteristic values of\

4 "rated at least as good as" situations')
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Fig. 4: Pairwise majority margins of ‘at least as well rated as ’ rating opinions

Positive characteristic values, validating a global ‘at least as well rated as ’ opinion are
marked in light green (see Fig. 4). Whereas negative characteristic values, invalidating
such a global opinion, are marked in light red. We may by the way notice that the best-
ranked movie mv_QS is indeed a Condorcet winner, i.e. better rated than all the other
movies by a 65% majority of critics. This majority may be assessed from the average
determinateness of the given bipolar-valued outranking digraph g.

>>> print( '%.0f %% ' % g.computeDeterminateness(InPercents=True) )

65%

Notice also the indeterminate situation we observe, for instance, when comparing movie
mv_PE with movie mv_NP.

>>> g.showHTMLPairwiseComparison('mv_PE','mv_NP')
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Fig. 5: Indeterminate pairwise comparison example

Only eight, out of the fifteen critics, have seen both movies and the positive opinions do
neatly balance the negative ones. A global statement that mv_PE is ‘at least as well
rated as ’ mv_NP may in this case hence neither be validated, nor invalidated; a
preferential situation that cannot be modelled with any scoring approach.

It is fair, however, to eventually mention here that the Graffiti magazine’s average scoring
method is actually showing a very similar ranking. Indeed, average scores usually confirm
well all evident pairwise comparisons, yet enforce comparability for all less evident ones.

Notice finally the ordinal correlation tau values in Fig. 2 3rd row. How may we compute
these ordinal correlation indexes ?

Back to Content Table (page 1)

2 Ordinal correlation equals bipolar-valued relational

equivalence

� Kendall’s tau index (page 8)

� Bipolar-valued relational equivalence (page 9)

� Fitness of ranking heuristics (page 11)

� Illustrating preference divergences (page 13)

� Exploring the better rated and the as well as rated opinions (page 15)
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2.1 Kendall’s tau index

M. G. Kendall ([KEN-1938p]) defined his ordinal correlation 𝜏 (tau) index for linear
orders of dimension n as a balancing of the number #Co of correctly oriented pairs
against the number #In of incorrectly oriented pairs. The total number of irreflexive
pairs being n(n-1), in the case of linear orders, #𝐶𝑜 + #𝐼𝑛 = 𝑛(𝑛 − 1). Hence
𝜏 =

(︀
#𝐶𝑜

𝑛(𝑛−1)

)︀
−

(︀
#𝐼𝑛

𝑛(𝑛−1)

)︀
. In case #In is zero, 𝜏 = +1 (all pairs are equivalently

oriented); inversely, in case #Co is zero, 𝜏 = −1 (all pairs are differently oriented).

Noticing that #𝐶𝑜
𝑛(𝑛−1)

= 1 − #𝐼𝑛
𝑛(𝑛−1)

, and recalling that the bipolar-valued negation is
operated by changing the sign of the characteristic value, Kendall ’s original tau definition
implemented in fact the bipolar-valued negation of the non equivalence of two linear
orders:

𝜏 = 1− 2 #𝐼𝑛
𝑛(𝑛−1)

= −
(︀
2 #𝐼𝑛
𝑛(𝑛−1)

− 1
)︀

= 2 #𝐶𝑜
𝑛(𝑛−1)

− 1

i.e. the normalized majority margin of equivalently oriented irreflexive pairs.

Let R1 and R2 be two random crisp relations defined on a same set of 5 alternatives.
We may compute Kendall’s tau index as follows.

Listing 2.1: Crisp Relational Equivalence Digraph

1 >>> from digraphs import *

2 >>> R1 = RandomDigraph(order=5,Bipolar=True)

3 >>> R2 = RandomDigraph(order=5,Bipolar=True)

4 >>> E = EquivalenceDigraph(R1,R2)

5 >>> E.showRelationTable(ReflexiveTerms=False)

6 * ---- Relation Table -----

7 r(<=>)| 'a1' 'a2' 'a3' 'a4' 'a5'

8 ------|-------------------------------------------

9 'a1' | - -1.00 1.00 -1.00 1.00

10 'a2' | -1.00 - -1.00 1.00 -1.00

11 'a3' | -1.00 -1.00 - 1.00 1.00

12 'a4' | -1.00 1.00 -1.00 - 1.00

13 'a5' | -1.00 1.00 -1.00 1.00 -

14 Valuation domain: [-1.00;1.00]

15 >>> E.correlation

16 {'correlation': -0.1, 'determination': 1.0}

In the table of the equivalence relation (𝑅1 ⇔ 𝑅2) above (see Listing 2.1 Lines 9-13),
we observe that the normalized majority margin of equivalent versus non equivalent
irreflexive pairs amounts to (9 - 11)/20 = -0.1, i.e. the value of Kendall’s tau index in
this plainly determined crisp case (see Listing 2.1 Line 16).

What happens now with more or less determined and even partially indeterminate rela-
tions ? May we proceed in a similar way ?
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2.2 Bipolar-valued relational equivalence

Let us now consider two randomly bipolar-valued digraphs R1 and R2 of order five.

Listing 2.2: Two Random Bipolar-valued Digraphs

1 >>> R1 = RandomValuationDigraph(order=5,seed=1)

2 >>> R1.showRelationTable(ReflexiveTerms=False)

3 * ---- Relation Table -----

4 r(R1)| 'a1' 'a2' 'a3' 'a4' 'a5'

5 ------|-------------------------------------------

6 'a1' | - -0.66 0.44 0.94 -0.84

7 'a2' | -0.36 - -0.70 0.26 0.94

8 'a3' | 0.14 0.20 - 0.66 -0.04

9 'a4' | -0.48 -0.76 0.24 - -0.94

10 'a5' | -0.02 0.10 0.54 0.94 -

11 Valuation domain: [-1.00;1.00]

12 >>> R2 = RandomValuationDigraph(order=5,seed=2)

13 >>> R2.showRelationTable(ReflexiveTerms=False)

14 * ---- Relation Table -----

15 r(R2)| 'a1' 'a2' 'a3' 'a4' 'a5'

16 ------|-------------------------------------------

17 'a1' | - -0.86 -0.78 -0.80 -0.08

18 'a2' | -0.58 - 0.88 0.70 -0.22

19 'a3' | -0.36 0.54 - -0.46 0.54

20 'a4' | -0.92 0.48 0.74 - -0.60

21 'a5' | 0.10 0.62 0.00 0.84 -

22 Valuation domain: [-1.00;1.00]

We may notice in the relation tables shown above that 9 pairs, like (a1,a2) or (a3,a2) for
instance, appear equivalently oriented (see Listing 2.2 Lines 6 and 17). The digraphs.

EquivalenceDigraph class implements this relational equivalence relation between di-
graphs R1 and R2 (see Listing 2.3).

Listing 2.3: Bipolar-valued Equivalence Digraph

1 >>> eq = EquivalenceDigraph(R1,R2)

2 >>> eq.showRelationTable(ReflexiveTerms=False)

3 * ---- Relation Table -----

4 r(<=>)| 'a1' 'a2' 'a3' 'a4' 'a5'

5 ------|-------------------------------------------

6 'a1' | - 0.66 -0.44 -0.80 0.08

7 'a2' | 0.36 - -0.70 0.26 -0.22

8 'a3' | -0.14 0.20 - -0.46 -0.04

9 'a4' | 0.48 -0.48 0.24 - 0.60

10 'a5' | -0.02 0.10 0.00 0.84 -

11 Valuation domain: [-1.00;1.00]

In our bipolar-valued epistemic logic, logical disjunctions and conjunctions are imple-
mented as max, respectively min operators. Notice also that the logical equivalence
(𝑅1 ⇔ 𝑅2) corresponds to a double implication (𝑅1 ⇒ 𝑅) ∧ (𝑅2 ⇒ 𝑅1) and that the
implication (𝑅1 ⇒ 𝑅2) is logically equivalent to the disjunction (¬𝑅1 ∨𝑅2).
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If 𝑟(𝑥𝑅1 𝑦) and 𝑟(𝑥𝑅2 𝑦) denote the bipolar-valued characteristic values of relation R1,
resp. R2, we may hence compute as follows a majority margin 𝑀(𝑅1 ⇔ 𝑅2) between
equivalently and not equivalently oriented irreflexive pairs (x,y).

𝑀(𝑅1 ⇔ 𝑅2) =∑︀
(𝑥 ̸=𝑦)

[︁
min

(︁
max

(︀
− 𝑟(𝑥𝑅1 𝑦), 𝑟(𝑥𝑅2 𝑦)

)︀
,max

(︀
− 𝑟(𝑥𝑅2 𝑦), 𝑟(𝑥𝑅1 𝑦)

)︀)︁]︁
𝑀(𝑅1 ⇔ 𝑅2) is thus given by the sum of the non reflexive terms of the relation table of
eq, the relation equivalence digraph computed above (see Listing 2.3).

In the crisp case, 𝑀(𝑅1 ⇔ 𝑅2) is now normalized with the maximum number of possible
irreflexive pairs, namely n(n-1). In a generalized r -valued case, the maximal possible
equivalence majority margin M corresponds to the sum D of the conjoint determina-
tions of (𝑥𝑅1 𝑦) and (𝑥𝑅2 𝑦) (see [BIS-2012p]).

𝐷 =
∑︀

𝑥 ̸=𝑦 min
[︁
𝑎𝑏𝑠

(︀
𝑟(𝑥𝑅1 𝑦)

)︀
, 𝑎𝑏𝑠

(︀
𝑟(𝑥𝑅2 𝑦

)︀]︁
Thus, we obtain in the general r -valued case:

𝜏(𝑅1, 𝑅2) = 𝑀(𝑅1⇔𝑅2)
𝐷

𝜏(𝑅1, 𝑅2) corresponds thus to a classical ordinal correlation index, but restricted to the
conjointly determined parts of the given relations R1 and R2. In the limit case of two
crisp linear orders, D equals n(n-1), i.e. the number of irreflexive pairs, and we recover
hence Kendall ‘s original tau index definition.

It is worthwhile noticing that the ordinal correlation index 𝜏(𝑅1, 𝑅2) we obtain above
corresponds to the ratio of

� 𝑟(𝑅1 ⇔ 𝑅2) = 𝑀(𝑅1⇔𝑅2)
𝑛(𝑛−1)

: The normalized majority margin of the pairwise
relational equivalence statements, also called valued ordinal correlation, and

� 𝑑 = 𝐷
𝑛(𝑛−1)

: The normalized determination of the corresponding pairwise relational
equivalence statements, in fact the determinateness of the relational equivalence
digraph.

We have thus successfully out-factored the determination effect from the correlation
effect. With completely determined relations, 𝜏(𝑅1, 𝑅2) = 𝑟(𝑅1 ⇔ 𝑅2). By convention,
we set the ordinal correlation with a completely indeterminate relation, i.e. when D =
0, to the indeterminate correlation value 0.0. With uniformly chosen random r -valued
relations, the expected tau index is 0.0, denoting in fact an indeterminate correlation.
The corresponding expected normalized determination d is about 0.333 (see [BIS-2012p]).

We may verify these relations with help of the corresponding equivalence digraph eq (see
Listing 2.4).

Listing 2.4: Computing the Ordinal Correlation Index
from the Equivalence Digraph

1 >>> eq = EquivalenceDigraph(R1,R2)

2 >>> M = Decimal('0'); D = Decimal('0')

3 >>> n2 = eq.order*(eq.order - 1)

4 >>> for x in eq.actions:

(continues on next page)
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(continued from previous page)

5 for y in eq.actions:

6 M += eq.relation[x][y]

7 D += abs(eq.relation[x][y])

8 >>> print('r(R1<=>R2) = %+.3f , d = %.3f , tau = %+.3f ' % (M/n2,D/n2,M/D))

9 r(R1<=>R2) = +0.026, d = 0.356, tau = +0.073

In general we simply use the digraphs.Digraph.computeOrdinalCorrelation()

method which renders a dictionary with a ‘correlation’ (tau) and a ‘determination’ (d)
attribute. We may recover r(<=>) by multiplying tau with d (see Listing 2.5 Line 4).

Listing 2.5: Directly Computing the Ordinal Correlation
Index

1 >>> corrR1R2 = R1.computeOrdinalCorrelation(R2)

2 >>> tau = corrR1R2['correlation']

3 >>> d = corrR1R2['determination']

4 >>> r = tau * d

5 >>> print('tau(R1,R2) = %+.3f , d = %.3f , r(R1<=>R2) = %+.3f ' % (tau, d, r))

6 tau(R1,R2) = +0.073, d = 0.356, r(R1<=>R2) = +0.026

We provide for convenience a direct digraphs.showCorrelation() method:

>>> corrR1R2 = R1.computeOrdinalCorrelation(R2)

>>> R1.showCorrelation(corrR1R2)

Correlation indexes:

Extended Kendall tau : +0.073

Epistemic determination : 0.356

Bipolar-valued equivalence : +0.026

We may now illustrate the quality of the global ranking of the movies shown with the
heat map in Fig. 2.

2.3 Fitness of ranking heuristics

We reconsider the bipolar-valued outranking digraph g modelling the pairwise global ‘at
least as well rated as ’ relation among the 25 movies seen above (see Listing 2.6).

Listing 2.6: Global Movies Outranking Digraph

1 >>> g = BipolarOutrankingDigraph(t,Normalized=True)

2 *------- Object instance description ------*

3 Instance class : BipolarOutrankingDigraph

4 Instance name : rel_grafittiPerfTab.xml

5 # Actions : 25

6 # Criteria : 15

7 Size : 390

8 Determinateness : 65%

9 Valuation domain : {'min': Decimal('-1.0'),

10 'med': Decimal('0.0'),
(continues on next page)
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(continued from previous page)

11 'max': Decimal('1.0'),}

12 >>> g.computeCoSize()

13 188

Out of the 25 x 24 = 600 irreflexive movie pairs, digraph g contains 390 positively vali-
dated, 188 positively invalidated outranking situations, and 22 indeterminate outranking
situations (see the zero-valued cells in Fig. 4).

Let us now compute the normalized majority margin r(<=>) of the equivalence between
the marginal critic’s pairwise ratings and the global Net-Flows ranking shown in the
ordered heat map (see Fig. 2).

Listing 2.7: Marginal Criterion Correlations with global
NetFlows Ranking

1 >>> from linearOrders import NetFlowsOrder

2 >>> nf = NetFlowsOrder(g)

3 >>> nf.netFlowsRanking

4 ['mv_QS', 'mv_RR', 'mv_DG', 'mv_NP', 'mv_HN', 'mv_HS', 'mv_SM',

5 'mv_JB', 'mv_PE', 'mv_FC', 'mv_TP', 'mv_CM', 'mv_DF', 'mv_TM',

6 'mv_DJ', 'mv_AL', 'mv_RG', 'mv_MB', 'mv_GH', 'mv_HP', 'mv_BI',

7 'mv_DI', 'mv_FF', 'mv_GG', 'mv_TF']

8 >>> for i,item in enumerate(\

9 g.computeMarginalVersusGlobalRankingCorrelations(\

10 nf.netFlowsRanking,ValuedCorrelation=True)):

11 print('r(%s<=>nf) = %+.3f' % (item[1],item[0]) )

12 r(JH<=>nf) = +0.500

13 r(JPT<=>nf) = +0.430

14 r(AP<=>nf) = +0.323

15 r(DR<=>nf) = +0.263

16 r(MR<=>nf) = +0.247

17 r(VT<=>nf) = +0.227

18 r(GS<=>nf) = +0.160

19 r(CS<=>nf) = +0.140

20 r(SJ<=>nf) = +0.137

21 r(RR<=>nf) = +0.133

22 r(TD<=>nf) = +0.110

23 r(CF<=>nf) = +0.110

24 r(SF<=>nf) = +0.103

25 r(AS<=>nf) = +0.080

26 r(FG<=>nf) = +0.027

In Listing 2.7 (see Lines 12-26), we recover above the relational equivalence characteristic
values shown in the third row of the table in Fig. 2. The global Net-Flows ranking
represents obviously a rather balanced compromise with respect to all movie critics’
opinions as there appears no valued negative correlation with anyone of them. The Net-
Flows ranking apparently takes also correctly in account that the journalist JH, a locally
renowned movie critic, shows a higher significance weight (see Line 12).

The ordinal correlation between the global Net-Flows ranking and the digraph g may be
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furthermore computed as follows:

Listing 2.8: Correlation between outrankings global Net-
Flows Ranking

1 >>> corrgnf = g.computeOrdinalCorrelatin(nf)

2 >>> g.showCorrelation(corrgnf)

3 Correlation indexes:

4 Extended Kendall tau : +0.780

5 Epistemic determination : 0.300

6 Bipolar-valued equivalence : +0.234

We notice in Listing 2.8 Line 6 that the ordinal correlation tau(g,nf) index between
the Net-Flows ranking nf and the determined part of the outranking digraph g is quite
high (+0.78). Due to the rather high number of missing data, the r -valued relational
equivalence between the nf and the g digraph, with a characteristics value of only +0.234,
may be misleading. Yet, +0.234 still corresponds to an epistemic majority support of
nearly 62% of the movie critics’ rating opinions.

It would be interesting to compare similarly the correlations one may obtain with other
global ranking heuristics, like the Copeland or the Kohler ranking rule.

2.4 Illustrating preference divergences

The valued relational equivalence index gives us a further measure for studying how
divergent appear the rating opinions expressed by the movie critics.

Fig. 1: Pairwise valued correlation of movie critics

It is remarkable to notice in the criteria correlation matrix (see Fig. 1) that, due to the
quite numerous missing data, all pairwise valued ordinal correlation indexes r(x<=>y)
appear to be of low value, except the diagonal ones. These reflexive indexes r(x<=>x)
would trivially all amount to +1.0 in a plainly determined case. Here they indicate a re-
flexive normalized determination score d, i.e. the proportion of pairs of movies each critic
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did evaluate. Critic JPT (the editor of the Graffiti magazine), for instance, evaluated all
but one (d = 24*23/600 = 0.92), whereas critic FG evaluated only 10 movies among the
25 in discussion (d = 10*9/600 = 0.15).

To get a picture of the actual divergence of rating opinions concerning jointly seen pairs
of movies, we may develop a Principal Component Analysis (2) of the corresponding tau
correlation matrix. The 3D plot of the first 3 principal axes is shown in Fig. 2.

>>> g.export3DplotOfCriteriaCorrelation(ValuedCorrelation=False)

Fig. 2: 3D PCA plot of the criteria ordinal correlation matrix

The first 3 principal axes support together about 70% of the total inertia. Most eccentric
and opposed in their respective rating opinions appear, on the first principal axis with
27.2% inertia, the conservative daily press against labour and public press. On the second
principal axis with 23.7.7% inertia, it is the people press versus the cultural critical press.
And, on the third axis with still 19.3% inertia, the written media appear most opposed
to the radio media.

2 The 3D PCA plot method requires a running R statistics software (https://www.r-project.org/)
installation and the Calmat matrix calculator (see the calmat directory in the Digraph3 ressources)
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2.5 Exploring the better rated and the as well as rated opinions

In order to furthermore study the quality of a ranking result, it may be interesting to
have a separate view on the asymmetric and symmetric parts of the ‘at least as well rated
as ’ opinions (see the tutorial on Manipulating Digraph objects).

Let us first have a look at the pairwise asymmetric part, namely the ‘better rated than’
and ‘less well rated than’ opinions of the movie critics.

>>> ag = AsymmetricPartialDigraph(g)

>>> ag.showHTMLRelationTable(actionsList=g.computeNetFlowsRanking(),ndigits=0)

Fig. 3: Asymmetric part of graffiti07 digraph

We notice here that the Net-Flows ranking rule inverts in fact just three ‘less well ranked
than’ opinions and four ‘better ranked than’ ones. A similar look at the symmetric part,
the pairwise ‘as well rated as ’ opinions, suggests a preordered preference structure in
several equivalently rated classes.

>>> sg = SymmetricPartialDigraph(g)

>>> sg.showHTMLRelationTable(actionsList=g.computeNetFlowsRanking(),ndigits=0)
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Fig. 4: Symmetric part of graffiti07 digraph

Such a preordering of the movies may, for instance, be computed with the digraphs.

Digraph.computeRankingByChoosing() method, where we iteratively extract dominant
kernels -best remaining choices- and absorbent kernels -worst remaining choices- (see the
tutorial on Computing Digraph Kernels). We operate therefore on the asymmetric ‘better
rated than’, i.e. the codual (3) of the ‘at least as well rated as ’ opinions (see Listing 2.9
Line 2).

Listing 2.9: Ranking by choosing the Grafitti movies

1 >>> from transitiveDigraphs import RankingByChoosingDigraph

2 >>> rbc = RankingByChoosingDigraph(g,CoDual=True)

3 >>> rbc.showRankingByChoosing()

4 Ranking by Choosing and Rejecting

5 1st Best Choice ['mv_QS']

6 2nd Best Choice ['mv_DG', 'mv_FC', 'mv_HN', 'mv_HS', 'mv_NP',

7 'mv_PE', 'mv_RR', 'mv_SM']

8 3rd Best Choice ['mv_CM', 'mv_JB', 'mv_TM']

9 4th Best Choice ['mv_AL', 'mv_TP']

10 4th Worst Choice ['mv_AL', 'mv_TP']

11 3rd Worst Choice ['mv_GH', 'mv_MB', 'mv_RG']

12 2nd Worst Choice ['mv_DF', 'mv_DJ', 'mv_FF', 'mv_GG']

13 1st Worst Choice ['mv_BI', 'mv_DI', 'mv_HP', 'mv_TF']

In the tutorial on Computing Digraph Kernels, we thouroughly discuss the computation of
kernels in bipolar-valued digraphs. Yet, we do not tackle there the problem of computing
the corresponding bipolar-valued kernel membership characteristic vectors. This is
the topic for the next pearl of bipolar-valued epistemic logic.

Back to Content Table (page 1)

3 A kernel in a digraph g is a clique in the dual digraph -g.
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3 Bipolar-valued kernel membership characteristic vec-

tors

� Claude Berge’s kernel equation systems (page 17)

� Solving bipolar-valued kernel equation systems (page 18)

3.1 Claude Berge’s kernel equation systems

Let G(X,R) be a crisp irreflexive digraph defined on a finite set X of nodes and where
R is the corresponding {-1,+1}-valued adjacency matrix. Let Y be the {-1,+1}-valued
membership characteristic (row) vector of a choice in X. When Y satisfies the following
equation system

𝑌 ∘𝑅 = −𝑌 ,

where for all x in X,

(𝑌 ∘𝑅)(𝑥) = max𝑦∈𝑋,𝑥 ̸=𝑦

(︀
min(𝑌 (𝑥), 𝑅(𝑥, 𝑦))

)︀
.

then Y characterises an initial kernel ([BER-1958p]).

When transposing now the membership characteristic vector Y into a column vector 𝑌 𝑡,
the following equation system

𝑅 ∘ 𝑌 𝑡 = −𝑌 𝑡 ,

makes 𝑌 𝑡 similarly characterise a terminal kernel.

Let us verify this result on a tiny random digraph.

1 >>> from digraphs import *

2 >>> g = RandomDigraph(order=3,seed=1)

3 * ---- Relation Table -----

4 R | 'a1' 'a2' 'a3'

5 ------|---------------------

6 'a1' | -1 +1 -1

7 'a2' | -1 -1 +1

8 'a3' | +1 +1 -1

9 >>> g.showPreKernels()

10 *--- Computing preKernels ---*

11 Dominant preKernels :

12 ['a3']

13 independence : 1.0

14 dominance : 1.0

15 absorbency : -1.0

16 covering : 1.000

17 Absorbent preKernels :

18 ['a2']

(continues on next page)
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(continued from previous page)

19 independence : 1.0

20 dominance : -1.0

21 absorbency : 1.0

22 covered : 1.000

It is easy to verify that the characteristic vector [-1, -1, +1] satisfies the initial kernel
equation system; a3 gives an initial kernel. Similarly, the characteristic vector [-1, +1,
-1] verifies indeed the terminal kernel equation system and hence a2 gives a terminal
kernel.

We succeeded now in generalizing Berge’s kernel equation systems to genuine bipolar-
valued digraphs ([BIS-2006_1p]). The constructive proof, found by M. Pirlot, is based
on the following fixpoint equation that may be used for computing bipolar-valued kernel
membership vectors,

𝑇 (𝑌 ) := −(𝑌 ∘𝑅) = 𝑌,

3.2 Solving bipolar-valued kernel equation systems

John von Neumann showed indeed that, when a digraphG(X,R) is acyclic with a unique
initial kernel K characterised by its membership characteristics vector Yk, then the
following double bipolar-valued fixpoint equation

𝑇 2(𝑌 ) := −
(︀
− (𝑌 ∘𝑅) ∘𝑅) = 𝑌 .

will admit a stable high and a stable low fixpoint solution that converge both to Yk
([SCH-1985p]).

Inspired by this crisp double fixpoint equation, we observed that for a given bipolar-
valued digraph G(X,R), each of its dominant or absorbent prekernels Ki in X determines
an induced partial graph G(X,R/Ki) which is acyclyc and admits Ki as unique kernel
(see [BIS-2006_2p]).

Following the von Neumann fixpoint algorithm, a similar bipolar-valued extended dou-
ble fixpoint algorithm, applied to G(X,R/Ki), allows to compute hence the associated
bipolar-valued kernel characteristic vectors Yi in polynomial complexity.

Algorithm

in : bipolar-valued digraph G(X,R),

out : set {Y1, Y2, .. } of bipolar-valued kernel membership characteristic
vectors.

1. enumerate all initial and terminal crisp prekernels K, K2, . . . in the
given bipolar-valued digraph (see the tutorial on Computing Digraph
Kernels);

2. for each crisp initial kernel Ki :

a. construct a partially determined subgraph G(X,R/Ki) supporting
exactly this unique initial kernel Ki ;
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b. Use the double fixpoint equation T2 with the partially determined
adjacency matrix R/Ki for computing a stable low and a stable high
fixpoint;

c. Determine the bipolar-valued Ki -membership characteristic vector
Yi with an epistemic disjunction of the previous low and high fix-
points;

3. repeat step (2) for each terminal kernel Kj by using the double fixpoint
equation T2 with the transpose of the adjacency matrix R/Kj.

Time for a practical illustration.

Listing 3.1: Random Bipolar-valued Outranking Digraph

1 >>> from outrankingDigraphs import *

2 >>> g = RandomBipolarOutrankingDigraph(Normalized=True,seed=5)

3 >>> print(g)

4 *------- Object instance description ------*

5 Instance class : RandomBipolarOutrankingDigraph

6 Instance name : rel_randomperftab

7 # Actions : 7

8 # Criteria : 7

9 Size : 26

10 Determinateness (%) : 67.14

11 Valuation domain : [-1.0;1.0]

12 Attributes : ['name', 'actions', 'criteria', 'evaluation',

13 'relation', 'valuationdomain', 'order',

14 'gamma', 'notGamma']

The random outranking digraph g, we consider here in Listing 3.1 for illustration, models
the pairwise outranking situations between seven decision alternatives evaluated on seven
incommensurable performance criteria. We compute its corresponding bipolar-valued
prekernels on the associated codual digraph gcd.

Listing 3.2: Strict Prekernels

1 >>> gcd = ~(-g) # strict outranking digraph

2 >>> gcd

3 >>> gcd.showPreKernels()

4 *--- Computing prekernels ---*

5 Dominant prekernels :

6 ['a1', 'a4', 'a2']

7 independence : +0.000

8 dominance : +0.070

9 absorbency : -0.488

10 covering : +0.667

11 Absorbent prekernels :

12 ['a7', 'a3']

13 independence : +0.000

14 dominance : -0.744

15 absorbency : +0.163

(continues on next page)
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(continued from previous page)

16 covered : +0.800

17 *----- statistics -----

18 graph name: converse-dual_rel_randomperftab

19 number of solutions

20 dominant kernels : 1

21 absorbent kernels: 1

22 cardinality frequency distributions

23 cardinality : [0, 1, 2, 3, 4, 5, 6, 7]

24 dominant kernel : [0, 0, 0, 1, 0, 0, 0, 0]

25 absorbent kernel: [0, 0, 1, 0, 0, 0, 0, 0]

26 Execution time : 0.00022 sec.

The codual outranking digraph, modelling a strict outranking relation, admits an initial
prekernel [a1, a2, a4 ] and a terminal one [a3, a7 ] (see Listing 3.2 Line 7 and 13).

Let us compute the initial prekernel restricted adjacency table with the digraphs.

Digraph.domkernelrestrict() method.

1 >>> k1Relation = gcd.domkernelrestrict(['a1','a2','a4'])

2 >>> gcd.showHTMLRelationTable(

3 actionsList=['a1','a2','a4','a3','a5','a6','a7'],

4 relation=k1Relation,

5 tableTitle='K1 restricted adjacency table')

Fig. 1: Initial kernel [a1, a2, a4 ] restricted adjacency table

We first notice that this initial prekernel is indeed only weakly independent : The outrank-
ing situation between a4 and a1 appears indeterminate. The corresponding initial prek-
ernel membership characteristic vector may be computed with the digraphs.Digraph.

computeKernelVector() method.
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Listing 3.3: Fixpoint iterations for initial prekernel [‘a1’,
‘a2’, ‘a4’]

1 >>> gcd.computeKernelVector(['a1','a2','a4'],Initial=True,Comments=True)

2 --> Initial prekernel: {'a1', 'a2', 'a4'}

3 initial low vector : [-1.00, -1.00, -1.00, -1.00, -1.00, -1.00, -1.00]

4 initial high vector: [+1.00, +1.00, +1.00, +1.00, +1.00, +1.00, +1.00]

5 1st low vector : [ 0.00, +0.21, -0.21, 0.00, -0.44, -0.07, -0.58]

6 1st high vector : [+1.00, +1.00, +1.00, +1.00, +1.00, +1.00, +1.00]

7 2nd low vector : [ 0.00, +0.21, -0.21, 0.00, -0.44, -0.07, -0.58]

8 2nd high vector : [ 0.00, +0.21, -0.21, +0.21, -0.21, -0.05, -0.21]

9 3rd low vector : [ 0.00, +0.21, -0.21, +0.21, -0.21, -0.07, -0.21]

10 3rd high vector : [ 0.00, +0.21, -0.21, +0.21, -0.21, -0.05, -0.21]

11 4th low vector : [ 0.00, +0.21, -0.21, +0.21, -0.21, -0.07, -0.21]

12 4th high vector : [ 0.00, +0.21, -0.21, +0.21, -0.21, -0.07, -0.21]

13 # iterations : 4

14 low & high fusion : [ 0.00, +0.21, -0.21, +0.21, -0.21, -0.07, -0.21]

15 Choice vector for initial prekernel: {'a1', 'a2', 'a4'}

16 a2: +0.21

17 a4: +0.21

18 a1: 0.00

19 a6: -0.07

20 a3: -0.21

21 a5: -0.21

22 a7: -0.21

We start the fixpoint computation with an empty set characterisation as first low vector
and a complete set X characterising high vector. After each iteration, the low vector is
set to the negation of the previous high vector and the high vector is set to the negation
of the previous low vector.

A unique stable prekernel characteristic vector Y1 is here attained at the fourth iteration
with positive members a2 : +0.21 and a4 : +0.21 (60.5% criteria significance majority);
a1 : 0.00 being an ambiguous potential member. Alternatives a3, a5, a6 and a7 are all
negative members, i.e. positive non members of this outranking prekernel.

Let us now compute the restricted adjacency table for the outranked, i.e. the terminal
prekernel [a3, a7 ].

1 >>> k2Relation = gcd.abskernelrestrict(['a3','a7'])

2 >>> gcd.showHTMLRelationTable(

3 actionsList=['a3','a7','a1','a2','a4','a5','a6'],

4 relation=k2Relation,

5 tableTitle='K2 restricted adjacency table')
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Fig. 2: Terminal kernel [‘a3’,’a7’] restricted adjacency table

Again, we notice that this terminal prekernel is indeed only weakly independent. The
corresponding bipolar-valued characteristic vector Y2 may be computed as follows.

1 >>> gcd.computeKernelVector(['a3','a7'],Initial=False,Comments=True)

2 --> Terminal prekernel: {'a3', 'a7'}

3 initial low vector : [-1.00, -1.00, -1.00, -1.00, -1.00, -1.00, -1.00]

4 initial high vector : [+1.00, +1.00, +1.00, +1.00, +1.00, +1.00, +1.00]

5 1st low vector : [-0.16, -0.49, 0.00, -0.58, -0.16, -0.30, +0.49]

6 1st high vector : [+1.00, +1.00, +1.00, +1.00, +1.00, +1.00, +1.00]

7 2nd low vector : [-0.16, -0.49, 0.00, -0.58, -0.16, -0.30, +0.49]

8 2nd high vector : [-0.16, -0.49, 0.00, -0.49, -0.16, -0.26, +0.49]

9 3rd low vector : [-0.16, -0.49, 0.00, -0.49, -0.16, -0.26, +0.49]

10 3rd high vector : [-0.16, -0.49, 0.00, -0.49, -0.16, -0.26, +0.49]

11 # iterations : 3

12 high & low fusion : [-0.16, -0.49, 0.00, -0.49, -0.16, -0.26, +0.49]

13 Choice vector for terminal prekernel: {'a3', 'a7'}

14 a7: +0.49

15 a3: 0.00

16 a1: -0.16

17 a5: -0.16

18 a6: -0.26

19 a2: -0.49

20 a4: -0.49

A unique stable bipolar-valued high and low fixpoint is attained at the third iteration
with a7 positively confirmed (about 75% criteria significance majority) as member of this
terminal prekernel, whereas the membership of a3 in this prekernel appears indetermi-
nate. All the remaining nodes have negative membership characteristic values and are
hence positively excluded from this prekernel.

When we reconsider the graphviz drawing of this outranking digraph (see Fig. 52 in the
tutorial on Computing Digraph Kernels),
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Fig. 3: The strict outranking digraph oriented by the positive members of its initial and
terminal prekernels

it becomes obvious why alternative a1 is neither included nor excluded from the
initial prekernel. Same observation is applicable to alternative a3 which can neither be
included nor excluded from the terminal prekernel. It may even happen, in case of
more indeterminate outranking situations, that no alternative is positively included or
excluded from a weakly independent prekernel; the corresponding bipolar-valued mem-
bership characteristic vector being completely indeterminate (see for instance the tutorial
on Computing a Best Choice Recommendation).

To illustrate finally why sometimes we need to operate an epistemic disjunctive fusion of
unequal stable low and high membership characteristics vectors (see Step 2.c.), let us
consider, for instance, the following crisp 7-cycle graph.

1 >>> g = CirculantDigraph(order=7,circulants=[-1,1])

2 >>> g

3 *------- Digraph instance description ------*

4 Instance class : CirculantDigraph

5 Instance name : c7

6 Digraph Order : 7

7 Digraph Size : 14

8 Valuation domain : [-1.00;1.00]

9 Determinateness (%) : 100.00

10 Attributes : ['name', 'order', 'circulants', 'actions',

11 'valuationdomain', 'relation',

12 'gamma', 'notGamma']

Digraph c7 is a symmetric crisp digraph showing, among others, the maximal indepen-
dent set {‘2’,’5’,’7’}, i.e. an initial as well as terminal kernel. We may compute the
corresponding initial kernel characteristic vector.
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1 >>> g.computeKernelVector(['2','5','7'],Initial=True,Comments=True)

2 --> Initial kernel: {'2', '5', '7'}

3 initial low vector : [-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0]

4 initial high vector : [+1.0, +1.0, +1.0, +1.0, +1.0, +1.0, +1.0]

5 1 st low vector : [-1.0, 0.0, -1.0, -1.0, 0.0, -1.0, 0.0]

6 1 st high vector : [+1.0, +1.0, +1.0, +1.0, +1.0, +1.0, +1.0]

7 2 nd low vector : [-1.0, 0.0, -1.0, -1.0, 0.0, -1.0, 0.0]

8 2 nd high vector : [ 0.0, +1.0, 0.0, 0.0, +1.0, 0.0, +1.0]

9 stable low vector : [-1.0, 0.0, -1.0, -1.0, 0.0, -1.0, 0.0]

10 stable high vector : [ 0.0, +1.0, 0.0, 0.0, +1.0, 0.0, +1.0]

11 #iterations : 3

12 low & high fusion : [-1.0, +1.0, -1.0, -1.0, +1.0, -1.0, +1.0]

13 Choice vector for initial prekernel: {'2', '5', '7'}

14 7: +1.00

15 5: +1.00

16 2: +1.00

17 6: -1.00

18 4: -1.00

19 3: -1.00

20 1: -1.00

Notice that the stable low vector characterises the negative membership part, whereas,
the stable high vector characterises the positive membership part (see Lines 9-10
above). The bipolar disjunctive fusion assembles eventually both stable parts into the
correct prekernel characteristic vector (Line 12).

The adjacency matrix of a symmetric digraph staying unchanged by the transposition
operator, the previous computations, when qualifying the same kernel as a terminal
instance, will hence produce exactly the same result.

Note: It is worthwhile noticing again the essential computational role, the logical
indeterminate value 0.0 is playing in this double fixpoint algorithm. To implement
such kind of algorithms without a logical neutral term would be like implementing
numerical algorithms without a possible usage of the number 0. Infinitely many trivial
impossibility theorems and dubious logical results come up.

Back to Content Table (page 1)

4 On confident outrankings with uncertain criteria sig-

nificances

� Modelling uncertain criteria significances (page 25)

� Bipolar-valued likelihood of ‘’at least as good as ” situations (page 26)
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� Confidence level of outranking situations (page 29)

When modelling preferences following the outranking approach, the signs of the majority
margins do sharply distribute validation and invalidation of pairwise outranking situa-
tions. How can we be confident in the resulting outranking digraph, when we acknowledge
the usual imprecise knowledge of criteria significance weights coupled with small majority
margins?

To answer this question, one usually requires qualified majority margins for confirming
outranking situations. But how to choose such a qualifying majority level: two third,
three fourth of the significances ?

In this tutorial we propose to link the qualifying significance majority with a required
alpha%-confidence level. We model therefore the significance weights as random variables
following more or less widespread distributions around an average significance value that
corresponds to the given deterministic weight. As the bipolar-valued random credibility
of an outranking statement hence results from the simple sum of positive or negative
independent random variables, we may apply the Central Limit Theorem (CLT) for com-
puting the bipolar likelihood that the expected majority margin will indeed be positive,
respectively negative.

4.1 Modelling uncertain criteria significances

Let us consider the significance weights of a family F of m criteria to be independent
random variables Wj, distributing the potential significance weights of each criterion j
= 1, . . . , m around a mean value E(Wj) with variance V(Wj).

Choosing a specific stochastic model of uncertainty is usually application specific. In the
limited scope of this tutorial, we will illustrate the consequence of this design decision
on the resulting outranking modelling with four slightly different models for taking into
account the uncertainty with which we know the numerical significance weights: uniform,
triangular, and two models of Beta laws, one more widespread and, the other, more
concentrated.

When considering, for instance, that the potential range of a significance weight is dis-
tributed between 0 and two times its mean value, we obtain the following random variates:

1. A continuous uniform distribution on the range 0 to 2E(Wj). Thus Wj ~ U(0,
2E(Wj)) and V(Wj) = 1/3(E(Wj))^2;

2. A symmetric beta distribution with, for instance, parameters alpha = 2 and beta
= 2. Thus, Wi ~ Beta(2,2) * 2E(Wj) and V(Wj) = 1/5(E(Wj))^2.

3. A symmetric triangular distribution on the same range with mode E(Wj). Thus
Wj ~ Tr(0, 2E(Wj), E(Wj)) with V(Wj) = 1/6(E(Wj))^2;

4. A narrower beta distribution with for instance parameters alpha = 4 and beta =
4. Thus Wj ~ Beta(4,4) * 2E(Wj) , V(Wj) = 1/9(E(Wj))^2.
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Fig. 1: Four models of uncertain significance weights

It is worthwhile noticing that these four uncertainty models all admit the same expected
value, E(Wj), however, with a respective variance which goes decreasing from 1/3, to 1/9
of the square of E(W) (see Fig. 1).

4.2 Bipolar-valued likelihood of ‘’at least as good as ” situations

Let A = {x, y, z,. . . } be a finite set of n potential decision actions, evaluated on F =
{1,. . . , m}, a finite and coherent family of m performance criteria. On each criterion j in
F, the decision actions are evaluated on a real performance scale [0; Mj ], supporting an
upper-closed indifference threshold indj and a lower-closed preference threshold prj such
that 0 <= indj < prj <= Mj. The marginal performance of object x on criterion j is
denoted xj. Each criterion j is thus characterising a marginal double threshold order ≥𝑗

on A (see Fig. 2):

𝑟(𝑥 ≥𝑗 𝑦) =

⎧⎪⎨⎪⎩
+1 if 𝑥𝑗 − 𝑦𝑗 ≤ 𝑖𝑛𝑑𝑗,

−1 if 𝑥𝑗 − 𝑦𝑗 ≤ 𝑝𝑟𝑗,

0 otherwise.

Semantics of the marginal bipolar-valued characteristic function:

� +1 signifies x is performing at least as good as y on criterion j,

� -1 signifies that x is not performing at least as good as y on criterion j,
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� 0 signifies that it is unclear whether, on criterion j, x is performing at least as
good as y.

Fig. 2: Bipolar-valued outranking characteristic function

Each criterion j in F contributes the random significance Wj of his ‘at least as good as ’
characteristic 𝑟(𝑥 ≥𝑗 𝑦) to the global characteristic 𝑟(𝑥 ≥ 𝑦) in the following way:

𝑟(𝑥 ≥ 𝑦) =
∑︀

𝑗∈𝐹 𝑊𝑗 × 𝑟(𝑥 ≥𝑗 𝑦))

Thus, 𝑟(𝑥 ≥ 𝑦) becomes a simple sum of positive or negative independent random vari-
ables with known means and variances where 𝑟(𝑥 ≥ 𝑦) > 0 signifies x is globally per-
forming at least as good as y, 𝑟(𝑥 ≥ 𝑦) < 0 signifies that x is not globally performing
at least as good as y, and 𝑟(𝑥 ≥ 𝑦) = 0 signifies that it is unclear whether x is globally
performing at least as good as y.

From the Central Limit Theorem (CLT), we know that such a sum of random variables
leads, with m getting large, to a Gaussian distribution Y with

𝐸(𝑌 ) =
∑︀

𝑗∈𝐹 𝐸(𝑊𝑗)× 𝑟(𝑥 ≥𝑗 𝑦) and

𝑉 (𝑌 ) =
∑︀

𝑗∈𝐹 𝑉 (𝑊𝑗)× |𝑟(𝑥 ≥𝑗 𝑦)|.

And the likelihood of validation, respectively invalidation of an ‘at least as good
as ’ situation, denoted 𝑙ℎ(𝑥 ≥ 𝑦), may hence be assessed by the probability P(Y>0) =
1.0 - P(Y<=0) that Y takes a positive, resp. P(Y<0) takes a negative value. In the
bipolar-valued case here, we can judiciously make usage of the standard Gaussian error
function , i.e. the bipolar 2P(Z) - 1.0 version of the standard Gaussian P(Z) probability
distribution function:

𝑙ℎ(𝑥 ≥ 𝑦) = −erf
(︀

1√
2

−𝐸(𝑌 )√
𝑉 (𝑌 )

)︀
The range of the bipolar-valued 𝑙ℎ(𝑥 ≥ 𝑦) hence becomes [-1.0;+1.0], and −𝑙ℎ(𝑥 ≥ 𝑦) =
𝑙ℎ(𝑥 ̸≥ 𝑦) , i.e. a negative likelihood represents the likelihood of the correspondent
negated ‘at least as good as ’ situation. A likelihood of +1.0 (resp. -1.0) means the
corresponding preferential situation appears certainly validated (resp. invalidated).

Example
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Let x and y be evaluated wrt 7 equisignificant criteria; Four criteria positively support
that x is as least as good performing than y and three criteria support that x is not at
least as good performing than y. Suppose E(Wj) = w for j = 1,. . . ,7 and Wj ~ Tr(0, 2w,
w) for j = 1,. . . 7. The expected value of the global ‘at least as good as ’ characteristic
value becomes: 𝐸

(︀
𝑟(𝑥 ≥ 𝑦)

)︀
= 4𝑤 − 3𝑤 = 𝑤 with a variance 𝑉

(︀
𝑟(𝑥 ≥ 𝑦)

)︀
= 71

6
𝑤2.

If w = 1, 𝐸
(︀
𝑟(𝑥 ≥ 𝑦)

)︀
= 1 and 𝑠𝑑

(︀
𝑟(𝑥 ≥ 𝑦)

)︀
= 1.08. By the CLT, the bipolar

likelihood of the at least as good performing situation becomes: 𝑙ℎ(𝑥 ≥ 𝑦) = 0.66,
which corresponds to a global support of (0.66 + 1.0)/2 = 83% of the criteria significance
weights.

AMonte Carlo simulation with 10 000 runs empirically confirms the effective convergence
to a Gaussian (see Fig. 3 realised with gretl4 ).

Fig. 3: Distribution of 10 000 random outranking characteristic values

Indeed, 𝑟(𝑥 ≥ 𝑦)  𝑌 = 𝒩 (1.03, 1.089), with an empirical probability of observing a
negative majority margin of about 17%.

4 The Gnu Regression, Econometrics and Time-series Library http://gretl.sourceforge.net/ .
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4.3 Confidence level of outranking situations

Now, following the classical outranking approach (see [BIS-2013p] ), we may say, from an
epistemic perspective, that decision action x outranks decision action y at confidence
level alpha %, if

1. an expected majority of criteria validates, at confidence level alpha % or higher, a
global ‘at least as good as ’ situation between x and y, and

2. no considerably less performing is observed on a discordant criterion.

Dually, decision action x does not outrank decision action y at confidence level alpha
%, if

1. an expected majority of criteria at confidence level alpha % or higher, invalidates
a global ‘at least as good as ’ situation between x and y, and

2. no considerably better performing situation is observed on a concordant criterion.

Time for a coded example

Let us consider the following random performance tableau.

1 >>> from outrankingDigraphs import *

2 >>> t = RandomPerformanceTableau(numberOfActions=7,numberOfCriteria=7,seed=100)

3 >>> t.showPerformanceTableau(Transposed=True)

4 *---- performance tableau -----*

5 criteria | weights | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'

6 ---------|------------------------------------------------------------

7 'g1' | 1 | 15.17 44.51 57.87 58.00 24.22 29.10 96.58

8 'g2' | 1 | 82.29 43.90 NA 35.84 29.12 34.79 62.22

9 'g3' | 1 | 44.23 19.10 27.73 41.46 22.41 21.52 56.90

10 'g4' | 1 | 46.37 16.22 21.53 51.16 77.01 39.35 32.06

11 'g5' | 1 | 47.67 14.81 79.70 67.48 NA 90.72 80.16

12 'g6' | 1 | 69.62 45.49 22.03 33.83 31.83 NA 48.80

13 'g7' | 1 | 82.88 41.66 12.82 21.92 75.74 15.45 6.05

For the corresponding confident outranking digraph, we require a confidence level of
alpha = 90%. The outrankingDigraphs.ConfidentBipolarOutrankingDigraph class
provides such a construction.

1 >>> g90 = ConfidentBipolarOutrankingDigraph(t,confidence=90)

2 >>> print(g90)

3 *------- Object instance description ------*

4 Instance class : ConfidentBipolarOutrankingDigraph

5 Instance name : rel_randomperftab_CLT

6 # Actions : 7

7 # Criteria : 7

8 Size : 15

9 Uncertainty model : triangular(a=0,b=2w)

10 Likelihood domain : [-1.0;+1.0]

11 Confidence level : 0.80 (90.0%)

12 Confident majority : 0.14 (57.1%)

(continues on next page)
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13 Determinateness (%) : 62.07

14 Valuation domain : [-1.00;1.00]

15 Attributes : ['name', 'bipolarConfidenceLevel',

16 'distribution', 'betaParameter', 'actions',

17 'order', 'valuationdomain', 'criteria',

18 'evaluation', 'concordanceRelation',

19 'vetos', 'negativeVetos',

20 'largePerformanceDifferencesCount',

21 'likelihoods', 'confidenceCutLevel',

22 'relation', 'gamma', 'notGamma']

1 >>> g90.showRelationTable(LikelihoodDenotation=True)

2 * ---- Outranking Relation Table -----

3 r/(lh) | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'

4 -------|------------------------------------------------------------

5 'a1' | +0.00 +0.71 +0.29 +0.29 +0.29 +0.29 +0.00

6 | ( - ) (+1.00) (+0.95) (+0.95) (+0.95) (+0.95) (+0.65)

7 'a2' | -0.71 +0.00 -0.29 +0.00 +0.00 +0.29 -0.57

8 |(-1.00) ( - ) (-0.95) (-0.65) (+0.73) (+0.95) (-1.00)

9 'a3' | -0.29 +0.29 +0.00 -0.29 +0.00 +0.00 -0.29

10 |(-0.95) (+0.95) ( - ) (-0.95) (-0.73) (-0.00) (-0.95)

11 'a4' | +0.00 +0.00 +0.57 +0.00 +0.29 +0.57 -0.43

12 |(-0.00) (+0.65) (+1.00) ( - ) (+0.95) (+1.00) (-0.99)

13 'a5' | -0.29 +0.00 +0.00 +0.00 +0.00 +0.29 -0.29

14 |(-0.95) (-0.00) (+0.73) (-0.00) ( - ) (+0.99) (-0.95)

15 'a6' | -0.29 +0.00 +0.00 -0.29 +0.00 +0.00 +0.00

16 |(-0.95) (-0.00) (+0.73) (-0.95) (+0.73) ( - ) (-0.00)

17 'a7' | +0.00 +0.71 +0.57 +0.43 +0.29 +0.00 +0.00

18 |(-0.65) (+1.00) (+1.00) (+0.99) (+0.95) (-0.00) ( - )

19 Valuation domain : [-1.000; +1.000]

20 Uncertainty model : triangular(a=2.0,b=2.0)

21 Likelihood domain : [-1.0;+1.0]

22 Confidence level : 0.80 (90.0%)

23 Confident majority : 0.14 (57.1%)

24 Determinateness : 0.24 (62.1%)

The resulting 90% confident expected outranking relation is shown above. The (lh)
figures, indicated in the table above, correspond to bipolar likelihoods and the required
bipolar confidence level equals (0.90+1.0)/2 = 0.80 (see Line 22 above). Action ‘a1 ’ thus
confidently outranks all other actions, except ‘a7 ’ where the actual likelihood (+0.65) is
lower than the required one (0.80) and we furthermore observe a considerable counter-
performance on criterion ‘g1 ’.

Notice also the lack of confidence in the outranking situations we observe between action
‘a2 ’ and actions ‘a4 ’ and ‘a5 ’. In the deterministic case we would have 𝑟(𝑎2 ≥ 𝑎4) =
−0.143 and 𝑟(𝑎2 ≥ 𝑎5) = +0.143 . All outranking situations with a characteristic value
lower or equal to abs(0.143), i.e. a majority support of 1.143/2 = 57.1% and less, appear
indeed to be not confident at level 90% (see Line 23 above).

We may draw the corresponding strict 90%-confident outranking digraph, oriented by its
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initial and terminal prekernels (see Fig. 4).

1 >>> gcd90 = ~ (-g90)

2 >>> gcd90.showPreKernels()

3 *--- Computing preKernels ---*

4 Dominant preKernels :

5 ['a1', 'a7']

6 independence : 0.0

7 dominance : 0.2857

8 absorbency : -0.7143

9 covering : 0.800

10 Absorbent preKernels :

11 ['a2', 'a5', 'a6']

12 independence : 0.0

13 dominance : -0.2857

14 absorbency : 0.2857

15 covered : 0.583

16 >>> gcd90.exportGraphViz(fileName='confidentOutranking',

17 bestChoice=['a1', 'a7'],worstChoice=['a2', 'a5', 'a6'])

18 *---- exporting a dot file for GraphViz tools ---------*

19 Exporting to confidentOutranking.dot

20 dot -Grankdir=BT -Tpng confidentOutranking.dot -o confidentOutranking.png

Fig. 4: Strict 90%-confident outranking digraph oriented by its prekernels

Now, what becomes this 90%-confident outranking digraph when we require a stronger
confidence level of, say 99% ?
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1 >>> g99 = ConfidentBipolarOutrankingDigraph(t,confidence=99)

2 >>> g99.showRelationTable()

3 * ---- Outranking Relation Table -----

4 r/(lh) | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'

5 -------|------------------------------------------------------------

6 'a1' | +0.00 +0.71 +0.00 +0.00 +0.00 +0.00 +0.00

7 | ( - ) (+1.00) (+0.95) (+0.95) (+0.95) (+0.95) (+0.65)

8 'a2' | -0.71 +0.00 +0.00 +0.00 +0.00 +0.00 -0.57

9 | (-1.00) ( - ) (-0.95) (-0.65) (+0.73) (+0.95) (-1.00)

10 'a3' | +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

11 | (-0.95) (+0.95) ( - ) (-0.95) (-0.73) (-0.00) (-0.95)

12 'a4' | +0.00 +0.00 +0.57 +0.00 +0.00 +0.57 -0.43

13 | (-0.00) (+0.65) (+1.00) ( - ) (+0.95) (+1.00) (-0.99)

14 'a5' | +0.00 +0.00 +0.00 +0.00 +0.00 +0.29 +0.00

15 | (-0.95) (-0.00) (+0.73) (-0.00) ( - ) (+0.99) (-0.95)

16 'a6' | +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

17 | (-0.95) (-0.00) (+0.73) (-0.95) (+0.73) ( - ) (-0.00)

18 'a7' | +0.00 +0.71 +0.57 +0.43 +0.00 +0.00 +0.00

19 | (-0.65) (+1.00) (+1.00) (+0.99) (+0.95) (-0.00) ( - )

20 Valuation domain : [-1.000; +1.000]

21 Uncertainty model : triangular(a=2.0,b=2.0)

22 Likelihood domain : [-1.0;+1.0]

23 Confidence level : 0.98 (99.0%)

24 Confident majority : 0.29 (64.3%)

25 Determinateness : 0.13 (56.6%)

At 99% confidence, the minimal required significance majority support amounts to 64.3%
(see Line 24 above). As a result, most outranking situations don’t get anymore validated,
like the outranking situations between action ‘a1 ’ and actions ‘a3 ’, ‘a4 ’, ‘a5 ’ and ‘a6 ’
(see Line 5 above). The overall epistemic determination of the digraph consequently
drops from 62.1% to 56.6% (see Line 25).

Finally, what becomes the previous 90%-confident outranking digraph if the uncertainty
concerning the criteria significance weights is modelled with a larger variance, like uniform
variates.

1 >>> gu90 = ConfidentBipolarOutrankingDigraph(t,confidence=90,distribution=

→˓'uniform')

2 >>> gu90.showRelationTable()

3 * ---- Outranking Relation Table -----

4 r/(lh) | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'

5 -------|------------------------------------------------------------

6 'a1' | +0.00 +0.71 +0.29 +0.29 +0.29 +0.29 +0.00

7 | ( - ) (+1.00) (+0.84) (+0.84) (+0.84) (+0.84) (+0.49)

8 'a2' | -0.71 +0.00 -0.29 +0.00 +0.00 +0.29 -0.57

9 | (-1.00) ( - ) (-0.84) (-0.49) (+0.56) (+0.84) (-1.00)

10 'a3' | -0.29 +0.29 +0.00 -0.29 +0.00 +0.00 -0.29

11 | (-0.84) (+0.84) ( - ) (-0.84) (-0.56) (-0.00) (-0.84)

12 'a4' | +0.00 +0.00 +0.57 +0.00 +0.29 +0.57 -0.43

13 | (-0.00) (+0.49) (+1.00) ( - ) (+0.84) (+1.00) (-0.95)

(continues on next page)
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14 'a5' | -0.29 +0.00 +0.00 +0.00 +0.00 +0.29 -0.29

15 | (-0.84) (-0.00) (+0.56) (-0.00) ( - ) (+0.92) (-0.84)

16 'a6' | -0.29 +0.00 +0.00 -0.29 +0.00 +0.00 +0.00

17 | (-0.84) (-0.00) (+0.56) (-0.84) (+0.56) ( - ) (-0.00)

18 'a7' | +0.00 +0.71 +0.57 +0.43 +0.29 +0.00 +0.00

19 | (-0.49) (+1.00) (+1.00) (+0.95) (+0.84) (-0.00) ( - )

20 Valuation domain : [-1.000; +1.000]

21 Uncertainty model : uniform(a=2.0,b=2.0)

22 Likelihood domain : [-1.0;+1.0]

23 Confidence level : 0.80 (90.0%)

24 Confident majority : 0.14 (57.1%)

25 Determinateness : 0.24 (62.1%)

Despite lower likelihood values (see the g90 relation table above), we keep the same
confident majority level of 57.1% (see Line 24 above)and, hence, also the same 90%-
confident outranking digraph.

For concluding, it is worthwhile noticing again that it is the neutral value of our bipolar-
valued epistemic logic that allows us to easily handle alpha% confidence or not of out-
ranking situations when confronted with uncertain criteria significances. Remarkable
furthermore is the usage, the standard Gaussian error function provides by delivering
signed likelihood values immediately concerning either a positive relational statement, or
when negative, its negated version.

Back to Content Table (page 1)

5 On stable outrankings with ordinal criteria signifi-

cance

� Cardinal or ordinal criteria significances (page 34)

� Qualifying the stability of outranking situations (page 35)

� Computing the stability denotation of outranking situations (page 39)

� Robust bipolar-valued outranking digraphs (page 41)
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5.1 Cardinal or ordinal criteria significances

The required cardinal significance weights of the performance criteria represent the
Achilles ’ heel of the outranking approach. Rarely will indeed a decision maker be cogni-
tively competent for suggesting precise decimal-valued criteria significance weights. More
often, the decision problem will involve more or less equally important decision objectives
with more or less equi-significant criteria. A random example of such a decision problem
may be generated with the randomPerfTabs.Random3ObjectivesPerformanceTableau

class.

Listing 5.1: Random 3 Objectives Performance Tableau

1 >>> from randomPerfTabs import Random3ObjectivesPerformanceTableau

2 >>> t = Random3ObjectivesPerformanceTableau(numberOfActions=7,\

3 numberOfCriteria=9,seed=102)

4 >>> t

5 *------- PerformanceTableau instance description ------*

6 Instance class : Random3ObjectivesPerformanceTableau

7 Seed : 102

8 Instance name : random3ObjectivesPerfTab

9 # Actions : 7

10 # Objectives : 3

11 # Criteria : 9

12 Attributes : ['name', 'valueDigits', 'BigData', 'OrdinalScales',

13 'missingDataProbability', 'negativeWeightProbability',

14 'randomSeed', 'sumWeights', 'valuationPrecision',

15 'commonScale', 'objectiveSupportingTypes', 'actions',

16 'objectives', 'criteriaWeightMode', 'criteria',

17 'evaluation', 'weightPreorder']

18 >>> t.showObjectives()

19 *------ show objectives -------"

20 Eco: Economical aspect

21 ec1 criterion of objective Eco 8

22 ec4 criterion of objective Eco 8

23 ec8 criterion of objective Eco 8

24 Total weight: 24.00 (3 criteria)

25 Soc: Societal aspect

26 so2 criterion of objective Soc 12

27 so7 criterion of objective Soc 12

28 Total weight: 24.00 (2 criteria)

29 Env: Environmental aspect

30 en3 criterion of objective Env 6

31 en5 criterion of objective Env 6

32 en6 criterion of objective Env 6

33 en9 criterion of objective Env 6

34 Total weight: 24.00 (4 criteria)

In this example (see Listing 5.1), we face seven decision alternatives that are assessed with
respect to three equally important decision objectives concerning: first, an economical
aspect with a coalition of three performance criteria of significance weight 8, secondly, a
societal aspect with a coalition of two performance criteria of significance weight 12, and
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thirdly, an environmental aspect with a coalition four performance criteria of significance
weight 6.

The question we tackle is the following: How dependent on the actual values of the
significance weights appears the corresponding bipolar-valued outranking digraph ? In the
previous section, we assumed that the criteria significance weights were random variables.
Here, we shall assume that we know for sure only the preordering of the significance
weights. In our example we see indeed three increasing weight equivalence classes (Listing
5.2).

Listing 5.2: Significance weights preorder

1 >>> t.showWeightPreorder()

2 ['en3', 'en5', 'en6', 'en9'] (6) <

3 ['ec1', 'ec4', 'ec8'] (8) <

4 ['so2', 'so7'] (12)

How stable appear now the outranking situations when assuming only ordinal significance
weights?

5.2 Qualifying the stability of outranking situations

Let us construct the normalized bipolar-valued outranking digraph corresponding with
the previous 3 Objectives performance tableau t.

Listing 5.3: Example Bipolar Outranking Digraph

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> g = BipolarOutrankingDigraph(t,Normalized=True)

3 >>> g.showRelationTable()

4 * ---- Relation Table -----

5 r(>=) | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'

6 ------|------------------------------------------------

7 'a1' | +1.00 -0.42 +0.00 -0.69 +0.39 +0.11 -0.06

8 'a2' | +0.58 +1.00 +0.83 +0.00 +0.58 +0.58 +0.58

9 'a3' | +0.25 -0.33 +1.00 +0.00 +0.50 +1.00 +0.25

10 'a4' | +0.78 +0.00 +0.61 +1.00 +1.00 +1.00 +0.67

11 'a5' | -0.11 -0.50 -0.25 -0.89 +1.00 +0.11 -0.14

12 'a6' | +0.22 -0.42 +0.00 -1.00 +0.17 +1.00 -0.11

13 'a7' | +0.22 -0.50 +0.17 -0.06 +0.78 +0.42 +1.00

We notice on the principal diagonal, the certainly validated reflexive terms +1.00 (see
Listing 5.3 Lines 7-13). Now, we know for sure that unanimous outranking situations are
completely independent of the significance weights. Similarly, all outranking situations
that are supported by a majority significance in each coalition of equi-significant criteria
are also in fact independent of the actual importance we attach to each individual criteria
coalition. But we are also able to test (see [BIS-2014p]) if an outranking situation is
independent of all the potential significance weights that respect the given preordering of
the weights. Mind that there are, for sure, always outranking situations that are indeed
dependent on the very values we allocate to the criteria significances.
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Such a stability denotation of outranking situations is readily available with the common
showRelationTable() method.

Listing 5.4: Relation Table with Stability Denotation

1 >>> g.showRelationTable(StabilityDenotation=True)

2 * ---- Relation Table -----

3 r/(stab) | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'

4 ----------|------------------------------------------

5 'a1' | +1.00 -0.42 +0.00 -0.69 +0.39 +0.11 -0.06

6 | (+4) (-2) (+0) (-3) (+2) (+2) (-1)

7 'a2' | +0.58 +1.00 +0.83 0.00 +0.58 +0.58 +0.58

8 | (+2) (+4) (+3) (+2) (+2) (+2) (+2)

9 'a3' | +0.25 -0.33 +1.00 0.00 +0.50 +1.00 +0.25

10 | (+2) (-2) (+4) (0) (+2) (+2) (+1)

11 'a4' | +0.78 0.00 +0.61 +1.00 +1.00 +1.00 +0.67

12 | (+3) (-1) (+3) (+4) (+4) (+4) (+2)

13 'a5' | -0.11 -0.50 -0.25 -0.89 +1.00 +0.11 -0.14

14 | (-2) (-2) (-2) (-3) (+4) (+2) (-2)

15 'a6' | +0.22 -0.42 0.00 -1.00 +0.17 +1.00 -0.11

16 | (+2) (-2) (+1) (-2) (+2) (+4) (-2)

17 'a7' | +0.22 -0.50 +0.17 -0.06 +0.78 +0.42 +1.00

18 | (+2) (-2) (+1) (-1) (+3) (+2) (+4)

We may thus distinguish the following bipolar-valued stability levels:

� +4 | -4 : unanimous outranking | outranked situation. The pairwise trivial
reflexive outrankings, for instance, all show this stability level;

� +3 | -3 : validated outranking | outranked situation in each coalition of equi-
significant criteria. This is, for instance, the case for the outranking situation
observed between alternatives a1 and a4 (see Listing 5.4 Lines 6 and 12);

� +2 | -2 : outranking | outranked situation validated with all potential sig-
nificance weights that are compatible with the given significance preorder (see
Listing 5.2. This is case for the comparison of alternatives a1 and a2 (see
Listing 5.4 Lines 6 and 8);

� +1 | -1 : validated outranking | outranked situation with the given signifi-
cance weights, a situation we may observe between alternatives a3 and a7 (see
Listing 5.4 Lines 10 and 16);

� 0 : indeterminate relational situation, like the one between alternatives a1
and a3 (see Listing 5.4 Lines 6 and 10).

It is worthwhile noticing that in the one limit case where all performance criteria appear
equi-significant, i.e. there is given a single equivalence class containing all the performance
criteria, we may only distinguish stability levels +4 and +3 (rep. -4 and -3). Furthermore,
when in such a case an outranking (resp. outranked) situation is validated at level +3
(resp. -3), no potential preordering of the criteria significances exists that could qualify
the same situation as outranked (resp. outranking) at level -2 (resp. +2).

In the other limit case, when all performance criteria admit different significances, i.e. the
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significance weights may be linearly ordered, no stability level +3 or -3 may be observed.

As mentioned above, all reflexive comparisons confirm an unanimous outranking situa-
tion: all decision alternatives are indeed trivially as well performing as themselves. But
there appear also two non reflexive unanimous outranking situations: when comparing,
for instance, alternative a4 with alternatives a5 and a6 (see Listing 5.4 Lines 14 and 16).

Let us inspect the details of how alternatives a4 and a5 compare.

Listing 5.5: Comparing Decision Alternatives a4 and a5

1 >>> g.showPairwiseComparison('a4','a5')

2 *------------ pairwise comparison ----*

3 Comparing actions : (a4, a5)

4 crit. wght. g(x) g(y) diff | ind pref r() |

5 ec1 8.00 85.19 46.75 +38.44 | 5.00 10.00 +8.00 |

6 ec4 8.00 72.26 8.96 +63.30 | 5.00 10.00 +8.00 |

7 ec8 8.00 44.62 35.91 +8.71 | 5.00 10.00 +8.00 |

8 en3 6.00 80.81 31.05 +49.76 | 5.00 10.00 +6.00 |

9 en5 6.00 49.69 29.52 +20.17 | 5.00 10.00 +6.00 |

10 en6 6.00 66.21 31.22 +34.99 | 5.00 10.00 +6.00 |

11 en9 6.00 50.92 9.83 +41.09 | 5.00 10.00 +6.00 |

12 so2 12.00 49.05 12.36 +36.69 | 5.00 10.00 +12.00 |

13 so7 12.00 55.57 44.92 +10.65 | 5.00 10.00 +12.00 |

14 Valuation in range: -72.00 to +72.00; global concordance: +72.00

Alternative a4 is indeed performing unanimously at least as well as alternative a5 : r(a4
outranks a5) = +1.00 (see Listing 5.4 Line 11).

The converse comparison does not, however, deliver such an unanimous outranked situ-
ation. This comparison only qualifies at stability level -3 (see Listing 5.4 Line 13 r(a5
outranks a4) = 0.89 ).

Listing 5.6: Comparing Decision Alternatives a5 and a4

1 >>> g.showPairwiseComparison('a5','a4')

2 *------------ pairwise comparison ----*

3 Comparing actions : (a5, a4)

4 crit. wght. g(x) g(y) diff | ind pref r() |

5 ec1 8.00 46.75 85.19 -38.44 | 5.00 10.00 -8.00 |

6 ec4 8.00 8.96 72.26 -63.30 | 5.00 10.00 -8.00 |

7 ec8 8.00 35.91 44.62 -8.71 | 5.00 10.00 +0.00 |

8 en3 6.00 31.05 80.81 -49.76 | 5.00 10.00 -6.00 |

9 en5 6.00 29.52 49.69 -20.17 | 5.00 10.00 -6.00 |

10 en6 6.00 31.22 66.21 -34.99 | 5.00 10.00 -6.00 |

11 en9 6.00 9.83 50.92 -41.09 | 5.00 10.00 -6.00 |

12 so2 12.00 12.36 49.05 -36.69 | 5.00 10.00 -12.00 |

13 so7 12.00 44.92 55.57 -10.65 | 5.00 10.00 -12.00 |

14 Valuation in range: -72.00 to +72.00; global concordance: -64.00

Indeed, on criterion ec8 we observe a small negative performance difference of -8.71 (see
Listing 5.6 Line 7) which is effectively below the supposed preference discrimination
threshold of 10.00. Yet, the outranked situation is supported by a majority of crite-
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ria in each decision objective. Hence, the reported preferential situation is completely
independent of any chosen significance weights.

Let us now consider a comparison, like the one between alternatives a2 and a1, that is
only qualified at stability level +2, resp. -2.

Listing 5.7: Comparing Decision Alternatives a2 and a1

1 >>> g.showPairwiseOutrankings('a2','a1')

2 *------------ pairwise comparison ----*

3 Comparing actions : (a2, a1)

4 crit. wght. g(x) g(y) diff | ind pref r() |

5 ec1 8.00 89.77 38.11 +51.66 | 5.00 10.00 +8.00 |

6 ec4 8.00 86.00 22.65 +63.35 | 5.00 10.00 +8.00 |

7 ec8 8.00 89.43 77.02 +12.41 | 5.00 10.00 +8.00 |

8 en3 6.00 20.79 58.16 -37.37 | 5.00 10.00 -6.00 |

9 en5 6.00 23.83 31.40 -7.57 | 5.00 10.00 +0.00 |

10 en6 6.00 18.66 11.41 +7.25 | 5.00 10.00 +6.00 |

11 en9 6.00 26.65 44.37 -17.72 | 5.00 10.00 -6.00 |

12 so2 12.00 89.12 22.43 +66.69 | 5.00 10.00 +12.00 |

13 so7 12.00 84.73 28.41 +56.32 | 5.00 10.00 +12.00 |

14 Valuation in range: -72.00 to +72.00; global concordance: +42.00

15 *------------ pairwise comparison ----*

16 Comparing actions : (a1, a2)

17 crit. wght. g(x) g(y) diff | ind pref r() |

18 ec1 8.00 38.11 89.77 -51.66 | 5.00 10.00 -8.00 |

19 ec4 8.00 22.65 86.00 -63.35 | 5.00 10.00 -8.00 |

20 ec8 8.00 77.02 89.43 -12.41 | 5.00 10.00 -8.00 |

21 en3 6.00 58.16 20.79 +37.37 | 5.00 10.00 +6.00 |

22 en5 6.00 31.40 23.83 +7.57 | 5.00 10.00 +6.00 |

23 en6 6.00 11.41 18.66 -7.25 | 5.00 10.00 +0.00 |

24 en9 6.00 44.37 26.65 +17.72 | 5.00 10.00 +6.00 |

25 so2 12.00 22.43 89.12 -66.69 | 5.00 10.00 -12.00 |

26 so7 12.00 28.41 84.73 -56.32 | 5.00 10.00 -12.00 |

27 Valuation in range: -72.00 to +72.00; global concordance: -30.00

In both comparisons, the performances observed with respect to the environmental de-
cision objective are not validating with a significant majority the otherwise unanimous
outranking, resp. outranked situations. Hence, the stability of the reported preferential
situations is in fact dependent on choosing significance weights that are compatible with
the given significance weights preorder (see Significance weights preorder (page 35)).

Let us finally inspect a comparison that is only qualified at stability level +1, like the
one between alternatives a7 and a3 (see Listing 5.8).

Listing 5.8: Comparing Decision Alternatives a7 and a3

1 >>> g.showPairwiseOutrankings('a7','a3')

2 *------------ pairwise comparison ----*

3 Comparing actions : (a7, a3)

4 crit. wght. g(x) g(y) diff | ind pref r() |

5 ec1 8.00 15.33 80.19 -64.86 | 5.00 10.00 -8.00 |

(continues on next page)

38



(continued from previous page)

6 ec4 8.00 36.31 68.70 -32.39 | 5.00 10.00 -8.00 |

7 ec8 8.00 38.31 91.94 -53.63 | 5.00 10.00 -8.00 |

8 en3 6.00 30.70 46.78 -16.08 | 5.00 10.00 -6.00 |

9 en5 6.00 35.52 27.25 +8.27 | 5.00 10.00 +6.00 |

10 en6 6.00 69.71 1.65 +68.06 | 5.00 10.00 +6.00 |

11 en9 6.00 13.10 14.85 -1.75 | 5.00 10.00 +6.00 |

12 so2 12.00 68.06 58.85 +9.21 | 5.00 10.00 +12.00 |

13 so7 12.00 58.45 15.49 +42.96 | 5.00 10.00 +12.00 |

14 Valuation in range: -72.00 to +72.00; global concordance: +12.00

15 *------------ pairwise comparison ----*

16 Comparing actions : (a3, a7)

17 crit. wght. g(x) g(y) diff | ind pref r() |

18 ec1 8.00 80.19 15.33 +64.86 | 5.00 10.00 +8.00 |

19 ec4 8.00 68.70 36.31 +32.39 | 5.00 10.00 +8.00 |

20 ec8 8.00 91.94 38.31 +53.63 | 5.00 10.00 +8.00 |

21 en3 6.00 46.78 30.70 +16.08 | 5.00 10.00 +6.00 |

22 en5 6.00 27.25 35.52 -8.27 | 5.00 10.00 +0.00 |

23 en6 6.00 1.65 69.71 -68.06 | 5.00 10.00 -6.00 |

24 en9 6.00 14.85 13.10 +1.75 | 5.00 10.00 +6.00 |

25 so2 12.00 58.85 68.06 -9.21 | 5.00 10.00 +0.00 |

26 so7 12.00 15.49 58.45 -42.96 | 5.00 10.00 -12.00 |

27 Valuation in range: -72.00 to +72.00; global concordance: +18.00

In both cases, choosing significances that are just compatible with the given weights
preorder will not always result in positively validated outranking situations.

5.3 Computing the stability denotation of outranking situations

Stability levels 4 and 3 are easy to detect, the case given. Detecting a stability level 2
is far less obvious. Now, it is precisely again the bipolar-valued epistemic characteristic
domain that will give us a way to implement an effective test for stability level +2 and
-2 (see [BIS-2004_1p], [BIS-2004_2p]).

Let us consider the significance equivalence classes we observe in the given weights pre-
order. Here we observe three classes: 6, 8, and 12, in increasing order (see Listing 5.2).
In the pairwise comparisons shown above these equivalence classes may appear positively
or negatively, besides the indeterminate significance of value 0. We thus get the following
ordered bipolar list of significance weights:

W = [-12. -8. -6, 0, 6, 8, 12].

In all the pairwise marginal comparisons shown in the previous Section, we may observe
that each one of the nine criteria assigns one precise item out of this listW. Let us denote
q[i] the number of criteria assigning item W[i], and Q[i] the cumulative sums of these
q[i] counts, where i is an index in the range of the length of list W.

In the comparison of alternatives a2 and a1, for instance (see Listing 5.7), we observe
the following counts:
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W[i] -12 -8 -6 0 6 8 12

q[i] 0 0 2 1 1 3 2
Q[i] 0 0 2 3 4 7 9

Let use denote -q and -Q the reversed versions of the q and the Q lists. We thus obtain
the following result.

W[i] -12 -8 -6 0 6 8 12

-q[i] 2 3 1 1 2 0 0
-Q[i] 2 5 6 7 9 9 9

Now, a pairwise outranking situation will be qualified at stability level +2, i.e. positively
validated with any significance weights that are compatible with the given weights pre-
order, when for all i, we observe Q[i] <= -Q[i] and there exists one i such that Q[i]
< -Q[i]. Similarly, a pairwise outranked situation will be qualified at stability level -2,
when for all i, we observe Q[i] >= -Q[i] and there exists one i such that Q[i] > -Q[i]
(see [BIS-2004_2p]).

We may verify, for instance, that the outranking situation observed between a2 and a1
does indeed verify this first order distributional dominance condition.

W[i] -12 -8 -6 0 6 8 12

Q[i] 0 0 2 3 4 7 9
-Q[i] 2 5 6 7 9 9 9

Notice that outranking situations qualified at stability levels 4 and 3, evidently also verify
the stability level 2 test above. The outranking situation between alternatives a7 and a3
does not, however, verify this test (see Listing 5.8).

W[i] -12 -8 -6 0 6 8 12

q[i] 0 3 1 0 3 0 2
Q[i] 0 3 4 4 7 7 9
-Q[i] 2 2 5 5 6 9 9

This time, not all the Q[i] are lower or equal than the corresponding -Q[i] terms. Hence
the outranking situation between a7 and a3 is not positively validated with all potential
significance weights that are compatible with the given weights preorder.

Using this stability denotation, we may, hence, define the following robust version of a
bipolar-valued outranking digraph.
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5.4 Robust bipolar-valued outranking digraphs

We say that decision alternative x robustly outranks decision alternative y when

� x positively outranks y at stability level higher or equal to 2 and we may not observe
any considerable counter-performance of x on a discordant criterion.

Dually, we say that decision alternative x does not robustly outrank decision alter-
native y when

� x negatively outranks y at stability level lower or equal to -2 and we may not
observe any considerable better performance of x on a discordant criterion.

The corresponding robust outranking digraph may be computed with the
outrankingDigraphs.RobustOutrankingDigraph class as follows.

Listing 5.9: Robust outranking digraph

1 >>> from outrankingDigraphs import RobustOutrankingDigraph

2 >>> rg = RobustOutrankingDigraph(t)

3 >>> rg

4 *------- Object instance description ------*

5 Instance class : RobustOutrankingDigraph

6 Instance name : robust_random3ObjectivesPerfTab

7 # Actions : 7

8 # Criteria : 9

9 Size : 22

10 Determinateness (%) : 68.45

11 Valuation domain : [-1.00;1.00]

12 Attributes : ['name', 'methodData', 'actions', 'order',

13 'criteria', 'evaluation', 'vetos',

14 'valuationdomain', 'cardinalRelation',

15 'ordinalRelation', 'equisignificantRelation',

16 'unanimousRelation', 'relation',

17 'gamma', 'notGamma']

18 >>> rg.showRelationTable(StabilityDenotation=True)

19 * ---- Relation Table -----

20 r/(stab) | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'

21 ---------|------------------------------------------------------------

22 'a1' | +1.00 -0.42 +0.00 -0.69 +0.39 +0.11 +0.00

23 | (+4) (-2) (+0) (-3) (+2) (+2) (-1)

24 'a2' | +0.58 +1.00 +0.83 +0.00 +0.58 +0.58 +0.58

25 | (+2) (+4) (+3) (+2) (+2) (+2) (+2)

26 'a3' | +0.25 -0.33 +1.00 +0.00 +0.50 +1.00 +0.00

27 | (+2) (-2) (+4) (+0) (+2) (+2) (+1)

28 'a4' | +0.78 +0.00 +0.61 +1.00 +1.00 +1.00 +0.67

29 | (+3) (-1) (+3) (+4) (+4) (+4) (+2)

30 'a5' | -0.11 -0.50 -0.25 -0.89 +1.00 +0.11 -0.14

31 | (-2) (-2) (-2) (-3) (+4) (+2) (-2)

32 'a6' | +0.22 -0.42 +0.00 -1.00 +0.17 +1.00 -0.11

33 | (+2) (-2) (+1) (-2) (+2) (+4) (-2)

34 'a7' | +0.22 -0.50 +0.00 +0.00 +0.78 +0.42 +1.00

(continues on next page)
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35 | (+2) (-2) (+1) (-1) (+3) (+2) (+4)

We may notice that all outranking situations, qualified at stability level +1 or -1, are
now put to an indeterminate status. In the example here, we actually drop three positive
outrankings: between a3 and a7, between a7 and a3, and between a6 and a3, where the
last situation is actually already put to doubt by a veto situation (see Listing 5.9 Lines
22-35). We drop as well three negative outrankings: between a1 and a7, between a4 and
a2, and between a7 and a4 (see Listing 5.9 Lines 22-35).

Notice by the way that outranking (resp. outranked) situations, although qualified at level
+2 or +3 (resp. -2 or -3) may nevertheless be put to doubt by considerable performance
differences. We may observe such an outranking situation when comparing, for instance,
alternatives a2 and a4 (see Listing 5.9 Lines 24-25).

Listing 5.10: Comparing alternatives a2 and a4

1 >>> rg.showPairwiseComparison('a2','a4')

2 *------------ pairwise comparison ----*

3 Comparing actions : (a2, a4)

4 crit. wght. g(x) g(y) diff | ind pref r() | v veto

5 -------------------------------------------------------------------------

6 ec1 8.00 89.77 85.19 +4.58 | 5.00 10.00 +8.00 |

7 ec4 8.00 86.00 72.26 +13.74 | 5.00 10.00 +8.00 |

8 ec8 8.00 89.43 44.62 +44.81 | 5.00 10.00 +8.00 |

9 en3 6.00 20.79 80.81 -60.02 | 5.00 10.00 -6.00 | 60.00 -1.00

10 en5 6.00 23.83 49.69 -25.86 | 5.00 10.00 -6.00 |

11 en6 6.00 18.66 66.21 -47.55 | 5.00 10.00 -6.00 |

12 en9 6.00 26.65 50.92 -24.27 | 5.00 10.00 -6.00 |

13 so2 12.00 89.12 49.05 +40.07 | 5.00 10.00 +12.00 |

14 so7 12.00 84.73 55.57 +29.16 | 5.00 10.00 +12.00 |

15 Valuation in range: -72.00 to +72.00; global concordance: +24.00

Despite being robust, the apparent positive outranking situation between alternatives a2
and a4 is indeed put to doubt by a considerable counter-performance (-60.02) of a2 on
criterion en3, a negative difference which exceeds slightly the assumed veto discrimination
threshold v = 60.00 (see Listing 5.10 Line 9).

We may finally compare in Fig. 1 the standard and the robust version of the corresponding
strict outranking digraphs, both oriented by their respective identical initial and terminal
prekernels.
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Fig. 1: Standard versus robust strict outranking digraphs oriented by their initial and
terminal prekernels

The robust version drops two strict outranking situations: between a4 and a7 and be-
tween a7 and a1. The remaining 14 strict outranking (resp. outranked) situations are
now all verified at a stability level of +2 and more (resp. -2 and less). They are, hence,
only depending on potential significance weights that must respect the given significance
preorder (see Listing 5.2).

To appreciate the apparent orientation of the standard and robust strict outranking
digraphs shown in Fig. 1, let us have a final heat map view on the underlying performance
tableau ordered by the NetFlows ranking rule.

>>> t.showHTMLPerformanceHeatmap(Correlations=True,rankingRule='NetFlows')
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Fig. 2: Heat map of the random 3 objectives performance tableau ordered by the NetFlows
ranking rule

As the inital prekernel is here validated at stability level +2, recommending alternatives
a4, as well as a2, as potential best choices, appears well justified. Alternative a4 repre-
sents indeed an overall best compromise choice between all decision objectives, whereas
alternative a2 gives an unanimous best choice with respect to two out of three decision
objectives. Up to the decision maker to make his final choice.

For concluding, let us mention that it is precisely again our bipolar-valued logical charac-
teristic framework that provides us here with a first order distributional dominance
test for effectively qualifying the stability level 2 robustness of an outranking digraph
when facing performance tableaux with criteria of only ordinal-valued significances. A
real world application of our stability analysis with such a kind of performance tableau
may be consulted in [BIS-2015p].

6 On unopposed outrankings with multiple decision

objectives

� Characterising unopposed multiobjective outranking situations (page 45)

� Computing Pareto efficient multiobjective choices (page 48)

When facing a performance tableau involving multiple decision objectives, the robustness
level +/-3, introduced in the previous Section, may lead to distinguishing what we call
unopposed outranking situations, like the one shown between alternative p4 and p1
(𝑟(𝑝4 % 𝑝1) = +0.78, see Listing 5.4 Line11), namely preferential situations that are
more or less validated or invalidated by all the decision objectives.
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6.1 Characterising unopposed multiobjective outranking situations

Formally, we say that decision alternative x outranks decision alternative y unopposed
when

� x positively outranks y on one or more decision objective without x being positively
outranked by y on any decision objective.

Dually, we say that decision alternative x does not outrank decision alternative y
unopposed when

� x is positively outranked by y on one or more decision objective without x outrank-
ing y on any decision objective.

Let us reconsider, for instance, the previous performance tableau with three decision
objectives (see Listing 5.1):

Listing 6.1: Performance tableau with three decision ob-
jectives

1 >>> from randomPerfTabs import Random3ObjectivesPerformanceTableau

2 >>> t = Random3ObjectivesPerformanceTableau(numberOfActions=7,\

3 numberOfCriteria=9,seed=102)

4 >>> t.showObjectives()

5 *------ show objectives -------"

6 Eco: Economical aspect

7 ec1 criterion of objective Eco 8

8 ec4 criterion of objective Eco 8

9 ec8 criterion of objective Eco 8

10 Total weight: 24.00 (3 criteria)

11 Soc: Societal aspect

12 so2 criterion of objective Soc 12

13 so7 criterion of objective Soc 12

14 Total weight: 24.00 (2 criteria)

15 Env: Environmental aspect

16 en3 criterion of objective Env 6

17 en5 criterion of objective Env 6

18 en6 criterion of objective Env 6

19 en9 criterion of objective Env 6

20 Total weight: 24.00 (4 criteria)

We notice in this example three decision objectives of equal importance (see Listing 6.1).
What will be the outranking situations that are positively (resp. negatively) validated
for each one of the decision objectives taken individually ?

We may obtain such unopposed multiobjective outranking situations by operating an
epistemic o-average fusion (see the digraphsTools.symmetricAverage method) of
the marginal outranking digraphs restricted to the coalition of criteria supporting each
one of the decision objectives (see Listing 6.2 below).
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Listing 6.2: Computing unopposed outranking situations

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> geco = BipolarOutrankingDigraph(t,objectivesSubset=['Eco'])

3 >>> gsoc = BipolarOutrankingDigraph(t,objectivesSubset=['Soc'])

4 >>> genv = BipolarOutrankingDigraph(t,objectivesSubset=['Env'])

5 >>> from digraphs import FusionLDigraph

6 >>> objectiveWeights = [t.objectives[obj]['weight']\

7 for obj in t.objectives]

8 >>> uopg = FusionLDigraph([geco,gsoc,genv],operator='o-average',\

9 weights=objectiveWeights)

10 >>> uopg.showRelationTable(ReflexiveTerms=False)

11 * ---- Relation Table -----

12 r | 'p1' 'p2' 'p3' 'p4' 'p5' 'p6' 'p7'

13 -----|------------------------------------------------------------

14 'p1' | - +0.00 +0.00 -0.69 +0.39 +0.11 +0.00

15 'p2' | +0.00 - +0.83 +0.00 +0.00 +0.00 +0.00

16 'p3' | +0.00 -0.33 - +0.00 +0.50 +0.00 +0.00

17 'p4' | +0.78 +0.00 +0.61 - +1.00 +1.00 +0.67

18 'p5' | -0.11 +0.00 +0.00 -0.89 - +0.11 +0.00

19 'p6' | +0.00 +0.00 +0.00 -0.44 +0.17 - +0.00

20 'p7' | +0.00 +0.00 +0.00 +0.00 +0.78 +0.42 -

21 Valuation domain: [-1.000; 1.000]

Positive (resp. negative) 𝑟(𝑥 % 𝑦) characteristic values, like 𝑟(𝑝1 % 𝑝5) = 0.39 (see Listing
6.2 Line 14), show hence only outranking situations being validated (resp. invalidated)
by one or more decision objectives without being invalidated (resp. validated) by any
other decision objective.

For easily computing this kind of unopposed multiobjective outranking di-
graphs, the outrankingDigraphs module conveniently provides a corresponding
outrankingDigraphs.UnOpposedBipolarOutrankingDigraph constructor.

Listing 6.3: Unopposed outranking digraph constructor

1 >>> from outrankingDigraphs import\

2 UnOpposedBipolarOutrankingDigraph

3 >>> uopg = UnOpposedBipolarOutrankingDigraph(t)

4 >>> uopg

5 *------- Object instance description ------*

6 Instance class : UnOpposedBipolarOutrankingDigraph

7 Instance name : unopposed_outrankings

8 # Actions : 7

9 # Criteria : 9

10 Size : 13

11 Oppositeness (%) : 43.48

12 Determinateness (%) : 61.71

13 Valuation domain : [-1.00;1.00]

14 Attributes : ['name', 'actions', 'valuationdomain', 'objectives',

15 'criteria', 'methodData', 'evaluation', 'order',

(continues on next page)
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16 'runTimes', 'relation', 'marginalRelationsRelations',

17 'gamma', 'notGamma']

18 >>> uopg.computeOppositeness(InPercents=True)

19 {'standardSize': 23, 'unopposedSize': 13,

20 'oppositeness': 43.47826086956522}

The resulting unopposed outranking digraph keeps in fact 13 (see Listing 6.3 Line 18-20)
out of the 23 positively validated standard outranking situations, leading to a degree of
oppositeness -preferential disagreement between decision objectives- of (1.0−13/23) =
0.4348.

We may now, for instance, verify the unopposed status of the outranking situation ob-
served between alternatives p1 and p5.

Listing 6.4: Example of unopposed multiobjective out-
ranking situation

1 >>> uopg.showPairwiseComparison('p1','p5')

2 *------------ pairwise comparison ----*

3 Comparing actions : (p1, p5)

4 crit. wght. g(x) g(y) diff | ind pref r() |

5 ec1 8.00 38.11 46.75 -8.64 | 5.00 10.00 +0.00 |

6 ec4 8.00 22.65 8.96 +13.69 | 5.00 10.00 +8.00 |

7 ec8 8.00 77.02 35.91 +41.11 | 5.00 10.00 +8.00 |

8 en3 6.00 58.16 31.05 +27.11 | 5.00 10.00 +6.00 |

9 en5 6.00 31.40 29.52 +1.88 | 5.00 10.00 +6.00 |

10 en6 6.00 11.41 31.22 -19.81 | 5.00 10.00 -6.00 |

11 en9 6.00 44.37 9.83 +34.54 | 5.00 10.00 +6.00 |

12 so2 12.00 22.43 12.36 +10.07 | 5.00 10.00 +12.00 |

13 so7 12.00 28.41 44.92 -16.51 | 5.00 10.00 -12.00 |

14 Valuation in range: -72.00 to +72.00; global concordance: +28.00

In Listing 6.4 we see that alternative p1 does indeed positively outrank alternative p5
from the economic perspective (𝑟(𝑝1 %𝐸𝑐𝑜 𝑝5) = +16/24) as well as from the environ-
mental perspective (𝑟(𝑝1 %𝐸𝑛𝑣 𝑝5) = +12/24). Whereas, from the societal perspective,
both alternatives appear incomparable (𝑟(𝑝1 %𝑆𝑜𝑐 𝑝5) = 0/24).

When fixed proportional criteria significances per objective are given, these outranking
situations appear hence stable with respect to all possible importance weights we could
allocate to the decision objectives.

This gives way for computing multiobjective Pareto efficient choice recommendations.
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6.2 Computing Pareto efficient multiobjective choices

Indeed, best choice recommendations, computed from an unopposed multiobjective out-
ranking digraph, will in fact deliver Pareto efficient choices.

Listing 6.5: Pareto efficient multiobjective choice recom-
mendation

1 >>> uopg.showBestChoiceRecommendation()

2 Best choice recommendation(s) (BCR)

3 (in decreasing order of determinateness)

4 Credibility domain: [-1.00,1.00]

5 === >> potential best choice(s)

6 choice : ['p2', 'p4', 'p7']

7 independence : 0.00

8 dominance : 0.33

9 absorbency : 0.00

10 covering (%) : 33.33

11 determinateness (%) : 50.00

12 === >> potential worst choice(s)

13 choice : ['p3', 'p5', 'p6', 'p7']

14 independence : 0.00

15 dominance : -0.61

16 absorbency : 0.11

17 covered (%) : 33.33

18 determinateness (%) : 50.00

Our previous robust best choice recommendation (p2 and p4, see Fig. 1) remains, in this
example here, stable. We recover indeed the best choice recommendation [‘p2’, ‘p4’, ‘p7’]
(see Listing 6.5 Line 6). Yet, notice that decision alternative p7 appears to be at the
same time a potential best as well as a potential worst choice recommendation (see Line
13), a consequence of p7 being completely incomparable to the other decision alternatives
when restricting the comparability to only unopposed strict outranking situations.

We may visualize this kind of Pareto efficient result in Fig. 1 below.

>>> (~(-uopg)).exportGraphViz(fileName = 'unopDigraph',\

bestChoice = ['p2', 'p4'],\

worstChoice = ['p3', 'p5', 'p6'])

*---- exporting a dot file for GraphViz tools ---------*

Exporting to unopDigraph.dot

dot -Grankdir=BT -Tpng unopDigraph.dot -o unopDigraph.png
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Fig. 1: Standard versus unopposed strict outranking digraphs oriented by best and worst
choice recommendations

In order to make now an eventual best unique choice, a decision maker will necessarily
have to weight, in a second stage of the decision aiding process, the relative importance
of the individual decision objectives (see tutorial on computing a best choice recommen-
dation).

7 Two-stage elections with multipartisan primary se-

lection

Let us finally remark that in a social choice context, where decision objectives would
match different political parties, Pareto efficient choice recommendations represent in
fact multipartisan social choices that could judiciously deliver the primary selection
in a two stage election system.

To compute such Pareto efficient social choices we need to, first, convert a given linear
voting profile (with polls) into a corresponding performance tableau.
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7.1 Converting voting profiles into performance tableaux

We shall illustrate this point with a voting profile we discuss in the tutorial on generating
random linear voting profiles.

Listing 7.1: Example of a 3 parties voting profile

1 >>> from votingProfiles import RandomLinearVotingProfile

2 >>> lvp = RandomLinearVotingProfile(numberOfCandidates=15,

3 numberOfVoters=1000,

4 WithPolls=True,

5 partyRepartition=0.5,

6 other=0.1,

7 seed=0.9189670954954139)

8 >>> lvp

9 *------- VotingProfile instance description ------*

10 Instance class : RandomLinearVotingProfile

11 Instance name : randLinearProfile

12 # Candidates : 15

13 # Voters : 1000

14 Attributes : ['name', 'seed', 'candidates',

15 'voters', 'WithPolls', 'RandomWeights',

16 'sumWeights', 'poll1', 'poll2',

17 'other', partyRepartition,

18 'linearBallot', 'ballot']

19 >>> lvp.showRandomPolls()

20 Random repartition of voters

21 Party_1 supporters : 460 (46.0%)

22 Party_2 supporters : 436 (43.6%)

23 Other voters : 104 (10.4%)

24 *---------------- random polls ---------------

25 Party_1(46.0%) | Party_2(43.6%)| expected

26 -----------------------------------------------

27 a06 : 19.91% | a11 : 22.94% | a06 : 15.00%

28 a07 : 14.27% | a08 : 15.65% | a11 : 13.08%

29 a03 : 10.02% | a04 : 15.07% | a08 : 09.01%

30 a13 : 08.39% | a06 : 13.40% | a07 : 08.79%

31 a15 : 08.39% | a03 : 06.49% | a03 : 07.44%

32 a11 : 06.70% | a09 : 05.63% | a04 : 07.11%

33 a01 : 06.17% | a07 : 05.10% | a01 : 05.06%

34 a12 : 04.81% | a01 : 05.09% | a13 : 05.04%

35 a08 : 04.75% | a12 : 03.43% | a15 : 04.23%

36 a10 : 04.66% | a13 : 02.71% | a12 : 03.71%

37 a14 : 04.42% | a14 : 02.70% | a14 : 03.21%

38 a05 : 04.01% | a15 : 00.86% | a09 : 03.10%

39 a09 : 01.40% | a10 : 00.44% | a10 : 02.34%

40 a04 : 01.18% | a05 : 00.29% | a05 : 01.97%

41 a02 : 00.90% | a02 : 00.21% | a02 : 00.51%

In this example (see linearVotingProfileWithPolls Lines 18-), we obtained 460
Party_1 supporters (46%), 436 Party_2 supporters (43.6%) and 104 other voters (10.4%).
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Favorite candidates of Party_1 supporters, with more than 10%, appeared to be a06
(19.91%), a07 (14.27%) and a03 (10.02%). Whereas for Party_2 supporters, favorite
candidates appeared to be a11 (22.94%), followed by a08 (15.65%), a04 (15.07%) and
a06 (13.4%).

We may convert this linear voting profile into a PerformanceTableau object where each
party corresponds to a decision objective.

Listing 7.2: Converting a voting profile into a perfor-
mance tableau

1 >>> lvp.save2PerfTab('votingPerfTab')

2 >>> from perfTabs import PerformanceTableau

3 >>> vpt = PerformanceTableau('votingPerfTab')

4 >>> vpt

5 *------- PerformanceTableau instance description ------*

6 Instance class : PerformanceTableau

7 Instance name : votingPerfTab

8 # Actions : 15

9 # Objectives : 3

10 # Criteria : 1000

11 Attributes : ['name', 'actions', 'objectives',

12 'criteria', 'weightPreorder', 'evaluation']

13 >>> vpt.objectives

14 OrderedDict([

15 ('party0', {'name': 'other', 'weight': Decimal('104'),

16 'criteria': ['v0003', 'v0008', 'v0011', ... ']}),

17 ('party1', {'name': 'party 1', 'weight': Decimal('460'),

18 'criteria': ['v0002', 'v0006', 'v0007', ...]}),

19 ('party2', {'name': 'party 2', 'weight': Decimal('436'),

20 'criteria': ['v0001', 'v0004', 'v0005', ... ]})

21 ])

In Listing 7.2 we first store the linear voting in a perfTabs.PerformanceTableau format
(see Line 1). In Line 3, we reload this performance tableau data. The three parties of
the linear voting profile represent three decision objectives and the voters are distributed
as performance criteria according to the party they support.

7.2 Multipartisan primary selection of eligible candidates

In order to make now a primary multipartisan selection of potential election winners,
we compute the corresponding unopposed multiobjective outranking digraph.

Listing 7.3: Computing unopposed multiobjective out-
ranking situations

1 >>> from outrankingDigraphs import \

2 UnOpposedBipolarOutrankingDigraph

3 >>> uog = UnOpposedBipolarOutrankingDigraph(vpt)

4 >>> uog

(continues on next page)
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5 *------- Object instance description ------*

6 Instance class : UnOpposedBipolarOutrankingDigraph

7 Instance name : unopposed_outrankings

8 # Actions : 15

9 # Criteria : 1000

10 Size : 34

11 Oppositeness (%) : 67.31

12 Determinateness (%) : 57.61

13 Valuation domain : [-1.00;1.00]

14 Attributes : ['name', 'actions', 'valuationdomain',

15 'objectives', 'criteria', 'methodData',

16 'evaluation', 'order', 'runTimes', '

17 relation', 'marginalRelationsRelations',

18 'gamma', 'notGamma']

From the potential 105 pairwise outranking situations, we keep 34 positively validated
outranking situations, leading to a degree of oppositeness between political parties of
67.31%.

We may visualize the corresponding bipolar-valued relation table by orienting the list of
candidates with the help of the initial and the terminal prekernels.

Listing 7.4: Visualizing the unopposed outranking rela-
tion

1 >>> uog.showPrekernels()

2 *--- Computing preKernels ---*

3 Dominant preKernels :

4 ['a11', 'a06', 'a13', 'a15']

5 independence : 0.0

6 dominance : 0.18

7 absorbency : -0.66

8 covering : 0.43

9 Absorbent preKernels :

10 ['a02', 'a04', 'a14', 'a03']

11 independence : 0.0

12 dominance : 0.0

13 absorbency : 0.37

14 covered : 0.46

15 >>> orientedCandidatesList = ['a06','a11','a13','a15',\

16 'a01','a05','a07','a08','a09','a10','a12',\

17 'a02','a03','a04','a14']

18 >>> uog.showHTMLRelationTable(\

19 tableTitle='Unopposed three-partisan outrankings')
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Fig. 1: Relation table of multipartisan outranking digraph

In Fig. 1, we may notice that the dominating outranking prekernel [‘a06’, ‘a11’, ‘a13’,
‘a15’] gathers in fact a multipartisan selection of potential election winners. It is
worthwhile noticing that in Fig. 1 the majority margins obtained from a linear voting
profile do verify the zero-sum rule (𝑟(𝑥 % 𝑦) + 𝑟(𝑦 % 𝑥) = 0.0). To each positive
outranking situation corresponds indeed an equivalent negative converse situation and
the resulting outranking and strict outranking digraphs are the same.

7.3 Secondary election winner determination

When restricting now, in a secondary election stage, the set of eligible candidates to this
dominating prekernel, we may compute the actual best social choice.

Listing 7.5: Secondary election winner recommendation

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> g2 = BipolarOutrankingDigraph(vpt,\

3 actionsSubset=['a06','a11','a13','a15'])

4 >>> g2.showRelationTable(ReflexiveTerms=False)

5 * ---- Relation Table -----

6 r | 'a06' 'a11' 'a13' 'a15'

7 .------|-------------------------------

8 'a06' | - +0.10 +0.48 +0.52

9 'a11' | -0.10 - +0.27 +0.29

(continues on next page)
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10 'a13' | -0.48 -0.27 - +0.19

11 'a15' | -0.52 -0.29 -0.19 -

12 Valuation domain: [-1.000; 1.000]

13 >>> g2.computeCondorcetWinners()

14 ['a06']

15 >>> g2.computeCopelandRanking()

16 ['a06', 'a11', 'a13', 'a15']

Candidate a06 appears clearly to be the winner of this election. Notice by the way
that the restricted pairwise outranking relation shown in Listing 7.5 represents a linear
ordering of the preselected candidates.

We may eventually check the quality of this best choice by noticing that candidate a06
represents indeed the simple majority winner, the instant-run-off winner, the Borda, as
well as the Condorcet winner of the initially given linear voting profile lvp (see Listing
7.1).

Listing 7.6: Secondary election winner recommendation
verification

1 >>> lvp.computeSimpleMajorityWinner()

2 ['a06']

3 >>> lvp.computeInstantRunoffWinner()

4 ['a06']

5 >>> lvp.computeBordaWinners()

6 ['a06']

7 >>> from votingProfiles import CondorcetDigraph

8 >>> cd = CondorcetDigraph(lvp)

9 >>> cd.condorcetWinners()

10 ['a06']

In our example voting profile here, the multipartisan primary selection stage appears
quite effective in reducing the number of eligible candidates to four out of a set of 15
candidates without btw rejecting the actual winning candidate.

7.4 Multipartisan preferences in divisive politics

However, in a very divisive two major party system, like in the US, where preferences
of the supporters of one party appear to be very opposite to the preferences of the
supporters of the other major party, the multipartisan outranking digraph will become
nearly indeterminate.

In Listing 7.7 below we generate such a divisive kind of linear voting profile with the help
of the DivisivePolitics flag5 (see Lines 4 and 13-19). When now converting the voting
profile into a performance tableau (Lines 20-21), we may compute the corresponding
unopposed outranking digraph.

5 The votingProfiles.RandomLinearVotingProfile constructor provides a DivisivePolitics flag
(False by default) for generating random linear voting profiles based on a divisive polls strucure.
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Listing 7.7: A divisive two-party example of a random
linear voting profile

1 >>> lvp = RandomLinearVotingProfile(\

2 numberOfCandidates=7,numberOfVoters=500,\

3 WithPolls=True, partyRepartition=0.4,other=0.2,\

4 DivisivePolitics=True, seed=1)

5 >>> lvp.showRandomPolls()

6 Random repartition of voters

7 Party_1 supporters : 240 (48.00%)

8 Party_2 supporters : 160 (32.00%)

9 Other voters : 100 (20.00%)

10 *---------------- random polls ---------------

11 Party_1(48.0%) | Party_2(32.0%)| expected

12 -----------------------------------------------

13 a2 : 30.84% | a1 : 30.84% | a2 : 15.56%

14 a3 : 23.67% | a4 : 23.67% | a3 : 12.91%

15 a7 : 17.29% | a6 : 17.29% | a7 : 11.43%

16 a5 : 11.22% | a5 : 11.22% | a1 : 11.00%

17 a6 : 09.79% | a7 : 09.79% | a6 : 10.23%

18 a4 : 04.83% | a3 : 04.83% | a4 : 09.89%

19 a1 : 02.37% | a2 : 02.37% | a5 : 08.98%

20 >>> lvp.save2PerfTab('divisiveExample')

21 >>> dvp = PerformanceTableau('divisiveExample')

22 >>> uodg = UnOpposedBipolarOutrankingDigraph(dvp)

23 >>> uodg

24 *------- Object instance description ------*

25 Instance class : UnOpposedBipolarOutrankingDigraph

26 Instance name : unopposed_outrankings

27 # Actions : 7

28 # Criteria : 500

29 Size : 0

30 Oppositeness (%) : 100.00

31 Determinateness (%) : 50.00

32 Valuation domain : [-1.00;1.00]

With an oppositeness degree of 100.0% (see Listing 7.7 Line 30), the preferential disagree-
ment between the political parties is complete, and the unopposed outranking digraph
uodg becomes completely indeterminate as shown in the relation table below.

>>> uodg.showRelationTable(ReflexiveTerms=False)

* ---- Relation Table -----

r | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'

-----|-------------------------------------------------

'a1' | - +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

'a2' | +0.00 - +0.00 +0.00 +0.00 +0.00 +0.00

'a3' | +0.00 +0.00 - +0.00 +0.00 +0.00 +0.00

'a4' | +0.00 +0.00 +0.00 - +0.00 +0.00 +0.00

'a5' | +0.00 +0.00 +0.00 +0.00 - +0.00 +0.00

'a6' | +0.00 +0.00 +0.00 +0.00 +0.00 - +0.00

(continues on next page)
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'a7' | +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 -

Valuation domain: [-1.000; 1.000]

As a consequence, a multipartisan primary selection, computed with a uodg.

showBestChoiceRecommendation() method, will keep the complete initial set of eligible
candidates and, hence, becomes ineffective (see Listing 7.8 Line 6).

Listing 7.8: Example of ineffective primary multipartisan
selection

1 >>> uodg.showBestChoiceRecommendation()

2 Rubis best choice recommendation(s) (BCR)

3 (in decreasing order of determinateness)

4 Credibility domain: [-1.00,1.00]

5 === >> ambiguous choice(s)

6 choice : ['a1','a2','a3','a4','a5','a6','a7']

7 independence : 0.00

8 dominance : 1.00

9 absorbency : 1.00

10 covered (%) : 100.00

11 determinateness (%) : 50.00

12 - most credible action(s) = { }

With such kind of divisive voting profile, there may not always exist an obvious winner.
In Listing 7.9 below, we see, for instance, that the simple majority winnner is a2 (Line
2), whereas the instant-run-off winner is a6 (Line 4).

Listing 7.9: Example of secondary selection

1 >>> lvp.computeSimpleMajorityWinner()

2 ['a2']

3 >>> lvp.computeInstantRunoffWinner()

4 ['a6']

5 >>> from votingProfiles import CondorcetDigraph

6 >>> cg = CondorcetDigraph(lvp)

7 >>> cg.showRelationTable(ReflexiveTerms=False)

8 * ---- Relation Table -----

9 S | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'

10 ------|------------------------------------

11 'a1' | - -68 -90 -46 -68 -88 -84

12 'a2' | +68 - -32 +80 +46 -6 -24

13 'a3' | +90 +32 - +58 +46 +4 +8

14 'a4' | +4 -80 -58 - -16 -68 -72

15 'a5' | +68 -46 -46 +16 - -26 -64

16 'a6' | +88 +6 -4 +68 "26 - -2

17 'a7' | +84 +24 -8 +72 "64 "2 -

18 Valuation domain: [-500;+500]

19 >>> cg.computeCondorcetWinners()

20 ['a3']

21 >>> cp.computeBordaWinners()
(continues on next page)
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22 ['a3','a7']

23 >>> cg.computeCopelandRanking()

24 ['a3', 'a7', 'a6', 'a2', 'a5', 'a4', 'a1']

But in our example here, we are lucky. When constructing with the pairwise majority
margins the corresponding Condorcet digraph (Lines 5-6), a Condorcet winner, namely
a3 becomes apparent (Lines 13,19-20), which is also one of the two Borda winners. More
interesting even is to notice that the apparent Condorcet digraph models in fact a linear
ranking [‘a3’, ‘a7’, ‘a6’, ‘a2’, ‘a5’, ‘a4’, ‘a1’] of all the eligible candidates, as shown with
a Copeland ranking rule (Lines 23-24).

We may eventually visualize in Listing 7.10 this linear ranking with a graphviz drawing
where we drop all transitive arcs (Line 1) and orient the drawing with Condorcet winner
a3 and looser a1 (Lines 2).

Listing 7.10: Drawing the linear ordering

1 >>> cg.closeTransitive(Reverse=True)

2 >>> cg.exportGraphViz('divGraph',bestChoice=['a3'],worstChoice=['a1'])

3 *---- exporting a dot file for GraphViz tools ---------*

4 Exporting to divGraph.dot

5 dot -Grankdir=BT -Tpng divGraph.dot -o divGraph.png

Fig. 2: Linear ordering of the eligible candidates
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