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Tutorials of the Digraph3 Resources

HTML Version

The tutorials in this document describe the practical usage of our Digraph3 Python3
software resources in the field of Algorithmic Decision Theory and more specifically in
outranking basedMultiple Criteria Decision Aid (MCDA). They mainly illustrate prac-
tical tools for a Master Course at the University of Luxembourg.

The document contains first a set of tutorials introducing the main objects available in the
Digraph3 collection of Python3 modules, like digraphs, outranking digraphs, performance
tableaux and voting profiles.

Some of the tutorials are decision problem oriented and show how to compute the poten-
tial winner(s) of an election, how to build a best choice recommendation, or how to rate
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or linearly rank with multiple incommensurable performance criteria.

More graph theoretical tutorials follow. One on working with undirected graphs, followed
by a tutorial on how to compute non isomorphic maximal independent sets (kernels) in
the n-cycle graph.

Another tutorial is furthermore devoted on how to generally compute kernels in graphs,
digraphs and, more specifically, initial and terminal kernels in outranking digraphs. Spe-
cial tutorials are devoted to perfect graphs, like split, interval and permutation graphs,
and to tree-graphs and forests.

1 Working with the Digraph3 software resources

� Purpose (page 4)

� Downloading of the Digraph3 resources (page 5)

� Starting a Python3 session (page 5)

� Digraph object structure (page 6)

� Permanent storage (page 7)

� Inspecting a Digraph object (page 7)

� Special classes (page 9)

1.1 Purpose

The basic idea of the Digraph3 Python resources is to make easy python interactive
sessions or write short Python3 scripts for computing all kind of results from a bipolar-
valued digraph or graph. These include such features as maximal independent, maximal
dominant or absorbent choices, rankings, outrankings, linear ordering, etc. Most of the
available computing resources are meant to illustrate a Master Course on Algorithmic
Decision Theory given at the University of Luxembourg in the context of its Master in
Information and Computer Science (MICS).

The Python development of these computing resources offers the advantage of an easy to
write and maintain OOP source code as expected from a performing scripting language
without loosing on efficiency in execution times compared to compiled languages such as
C++ or Java.
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1.2 Downloading of the Digraph3 resources

Using the Digraph3 modules is easy. You only need to have installed on your system the
Python (https://www.python.org/doc/) programming language of version 3.+ (readily
available under Linux and Mac OS). Notice that, from Version 3.3 on, the Python stan-
dard decimal module implements very efficiently its decimal.Decimal class in C. Now,
Decimal objects are mainly used in the Digraph3 characteristic r-valuation functions,
which makes the recent python-3.7+ versions much faster (more than twice as fast) when
extensive digraph operations are performed.

Several download options (easiest under Linux or Mac OS-X) are given.

1. Either, by using a git client either, from github

...$ git clone https://github.com/rbisdorff/Digraph3

2. Or, from sourceforge.net

...$ git clone https://git.code.sf.net/p/digraph3/code Digraph3

3. Or, with a browser access, download and extract the latest distribution zip archive
either, from the github link above (https://github.com/rbisdorff/Digraph3) or, from
the sourceforge page (https://sourceforge.net/projects/digraph3/) .

1.3 Starting a Python3 session

You may start an interactive Python3 session in the Digraph3 directory for exploring the
classes and methods provided by the Digraph3 modules (see the Reference manual). To
do so, enter the python3 commands following the session prompts marked with >>>.
The lines without the prompt are output from the Python interpreter.

1 $HOME/.../Digraph3$ python3

2 Python 3.9.0 (default, Nov 1 2020, 09:59:50)

3 [GCC 9.3.0] on linux

4 Type "help", "copyright", "credits" or

5 "license" for more information.

6 >>> ...

Listing 1.1: Generating a random digraph instance

1 >>> from randomDigraphs import RandomDigraph

2 >>> dg = RandomDigraph(order=5,arcProbability=0.5,seed=101)

3 >>> dg

4 *------- Digraph instance description ------*

5 Instance class : RandomDigraph

6 Instance name : randomDigraph

7 Digraph Order : 5

8 Digraph Size : 12

9 Valuation domain : [-1.00; 1.00]

(continues on next page)
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(continued from previous page)

10 Determinateness : 100.000

11 Attributes : ['actions', 'valuationdomain', 'relation',

12 'order', 'name', 'gamma', 'notGamma']

13 >>> dg.save('tutorialDigraph')

14 *--- Saving digraph in file: <tutorialDigraph.py> ---*

From the randomDigraphs module we import the randomDigraphs.RandomDigraph class
in order to generate, for instance, a crisp digraph object dg of order 5 - number of nodes
or (decision) actions - and size 12 - number of directed arcs (see Listing 1.1 Lines 1-2).

We may directly inspect the content of python object dg (Line 3)

1.4 Digraph object structure

All digraphs.Digraph objects contain at least the following attributes (see Listing 1.1
Lines 11-12):

0. A name attribute, holding usually the actual name of the stored instance that was
used to create the instance;

1. A collection of digraph nodes called actions (decision actions): an ordered dictio-
nary of nodes with at least a ‘name’ attribute;

2. An order attribute containing the number of graph nodes (length of the actions
dictionary) automatically added by the object constructor;

3. A logical characteristic valuationdomain, a dictionary with three decimal entries:
the minimum (-1.0, means certainly false), the median (0.0, means missing infor-
mation) and the maximum characteristic value (+1.0, means certainly true);

4. The digraph relation : a double dictionary indexed by an oriented pair of actions
(nodes) and carrying a decimal characteristic value in the range of the previous
valuation domain;

5. Its associated gamma function : a dictionary containing the direct successors,
respectively predecessors of each action, automatically added by the object con-
structor;

6. Its associated notGamma function : a dictionary containing the actions that are
not direct successors respectively predecessors of each action, automatically added
by the object constructor.
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1.5 Permanent storage

The digraphs.Digraph.save()method (see Listing 1.1 Line 13 above) stores the digraph
object dg in a file named tutorialDigraph.py with the following content.

1 actions = {

2 'a1': {'shortName': 'a1', 'name': 'random decision action'},

3 'a2': {'shortName': 'a2', 'name': 'random decision action'},

4 'a3': {'shortName': 'a3', 'name': 'random decision action'},

5 'a4': {'shortName': 'a4', 'name': 'random decision action'},

6 'a5': {'shortName': 'a5', 'name': 'random decision action'},

7 }

8 valuationdomain = {'hasIntegerValuation': True,

9 'min': -1.0,'med': 0.0,'max': 1.0}

10 relation = {

11 'a1': {'a1':-1.0, 'a2':-1.0, 'a3':1.0, 'a4':-1.0, 'a5':-1.0,},

12 'a2': {'a1':1.0, 'a2':-1.0, 'a3':-1.0, 'a4':1.0, 'a5':1.0,},

13 'a3': {'a1':1.0, 'a2':-1.0, 'a3':-1.0, 'a4':1.0, 'a5':-1.0,},

14 'a4': {'a1':1.0, 'a2':1.0, 'a3':1.0, 'a4':-1.0, 'a5':-1.0,},

15 'a5': {'a1':1.0, 'a2':1.0, 'a3':1.0, 'a4':-1.0, 'a5':-1.0,},

16 }

1.6 Inspecting a Digraph object

We may reload the previously saved digraph object from the file named
tutorialDigraph.py with the digraphs.Digraph class constructor and the digraphs.
Digraph.showAll() method output reveals us that dg is a connected and irreflexive
digraph of order five, evaluated in an integer valuation domain [-1,0,+1} (see Listing
1.2).

Listing 1.2: Random crisp digraph example

1 >>> dg = Digraph('tutorialDigraph')

2 >>> dg.showAll()

3 *----- show detail -------------*

4 Digraph : tutorialDigraph

5 *---- Actions ----*

6 ['a1', 'a2', 'a3', 'a4', 'a5']

7 *---- Characteristic valuation domain ----*

8 {'hasIntegerValuation': True,

9 'min': -1, 'med': 0, 'max': 1'}

10 * ---- Relation Table -----

11 S | 'a1' 'a2' 'a3' 'a4' 'a5'

12 ------|-------------------------------

13 'a1' | -1 -1 1 -1 -1

14 'a2' | 1 -1 -1 1 1

15 'a3' | 1 -1 -1 1 -1

16 'a4' | 1 1 1 -1 -1

17 'a5' | 1 1 1 -1 -1

(continues on next page)
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(continued from previous page)

18 Valuation domain: [-1;+1]

19 *--- Connected Components ---*

20 1: ['a1', 'a2', 'a3', 'a4', 'a5']

21 Neighborhoods:

22 Gamma :

23 'a1': in => {'a2', 'a4', 'a3', 'a5'}, out => {'a3'}

24 'a2': in => {'a5', 'a4'}, out => {'a1', 'a4', 'a5'}

25 'a3': in => {'a1', 'a4', 'a5'}, out => {'a1', 'a4'}

26 'a4': in => {'a2', 'a3'}, out => {'a1', 'a3', 'a2'}

27 'a5': in => {'a2'}, out => {'a1', 'a3', 'a2'}

28 Not Gamma :

29 'a1': in => set(), out => {'a2', 'a4', 'a5'}

30 'a2': in => {'a1', 'a3'}, out => {'a3'}

31 'a3': in => {'a2'}, out => {'a2', 'a5'}

32 'a4': in => {'a1', 'a5'}, out => {'a5'}

33 'a5': in => {'a1', 'a4', 'a3'}, out => {'a4'}

The digraphs.Digraph.exportGraphViz() method generates in the current working
directory a tutorial.dot file and a tutorialdigraph.png picture of the tutorial digraph
g (see Fig. 1) , if the graphviz (https://graphviz.org/) tools are installed on your system1.

1 >>> dg.exportGraphViz('tutorialDigraph')

2 *---- exporting a dot file do GraphViz tools ---------*

3 Exporting to tutorialDigraph.dot

4 dot -Grankdir=BT -Tpng tutorialDigraph.dot -o tutorialDigraph.png

Fig. 1: The tutorial crisp digraph

Some simple methods are readly applicable to this instantiated Digraph object dg , like
the following digraphs.Digraph.showStatistics() method.

1 The exportGraphViz method is depending on drawing tools from graphviz (https://graphviz.org/).
On Linux Ubuntu or Debian you may try sudo apt-get install graphviz to install them. There are
ready dmg installers for Mac OSX.
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1 >>> dg.showStatistics()

2 *----- general statistics -------------*

3 for digraph : <tutorialDigraph.py>

4 order : 5 nodes

5 size : 12 arcs

6 # undetermined : 0 arcs

7 determinateness (%) : 100.0

8 arc density : 0.60

9 double arc density : 0.40

10 single arc density : 0.40

11 absence density : 0.20

12 strict single arc density: 0.40

13 strict absence density : 0.20

14 # components : 1

15 # strong components : 1

16 transitivity degree (%) : 53.0

17 : [0, 1, 2, 3, 4, 5]

18 outdegrees distribution : [0, 1, 1, 3, 0, 0]

19 indegrees distribution : [0, 1, 2, 1, 1, 0]

20 mean outdegree : 2.40

21 mean indegree : 2.40

22 : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

23 symmetric degrees dist. : [0, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0]

24 mean symmetric degree : 4.80

25 outdegrees concentration index : 0.1667

26 indegrees concentration index : 0.2333

27 symdegrees concentration index : 0.0333

28 : [0, 1, 2, 3, 4, 'inf']

29 neighbourhood depths distribution: [0, 1, 4, 0, 0, 0]

30 mean neighbourhood depth : 1.80

31 digraph diameter : 2

32 agglomeration distribution :

33 a1 : 58.33

34 a2 : 33.33

35 a3 : 33.33

36 a4 : 50.00

37 a5 : 50.00

38 agglomeration coefficient : 45.00

1.7 Special classes

Some special classes of digraphs, like the digraphs.CompleteDigraph, the digraphs.

EmptyDigraph or the oriented digraphs.GridDigraph class for instance, are readily avail-
able (see Fig. 2).

1 >>> from digraphs import GridDigraph

2 >>> grid = GridDigraph(n=5,m=5,hasMedianSplitOrientation=True)

3 >>> grid.exportGraphViz('tutorialGrid')

(continues on next page)
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(continued from previous page)

4 *---- exporting a dot file for GraphViz tools ---------*

5 Exporting to tutorialGrid.dot

6 dot -Grankdir=BT -Tpng TutorialGrid.dot -o tutorialGrid.png

Fig. 2: The 5x5 grid graph median split oriented

Back to Content Table (page 3)

2 Manipulating Digraph objects

� Random digraphs (page 11)

� Graphviz drawings (page 13)

� Asymmetric and symmetric parts (page 14)
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� Border and inner parts (page 15)

� Fusion by epistemic disjunction (page 17)

� Dual, converse and codual digraphs (page 18)

� Symmetric and transitive closures (page 19)

� Strong components (page 21)

� CSV storage (page 21)

� Complete, empty and indeterminate digraphs (page 22)

2.1 Random digraphs

We are starting this tutorial with generating a randomly [-1;1]-valued (Normalized=True)
digraph of order 7, denoted dg and modelling a binary relation (x S y) defined on the
set of nodes of dg. For this purpose, the Digraph3 collection contains a randomDigraphs

module providing a specific randomDigraphs.RandomValuationDigraph constructor.

Listing 2.1: Random bipolar-valued digraph instance

1 >>> from randomDigraphs import RandomValuationDigraph

2 >>> dg = RandomValuationDigraph(order=7,Normalized=True)

3 >>> dg.save('tutRandValDigraph')

4 >>> dg = Digraph('tutRandValDigraph')

5 >>> dg

6 *------- Digraph instance description ------*

7 Instance class : Digraph

8 Instance name : tutRandValDigraph

9 Digraph Order : 7

10 Digraph Size : 22

11 Valuation domain : [-1.00;1.00]

12 Determinateness (%) : 75.24

13 Attributes : ['name', 'actions', 'order',

14 'valuationdomain', 'relation',

15 'gamma', 'notGamma']

With the save() method (see Listing 2.1 Line 3) we may keep a backup version for
future use of dg which will be stored in a file called tutRandValDigraph.py in the current
working directory. The genuine digraphs.Digraph class constructor may retore the dg
object from the stored file (Line 4). We may easily inspect the content of dg (Lines
5-). The digraph size 22 indicates the number of positively valued arcs. The valuation
domain is normalized in the interval [-1.0; 1.0] and the mean absolute arc valuation is
0.7524. All digraphs.Digraph objects contain at least the list of attributes shown here:
a name (string), a dictionary of actions (digraph nodes), an order (integer) attribute
containing the number of actions, a valuationdomain dictionary, a double dictionary
relation representing the adjency table of the digraph relation, a gamma and a notGamma
dictionary describing the direct neighbourhoods od each action.
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The Digraph class now provides some generic methods for exploring a given
Digraph object, like the showShort(), showAll(), showRelationTable() and the
showNeighborhoods() methods.

Listing 2.2: Example of random valuation digraph

1 >>> dg.showAll()

2 *----- show detail -------------*

3 Digraph : tutRandValDigraph

4 *---- Actions ----*

5 ['1', '2', '3', '4', '5', '6', '7']

6 *---- Characteristic valuation domain ----*

7 {'med': Decimal('0.0'), 'hasIntegerValuation': False,

8 'min': Decimal('-1.0'), 'max': Decimal('1.0')}

9 * ---- Relation Table -----

10 r(xSy) | '1' '2' '3' '4' '5' '6' '7'

11 -------|-------------------------------------------

12 '1' | 0.00 -0.48 0.70 0.86 0.30 0.38 0.44

13 '2' | -0.22 0.00 -0.38 0.50 0.80 -0.54 0.02

14 '3' | -0.42 0.08 0.00 0.70 -0.56 0.84 -1.00

15 '4' | 0.44 -0.40 -0.62 0.00 0.04 0.66 0.76

16 '5' | 0.32 -0.48 -0.46 0.64 0.00 -0.22 -0.52

17 '6' | -0.84 0.00 -0.40 -0.96 -0.18 0.00 -0.22

18 '7' | 0.88 0.72 0.82 0.52 -0.84 0.04 0.00

19 *--- Connected Components ---*

20 1: ['1', '2', '3', '4', '5', '6', '7']

21 Neighborhoods:

22 Gamma:

23 '1': in => {'5', '7', '4'}, out => {'5', '7', '6', '3', '4'}

24 '2': in => {'7', '3'}, out => {'5', '7', '4'}

25 '3': in => {'7', '1'}, out => {'6', '2', '4'}

26 '4': in => {'5', '7', '1', '2', '3'}, out => {'5', '7', '1', '6'}

27 '5': in => {'1', '2', '4'}, out => {'1', '4'}

28 '6': in => {'7', '1', '3', '4'}, out => set()

29 '7': in => {'1', '2', '4'}, out => {'1', '2', '3', '4', '6'}

30 Not Gamma:

31 '1': in => {'6', '2', '3'}, out => {'2'}

32 '2': in => {'5', '1', '4'}, out => {'1', '6', '3'}

33 '3': in => {'5', '6', '2', '4'}, out => {'5', '7', '1'}

34 '4': in => {'6'}, out => {'2', '3'}

35 '5': in => {'7', '6', '3'}, out => {'7', '6', '2', '3'}

36 '6': in => {'5', '2'}, out => {'5', '7', '1', '3', '4'}

37 '7': in => {'5', '6', '3'}, out => {'5'}

Warning: Mind that most Digraph class methods will ignore the reflexive couples
by considering that the reflexive relations are indeterminate, i.e. the characteristic
value 𝑟(𝑥𝑆 𝑥) for all action x is put to the median, i.e. indeterminate value 0 in this
case (see Listing 2.2 Lines 12-18 and [BIS-2004]).
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2.2 Graphviz drawings

We may have an even better insight into the Digraph object dg by looking at a graphviz
(https://graphviz.org/) drawing1 .

1 >>> dg.exportGraphViz('tutRandValDigraph')

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to tutRandValDigraph.dot

4 dot -Grankdir=BT -Tpng tutRandValDigraph.dot -o tutRandValDigraph.png

Fig. 1: The tutorial random valuation digraph

Double links are drawn in bold black with an arrowhead at each end, whereas single
asymmetric links are drawn in black with an arrowhead showing the direction of the link.
Notice the undetermined relational situation (𝑟(6𝑆 2) = 0.00) observed between nodes
‘6’ and ‘2’. The corresponding link is marked in gray with an open arrowhead in the
drawing (see Fig. 1).
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2.3 Asymmetric and symmetric parts

We may now extract both the symmetric as well as the asymmetric part of digraph dg
with the help of two corresponding constructors (see Fig. 2).

1 >>> from digraphs import AsymmetricPartialDigraph,

2 SymmetricPartialDigraph

3 >>> asymDg = AsymmetricPartialDigraph(dg)

4 >>> asymDg.exportGraphViz()

5 >>> symDG = SymmetricPartialDigraph(dg)

6 >>> symDg.exportGraphViz()

Fig. 2: Asymmetric and symmetric part of the tutorial random valuation digraph

Note: The constructor of the partial objects asymDg and symDg puts to the indeter-
minate characteristic value all not-asymmetric, respectively not-symmetric links between
nodes (see Fig. 2).

Here below, for illustration the source code of relation constructor of the digraphs.

AsymmetricPartialDigraph class.

1 def _constructRelation(self):

2 actions = self.actions

3 Min = self.valuationdomain['min']

4 Max = self.valuationdomain['max']

(continues on next page)
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(continued from previous page)

5 Med = self.valuationdomain['med']

6 relationIn = self.relation

7 relationOut = {}

8 for a in actions:

9 relationOut[a] = {}

10 for b in actions:

11 if a != b:

12 if relationIn[a][b] >= Med and relationIn[b][a] <= Med:

13 relationOut[a][b] = relationIn[a][b]

14 elif relationIn[a][b] <= Med and relationIn[b][a] >= Med:

15 relationOut[a][b] = relationIn[a][b]

16 else:

17 relationOut[a][b] = Med

18 else:

19 relationOut[a][b] = Med

20 return relationOut

2.4 Border and inner parts

We may also extract the border -the part of a digraph induced by the union of its initial
and terminal prekernels (see tutorial On computing digraph kernels (page 163))- as well
as, the inner part -the complement of the border- with the help of two corresponding
class constructors: digraphs.GraphBorder and digraphs.GraphInner (see Listing 2.3
Line 1).

Let us illustrate these parts on a linear ordering obtained from the tutorial random
valuation digraph dg (see Listing 2.3 Line 2-3) with the NetFlows ranking rule (page 59)).
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Listing 2.3: Border and inner part of a linear order

1 >>> from digraphs import GraphBorder, GraphInner

2 >>> from linearOrders import NetFlowsOrder

3 >>> nf = NetFlowsOrder(dg)

4 >>> nf.netFlowsOrder

5 ['6', '4', '5', '3', '2', '1', '7']

6 >>> bnf = GraphBorder(nf)

7 >>> bnf.exportGraphViz(worstChoice=['6'],bestChoice=['7'])

8 >>> inf = GraphInner(nf)

9 >>> inf.exportGraphViz(worstChoice=['6'],bestChoice=['7'])

Fig. 3: Border and inner part of a linear order oriented by terminal and initial kernels

We may orient the graphviz drawings in Fig. 3 with the terminal node 6 (worstChoice
parameter) and initial node 7 (bestChoice parameter), see Listing 2.3 Lines 7 and 9).

Note: The constructor of the partial digraphs bnf and inf (see Listing 2.3 Lines 3 and
6) puts to the indeterminate characteristic value all links not in the border, respectively
not in the inner part (see Fig. 4).

Being much denser than a linear order, the actual inner part of our tutorial random
valuation digraph dg is reduced to a single arc between nodes 3 and 4 (see Fig. 4).
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Fig. 4: Border and inner part of the tutorial random valuation digraph dg

Indeed, a complete digraph on the limit has no inner part (privacy!) at all, whereas empty
and indeterminate digraphs admit both, an empty border and an empty inner part.

2.5 Fusion by epistemic disjunction

We may recover object dg from both partial objects asymDg and symDg, or as well
from the border bg and the inner part ig, with a bipolar fusion constructor, also called
epistemic disjunction, available via the digraphs.FusionDigraph class (see Listing
2.1 Lines 12- 21).

Listing 2.4: Epistemic fusion of partial diagraphs

1 >>> from digraphs import FusionDigraph

2 >>> fusDg = FusionDigraph(asymDg,symDg,operator='o-max')

3 >>> # fusDg = FusionDigraph(bg,ig,operator='o-max')

4 >>> fusDg.showRelationTable()

5 * ---- Relation Table -----

6 r(xSy) | '1' '2' '3' '4' '5' '6' '7'

7 -------|------------------------------------------

8 '1' | 0.00 -0.48 0.70 0.86 0.30 0.38 0.44

9 '2' | -0.22 0.00 -0.38 0.50 0.80 -0.54 0.02

10 '3' | -0.42 0.08 0.00 0.70 -0.56 0.84 -1.00

11 '4' | 0.44 -0.40 -0.62 0.00 0.04 0.66 0.76

12 '5' | 0.32 -0.48 -0.46 0.64 0.00 -0.22 -0.52

13 '6' | -0.84 0.00 -0.40 -0.96 -0.18 0.00 -0.22

14 '7' | 0.88 0.72 0.82 0.52 -0.84 0.04 0.00

The epistemic disjunction operation o-max (see Listing 2.4 Line 2) works as follows.

Let r and r’ characterise two bipolar-valued epistemic situations.
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� o-max(r, r’ ) = max(r, r’ ) when both r and r’ are validated (positive);

� o-max(r, r’ ) = min(r, r’ ) when both r and r’ are invalidated (negative);

� o-max(r, r’ ) = indeterminate otherwise.

2.6 Dual, converse and codual digraphs

We may as readily compute the dual (negated relation14), the converse (transposed
relation) and the codual (transposed and negated relation) of the digraph instance dg.

1 >>> from digraphs import DualDigraph, ConverseDigraph, CoDualDigraph

2 >>> ddg = DualDigraph(dg)

3 >>> ddg.showRelationTable()

4 -r(xSy) | '1' '2' '3' '4' '5' '6' '7'

5 --------|------------------------------------------

6 '1 ' | 0.00 0.48 -0.70 -0.86 -0.30 -0.38 -0.44

7 '2' | 0.22 0.00 0.38 -0.50 0.80 0.54 -0.02

8 '3' | 0.42 0.08 0.00 -0.70 0.56 -0.84 1.00

9 '4' | -0.44 0.40 0.62 0.00 -0.04 -0.66 -0.76

10 '5' | -0.32 0.48 0.46 -0.64 0.00 0.22 0.52

11 '6' | 0.84 0.00 0.40 0.96 0.18 0.00 0.22

12 '7' | 0.88 -0.72 -0.82 -0.52 0.84 -0.04 0.00

13 >>> cdg = ConverseDigraph(dg)

14 >>> cdg.showRelationTable()

15 * ---- Relation Table -----

16 r(ySx) | '1' '2' '3' '4' '5' '6' '7'

17 --------|------------------------------------------

18 '1' | 0.00 -0.22 -0.42 0.44 0.32 -0.84 0.88

19 '2' | -0.48 0.00 0.08 -0.40 -0.48 0.00 0.72

20 '3' | 0.70 -0.38 0.00 -0.62 -0.46 -0.40 0.82

21 '4' | 0.86 0.50 0.70 0.00 0.64 -0.96 0.52

22 '5' | 0.30 0.80 -0.56 0.04 0.00 -0.18 -0.84

23 '6' | 0.38 -0.54 0.84 0.66 -0.22 0.00 0.04

24 '7' | 0.44 0.02 -1.00 0.76 -0.52 -0.22 0.00

25 >>> cddg = CoDualDigraph(dg)

26 >>> cddg.showRelationTable()

27 * ---- Relation Table -----

28 -r(ySx) | '1' '2' '3' '4' '5' '6' '7'

29 --------|------------------------------------------

30 '1' | 0.00 0.22 0.42 -0.44 -0.32 0.84 -0.88

31 '2' | 0.48 0.00 -0.08 0.40 0.48 0.00 -0.72

32 '3' | -0.70 0.38 0.00 0.62 0.46 0.40 -0.82

33 '4' | -0.86 -0.50 -0.70 0.00 -0.64 0.96 -0.52

34 '5' | -0.30 -0.80 0.56 -0.04 0.00 0.18 0.84

35 '6' | -0.38 0.54 -0.84 -0.66 0.22 0.00 -0.04

36 '7' | -0.44 -0.02 1.00 -0.76 0.52 0.22 0.00

14 Not to be confused with the dual graph of a plane graph g that has a vertex for each face of g. Here
we mean the less than (strict converse) relation corresponding to a greater or equal relation, or the less
than or equal relation corresponding to a (strict) better than relation.
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Computing the dual, respectively the converse, may also be done with prefixing the
__neg__ (-) or the __invert__ (~) operator. The codual of a Digraph object may,
hence, as well be computed with a composition (in either order) of both operations.

Listing 2.5: Computing the dual, the converse and the
codual of a digraph

1 >>> ddg = -dg # dual of dg

2 >>> cdg = ~dg # converse of dg

3 >>> cddg = ~(-dg) # = -(~(dg) codual of dg

4 >>> (-(~dg)).showRelationTable()

5 * ---- Relation Table -----

6 -r(ySx) | '1' '2' '3' '4' '5' '6' '7'

7 --------|------------------------------------------

8 '1' | 0.00 0.22 0.42 -0.44 -0.32 0.84 -0.88

9 '2' | 0.48 0.00 -0.08 0.40 0.48 0.00 -0.72

10 '3' | -0.70 0.38 0.00 0.62 0.46 0.40 -0.82

11 '4' | -0.86 -0.50 -0.70 0.00 -0.64 0.96 -0.52

12 '5' | -0.30 -0.80 0.56 -0.04 0.00 0.18 0.84

13 '6' | -0.38 0.54 -0.84 -0.66 0.22 0.00 -0.04

14 '7' | -0.44 -0.02 1.00 -0.76 0.52 0.22 0.00

2.7 Symmetric and transitive closures

Symmetric and transitive closure in-site constructors are also available (see Fig. 5). Note
that it is a good idea, before going ahead with these in-site operations who irreversibly
modify the original dg object, to previously make a backup version of dg. The simplest
storage method, always provided by the generic digraphs.Digraph.save(), writes out
in a named file the python content of the Digraph object in string representation.
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Listing 2.6: Symmetric and transitive closures

1 >>> dg.save('tutRandValDigraph')

2 >>> dg.closeSymmetric()

3 >>> dg.closeTransitive()

4 >>> dg.exportGraphViz('strongComponents')

Fig. 5: Symmetric and transitive closure of the tutorial random valuation digraph

The digraphs.Digraph.closeSymmetric() method (see Listing 2.6 Line 2), of com-
plexity 𝒪(𝑛2) where n denotes the digraph’s order, changes, on the one hand, all single
pairwise links it may detect into double links by operating a disjunction of the pair-
wise relations. On the other hand, the digraphs.Digraph.closeTransitive() method
(see Listing 2.6 Line 3), implements the Roy-Warshall transitive closure algorithm of
complexity 𝒪(𝑛3). (17)

Note: The same digraphs.Digraph.closeTransitive() method with a Reverse
= True flag may be readily used for eliminating all transitive arcs from a transitive
digraph instance. We make usage of this feature when drawing Hasse diagrams of
transitiveDigraphs.TransitiveDigraph objects.

17 Roy, B. Transitivité et connexité. C. R. Acad. Sci. Paris 249, 216-218, 1959. Warshall, S. A
Theorem on Boolean Matrices. J. ACM 9, 11-12, 1962.
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2.8 Strong components

As the original digraph dg was connected (see above the result of the dg.showShort()

command), both the symmetric and transitive closures operated together, will necessarily
produce a single strong component, i.e. a complete digraph. We may sometimes wish to
collapse all strong components in a given digraph and construct the so reduced digraph.
Using the digraphs.StrongComponentsCollapsedDigraph constructor here will render
a single hyper-node gathering all the original nodes.

1 >>> from digraphs import StrongComponentsCollapsedDigraph

2 >>> sc = StrongComponentsCollapsedDigraph(dg)

3 >>> sc.showAll()

4 *----- show detail -----*

5 Digraph : tutRandValDigraph_Scc

6 *---- Actions ----*

7 ['_7_1_2_6_5_3_4_']

8 * ---- Relation Table -----

9 S | 'Scc_1'

10 -------|---------

11 'Scc_1' | 0.00

12 short content

13 Scc_1 _7_1_2_6_5_3_4_

14 Neighborhoods:

15 Gamma :

16 'frozenset({'7', '1', '2', '6', '5', '3', '4'})': in => set(), out => set()

17 Not Gamma :

18 'frozenset({'7', '1', '2', '6', '5', '3', '4'})': in => set(), out => set()

2.9 CSV storage

Sometimes it is required to exchange the graph valuation data in CSV format with a
statistical package like R (https://www.r-project.org/). For this purpose it is possible to
export the digraph data into a CSV file. The valuation domain is hereby normalized by
default to the range [-1,1] and the diagonal put by default to the minimal value -1.

1 >>> dg = Digraph('tutRandValDigraph')

2 >>> dg.saveCSV('tutRandValDigraph')

3 # content of file tutRandValDigraph.csv

4 "d","1","2","3","4","5","6","7"

5 "1",-1.0,0.48,-0.7,-0.86,-0.3,-0.38,-0.44

6 "2",0.22,-1.0,0.38,-0.5,-0.8,0.54,-0.02

7 "3",0.42,-0.08,-1.0,-0.7,0.56,-0.84,1.0

8 "4",-0.44,0.4,0.62,-1.0,-0.04,-0.66,-0.76

9 "5",-0.32,0.48,0.46,-0.64,-1.0,0.22,0.52

10 "6",0.84,0.0,0.4,0.96,0.18,-1.0,0.22

11 "7",-0.88,-0.72,-0.82,-0.52,0.84,-0.04,-1.0

It is possible to reload a Digraph instance from its previously saved CSV file content.

21

https://www.r-project.org/


1 >>> dgcsv = CSVDigraph('tutRandValDigraph')

2 >>> dgcsv.showRelationTable(ReflexiveTerms=False)

3 * ---- Relation Table -----

4 r(xSy) | '1' '2' '3' '4' '5' '6' '7'

5 -------|------------------------------------------------------------

6 '1' | - -0.48 0.70 0.86 0.30 0.38 0.44

7 '2' | -0.22 - -0.38 0.50 0.80 -0.54 0.02

8 '3' | -0.42 0.08 - 0.70 -0.56 0.84 -1.00

9 '4' | 0.44 -0.40 -0.62 - 0.04 0.66 0.76

10 '5' | 0.32 -0.48 -0.46 0.64 - -0.22 -0.52

11 '6' | -0.84 0.00 -0.40 -0.96 -0.18 - -0.22

12 '7' | 0.88 0.72 0.82 0.52 -0.84 0.04 -

It is as well possible to show a colored version of the valued relation table in a system
browser window tab (see Fig. 6).

1 >>> dgcsv.showHTMLRelationTable(tableTitle="Tutorial random digraph")

Fig. 6: The valued relation table shown in a browser window

Positive arcs are shown in green and negative arcs in red. Indeterminate -zero-valued-
links, like the reflexive diagonal ones or the link between node 6 and node 2, are shown
in gray.

2.10 Complete, empty and indeterminate digraphs

Let us finally mention some special universal classes of digraphs that are readily avail-
able in the digraphs module, like the digraphs.CompleteDigraph, the digraphs.

EmptyDigraph and the digraphs.IndeterminateDigraph classes, which put all charac-
teristic values respectively to the maximum, the minimum or the median indeterminate
characteristic value.
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Listing 2.7: Complete, empty and indeterminate di-
graphs

1 >>> from digraphs import CompleteDigraph,EmptyDigraph,

2 IndeterminateDigraph

3 >>> help(CompleteDigraph)

4 Help on class CompleteDigraph in module digraphs:

5 class CompleteDigraph(Digraph)

6 | Parameters:

7 | order > 0; valuationdomain=(Min,Max).

8 | Specialization of the general Digraph class for generating

9 | temporary complete graphs of order 5 in {-1,0,1} by default.

10 | Method resolution order:

11 | CompleteDigraph

12 | Digraph

13 | builtins.object

14 ...

15 >>> e = EmptyDigraph(order=5)

16 >>> e.showRelationTable()

17 * ---- Relation Table -----

18 S | '1' '2' '3' '4' '5'

19 ---- -|-----------------------------------

20 '1' | -1.00 -1.00 -1.00 -1.00 -1.00

21 '2' | -1.00 -1.00 -1.00 -1.00 -1.00

22 '3' | -1.00 -1.00 -1.00 -1.00 -1.00

23 '4' | -1.00 -1.00 -1.00 -1.00 -1.00

24 '5' | -1.00 -1.00 -1.00 -1.00 -1.00

25 >>> e.showNeighborhoods()

26 Neighborhoods:

27 Gamma :

28 '1': in => set(), out => set()

29 '2': in => set(), out => set()

30 '5': in => set(), out => set()

31 '3': in => set(), out => set()

32 '4': in => set(), out => set()

33 Not Gamma :

34 '1': in => {'2', '4', '5', '3'}, out => {'2', '4', '5', '3'}

35 '2': in => {'1', '4', '5', '3'}, out => {'1', '4', '5', '3'}

36 '5': in => {'1', '2', '4', '3'}, out => {'1', '2', '4', '3'}

37 '3': in => {'1', '2', '4', '5'}, out => {'1', '2', '4', '5'}

38 '4': in => {'1', '2', '5', '3'}, out => {'1', '2', '5', '3'}

39 >>> i = IndeterminateDigraph()

40 * ---- Relation Table -----

41 S | '1' '2' '3' '4' '5'

42 ------|------------------------------

43 '1' | 0.00 0.00 0.00 0.00 0.00

44 '2' | 0.00 0.00 0.00 0.00 0.00

45 '3' | 0.00 0.00 0.00 0.00 0.00

46 '4' | 0.00 0.00 0.00 0.00 0.00

(continues on next page)
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(continued from previous page)

47 '5' | 0.00 0.00 0.00 0.00 0.00

48 >>> i.showNeighborhoods()

49 Neighborhoods:

50 Gamma :

51 '1': in => set(), out => set()

52 '2': in => set(), out => set()

53 '5': in => set(), out => set()

54 '3': in => set(), out => set()

55 '4': in => set(), out => set()

56 Not Gamma :

57 '1': in => set(), out => set()

58 '2': in => set(), out => set()

59 '5': in => set(), out => set()

60 '3': in => set(), out => set()

61 '4': in => set(), out => set()

Note: Mind the subtle difference between the neighborhoods of an empty and the
neighborhoods of an indeterminate digraph instance . In the first kind, the neighborhoods
are known to be completely empty (see Listing 2.7 Lines 34-38) whereas, in the latter,
nothing is known about the actual neighborhoods of the nodes (see Listing 2.7 Lines
57-61). These two cases illustrate why in the case of bipolar-valued digraphs, we may
need both a gamma and a notGamma function.

Back to Content Table (page 3)

3 Working with the outrankingDigraphs module

� Outranking digraph model (page 25)

� Browsing the performances (page 26)

� Valuation semantics (page 28)

� Pairwise comparisons (page 28)

� Recoding the digraph valuation (page 30)

� The strict outranking digraph (page 30)

� XMCDA 2.0 (page 31)

See also the technical documentation of the outrankingDigraphs module.
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3.1 Outranking digraph model

In this Digraph3 module, the main outrankingDigraphs.BipolarOutrankingDigraph

class provides a generic bipolar-valued outranking digraph model. A given object of
this class consists in

1. a potential set of decision actions : a dictionary describing the potential decision
actions or alternatives with ‘name’ and ‘comment’ attributes,

2. a coherent family of criteria: a dictionary of criteria functions used for measuring
the performance of each potential decision action with respect to the preference
dimension captured by each criterion,

3. the evaluations: a dictionary of performance evaluations for each decision action
or alternative on each criterion function.

4. the digraph valuationdomain, a dictionary with three entries: the minimum (-
100, means certainly no link), the median (0, means missing information) and the
maximum characteristic value (+100, means certainly a link),

5. the outranking relation : a double dictionary defined on the Cartesian product of
the set of decision alternatives capturing the credibility of the pairwise outranking
situation computed on the basis of the performance differences observed between
couples of decision alternatives on the given family if criteria functions.

With the help of the outrankingDigraphs.RandomBipolarOutrankingDigraph class (of
type outrankingDigraphs.BipolarOutrankingDigraph) , let us generate for illustration
a random bipolar-valued outranking digraph consisting of 7 decision actions denoted a01,
a02, . . . , a07.

1 >>> from outrankingDigraphs import RandomBipolarOutrankingDigraph

2 >>> odg = RandomBipolarOutrankingDigraph()

3 >>> odg.showActions()

4 *----- show digraphs actions --------------*

5 key: a01

6 name: random decision action

7 comment: RandomPerformanceTableau() generated.

8 key: a02

9 name: random decision action

10 comment: RandomPerformanceTableau() generated.

11 ...

12 ...

13 key: a07

14 name: random decision action

15 comment: RandomPerformanceTableau() generated.

In this example we consider furthermore a family of seven equisignificant cardinal criteria
functions g01, g02, . . . , g07, measuring the performance of each alternative on a rational
scale from 0.0 to 100.00. In order to capture the evaluation’s uncertainty and imprecision,
each criterion function g1 to g7 admits three performance discrimination thresholds of 10,
20 and 80 pts for warranting respectively any indifference, preference and veto situations.
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1 >>> odg.showCriteria()

2 *---- criteria -----*

3 g01 'RandomPerformanceTableau() instance'

4 Scale = [0.0, 100.0]

5 Weight = 3.0

6 Threshold pref : 20.00 + 0.00x ; percentile: 0.28

7 Threshold ind : 10.00 + 0.00x ; percentile: 0.095

8 Threshold veto : 80.00 + 0.00x ; percentile: 1.0

9 g02 'RandomPerformanceTableau() instance'

10 Scale = [0.0, 100.0]

11 Weight = 3.0

12 Threshold pref : 20.00 + 0.00x ; percentile: 0.33

13 Threshold ind : 10.00 + 0.00x ; percentile: 0.19

14 Threshold veto : 80.00 + 0.00x ; percentile: 0.95

15 ...

16 ...

17 g07 'RandomPerformanceTableau() instance'

18 Scale = [0.0, 100.0]

19 Weight = 10.0

20 Threshold pref : 20.00 + 0.00x ; percentile: 0.476

21 Threshold ind : 10.00 + 0.00x ; percentile: 0.238

22 Threshold veto : 80.00 + 0.00x ; percentile: 1.0

The performance evaluations of each decision alternative on each criterion are gathered
in a performance tableau.

1 >>> odg.showPerformanceTableau()

2 *---- performance tableau -----*

3 criteria | 'a01' 'a02' 'a03' 'a04' 'a05' 'a06' 'a07'

4 ---------|------------------------------------------------------

5 'g01' | 9.6 48.8 21.7 37.3 81.9 48.7 87.7

6 'g02' | 90.9 11.8 96.6 41.0 34.0 53.9 46.3

7 'g03' | 97.8 46.4 83.3 30.9 61.5 85.4 82.5

8 'g04' | 40.5 43.6 53.2 17.5 38.6 21.5 67.6

9 'g05' | 33.0 40.7 96.4 55.1 46.2 58.1 52.6

10 'g06' | 47.6 19.0 92.7 55.3 51.7 26.6 40.4

11 'g07' | 41.2 64.0 87.7 71.6 57.8 59.3 34.7

3.2 Browsing the performances

We may visualize the same performance tableau in a two-colors setting in the default
system browser with the command.
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>>> odg.showHTMLPerformanceTableau()

Fig. 1: Visualizing a performance tableau in a browser window

It is worthwhile noticing that green and red marked evaluations indicate best, respectively
worst, performances of an alternative on a criterion. In this example, we may hence notice
that alternative a03 is in fact best performing on four out of seven criteria.

We may, furthermore, rank the alternatives on the basis of the weighted marginal quintiles
and visualize the same performance tableau in an even more colorful and sorted setting.

>>> odg.showHTMLPerformanceHeatmap(quantiles=5,colorLevels=5)

Fig. 2: Ranked heatmap of the performance table

There is no doubt that action a03, with a performance in the highest quintile in five out

27



of seven criteria, appears definitely to be best performing. Action a05 shows a more or
less average performance on most criteria, whereas action a02 appears to be the weakest
alternative.

3.3 Valuation semantics

Considering the given performance tableau, the outrankingDigraphs.

BipolarOutrankingDigraph class constructor computes the characteristic value
𝑟(𝑥𝑆 𝑦) of a pairwise outranking relation “𝑥𝑆 𝑦” (see [BIS-2013], [ADT-L7]) in a default
valuation domain [-100.0,+100.0] with the median value 0.0 acting as indeterminate
characteristic value. The semantics of r(x S y) are the following.

1. If 𝑟(𝑥𝑆 𝑦) > 0.0 it is more True than False that x outranks y, i.e. alternative x is
at least as well performing than alternative y and there is no considerable negative
performance difference observed in disfavour of x,

2. If 𝑟(𝑥𝑆 𝑦) < 0.0 it is more False than True that x outranks y, i.e. alternative x
is not at least as well performing than alternative y and there is no considerable
positive performance difference observed in favour of x,

3. If 𝑟(𝑥𝑆 𝑦) = 0.0 it is indeterminate whether x outranks y or not.

The resulting bipolar-valued outranking relation may be inspected with the following
command.

1 >>> odg.showRelationTable()

2 * ---- Relation Table -----

3 r(x S y)| 'a01' 'a02' 'a03' 'a04' 'a05' 'a06' 'a07'

4 --------|---------------------------------------------------------

5 'a01' | +0.00 +29.73 -29.73 +13.51 +48.65 +40.54 +48.65

6 'a02' | +13.51 +0.00 -100.00 +37.84 +13.51 +43.24 -37.84

7 'a03' | +83.78 +100.00 +0.00 +91.89 +83.78 +83.78 +70.27

8 'a04' | +24.32 +48.65 -56.76 +0.00 +24.32 +51.35 +24.32

9 'a05' | +51.35 +100.00 -70.27 +72.97 +0.00 +51.35 +32.43

10 'a06' | +16.22 +72.97 -51.35 +35.14 +32.43 +0.00 +37.84

11 'a07' | +67.57 +45.95 -24.32 +27.03 +27.03 +45.95 +0.00

12 >>> odg.valuationdomain

13 {'min': Decimal('-100.0'), 'max': Decimal('100.0'),

14 'med': Decimal('0.0')}

3.4 Pairwise comparisons

From above given semantics, we may consider that a01 outranks a02 (𝑟(𝑎01 𝑆 𝑎02) > 0.0),
but not a03 (𝑟(𝑎01 𝑆 𝑎03) < 0.0). In order to comprehend the characteristic values shown
in the relation table above, we may furthermore have a look at the pairwise multiple
criteria comparison between alternatives a01 and a02.
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1 >>> odg.showPairwiseComparison('a01','a02')

2 *------------ pairwise comparison ----*

3 Comparing actions : (a01, a02)

4 crit. wght. g(x) g(y) diff | ind p concord |

5 ------------------------------- ---------------------------------

6 g01 3.00 9.56 48.84 -39.28 | 10.00 20.00 -3.00 |

7 g02 3.00 90.94 11.79 +79.15 | 10.00 20.00 +3.00 |

8 g03 6.00 97.79 46.36 +51.43 | 10.00 20.00 +6.00 |

9 g04 5.00 40.53 43.61 -3.08 | 10.00 20.00 +5.00 |

10 g05 3.00 33.04 40.67 -7.63 | 10.00 20.00 +3.00 |

11 g06 7.00 47.57 19.00 +28.57 | 10.00 20.00 +7.00 |

12 g07 10.00 41.21 63.95 -22.74 | 10.00 20.00 -10.00 |

13 -----------------------------------------------------------------

14 Valuation in range: -37.00 to +37.00; global concordance: +11.00

The outranking valuation characteristic appears as majority margin resulting from the
difference of the weights of the criteria in favor of the statement that alternative a01 is
at least well performing as alternative a02. No considerable performance difference being
observed, no veto or counter-veto situation is triggered in this pairwise comparison. Such
a case is, however, observed for instance when we pairwise compare the performances of
alternatives a03 and a02.

1 >>> odg.showPairwiseComparison('a03','a02')

2 *------------ pairwise comparison ----*

3 Comparing actions : (a03, a02)

4 crit. wght. g(x) g(y) diff | ind p concord | v veto/counter-

→˓veto

5 -------------------------------------------------------------------------------

→˓----

6 g01 3.00 21.73 48.84 -27.11 | 10.00 20.00 -3.00 |

7 g02 3.00 96.56 11.79 +84.77 | 10.00 20.00 +3.00 | 80.00 +1.00

8 g03 6.00 83.35 46.36 +36.99 | 10.00 20.00 +6.00 |

9 g04 5.00 53.22 43.61 +9.61 | 10.00 20.00 +5.00 |

10 g05 3.00 96.42 40.67 +55.75 | 10.00 20.00 +3.00 |

11 g06 7.00 92.65 19.00 +73.65 | 10.00 20.00 +7.00 |

12 g07 10.00 87.70 63.95 +23.75 | 10.00 20.00 +10.00 |

13 -------------------------------------------------------------------------------

→˓----

14 Valuation in range: -37.00 to +37.00; global concordance: +31.00

This time, we observe a considerable out-performance of a03 against a02 on criterion g02
(see second row in the relation table above). We therefore notice a positively polarized
certainly confirmed outranking situation in this case [BIS-2013].
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3.5 Recoding the digraph valuation

All outranking digraphs, being of root type digraphs.Digraph, inherit the methods
available under this class. The characteristic valuation domain of an outranking digraph
may be recoded with the digraphs.Digraph.recodeValutaion() method below to the
integer range [-37,+37], i.e. plus or minus the global significance of the family of criteria
considered in this example instance.

1 >>> odg.recodeValuation(-37,+37)

2 >>> odg.valuationdomain['hasIntegerValuation'] = True

3 >>> Digraph.showRelationTable(odg)

4 * ---- Relation Table -----

5 * ---- Relation Table -----

6 S | 'a01' 'a02' 'a03' 'a04' 'a05' 'a06' 'a07'

7 -----|------------------------------------------------------------

8 'a01' | 0 +11 -11 +5 +17 +14 +17

9 'a02' | +5 0 -37 +13 +5 +15 -14

10 'a03' | +31 +37 0 +34 +31 +31 +26

11 'a04' | +9 +18 -21 0 +9 +19 +9

12 'a05' | +19 +37 -26 +27 0 +19 +12

13 'a06' | +6 +27 -19 +13 +12 0 +14

14 'a07' | +25 +17 -9 +9 +9 +17 0

15 Valuation domain: {'hasIntegerValuation': True, 'min': Decimal('-37'),

16 'max': Decimal('37'), 'med': Decimal('0.000')}

Note: Notice that the reflexive self comparison characteristic 𝑟(𝑥𝑆𝑥) is set by default to
the median indeterminate valuation value 0; the reflexive terms of binary relation being
generally ignored in most of the Digraph3 resources.

3.6 The strict outranking digraph

From the theory (see [BIS-2013], [ADT-L7] ) we know that a bipolar-valued outranking
digraph is weakly complete, i.e. if 𝑟(𝑥𝑆 𝑦) < 0.0 then 𝑟(𝑦 𝑆 𝑥) >= 0.0 . From this
property follows that a bipolar-valued outranking relation verifies the coduality princi-
ple: the dual (strict negation -14) of the converse (inverse ~) of the outranking relation
corresponds to its strict outranking part. We may visualize the codual (strict) outranking
digraph with a graphviz drawing1.

1 >>> cdodg = -(~odg)

2 >>> cdodg.exportGraphViz('codualOdg')

3 *---- exporting a dot file for GraphViz tools ---------*

4 Exporting to codualOdg.dot

5 dot -Grankdir=BT -Tpng codualOdg.dot -o codualOdg.png
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Fig. 3: Codual digraph

It becomes readily clear now from the picture above that alternative a03 strictly outranks
in fact all the other alternatives. Hence, a03 appears as Condorcet winner and may
be recommended as best decision action in this illustrative preference modelling exercise.

3.7 XMCDA 2.0

As with all Digraph instances, it is possible to store permanently a copy of the out-
ranking digraph odg. As its outranking relation is automatically generated by the
outrankingDigraphs.BipolarOutrankingDigraph class constructor on the basis of a
given performance tableau, it is sufficient to save only the latter. For this purpose
we are using the XMCDA 2.00 (https://www.decision-deck.org/xmcda/) XML encod-
ing scheme of MCDA data, as provided by the Decision Deck Project (see https:
//www.decision-deck.org/).

1 >>> PerformanceTableau.saveXMCDA2(odg,'tutorialPerfTab')

2 *----- saving performance tableau in XMCDA 2.0 format -------------*

3 File: tutorialPerfTab.xml saved !

The resulting XML file may be visualized in a browser window (other than Chrome or
Chromium) with a corresponding XMCDA style sheet (see here). Hitting Ctrl U in
Firefox will open a browser window showing the underlying xml encoded raw text. It is
thus possible to easily edit and update as needed a given performance tableau instance.
Re-instantiating again a corresponding updated odg object goes like follow.

1 >>> pt = XMCDA2PerformanceTableau('tutorialPerfTab')

2 >>> odg = BipolarOutrankingDigraph(pt)

3 >>> odg.showRelationTable()

4 * ---- Relation Table -----

5 S | 'a01' 'a02' 'a03' 'a04' 'a05' 'a06' 'a07'

6 ------|------------------------------------------------------------

7 'a01' | +0.00 +29.73 -29.73 +13.51 +48.65 +40.54 +48.65

(continues on next page)
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8 'a02' | +13.51 +0.00 -100.00 +37.84 +13.51 +43.24 -37.84

9 'a03' | +83.78 +100.00 +0.00 +91.89 +83.78 +83.78 +70.27

10 'a04' | +24.32 +48.65 -56.76 +0.00 +24.32 +51.35 +24.32

11 'a05' | +51.35 +100.00 -70.27 +72.97 +0.00 +51.35 +32.43

12 'a06' | +16.22 +72.97 -51.35 +35.14 +32.43 +0.00 +37.84

13 'a07' | +67.57 +45.95 -24.32 +27.03 +27.03 +45.95 +0.00

We recover the original bipolar-valued outranking characteristics, and we may restart
again the preference modelling process.

Many more tools for exploiting bipolar-valued outranking digraphs are available in the
Digraph3 resources (see the technical documentation of the outrankingDigraphs module
and the perfTabs module).

Back to Content Table (page 3)

4 Generating random performance tableaux

� Introduction (page 32)

� Random standard performance tableaux (page 33)

� Random Cost-Benefit performance tableaux (page 35)

� Random three objectives performance tableaux (page 39)

� Random academic performance tableaux (page 43)

� Random linearly ranked performance tableaux (page 46)

4.1 Introduction

The randomPerfTabs module provides several constructors for random performance
tableaux models of different kind, mainly for the purpose of testing implemented meth-
ods and tools presented and discussed in the Algorithmic Decision Theory course at the
University of Luxembourg. This tutorial concerns the most useful models.

The simplest model, calledRandomPerformanceTableau, generates a set of n decision
actions, a set of m real-valued performance criteria, ranging by default from 0.0 to 100.0,
associated with default discrimination thresholds: 2.5 (ind.), 5.0 (pref.) and 60.0 (veto).
The generated performances are Beta(2.2) distributed on each measurement scale.

One of the most useful models, called RandomCBPerformanceTableau, proposes a
performance tableau involving two decision objectives, named Costs (to be minimized)
respectively Benefits (to be maximized) model; its purpose being to generate more or
less contradictory performances on these two, usually conflicting, objectives. Low costs
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will randomly be coupled with low benefits, whereas high costs will randomly be coupled
with high benefits.

Many public policy decision problems involve three often conflicting decision objec-
tives taking into account economical, societal as well as environmental aspects. For
this type of performance tableau model, we provide a specific model, called Ran-
dom3ObjectivesPerformanceTableau.

Deciding which students, based on the grades obtained in a number of examinations,
validate or not their academic studies, is the genuine decision practice of universities
and academies. To thouroughly study these kind of decision problems, we provide a
performance tableau model, called RandomAacademicPerformanceTableau, which
gathers grades obtained by a given number of students in a given number of weighted
courses.

In order to study aggregation of election results (see the tutorial on Computing the win-
ner of an election (page 47)) in the context of bipolar-valued outranking digraphs, we
provide furthermore a specific performance tableau model called RandomRankPerfor-
manceTableau which provides ranks (linearly ordered performances without ties) of a
given number of election candidates (decision actions) for a given number of weighted
voters (performance criteria).

4.2 Random standard performance tableaux

The randomPerfTabs.RandomPerformanceTableau class, the simplest of the kind, spe-
cializes the generic prefTabs.PerformanceTableau class, and takes the following param-
eters.

� numberOfActions := nbr of decision actions.

� numberOfCriteria := number performance criteria.

� weightDistribution := ‘random’ (default) | ‘fixed’ | ‘equisignificant’:

If ‘random’, weights are uniformly selected randomly

from the given weight scale;

If ‘fixed’, the weightScale must provided a corresponding weights

distribution;

If ‘equisignificant’, all criterion weights are put to unity.

� weightScale := [Min,Max] (default =(1,numberOfCriteria).

� IntegerWeights := True (default) | False (normalized to proportions of 1.0).

� commonScale := [a,b]; common performance measuring scales (default =
[0.0,100.0])

� commonThresholds := [(q0,q1),(p0,p1),(v0,v1)]; common indifference(q), prefer-
ence (p) and considerable performance difference discrimination thresholds. For
each threshold type x in {q,p,v}, the float x0 value represents a constant percent-
age of the common scale and the float x1 value a proportional value of the actual
performance measure. Default values are [(2.5.0,0.0),(5.0,0.0),(60.0,0,0)].
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� commonMode := common random distribution of random performance measure-
ments (default = (‘beta’,None,(2,2)) ):

(‘uniform’,None,None), uniformly distributed float values on the given
common scales’ range [Min,Max].

(‘normal’,*mu*,*sigma*), truncated Gaussian distribution, by default
mu = (b-a)/2 and sigma = (b-a)/4.

(‘triangular’,*mode*,*repartition*), generalized triangular distribution
with a probability repartition parameter specifying the probability mass
accumulated until the mode value. By default, mode = (b-a)/2 and
repartition = 0.5.

(‘beta’,None,(alpha,beta)), a beta generator with default alpha=2 and
beta=2 parameters.

� valueDigits := <integer>, precision of performance measurements (2 decimal digits
by default).

� missingDataProbability := 0 <= float <= 1.0 ; probability of missing performance
evaluation on a criterion for an alternative (default 0.025).

Code example.

Listing 4.1: Generating a random performance tableau

1 >>> from randomPerfTabs import RandomPerformanceTableau

2 >>> t = RandomPerformanceTableau(numberOfActions=21,numberOfCriteria=13,

→˓seed=100)

3 >>> t.actions

4 {'a01': {'comment': 'RandomPerformanceTableau() generated.',

5 'name': 'random decision action'},

6 'a02': { ... },

7 ...

8 }

9 >>> t.criteria

10 {'g01': {'thresholds': {'ind' : (Decimal('10.0'), Decimal('0.0')),

11 'veto': (Decimal('80.0'), Decimal('0.0')),

12 'pref': (Decimal('20.0'), Decimal('0.0'))},

13 'scale': [0.0, 100.0],

14 'weight': Decimal('1'),

15 'name': 'digraphs.RandomPerformanceTableau() instance',

16 'comment': 'Arguments: ; weightDistribution=random;

17 weightScale=(1, 1); commonMode=None'},

18 'g02': { ... },

19 ...

20 }

21 >>> t.evaluation

22 {'g01': {'a01': Decimal('15.17'),

23 'a02': Decimal('44.51'),

24 'a03': Decimal('-999'), # missing evaluation

25 ...

26 },

(continues on next page)
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27 ...

28 }

29 >>> t.showHTMLPerformanceTableau()

Fig. 1: Browser view on random performance tableau instance

Note: Missing (NA) evaluation are registered in a performance tableau as Decimal(‘-
999’) value (see Listing 4.1 Line 24). Best and worst performance on each criterion are
marked in light green, respectively in light red.

4.3 Random Cost-Benefit performance tableaux

We provide the randomPerfTabs.RandomCBPerformanceTableau class for generating
random Cost versus Benefit organized performance tableaux following the directives be-
low:

� We distinguish three types of decision actions: cheap, neutral and expensive ones
with an equal proportion of 1/3. We also distinguish two types of weighted cri-
teria: cost criteria to be minimized, and benefit criteria to be maximized ; in the
proportions 1/3 respectively 2/3.
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� Random performances on each type of criteria are drawn, either from an ordinal
scale [0;10], or from a cardinal scale [0.0;100.0], following a parametric triangular
law of mode: 30% performance for cheap, 50% for neutral, and 70% performance
for expensive decision actions, with constant probability repartition 0.5 on each side
of the respective mode.

� Cost criteria use mostly cardinal scales (3/4), whereas benefit criteria use mostly
ordinal scales (2/3).

� The sum of weights of the cost criteria by default equals the sum weights of the
benefit criteria: weighDistribution = ‘equiobjectives’.

� On cardinal criteria, both of cost or of benefit type, we observe following constant
preference discrimination quantiles: 5% indifferent situations, 90% strict preference
situations, and 5% veto situation.

Parameters:

� If numberOfActions == None, a uniform random number between 10 and 31
of cheap, neutral or advantageous actions (equal 1/3 probability each type)
actions is instantiated

� If numberOfCriteria == None, a uniform random number between 5 and 21
of cost or benefit criteria (1/3 respectively 2/3 probability) is instantiated

� weightDistribution = {‘equiobjectives’|’fixed’|’random’|’equisignificant’ (de-
fault = ‘equisignificant’)}

� default weightScale for ‘random’ weightDistribution is 1 - numberOfCriteria

� All cardinal criteria are evaluated with decimals between 0.0 and 100.0 whereas
ordinal criteria are evaluated with integers between 0 and 10.

� commonThresholds is obsolete. Preference discrimination is specified as per-
centiles of concerned performance differences (see below).

� commonPercentiles = {‘ind’:5, ‘pref’:10, [‘weakveto’:90,] ‘veto’:95} are ex-
pressed in percents (reversed for vetoes) and only concern cardinal criteria.

Warning: Minimal number of decision actions required is 3 !

Example Python session

Listing 4.2: Generating a random Cost-Benefit perfor-
mance tableau

1 >>> from randomPerfTabs import RandomCBPerformanceTableau

2 >>> t = RandomCBPerformanceTableau(

3 numberOfActions=7,\

4 numberOfCriteria=5,\

5 weightDistribution='equiobjectives',\

6 commonPercentiles={'ind':5,'pref':10,'veto':95},\

(continues on next page)
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7 seed=100)

8 >>> t.showActions()

9 *----- show decision action --------------*

10 key: a1

11 short name: a1

12 name: random cheap decision action

13 key: a2

14 short name: a2

15 name: random neutral decision action

16 ...

17 key: a7

18 short name: a7

19 name: random advantageous decision action

20 >>> t.showCriteria()

21 *---- criteria -----*

22 g1 'random ordinal benefit criterion'

23 Scale = (0, 10)

24 Weight = 0.167

25 g2 'random cardinal cost criterion'

26 Scale = (0.0, 100.0)

27 Weight = 0.250

28 Threshold ind : 1.76 + 0.00x ; percentile: 0.095

29 Threshold pref : 2.16 + 0.00x ; percentile: 0.143

30 Threshold veto : 73.19 + 0.00x ; percentile: 0.952

31 ...

In the example above, we may notice the three types of decision actions (Listing 4.2
Lines 10-19), as well as the two types (Lines 22-25) of criteria with either an ordinal
or a cardinal performance measuring scale. In the latter case, by default about 5% of
the random performance differences will be below the indifference and 10% below the
preference discriminating threshold. About 5% will be considered as considerably
large. More statistics about the generated performances is available as follows.

1 >>> t.showStatistics()

2 *-------- Performance tableau summary statistics -------*

3 Instance name : randomCBperftab

4 #Actions : 7

5 #Criteria : 5

6 *Statistics per Criterion*

7 Criterion name : g1

8 Criterion weight : 2

9 criterion scale : 0.00 - 10.00

10 mean evaluation : 5.14

11 standard deviation : 2.64

12 maximal evaluation : 8.00

13 quantile Q3 (x_75) : 8.00

14 median evaluation : 6.50

15 quantile Q1 (x_25) : 3.50

16 minimal evaluation : 1.00

(continues on next page)
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17 mean absolute difference : 2.94

18 standard difference deviation : 3.74

19 Criterion name : g2

20 Criterion weight : 3

21 criterion scale : -100.00 - 0.00

22 mean evaluation : -49.32

23 standard deviation : 27.59

24 maximal evaluation : 0.00

25 quantile Q3 (x_75) : -27.51

26 median evaluation : -35.98

27 quantile Q1 (x_25) : -54.02

28 minimal evaluation : -91.87

29 mean absolute difference : 28.72

30 standard difference deviation : 39.02

31 ...

A (potentially ranked) colored heatmap with 5 color levels is also provided.

>>> t.showHTMLPerformanceHeatmap(colorLevels=5,rankingRule=None)

Fig. 2: Unranked heatmap of a random Cost-Benefit performance tableau

Such a performance tableau may be stored and re-accessed as follows.

1 >>> t.save('temp')

2 *----- saving performance tableau in XMCDA 2.0 format -------------*

3 File: temp.py saved !

4 >>> from perfTabs import PerformanceTableau

5 >>> t = PerformanceTableau('temp')
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If needed for instance in an R session, a CSV version of the performance tableau may be
created as follows.

1 >>> t.saveCSV('temp')

2 * --- Storing performance tableau in CSV format in file temp.csv

1 ...$ less temp.csv

2 "actions","g1","g2","g3","g4","g5"

3 "a1",1.00,-17.92,-33.99,26.68,3.00

4 "a2",8.00,-30.71,-77.77,66.35,6.00

5 "a3",8.00,-41.65,-69.84,53.43,8.00

6 "a4",2.00,-39.49,-16.99,18.62,2.00

7 "a5",6.00,-91.87,-74.85,83.09,7.00

8 "a6",7.00,-32.47,-24.91,79.24,9.00

9 "a7",4.00,-91.11,-7.44,48.22,7.00

Back to Content Table (page 3)

4.4 Random three objectives performance tableaux

We provide the randomPerfTabs.Random3ObjectivesPerformanceTableau class for
generating random performance tableaux concerning potential public policies evaluated
with respect to three preferential decision objectives taking respectively into account
economical, societal as well as environmental aspects.

Each public policy is qualified randomly as performing weak (-), fair (~) or good (+)
on each of the three objectives.

Generator directives are the following:

� numberOfActions = 20 (default),

� numberOfCriteria = 13 (default),

� weightDistribution = ‘equiobjectives’ (default) | ‘random’ | ‘equisignificant’,

� weightScale = (1,numberOfCriteria): only used when random criterion weights are
requested,

� integerWeights = True (default): False gives normalized rational weights,

� commonScale = (0.0,100.0),

� commonThresholds = [(5.0,0.0),(10.0,0.0),(60.0,0.0)]: Performance discrimination
thresholds may be set for ‘ind’, ‘pref’ and ‘veto’,

� commonMode = [‘triangular’,’variable’,0.5]: random number generators of various
other types (‘uniform’,’beta’) are available,

� valueDigits = 2 (default): evaluations are encoded as Decimals,

� missingDataProbability = 0.05 (default): random insertion of missing values with
given probability,
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� seed= None.

Note: If the mode of the triangular distribution is set to ‘variable’, three modes at
0.3 (-), 0.5 (~), respectively 0.7 (+) of the common scale span are set at random for each
coalition and action.

Warning: Minimal number of decision actions required is 3 !

Example Python session

Listing 4.3: Generating a random 3 Objectives perfor-
mance tableau

1 >>> from randomPerfTabs import Random3ObjectivesPerformanceTableau

2 >>> t = Random3ObjectivesPerformanceTableau(

3 numberOfActions=31,

4 numberOfCriteria=13,

5 weightDistribution='equiobjectives',

6 seed=120)

7 >>> t.showObjectives()

8 *------ show objectives -------"

9 Eco: Economical aspect

10 g04 criterion of objective Eco 20

11 g05 criterion of objective Eco 20

12 g08 criterion of objective Eco 20

13 g11 criterion of objective Eco 20

14 Total weight: 80.00 (4 criteria)

15 Soc: Societal aspect

16 g06 criterion of objective Soc 16

17 g07 criterion of objective Soc 16

18 g09 criterion of objective Soc 16

19 g10 criterion of objective Soc 16

20 g13 criterion of objective Soc 16

21 Total weight: 80.00 (5 criteria)

22 Env: Environmental aspect

23 g01 criterion of objective Env 20

24 g02 criterion of objective Env 20

25 g03 criterion of objective Env 20

26 g12 criterion of objective Env 20

27 Total weight: 80.00 (4 criteria)

In Listing 4.3 above, we notice that 5 equisignificant criteria (g06, g07, g09, g10, g13)
evaluate for instance the performance of the public policies from a societal point of view
(Lines 16-21). 4 equisignificant criteria do the same from an economical (Lines 10-14),
respectively an environmental point of view (Lines 21-27). The equiobjectives directive
results hence in a balanced total weight (80.00) for each decision objective.

40



1 >>> t.showActions()

2 key: p01

3 name: random public policy Eco+ Soc- Env+

4 profile: {'Eco': 'good', 'Soc': 'weak', 'Env': 'good'}

5 key: p02

6 ...

7 key: p26

8 name: random public policy Eco+ Soc+ Env-

9 profile: {'Eco': 'good', 'Soc': 'good', 'Env': 'weak'}

10 ...

11 key: p30

12 name: random public policy Eco- Soc- Env-

13 profile: {'Eco': 'weak', 'Soc': 'weak', 'Env': 'weak'}

14 ...

Variable triangular modes (0.3, 0.5 or 0.7 of the span of the measure scale) for each
objective result in different performance status for each public policy with respect to the
three objectives. Policy p01, for instance, will probably show good performances wrt the
economical and environmental aspects, and weak performances wrt the societal aspect.

For testing purposes we provide a special perfTabs.PartialPerformanceTableau class
for extracting a partial performance tableau from a given tableau instance. In the
example blow, we may construct the partial performance tableaux corresponding to each
one of the three decision objectives.

1 >>> from perfTabs import PartialPerformanceTableau

2 >>> teco = PartialPerformanceTableau(t,criteriaSubset=\

3 t.objectives['Eco']['criteria'])

4 >>> tsoc = PartialPerformanceTableau(t,criteriaSubset=\

5 t.objectives['Soc']['criteria'])

6 >>> tenv = PartialPerformanceTableau(t,criteriaSubset=\

7 t.objectives['Env']['criteria'])

One may thus compute a partial bipolar-valued outranking digraph for each individual
objective.

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> geco = BipolarOutrankingDigraph(teco)

3 >>> gsoc = BipolarOutrankingDigraph(tsoc)

4 >>> genv = BipolarOutrankingDigraph(tenv)

The three partial digraphs: geco, gsoc and genv, hence model the preferences represented
in each one of the partial performance tableaux. And, we may aggregate these three
outranking digraphs with an epistemic fusion operator.

1 >>> from digraphs import FusionLDigraph

2 >>> gfus = FusionLDigraph([geco,gsoc,genv])

3 >>> gfus.strongComponents()

4 {frozenset({'p30'}),

5 frozenset({'p10', 'p03', 'p19', 'p08', 'p07', 'p04', 'p21', 'p20',

(continues on next page)

41



(continued from previous page)

6 'p13', 'p23', 'p16', 'p12', 'p24', 'p02', 'p31', 'p29',

7 'p05', 'p09', 'p28', 'p25', 'p17', 'p14', 'p15', 'p06',

8 'p01', 'p27', 'p11', 'p18', 'p22'}),

9 frozenset({'p26'})}

10 >>> from digraphs import StrongComponentsCollapsedDigraph

11 >>> scc = StrongComponentsCollapsedDigraph(gfus)

12 >>> scc.showActions()

13 *----- show digraphs actions --------------*

14 key: frozenset({'p30'})

15 short name: Scc_1

16 name: _p30_

17 comment: collapsed strong component

18 key: frozenset({'p10', 'p03', 'p19', 'p08', 'p07', 'p04', 'p21', 'p20', 'p13',

19 'p23', 'p16', 'p12', 'p24', 'p02', 'p31', 'p29', 'p05', 'p09',

→˓ 'p28', 'p25',

20 'p17', 'p14', 'p15', 'p06', 'p01', 'p27', 'p11', 'p18', 'p22'}

→˓)

21 short name: Scc_2

22 name: _p10_p03_p19_p08_p07_p04_p21_p20_p13_p23_p16_p12_p24_p02_p31_\

23 p29_p05_p09_p28_p25_p17_p14_p15_p06_p01_p27_p11_p18_p22_

24 comment: collapsed strong component

25 key: frozenset({'p26'})

26 short name: Scc_3

27 name: _p26_

28 comment: collapsed strong component

A graphviz drawing illustrates the apparent preferential links between the strong compo-
nents.

1 >>> scc.exportGraphViz('scFusionObjectives')

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to scFusionObjectives.dot

4 dot -Grankdir=BT -Tpng scFusionObjectives.dot -o scFusionObjectives.png
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Fig. 3: Strong components digraph

Public policy p26 (Eco+ Soc+ Env-) appears dominating the other policies, whereas
policy p30 (Eco- Soc- Env-) appears to be dominated by all the others.

4.5 Random academic performance tableaux

The randomPerfTabs.RandomAcademicPerformanceTableau class generates temporary
performance tableaux with random grades for a given number of students in different
courses (see Lecture 4: Grading, Algorithmic decision Theory Course http://hdl.handle.
net/10993/37933)

Parameters :

� number of students,

� number of courses,

� weightDistribution := ‘equisignificant’ | ‘random’ (default)

� weightScale := (1, 1 | numberOfCourses (default when random))

� IntegerWeights := Boolean (True = default)

� commonScale := (0,20) (default)

� ndigits := 0

� WithTypes := Boolean (False = default)

� commonMode := (‘triangular’,xm=14,r=0.25) (default)

� commonThresholds := {‘ind’:(0,0), ‘pref’:(1,0)} (default)

� missingDataProbability := 0.0 (default)

43

http://hdl.handle.net/10993/37933
http://hdl.handle.net/10993/37933


When parameter WithTypes is set to True, the students are randomly allocated to one
of the four categories: weak (1/6), fair (1/3), good (1/3), and excellent (1/3), in the
bracketed proportions. In a default 0-20 grading range, the random range of a weak
student is 0-10, of a fair student 4-16, of a good student 8-20, and of an excellent student
12-20. The random grading generator follows in this case a double triangular probablity
law with mode (xm) equal to the middle of the random range and median repartition (r
= 0.5) of probability each side of the mode.

Listing 4.4: Generating a random academic performance
tableau

1 >>> from randomPerfTabs import RandomAcademicPerformanceTableau

2 >>> t = RandomAcademicPerformanceTableau(numberOfStudents=11,

3 numberOfCourses=7, missingDataProbability=0.03,

4 WithTypes=True, seed=100)

5 >>> t

6 *------- PerformanceTableau instance description ------*

7 Instance class : RandomAcademicPerformanceTableau

8 Seed : 100

9 Instance name : randstudPerf

10 # Actions : 11

11 # Criteria : 7

12 Attributes : ['randomSeed', 'name', 'actions',

13 'criteria', 'evaluation', 'weightPreorder']

14 >>> t.showPerformanceTableau()

15 *---- performance tableau -----*

16 Courses | 'g1' 'g2' 'g3' 'g4' 'g5' 'g6' 'g7'

17 ECTS | 2 1 3 4 1 1 5

18 ---------|------------------------------------------

19 's01f' | 12 13 15 08 16 06 15

20 's02g' | 10 15 20 11 14 15 18

21 's03g' | 14 12 19 11 15 13 11

22 's04f' | 13 15 12 13 13 10 06

23 's05e' | 12 14 13 16 15 12 16

24 's06g' | 17 13 10 14 NA 15 13

25 's07e' | 12 12 12 18 NA 13 17

26 's08f' | 14 12 09 13 13 15 12

27 's09g' | 19 14 15 13 09 13 16

28 's10g' | 10 12 14 17 12 16 09

29 's11w' | 10 10 NA 10 10 NA 08

30 >>> t.weightPreorder

31 [['g2', 'g5', 'g6'], ['g1'], ['g3'], ['g4'], ['g7']]

The example tableau, generated for instance above with missingDataProbability = 0.03,
WithTypes = True and seed = 100 (see Listing 4.4 Lines 2-4), results in a set of two
excellent (s05, s07 ), five good (s02, s03, s06, s09, s10 ), three fair (s01, s04, s08 ) and one
weak (s11 ) student performances. Notice that six students get a grade below the course
validating threshold 10 and we observe four missing grades (NA), two in course g5 and
one in course g3 and course g6 (see Lines 19-29).

We may show a statistical summary of the students’ grades obtained in the heighest
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weighted course, namely g7, followed by a performance heatmap browser view showing a
global ranking of the students’ performances from best to weakest.

Listing 4.5: Student performance summary statistics per
course

1 >>> t.showCourseStatistics('g7')

2 *----- Summary performance statistics ------*

3 Course name : g7

4 Course weight : 5

5 # Students : 11

6 grading scale : 0.00 - 20.00

7 # missing evaluations : 0

8 mean evaluation : 12.82

9 standard deviation : 3.79

10 maximal evaluation : 18.00

11 quantile Q3 (x_75) : 16.25

12 median evaluation : 14.00

13 quantile Q1 (x_25) : 10.50

14 minimal evaluation : 6.00

15 mean absolute difference : 4.30

16 standard difference deviation : 5.35

17 >>> t.showHTMLPerformanceHeatmap(colorLevels=5,

18 pageTitle='Ranking the students')

Fig. 4: Ranking the students with a performance heatmap view

The ranking shown here in Fig. 4 is produced with the default NetFlows rule (see tuto-
rial Ranking with multiple incommensurable criteria (page 59)). With a mean marginal
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correlation of +0.361 (see Listing 4.6 Lines 15-) associated with a low standard devi-
ation (0.248), the result represents a rather fair weighted consensus made between the
individual courses’ marginal rankings.

Listing 4.6: Consensus quality of the students’s ranking

1 >>> t.showRankingConsensusQuality(t.netFlowsRanking)

2 Consensus quality of ranking:

3 ['s07', 's02', 's09', 's05', 's06', 's03', 's10',

4 's01', 's08', 's04', 's11']

5 criterion (weight): correlation

6 -------------------------------

7 g7 (0.294): +0.727

8 g4 (0.235): +0.309

9 g2 (0.059): +0.291

10 g3 (0.176): +0.200

11 g1 (0.118): +0.109

12 g6 (0.059): +0.091

13 g5 (0.059): +0.073

14 Summary:

15 Weighted mean marginal correlation (a): +0.361

16 Standard deviation (b) : +0.248

17 Ranking fairness (a)-(b) : +0.113

4.6 Random linearly ranked performance tableaux

Finally, we provide the randomPerfTabs.RandomRankPerformanceTableau class for gen-
erating multiple criteria ranked performance tableaux, i.e. on each criterion, all decision
action’s evaluations appear linearly ordered without ties.

This type of random performance tableau is matching the votingProfiles.

RandomLinearVotingProfile class provided by the votingProfiles module.

Parameters:

� number of actions,

� number of performance criteria,

� weightDistribution := ‘equisignificant’ | ‘random’ (default, see above,)

� weightScale := (1, 1 | numberOfCriteria (default when random)).

� integerWeights := Boolean (True = default)

� commonThresholds (default) := {

‘ind’:(0,0),

‘pref’:(1,0),

‘veto’:(numberOfActions,0)

} (default)

Back to Content Table (page 3)
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5 Computing the winner of an election

� Linear voting profiles (page 47)

� Computing the winner (page 48)

� The Condorcet winner (page 50)

� Cyclic social preferences (page 52)

� On generating random linear voting profiles (page 54)

5.1 Linear voting profiles

The votingProfiles module provides resources for handling election results [ADT-L2],
like the votingProfiles.LinearVotingProfile class. We consider an election involving
a finite set of candidates and finite set of weighted voters, who express their voting
preferences in a complete linear ranking (without ties) of the candidates. The data is
internally stored in two ordered dictionaries, one for the voters and another one for the
candidates. The linear ballots are stored in a standard dictionary.

1 candidates = OrderedDict([('a1',...), ('a2',...), ('a3', ...), ...}

2 voters = OrderedDict([('v1',{'weight':10}), ('v2',{'weight':3}), ...}

3 ## each voter specifies a linearly ranked list of candidates

4 ## from the best to the worst (without ties

5 linearBallot = {

6 'v1' : ['a2','a3','a1', ...],

7 'v2' : ['a1','a2','a3', ...],

8 ...

9 }

The module provides a votingProfiles.RandomLinearVotingProfile class for gen-
erating random instances of the votingProfiles.LinearVotingProfile class. In an
interactive Python session we may obtain for the election of 3 candidates by 5 voters the
following result.

Listing 5.1: Example of random linear voting profile

1 >>> from votingProfiles import RandomLinearVotingProfile

2 >>> v = RandomLinearVotingProfile(numberOfVoters=5,

3 numberOfCandidates=3,

4 RandomWeights=True)

5 >>> v.candidates

6 OrderedDict([ ('a1',{'name':'a1}), ('a2',{'name':'a2'}),

(continues on next page)
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7 ('a3',{'name':'a3'}) ])

8 >>> v.voters

9 OrderedDict([('v1',{'weight': 2}), ('v2':{'weight': 3}),

10 ('v3',{'weight': 1}), ('v4':{'weight': 5}),

11 ('v5',{'weight': 4})])

12 >>> v.linearBallot

13 {'v1': ['a1', 'a2', 'a3',],

14 'v2': ['a3', 'a2', 'a1',],

15 'v3': ['a1', 'a3', 'a2',],

16 'v4': ['a1', 'a3', 'a2',],

17 'v5': ['a2', 'a3', 'a1',]}

Notice that in this random example, the five voters are weighted (see Listing 5.1 Line 6-
7). Their linear ballots can be viewed with the votingProfiles.LinearVotingProfile.
showLinearBallots() method.

1 >>> v.showLinearBallots()

2 voters(weight) candidates rankings

3 v1(2): ['a2', 'a1', 'a3']

4 v2(3): ['a3', 'a1', 'a2']

5 v3(1): ['a1', 'a3', 'a2']

6 v4(5): ['a1', 'a2', 'a3']

7 v5(4): ['a3', 'a1', 'a2']

8 # voters: 15

Editing of the linear voting profile may be achieved by storing the data in a file, edit it,
and reload it again.

1 >>> v.save(fileName='tutorialLinearVotingProfile1')

2 *--- Saving linear profile in file: <tutorialLinearVotingProfile1.py> ---*

3 >>> v = LinearVotingProfile('tutorialLinearVotingProfile1')

5.2 Computing the winner

We may easily compute uni-nominal votes, i.e. how many times a candidate was ranked
first, and see who is consequently the simple majority winner(s) in this election.

1 >>> v.computeUninominalVotes()

2 {'a2': 2, 'a1': 6, 'a3': 7}

3 >>> v.computeSimpleMajorityWinner()

4 ['a3']

As we observe no absolute majority (8/15) of votes for any of the three candidate, we
may look for the instant runoff winner instead (see [ADT-L2]).
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Listing 5.2: Example Instant Run Off Winner

1 >>> v.computeInstantRunoffWinner(Comments=True)

2 Half of the Votes = 7.50

3 ==> stage = 1

4 remaining candidates ['a1', 'a2', 'a3']

5 uninominal votes {'a1': 6, 'a2': 2, 'a3': 7}

6 minimal number of votes = 2

7 maximal number of votes = 7

8 candidate to remove = a2

9 remaining candidates = ['a1', 'a3']

10 ==> stage = 2

11 remaining candidates ['a1', 'a3']

12 uninominal votes {'a1': 8, 'a3': 7}

13 minimal number of votes = 7

14 maximal number of votes = 8

15 candidate a1 obtains an absolute majority

16 Instant run off winner: ['a1']

In stage 1, no candidate obtains an absolute majority of votes. Candidate a2 obtains
the minimal number of votes (2/15) and is, hence, eliminated. In stage 2, candidate a1
obtains an absolute majority of the votes (8/15) and is eventually elected (see Listing
5.2).

We may also follow the Chevalier de Borda’s advice and, after a rank analysis of the
linear ballots, compute the Borda score -the average rank- of each candidate and hence
determine the Borda winner(s).

Listing 5.3: Example of Borda rank scores

1 >>> v.computeRankAnalysis()

2 {'a2': [2, 5, 8], 'a1': [6, 9, 0], 'a3': [7, 1, 7]}

3 >>> v.computeBordaScores()

4 OrderedDict([

5 ('a1', {'BordaScore': 24, 'averageBordaScore': 1.6}),

6 ('a3', {'BordaScore': 30, 'averageBordaScore': 2.0}),

7 ('a2', {'BordaScore': 36, 'averageBordaScore': 2.4}) ])

8 >>> v.computeBordaWinners()

9 ['a1']

Candidate a1 obtains the minimal Borda score, followed by candidate a3 and finally
candidate a2 (see Listing 5.3). The corresponding Borda rank analysis table may be
printed out with a corresponding show command.

Listing 5.4: Rank analysis example

1 >>> v.showRankAnalysisTable()

2 *---- Borda rank analysis tableau -----*

3 candi- | alternative-to-rank | Borda

4 dates | 1 2 3 | score average

5 -------|-------------------------------------

(continues on next page)
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6 'a1' | 6 9 0 | 24/15 1.60

7 'a3' | 7 1 7 | 30/15 2.00

8 'a2' | 2 5 8 | 36/15 2.40

In our randomly generated election results, we are lucky: The instant runoff winner and
the Borda winner both are candidate a1 (see Listing 5.2 and Listing 5.4). However, we
could also follow theMarquis de Condorcet ’s advice, and compute themajority margins
obtained by voting for each individual pair of candidates.

5.3 The Condorcet winner

For instance, candidate a1 is ranked four times before and once behind candidate a2.
Hence the corresponding majority margin M(a1,a2) is 4 - 1 = +3. These majority
margins define on the set of candidates what we call the Condorcet digraph. The
votingProfiles.CondorcetDigraph class (a specialization of the digraphs.Digraph

class) is available for handling such kind of digraphs.

Listing 5.5: Example of Condorcet digraph

1 >>> from votingProfiles import CondorcetDigraph

2 >>> cdg = CondorcetDigraph(v,hasIntegerValuation=True)

3 >>> cdg

4 *------- Digraph instance description ------*

5 Instance class : CondorcetDigraph

6 Instance name : rel_randomLinearVotingProfile1

7 Digraph Order : 3

8 Digraph Size : 3

9 Valuation domain : [-15.00;15.00]

10 Determinateness (%) : 64.44

11 Attributes : ['name', 'actions', 'voters',

12 'ballot', 'valuationdomain',

13 'relation', 'order',

14 'gamma', 'notGamma']

15 >>> cdg.showAll()

16 *----- show detail -------------*

17 Digraph : rel_randLinearVotingProfile1

18 *---- Actions ----*

19 ['a1', 'a2', 'a3']

20 *---- Characteristic valuation domain ----*

21 {'max': Decimal('15.0'), 'med': Decimal('0'),

22 'min': Decimal('-15.0'), 'hasIntegerValuation': True}

23 * ---- majority margins -----

24 M(x,y) | 'a1' 'a2' 'a3'

25 ----------|-------------------

26 'a1' | 0 11 1

27 'a2' | -11 0 -1

28 'a3' | -1 1 0

29 Valuation domain: [-15;+15]
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Notice that in the case of linear voting profiles, majority margins always verify a zero
sum property: M(x,y) + M(y,x) = 0 for all candidates x and y (see Listing 5.5 Lines
26-28). This is not true in general for arbitrary voting profiles. The Condorcet digraph of
linear voting profiles defines in fact a weak tournament and belongs, hence, to the class
of self-codual bipolar-valued digraphs (13).

Now, a candidate x, showing a positive majority margin M(x,y), is beating candidate y
with an absolute majority in a pairwise voting. Hence, a candidate showing only positive
terms in her row in the Condorcet digraph relation table, beats all other candidates with
absolute majority of votes. Condorcet recommends to declare this candidate (is always
unique, why?) the winner of the election. Here we are lucky, it is again candidate a1
who is hence the Condorcet winner (see Listing 5.5 Line 26).

1 >>> cdg.computeCondorcetWinner()

2 ['a1']

By seeing the majority margins like a bipolar-valued characteristic function of a global
preference relation defined on the set of candidates, we may use all operational resources
of the generic Digraph class (seeWorking with the Digraph3 software resources (page 4)),
and especially its exportGraphViz method1, for visualizing an election result.

1 >>> cdg.exportGraphViz(fileName='tutorialLinearBallots')

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to tutorialLinearBallots.dot

4 dot -Grankdir=BT -Tpng tutorialLinearBallots.dot -o tutorialLinearBallots.png

Fig. 1: Visualizing an election result

In Fig. 1 we notice that the Condorcet digraph from our example linear voting profile
gives a linear order of the candidates: [‘a1’, ‘a3’, ‘a2], the same actually as given by

13 The class of self-codual bipolar-valued digraphs consists of all weakly asymmetric digraphs, i.e.
digraphs containing only asymmetric and/or indeterminate links. Limit cases consists of, on the one
side, full tournaments with indeterminate reflexive links, and, on the other side, fully indeterminate

digraphs. In this class, the converse (inverse ~ ) operator is indeed identical to the dual (negation - )
one.
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the Borda scores (see Listing 5.3). This is by far not given in general. Usually, when
aggregating linear ballots, there appear cyclic social preferences.

5.4 Cyclic social preferences

Let us consider for instance the following linear voting profile and construct the corre-
sponding Condorcet digraph.

Listing 5.6: Example of cyclic social preferences

1 >>> v.showLinearBallots()

2 voters(weight) candidates rankings

3 v1(1): ['a1', 'a3', 'a5', 'a2', 'a4']

4 v2(1): ['a1', 'a2', 'a4', 'a3', 'a5']

5 v3(1): ['a5', 'a2', 'a4', 'a3', 'a1']

6 v4(1): ['a3', 'a4', 'a1', 'a5', 'a2']

7 v5(1): ['a4', 'a2', 'a3', 'a5', 'a1']

8 v6(1): ['a2', 'a4', 'a5', 'a1', 'a3']

9 v7(1): ['a5', 'a4', 'a3', 'a1', 'a2']

10 v8(1): ['a2', 'a4', 'a5', 'a1', 'a3']

11 v9(1): ['a5', 'a3', 'a4', 'a1', 'a2']

12 >>> cdg = CondorcetDigraph(v)

13 >>> cdg.showRelationTable()

14 * ---- Relation Table -----

15 S | 'a1' 'a2' 'a3' 'a4' 'a5'

16 ------|----------------------------------------

17 'a1' | - 0.11 -0.11 -0.56 -0.33

18 'a2' | -0.11 - 0.11 0.11 -0.11

19 'a3' | 0.11 -0.11 - -0.33 -0.11

20 'a4' | 0.56 -0.11 0.33 - 0.11

21 'a5' | 0.33 0.11 0.11 -0.11 -

Now, we cannot find any completely positive row in the relation table (see Listing 5.6
Lines 17 - ). No one of the five candidates is beating all the others with an absolute
majority of votes. There is no Condorcet winner anymore. In fact, when looking at a
graphviz drawing of this Condorcet digraph, we may observe cyclic preferences, like (a1
> a2 > a3 > a1 ) for instance (see Fig. 2).

1 >>> cdg.exportGraphViz('cycles')

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to cycles.dot

4 dot -Grankdir=BT -Tpng cycles.dot -o cycles.png
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Fig. 2: Cyclic social preferences

But, there may be many cycles appearing in a Condorcet digraph, and, we may detect
and enumerate all minimal chordless circuits in a Digraph instance with the digraphs.
Digraph.computeChordlessCircuits() method.

1 >>> cdg.computeChordlessCircuits()

2 [(['a2', 'a3', 'a1'], frozenset({'a2', 'a3', 'a1'})),

3 (['a2', 'a4', 'a5'], frozenset({'a2', 'a5', 'a4'})),

4 (['a2', 'a4', 'a1'], frozenset({'a2', 'a1', 'a4'}))]

Condorcet ‘s approach for determining the winner of an election is hence not decisive in
all circumstances and we need to exploit more sophisticated approaches for finding the
winner of the election on the basis of the majority margins of the given linear ballots (see
the tutorial on ranking with multiple incommensurable criteria (page 59) and [BIS-2008]).

Many more tools for exploiting voting results are available like the browser heat map view
on voting profiles (see the technical documentation of the votingProfiles module).
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Listing 5.7: Example linear voting heatmap

1 >>> v.showHTMLVotingHeatmap(rankingRule='NetFlows',

2 Transposed=False)

Fig. 3: Visualizing a linear voting profile in a heatmap format

Notice that the importance weights of the voters are negative, which means that the
preference direction of the criteria (in this case the individual voters) is decreasing, i.e.
goes from lowest (best) rank to highest (worst) rank. Notice also, that the compromise
NetFlows ranking [a4,a5,a2,a1,a3], shown in this heatmap (see Fig. 3) results in an
optimal ordinal correlation index of +0.778 with the pairwise majority voting margins (see
the Adavanced topic on Ordinal Correlation equals Relational Equivalence and Ranking
with multiple incommensurable criteria (page 59)). The number of voters is usually much
larger than the number of candidates. In that case, it is better to generate a transposed
voters X candidates view (see Listing 5.7 Line 2)

5.5 On generating random linear voting profiles

By default, the votingProfiles.RandomLinearVotingProfile class generates random
linear voting profiles where every candidates has the same uniform probabilities to be
ranked at a certain position by all the voters. For each voter’s random linear ballot is
indeed generated via a uniform shuffling of the list of candidates.

In reality, political election data appear quite different. There will usually be different
favorite and marginal candidates for each political party. To simulate these aspects into
our random generator, we are using two random exponentially distributed polls of the
candidates and consider a bipartisan political landscape with a certain random balance
(default theoretical party repartition = 0.50) between the two sets of potential party
supporters (see votingProfiles.LinearVotingProfile class). A certain theoretical
proportion (default = 0.1) will not support any party.

54



Let us generate such a linear voting profile for an election with 1000 voters and 15
candidates.

Listing 5.8: Generating a linear voting profile with ran-
dom polls

1 >>> from votingProfiles import RandomLinearVotingProfile

2 >>> lvp = RandomLinearVotingProfile(numberOfCandidates=15,

3 numberOfVoters=1000,

4 WithPolls=True,

5 partyRepartition=0.5,

6 other=0.1,

7 seed=0.9189670954954139)

8 >>> lvp

9 *------- VotingProfile instance description ------*

10 Instance class : RandomLinearVotingProfile

11 Instance name : randLinearProfile

12 # Candidates : 15

13 # Voters : 1000

14 Attributes : ['name', 'seed', 'candidates',

15 'voters', 'RandomWeights',

16 'sumWeights', 'poll1', 'poll2',

17 'bipartisan', 'linearBallot', 'ballot']

18 >>> lvp.showRandomPolls()

19 Random repartition of voters

20 Party_1 supporters : 460 (46.0%)

21 Party_2 supporters : 436 (43.6%)

22 Other voters : 104 (10.4%)

23 *---------------- random polls ---------------

24 Party_1(46.0%) | Party_2(43.6%)| expected

25 -----------------------------------------------

26 a06 : 19.91% | a11 : 22.94% | a06 : 15.00%

27 a07 : 14.27% | a08 : 15.65% | a11 : 13.08%

28 a03 : 10.02% | a04 : 15.07% | a08 : 09.01%

29 a13 : 08.39% | a06 : 13.40% | a07 : 08.79%

30 a15 : 08.39% | a03 : 06.49% | a03 : 07.44%

31 a11 : 06.70% | a09 : 05.63% | a04 : 07.11%

32 a01 : 06.17% | a07 : 05.10% | a01 : 05.06%

33 a12 : 04.81% | a01 : 05.09% | a13 : 05.04%

34 a08 : 04.75% | a12 : 03.43% | a15 : 04.23%

35 a10 : 04.66% | a13 : 02.71% | a12 : 03.71%

36 a14 : 04.42% | a14 : 02.70% | a14 : 03.21%

37 a05 : 04.01% | a15 : 00.86% | a09 : 03.10%

38 a09 : 01.40% | a10 : 00.44% | a10 : 02.34%

39 a04 : 01.18% | a05 : 00.29% | a05 : 01.97%

40 a02 : 00.90% | a02 : 00.21% | a02 : 00.51%

In this example (see Listing 5.8 Lines 18-), we obtain 460 Party_1 supporters (46%),
436 Party_2 supporters (43.6%) and 104 other voters (10.4%). Favorite candidates of
Party_1 supporters, with more than 10%, appear to be a06 (19.91%), a07 (14.27%) and
a03 (10.02%). Whereas for Party_2 supporters, favorite candidates appear to be a11
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(22.94%), followed by a08 (15.65%), a04 (15.07%) and a06 (13.4%). Being first choice
for Party_1 supporters and fourth choice for Party_2 supporters, this candidate a06 is
a natural candidate for clearly winning this election game (see Listing 5.9).

Listing 5.9: The uninominal election winner

1 >>> lvp.computeSimpleMajorityWinner()

2 ['a06']

3 >>> lvp.computeInstantRunoffWinner()

4 ['a06']

5 >>> lvp.computeBordaWinners()

6 ['a06']

Is it also a Condorcet winner ? To verify, we start by creating the corresponding Condorcet
digraph cdg with the help of the votingProfiles.CondorcetDigraph class. The created
digraph instance contains 15 actions -the candidates- and 105 oriented arcs -the positive
majority margins- (see Listing 5.10 Lines 6-7).

Listing 5.10: A Condorcet digraph constructed from a
linear voting profile

1 >>> from votingProfiles import CondorcetDigraph

2 >>> cdg = CondorcetDigraph(lvp)

3 *------- Digraph instance description ------*

4 Instance class : CondorcetDigraph

5 Instance name : rel_randLinearProfile

6 Digraph Order : 15

7 Digraph Size : 104

8 Valuation domain : [-1000.00;1000.00]

9 Determinateness (%) : 67.08

10 Attributes : ['name', 'actions', 'voters',

11 'ballot', 'valuationdomain',

12 'relation', 'order',

13 'gamma', 'notGamma']

We may visualize the resulting pairwise majority margins by showing the HTML formated
version of the cdg relation table in a browser view.

>>> cdg.showHTMLRelationTable(tableTitle='Pairwise majority margins',

relationName=M(x>y)')
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Fig. 4: Browsing the majority margins of a Condorcet digraph

In Fig. 4, light green cells contain the positive majority margins, whereas light red cells
contain the negative majority margins. A complete light green row reveals hence a Con-
dorcet winner, whereas a complete light green column reveals a Condorcet looser. We
recover again candidate a06 as Condorcet winner (15), whereas the obvious Condorcet
looser is here candidate a02, the candidate with the lowest support in both parties (see
Listing 5.8 Line 40).

With a same bipolar -first ranked and last ranked candidate- selection procedure, we may
weakly rank the candidates (with possible ties) by iterating these first ranked and last
ranked choices among the remaining candidates ([BIS-1999]).

Listing 5.11: Ranking by iterating choosing the first and
last remaining candidates

1 >>> cdg.showRankingByChoosing()

2 Error: You must first run

3 self.computeRankingByChoosing(CoDual=False(default)|True) !

4 >>> cdg.computeRankingByChoosing()

5 >>> cdg.showRankingByChoosing()

6 Ranking by Choosing and Rejecting

7 1st first ranked ['a06']

8 2nd first ranked ['a11']

9 3rd first ranked ['a07', 'a08']

10 4th first ranked ['a03']

11 5th first ranked ['a01']

12 6th first ranked ['a13']

(continues on next page)

15 The concept of Condorcet winner -a generalization of absolute majority winners- proposed by Con-

dorcet in 1785, is an early historical example of initial digraph kernel (see the tutorial On computing

digraph kernels (page 163)).
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13 7th first ranked ['a04']

14 7th last ranked ['a12']

15 6th last ranked ['a14']

16 5th last ranked ['a15']

17 4th last ranked ['a09']

18 3rd last ranked ['a10']

19 2nd last ranked ['a05']

20 1st last ranked ['a02']

Before showing the ranking-by-choosing result, we have to compute the iterated bipolar
selection procedure (see Listing 5.11 Line 2). The first selection concerns a06 (first) and
a02 (last), followed by a11 (first) opposed to a05 (last), and so on, until there remains
at iteration step 7 a last pair of candidates, namely [a04, a12] (see Lines 13-14).

Notice furthermore the first ranked candidates at iteration step 3 (see Listing 5.11 Line
9), namely the pair [a07, a08]. Both candidates represent indeed conjointly the first
ranked choice. We obtain here hence a weak ranking, i.e. a ranking with a tie.

Let us mention that the instant-run-off procedure, we used before (see Listing 5.9 Line
3), when operated with a Comments=True parameter setting, will deliver a more or less
similar reversed linear ordering-by-rejecting result, namely [a02, a10, a14, a05, a09, a13,
a12, a15, a04, a01, a08, a03, a07, a11, a06 ], ordered from the last to the first choice.

Remarkable about both these ranking-by-choosing or ordering-by-rejecting results is the
fact that the random voting behaviour, simulated here with the help of two discrete
random variables (16), defined respectively by the two party polls, is rendering a ranking
that is more or less in accordance with the simulated balance of the polls: -Party_1
supporters : 460; Party_2 supporters: 436 (see Listing 5.8 Lines 26-40 third column).
Despite a random voting behaviour per voter, the given polls apparently show a very
strong incidence on the eventual election result. In order to avoid any manipulation of
the election outcome, public media are therefore in some countries not allowed to publish
polls during the last weeks before a general election.

Note: Mind that the specific ranking-by-choosing procedure, we use here on the Con-
dorcet digraph, operates the selection procedure by extracting at each step initial and
terminal kernels, i.e. NP-hard operational problems (see tutorial On computing digraph
kernels (page 163) and [BIS-1999]); A technique that does not allow in general to tackle
voting profiles with much more than 30 candidates. The tutorial on Ranking with multiple
incommensurable criteria (page 59) provides more adequate and efficient techniques for
ranking from pairwise majority margins when a larger number of potential candidates is
given.

Back to Content Table (page 3)

16 Discrete random variables with a given empirical probability law (here the polls) are provided in
the randomNumbers module by the randomNumbers.DiscreteRandomVariable class.
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6 Ranking with multiple incommensurable criteria

� The ranking problem (page 59)

� The Copeland ranking (page 62)

� The NetFlows ranking (page 64)

� Kemeny rankings (page 66)

� Slater rankings (page 69)

� Kohler’s ranking-by-choosing rule (page 71)

� Tideman’s ranked-pairs rule (page 73)

6.1 The ranking problem

We need to rank without ties a set X of items (usually decision alternatives) that are
evaluated on multiple incommensurable performance criteria; yet, for which we may know
their pairwise bipolar-valued strict outranking characteristics, i.e. 𝑟(𝑥 � 𝑦) for all x, y
in X (see The strict outranking digraph (page 30) and [BIS-2013]).

Let us consider a didactic outranking digraph g generated from a random Cost-Benefit
performance tableau (page 35) concerning 9 decision alternatives evaluated on 13 per-
formance criteria. We may compute the corresponding strict outranking digraph with a
codual transform (page 18) as follows.

Listing 6.1: Random bipolar-valued strict outranking re-
lation characteristics

1 >>> from outrankingDigraphs import *

2 >>> t = RandomCBPerformanceTableau(numberOfActions=9,

3 numberOfCriteria=13,seed=200)

4 >>> g = BipolarOutrankingDigraph(t,Normalized=True)

5 >>> gcd = ~(-g) # codual digraph

6 >>> gcd.showRelationTable(ReflexiveTerms=False)

7 * ---- Relation Table -----

8 r(>) | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7' 'a8' 'a9'

9 -----|------------------------------------------------------

10 'a1' | - 0.00 +0.10 -1.00 -0.13 -0.57 -0.23 +0.10 +0.00

11 'a2' | -1.00 - 0.00 +0.00 -0.37 -0.42 -0.28 -0.32 -0.12

12 'a3' | -0.10 0.00 - -0.17 -0.35 -0.30 -0.17 -0.17 +0.00

13 'a4' | 0.00 0.00 -0.42 - -0.40 -0.20 -0.60 -0.27 -0.30

14 'a5' | +0.13 +0.22 +0.10 +0.40 - +0.03 +0.40 -0.03 -0.07

15 'a6' | -0.07 -0.22 +0.20 +0.20 -0.37 - +0.10 -0.03 -0.07

16 'a7' | -0.20 +0.28 -0.03 -0.07 -0.40 -0.10 - +0.27 +1.00

17 'a8' | -0.10 -0.02 -0.23 -0.13 -0.37 +0.03 -0.27 - +0.03

18 'a9' | 0.00 +0.12 -1.00 -0.13 -0.03 -0.03 -1.00 -0.03 -
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Some ranking rules will work on the associated Condorcet Digraph, i.e. the corre-
sponding strict median cut polarised digraph.

Listing 6.2: Median cut polarised strict outranking rela-
tion characteristics

1 >>> ccd = PolarisedOutrankingDigraph(gcd,level=g.valuationdomain['med'],

2 KeepValues=False,StrictCut=True)

3 >>> ccd.showRelationTable(ReflexiveTerms=False,IntegerValues=True)

4 *---- Relation Table -----

5 r(>)_med | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7' 'a8' 'a9'

6 ---------|---------------------------------------------

7 'a1' | - 0 +1 -1 -1 -1 -1 +1 0

8 'a2' | -1 - +0 0 -1 -1 -1 -1 -1

9 'a3' | -1 0 - -1 -1 -1 -1 -1 0

10 'a4' | 0 0 -1 - -1 -1 -1 -1 -1

11 'a5' | +1 +1 +1 +1 - +1 +1 -1 -1

12 'a6' | -1 -1 +1 +1 -1 - +1 -1 -1

13 'a7' | -1 +1 -1 -1 -1 -1 - +1 +1

14 'a8' | -1 -1 -1 -1 -1 +1 -1 - +1

15 'a9' | 0 +1 -1 -1 -1 -1 -1 -1 -

Unfortunately, such crisp median-cut Condorcet digraphs, associated with a given strict
outranking digraph, present only exceptionally a linear ordering. Usually, pairwise ma-
jority comparisons do not even render a complete or, at least, a transitive partial order.
There may even frequently appear cyclic outranking situations (see the tutorial on Com-
puting the winner of an election (page 47)).

To estimate how difficult this ranking problem here may be, we may have a look at the
corresponding strict outranking digraph graphviz drawing (1).

1 >>> gcd.exportGraphViz('rankingTutorial')

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to rankingTutorial.dot

4 dot -Grankdir=BT -Tpng rankingTutorial.dot -o rankingTutorial.png

60



Fig. 1: The strict outranking digraph

The strict outranking relation � shown here is apparently not transitive: for instance,
alternative a8 outranks alternative a6 and alternative a6 outranks a4, however a8 does
not outrank a4 (see Fig. 1). We may compute the transitivity degree of the outranking
digraph, i.e. the ratio of the difference between the number of outranking arcs and the
number of transitive arcs over the difference of the number of arcs of the transitive closure
minus the transitive arcs of the digraph gcd.

>>> gcd.computeTransitivityDegree(Comments=True)

Transitivity degree of graph <codual_rel_randomCBperftab>

#triples x>y>z: 78, #closed: 38, #open: 40

#closed/#triples = 0.487

With only 35% of the required transitive arcs, the strict outranking relation here is hence
very far from being transitive; a serious problem when a linear ordering of the decision
alternatives is looked for. Let us furthermore see if there are any cyclic outrankings.
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1 >>> gcd.computeChordlessCircuits()

2 >>> gcd.showChordlessCircuits()

3 1 circuit(s).

4 *---- Chordless circuits ----*

5 1: ['a6', 'a7', 'a8'] , credibility : 0.033

There is one chordless circuit detected in the given strict outranking digraph gcd, namely
a6 outranks a7, the latter outranks a8, and a8 outranks again a6 (see Fig. 1). Any po-
tential linear ordering of these three alternatives will, in fact, always contradict somehow
the given outranking relation.

Now, several heuristic ranking rules have been proposed for constructing a linear ordering
which is closest in some specific sense to a given outranking relation.

The Digraph3 resources provide some of the most common of these ranking rules, like
Copeland ’s, Kemeny ’s, Slater ’s, Kohler ’s, Arrow-Raynaud ’s or Tideman’s ranking rule.

6.2 The Copeland ranking

Copeland ’s rule, the most intuitive one as it works well for any strict outranking relation
which models in fact a linear order, works on themedian cut strict outranking digraph ccd.
The rule computes for each alternative a score resulting from the sum of the differences
between the crisp strict outranking characteristics 𝑟(𝑥 � 𝑦)>0 and the crisp strict
outranked characteristics 𝑟(𝑦 � 𝑥)>0 for all pairs of alternatives where y is different
from x. The alternatives are ranked in decreasing order of these Copeland scores; ties,
the case given, being resolved by a lexicographical rule.

Listing 6.3: Computing a Copeland Ranking

1 >>> from linearOrders import CopelandRanking

2 >>> cop = CopelandRanking(gcd,Comments=True)

3 Copeland decreasing scores

4 a5 : 12

5 a1 : 2

6 a6 : 2

7 a7 : 2

8 a8 : 0

9 a4 : -3

10 a9 : -3

11 a3 : -5

12 a2 : -7

13 Copeland Ranking:

14 ['a5', 'a1', 'a6', 'a7', 'a8', 'a4', 'a9', 'a3', 'a2']

Alternative a5 obtains here the best Copeland score (+12), followed by alternatives a1,
a6 and a7 with same score (+2); following the lexicographic rule, a1 is hence ranked
before a6 and a6 before a7. Same situation is observed for a4 and a9 with a score of -3
(see Listing 6.3 Lines 4-12).

Copeland ’s ranking rule appears in fact invariant under the codual transform (page 18)
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and renders a same linear order indifferently from digraphs g or gcd . The resulting
ranking (see Listing 6.3 Line 14) is rather correlated (+0.463) with the given pairwise
outranking relation in the ordinal Kendall sense (see Listing 6.4).

Listing 6.4: Checking the quality of the Copeland Rank-
ing

1 >>> corr = g.computeRankingCorrelation(cop.copelandRanking)

2 >>> g.showCorrelation(corr)

3 Correlation indexes:

4 Crisp ordinal correlation : +0.463

5 Valued equivalalence : +0.107

6 Epistemic determination : 0.230

With an epistemic determination level of 0.230, the extended Kendall tau index (see
[BIS-2012]) is in fact computed on 61.5% (100.0 x (1.0 + 0.23)/2) of the pairwise strict
outranking comparisons. Furthermore, the bipolar-valued relational equivalence charac-
teristics between the strict outranking relation and the Copeland ranking equals +0.107,
i.e. a majority of 55.35% of the criteria significance supports the relational equivalence
between the given strict outranking relation and the corresponding Copeland ranking.

The Copeland scores deliver actually only a unique weak ranking, i.e. a ranking with
potential ties. This weak ranking may be constructed with the transitiveDigraphs.

WeakCopelandOrder class.

Listing 6.5: Computing a weak Copeland ranking

1 >>> from transitiveDigraphs import WeakCopelandOrder

2 >>> wcop = WeakCopelandOrder(g)

3 >>> wcop.showRankingByChoosing()

4 Ranking by Choosing and Rejecting

5 1st ranked ['a5']

6 2nd ranked ['a1', 'a6', 'a7']

7 3rd ranked ['a8']

8 3rd last ranked ['a4', 'a9']

9 2nd last ranked ['a3']

10 1st last ranked ['a2']

We recover in Listing 6.5 above, the ranking with ties delivered by the Copeland scores
(see Listing 6.3). We may draw its corresponding Hasse diagram (see Listing 6.6).

Listing 6.6: Drawing a weak Copeland ranking

1 >>> wcop.exportGraphViz(fileName='weakCopelandRanking')

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to weakCopelandRanking.dot

4 0 { rank = same; a5; }

5 1 { rank = same; a1; a7; a6; }

6 2 { rank = same; a8; }

7 3 { rank = same; a4; a9}

8 4 { rank = same; a3; }

9 5 { rank = same; a2; }
(continues on next page)
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10 dot -Grankdir=TB -Tpng weakCopelandRanking.dot\

11 -o weakCopelandRanking.png

Fig. 2: A weak Copeland ranking

Let us now consider a similar ranking rule, but working directly on the bipolar-valued
outranking digraph.

6.3 The NetFlows ranking

The valued version of the Copeland rule, called NetFlows rule, computes for each alter-
native x a net flow score, i.e. the sum of the differences between the strict outranking
characteristics 𝑟(𝑥 � 𝑦) and the strict outranked characteristics 𝑟(𝑦 � 𝑥) for all pairs
of alternatives where y is different from x.

Listing 6.7: Computing a NetFlows ranking

1 >>> from linearOrders import NetFlowsRanking

2 >>> nf = NetFlowsRanking(gcd,Comments=True)

3 Net Flows :

(continues on next page)
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4 a5 : 3.600

5 a7 : 2.800

6 a6 : 1.300

7 a3 : 0.033

8 a1 : -0.400

9 a8 : -0.567

10 a4 : -1.283

11 a9 : -2.600

12 a2 : -2.883

13 NetFlows Ranking:

14 ['a5', 'a7', 'a6', 'a3', 'a1', 'a8', 'a4', 'a9', 'a2']

15 >>> cop.copelandRanking

16 ['a5', 'a1', 'a6', 'a7', 'a8', 'a4', 'a9', 'a3', 'a2']

It is worthwhile noticing again, that similar to the Copeland ranking rule seen before,
the NetFlows ranking rule is also invariant under the codual transform (page 18) and
delivers again the same ranking result indifferently from digraphs g or gcd (see Listing
6.7 Line 14).

In our example here, the NetFlows scores deliver a ranking without ties which is rather
different from the one delivered by Copeland ’s rule (see Listing 6.7 Line 16). It may
happen, however, that we obtain, as with the Copeland scores above, only a ranking with
ties, which may then be resolved again by following a lexicographic rule. In such cases, it is
possible to construct again a weak ranking with the corresponding transitiveDigraphs.
WeakNetFlowsOrder class.

The NetFlows ranking result appears to be slightly better correlated (+0.638) with the
given outranking relation than its crisp cousin, the Copeland ranking (see Listing 6.4
Lines 4-6).

Listing 6.8: Checking the quality of the NetFlows Rank-
ing

1 >>> corr = gcd.computeOrdinalCorrelation(nf)

2 >>> gcd.showCorrelation(corr)

3 Correlation indexes:

4 Extended Kendall tau : +0.638

5 Epistemic determination : 0.230

6 Bipolar-valued equivalence : +0.147

Indeed, the extended Kendall tau index of +0.638 leads to a bipolar-valued relational
equivalence characteristics of +0.147, i.e. a majority of 57.35% of the criteria significance
supports the relational equivalence between the given outranking digraphs g or gcd and
the corresponding NetFlows ranking. This lesser ranking performance of the Copeland
rule stems in this example essentially from the weakness of the actual ranking result and
our subsequent arbitrary lexicographic resolution of the many ties given by the Copeland
scores (see Fig. 2).

To appreciate now the more or less correlation of both the Copeland and the NetFlows
rankings with the underlying pairwise outranking relation, it is useful to consider Ke-
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meny ’s and Slater ’s best fitting ranking rules.

6.4 Kemeny rankings

A Kemeny ranking is a linear ranking without ties which is closest, in the sense of the
ordinal Kendall distance (see [BIS-2012]), to the given valued outranking digraphs g or
gcd. This rule is also invariant under the codual transform.

Listing 6.9: Computing a Kemeny ranking

1 >>> from linearOrders import KemenyRanking

2 >>> ke = KemenyRanking(gcd,orderLimit=9) # default orderLimit is 7

3 >>> ke.showRanking()

4 ['a5', 'a6', 'a7', 'a3', 'a9', 'a4', 'a1', 'a8', 'a2']

5 >>> corr = gcd.computeOrdinalCorrelation(ke)

6 >>> gcd.showCorrelation(corr)

7 Correlation indexes:

8 Extended Kendall tau : +0.779

9 Epistemic determination : 0.230

10 Bipolar-valued equivalence : +0.179

So, +0.779 represents the highest possible ordinal correlation (fitness) any potential
linear ranking can achieve with the given pairwise outranking digraph (see Listing 6.9
Lines 7-10).

A Kemeny ranking may not be unique. In our example here, we obtain in fact two
Kemeny rankings with a same maximal Kemeny index of 12.9.

Listing 6.10: Optimal Kemeny rankings

1 >>> ke.maximalRankings

2 [['a5', 'a6', 'a7', 'a3', 'a8', 'a9', 'a4', 'a1', 'a2'],

3 ['a5', 'a6', 'a7', 'a3', 'a9', 'a4', 'a1', 'a8', 'a2']]

4 >>> ke.maxKemenyIndex

5 Decimal('12.9166667')

We may visualize the partial order defined by the epistemic disjunction (page 17) of both
optimal Kemeny rankings by using the transitiveDigraphs.RankingsFusion class as
follows.

Listing 6.11: Computing the epistemic disjunction of all
optimal Kemeny rankings

1 >>> from transitiveDigraphs import RankingsFusion

2 >>> wke = RankingsFusion(ke,ke.maximalRankings)

3 >>> wke.exportGraphViz(fileName='tutorialKemeny')

4 *---- exporting a dot file for GraphViz tools ---------*

5 Exporting to tutorialKemeny.dot

6 0 { rank = same; a5; }

7 1 { rank = same; a6; }

8 2 { rank = same; a7; }
(continues on next page)
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9 3 { rank = same; a3; }

10 4 { rank = same; a9; a8; }

11 5 { rank = same; a4; }

12 6 { rank = same; a1; }

13 7 { rank = same; a2; }

14 dot -Grankdir=TB -Tpng tutorialKemeny.dot -o tutorialKemeny.png

Fig. 3: Epistemic disjunction of optimal Kemeny rankings
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It is interesting to notice in Fig. 3 and Listing 6.10, that both Kemeny rankings only
differ in their respective positioning of alternative a8 ; either before or after alternatives
a9, a4 and a1.

To choose now a specific representative among all the potential rankings with maximal
Kemeny index, we will choose, with the help of the perfTabs.PerformanceTableau.

showRankingConsensusQuality() method, the most consensual one.

Listing 6.12: Computing Consensus Quality of Rankings

1 >>> g.showRankingConsensusQuality(ke.maximalRankings[0])

2 Consensus quality of ranking:

3 ['a5', 'a6', 'a7', 'a3', 'a8', 'a9', 'a4', 'a1', 'a2']

4 criterion (weight): correlation

5 -------------------------------

6 b09 (0.050): +0.361

7 b04 (0.050): +0.333

8 b08 (0.050): +0.292

9 b01 (0.050): +0.264

10 c01 (0.167): +0.250

11 b03 (0.050): +0.222

12 b07 (0.050): +0.194

13 b05 (0.050): +0.167

14 c02 (0.167): +0.000

15 b10 (0.050): +0.000

16 b02 (0.050): -0.042

17 b06 (0.050): -0.097

18 c03 (0.167): -0.167

19 Summary:

20 Weighted mean marginal correlation : +0.099

21 Standard deviation : +0.177

22 >>> g.showRankingConsensusQuality(ke.maximalRankings[1])

23 Consensus quality of ranking:

24 ['a5', 'a6', 'a7', 'a3', 'a9', 'a4', 'a1', 'a8', 'a2']

25 criterion (weight): correlation

26 -------------------------------

27 b09 (0.050): +0.306

28 b08 (0.050): +0.236

29 c01 (0.167): +0.194

30 b07 (0.050): +0.194

31 c02 (0.167): +0.167

32 b04 (0.050): +0.167

33 b03 (0.050): +0.167

34 b01 (0.050): +0.153

35 b05 (0.050): +0.056

36 b02 (0.050): +0.014

37 b06 (0.050): -0.042

38 c03 (0.167): -0.111

39 b10 (0.050): -0.111

40 Summary:

41 Weighted mean marginal correlation : +0.099

(continues on next page)
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42 Standard deviation : 0.132

Both Kemeny rankings show the same weighted mean marginal correlation (+0.099, see
Listing 6.12 Lines 19-21, 40-42) with all thirteen performance criteria. However, the
second ranking shows a slightly lower standard deviation (+0.132 vs +0.177).

When several rankings with maximal Kemeny index are given, the linearOrders.

KemenyRanking class constructor instantiates a most consensual one, i.e. a ranking with
highest mean marginal correlation and, in case of ties, with lowest weighted standard
deviation. Here we obtain ranking: [‘a5’, ‘a6’, ‘a7’, ‘a3’, ‘a9’, ‘a4’, ‘a1’, ‘a8’, ‘a2’] (see
Listing 6.9 Line 4).

6.5 Slater rankings

The Slater ranking rule is identical to Kemeny ’s, but it is working, instead, on the
median cut polarised digraph. Slater ’s ranking rule is also invariant under the codual
transform and delivers again indifferently on g or gcd the following results.

Listing 6.13: Computing a Slater ranking

1 >>> from linearOrders import SlaterRanking

2 >>> sl = SlaterRanking(gcd,orderLimit=9)

3 >>> sl.slaterRanking

4 ['a5', 'a6', 'a4', 'a1', 'a3', 'a7', 'a8', 'a9', 'a2']

5 >>> corr = gcd.computeOrderCorrelation(sl.slaterRanking)

6 >>> sl.showCorrelation(corr)

7 Correlation indexes:

8 Extended Kendall tau : +0.676

9 Epistemic determination : 0.230

10 Bipolar-valued equivalence : +0.156

11 >>> len(sl.maximalRankings)

12 7

We notice in Listing 6.13 Line 7 that the first Slater ranking is a rather good fit (+0.676),
slightly better apparently than the NetFlows ranking result (+638). However, there
are in fact 7 such potentially optimal Slater rankings (see Listing 6.13 Line 11). The
corresponding epistemic disjunction (page 17) gives the following partial ordering.

Listing 6.14: Computing the epistemic disjunction of op-
timal Slater rankings

1 >>> slw = RankingsFusion(sl,sl.maximalRankings)

2 >>> slw.exportGraphViz(fileName='tutorialSlater')

3 *---- exporting a dot file for GraphViz tools ---------*

4 Exporting to tutorialSlater.dot

5 0 { rank = same; a5; }

6 1 { rank = same; a6; }

7 2 { rank = same; a7; a4; }

(continues on next page)
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8 3 { rank = same; a1; }

9 4 { rank = same; a8; a3; }

10 5 { rank = same; a9; }

11 6 { rank = same; a2; }

12 dot -Grankdir=TB -Tpng tutorialSlater.dot -o tutorialSlater.png

Fig. 4: Epistemic disjunction of optimal Slater rankings

What precise ranking result should we hence adopt ? Kemeny ’s and Slater ’s ranking
rules are furthermore computationally difficult problems and effective ranking results are
only computable for tiny outranking digraphs (< 20 objects).

More efficient ranking heuristics, like the Copeland and the NetFlows rules, are therefore
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needed in practice. Let us finally, after these ranking-by-scoring strategies, also present
two popular ranking-by-choosing strategies.

6.6 Kohler ’s ranking-by-choosing rule

Kohler’s ranking-by-choosing rule can be formulated like this.

At step i (i goes from 1 to n) do the following:

1. Compute for each row of the bipolar-valued strict outranking relation table (see
Listing 6.1) the smallest value;

2. Select the row where this minimum is maximal. Ties are resolved in lexicographic
order;

3. Put the selected decision alternative at rank i ;

4. Delete the corresponding row and column from the relation table and restart until
the table is empty.

Listing 6.15: Computing a Kohler ranking

1 >>> from linearOrders import KohlerRanking

2 >>> kocd = KohlerRanking(gcd)

3 >>> kocd.showRanking()

4 ['a5', 'a7', 'a6', 'a3', 'a9', 'a8', 'a4', 'a1', 'a2']

5 >>> corr = gcd.computeOrdinalCorrelation(kocd)

6 >>> gcd.showCorrelation(corr)

7 Correlation indexes:

8 Extended Kendall tau : +0.747

9 Epistemic determination : 0.230

10 Bipolar-valued equivalence : +0.172

With this min-max lexicographic ranking-by-choosing strategy, we find a correlation re-
sult (+0.747) that is until now clearly the nearest to an optimal Kemeny ranking (see
Listing 6.10). Only two adjacent pairs: [a6, a7] and [a8, a9] are actually inverted here.
Notice that Kohler ’s ranking rule, contrary to the previously mentioned rules, is not in-
variant under the codual transform and requires to work on the strict outranking digraph
gcd for a better correlation result.

1 >>> ko = KohlerRanking(g)

2 >>> corr = g.computeOrdinalCorrelation(ko)

3 >>> g.showCorrelation(corr)

4 Correlation indexes:

5 Crisp ordinal correlation : +0.483

6 Epistemic determination : 0.230

7 Bipolar-valued equivalence : +0.111

But Kohler ’s ranking has a dual version, the prudent Arrow-Raynaud ordering-by-
choosing rule, where a corresponding max-min strategy, when used on the non-strict
outranking digraph g, for ordering the from last to first produces a similar ranking result
(see [LAM-2009], [DIA-2010]).
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Noticing that the NetFlows score of an alternative x represents in fact a bipolar-valued
characteristic of the assertion ‘alternative x is ranked first’, we may enhance Kohler ’s
or Arrow-Raynaud ’s rules by replacing the min-max, respectively the max-min, strategy
with an iterated maximal, respectively its dual minimal, Netflows score selection.

For a ranking (resp. an ordering) result, at step i (i goes from 1 to n) do the following:

1. Compute for each row of the bipolar-valued outranking relation table (see Listing
6.1) the corresponding net flow score (page 64) ;

2. Select the row where this score is maximal (resp. minimal); ties being resolved by
lexicographic order;

3. Put the corresponding decision alternative at rank (resp. order) i ;

4. Delete the corresponding row and column from the relation table and restart until
the table is empty.

A first advantage is that the so modified Kohler ’s and Arrow-Raynaud ’s rules be-
come invariant under the codual transform. And we may get both the ranking-
by-choosing as well as the ordering-by-choosing results with the linearOrders.

IteratedNetFlowsRanking class constructor (see Listing 6.16 Lines 12-13).

Listing 6.16: Ordering-by-choosing with iterated minimal
NetFlows scores

1 >>> from linearOrders import IteratedNetFlowsRanking

2 >>> inf = IteratedNetFlowsRanking(g)

3 >>> inf

4 *------- Digraph instance description ------*

5 Instance class : IteratedNetFlowsRanking

6 Instance name : rel_randomCBperftab_ranked

7 Digraph Order : 9

8 Digraph Size : 36

9 Valuation domain : [-1.00;1.00]

10 Determinateness (%) : 100.00

11 Attributes : ['valuedRanks', 'valuedOrdering',

12 'iteratedNetFlowsRanking',

13 'iteratedNetFlowsOrdering',

14 'name', 'actions', 'order',

15 'valuationdomain', 'relation',

16 'gamma', 'notGamma']

17 >>> inf.iteratedNetFlowsOrdering

18 ['a2', 'a9', 'a1', 'a4', 'a3', 'a8', 'a7', 'a6', 'a5']

19 >>> corr = g.computeOrderCorrelation(inf.iteratedNetFlowsOrdering)

20 >>> g.showCorrelation(corr)

21 Correlation indexes:

22 Crisp ordinal correlation : +0.751

23 Epistemic determination : 0.230

24 Bipolar-valued equivalence : +0.173

25 >>> inf.iteratedNetFlowsRanking

26 ['a5', 'a7', 'a6', 'a3', 'a4', 'a1', 'a8', 'a9', 'a2']

27 >>> corr = g.computeRankingCorrelation(inf.iteratedNetFlowsRanking)
(continues on next page)
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28 >>> g.showCorrelation(corr)

29 Correlation indexes:

30 Crisp ordinal correlation : +0.743

31 Epistemic determination : 0.230

32 Bipolar-valued equivalence : +0.171

The iterated NetFlows ranking and its dual, the iterated NetFlows ordering, do not
usually deliver both the same result (Listing 6.16 Lines 18 and 26). With our example
outranking digraph g for instance, it is the ordering-by-choosing result that obtains a
slightly better correlation with the given outranking digraph g (+0.751), a result that is
also slightly better than Kohler ’s original result (+0.747, see Listing 6.15 Line 8).

With different ranking-by-choosing and ordering-by-choosing results, it may be useful to
fuse now, similar to what we have done before with Kemeny ’s and Slaters ’s optimal
rankings (see Listing 6.11 and Listing 6.14), both, the iterated NetFlows ranking and
ordering into a partial ranking. But we are hence back to the practical problem of what
linear ranking should we eventually retain ?

Let us finally mention another interesting ranking-by-choosing approach.

6.7 Tideman’s ranked-pairs rule

Tideman’s ranking-by-choosing heuristic, the RankedPairs rule, working best this time
on the non strict outranking digraph g, is based on a prudent incremental construction
of linear orders that avoids on the fly any cycling outrankings (see [LAM-2009]). The
ranking rule may be formulated as follows:

1. Rank the ordered pairs (𝑥, 𝑦) of alternatives in decreasing order of 𝑟(𝑥 % 𝑦) + 𝑟(𝑦 ̸%
𝑥);

2. Consider the pairs in that order (ties are resolved by a lexicographic rule):

� if the next pair does not create a circuit with the pairs already blocked, block
this pair;

� if the next pair creates a circuit with the already blocked pairs, skip it.

With our didactic outranking digraph g, we get the following result.

Listing 6.17: Computing a RankedPairs ranking

1 >>> from linearOrders import RankedPairsRanking

2 >>> rp = RankedPairsRanking(g)

3 >>> rp.showRanking()

4 ['a5', 'a6', 'a7', 'a3', 'a8', 'a9', 'a4', 'a1', 'a2']

The RankedPairs ranking rule renders in our example here luckily one of the two optimal
Kemeny ranking, as we may verify below.
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1 >>> ke.maximalRankings

2 [['a5', 'a6', 'a7', 'a3', 'a8', 'a9', 'a4', 'a1', 'a2'],

3 ['a5', 'a6', 'a7', 'a3', 'a9', 'a4', 'a1', 'a8', 'a2']]

4 >>> corr = g.computeOrdinalCorrelation(rp)

5 >>> g.computeCorrelation(corr)

6 Correlation indexes:

7 Extended Kendall tau : +0.779

8 Epistemic determination : 0.230

9 Bipolar-valued equivalence : +0.179

Similar to Kohler ’s rule, the RankedPairs rule has also a prudent dual version, the Dias-
Lamboray ordering-by-choosing rule, which produces, when working this time on the co-
dual strict outranking digraph gcd, a similar ranking result (see [LAM-2009], [DIA-2010]).

Besides of not providing a unique linear ranking, the ranking-by-choosing rules, as well
as their dual ordering-by-choosing rules, are unfortunately not scalable to outranking
digraphs of larger orders (> 100). For such bigger outranking digraphs, with several
hundred or thousands of alternatives, only the Copeland, the NetFlows ranking-by-scoring
rules, with a polynomial complexity of 𝑂(𝑛2), where n is the order of the outranking
digraph, remain in fact computationally tractable.

Back to Content Table (page 3)

7 Computing a best choice recommendation

� What site to choose ? (page 75)

� Performance tableau (page 76)

� Outranking digraph (page 78)

� Rubis best choice recommendations (page 80)

� Computing strict best choice recommendations (page 83)

� Weakly ordering the outranking digraph (page 84)

See also the lecture 7 notes from the MICS Algorithmic Decision Theory course:
[ADT-L7].
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7.1 What site to choose ?

A SME, specialized in printing and copy services, has to move into new offices, and its
CEO has gathered seven potential office sites (see Table 1).

Table 1: The potential new office sites

ID Name Address Comment

A Ave Avenue de la liberté High standing city center
B Bon Bonnevoie Industrial environment
C Ces Cessange Residential suburb location
D Dom Dommeldange Industrial suburb environment
E Bel Esch-Belval New and ambitious urbanization far from the city
F Fen Fentange Out in the countryside
G Gar Avenue de la Gare Main city shopping street

Three decision objectives are guiding the CEO’s choice:

1. minimize the yearly costs induced by the moving,

2. maximize the future turnover of the SME,

3. maximize the new working conditions.

The decision consequences to take into account for evaluating the potential new office
sites with respect to each of the three objectives are modelled by the following coherent
family of criteria26.

Table 2: The coherent family of performance criteria

Objective ID Name Comment

Yearly costs C Costs Annual rent, charges, and cleaning

Future turnover St Standing Image and presentation
Future turnover V Visibility Circulation of potential customers
Future turnover Pr Proximity Distance from town center

Working conditions W Space Working space
Working conditions Cf Comfort Quality of office equipment
Working conditions P Parking Available parking facilities

The evaluation of the seven potential sites on each criterion are gathered in the following
performance tableau.

26 A coherent family of performance criteria verifies: a) Exhaustiveness: No argument acceptable to all
stakeholders can be put forward to justify a preference in favour of action x versus action y when x and
y have the same performance level on each of the criteria of the family; b) Cohesiveness: Stakeholders
unanimously recognize that action x must be preferred to action y whenever the performance level of
x is significantly better than that of x on one of the criteria of positive weight, performance levels of x
and y being the same on each of the other criteria; c) Nonredundancy : One of the above requirements is
violated if one of the criteria is left out from the family. Source: European Working Group “Multicriteria

Aid for Decisions” Series 3, no1, Spring, 2000.
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Table 3: Performance evaluations of the potential office
sites

Criterion weight A B C D E F G

Costs 45.0 35.0K¿ 17.8K¿ 6.7K¿ 14.1K¿ 34.8K¿ 18.6K¿ 12.0K¿

Prox 32.0 100 20 80 70 40 0 60
Visi 26.0 60 80 70 50 60 0 100
Stan 23.0 100 10 0 30 90 70 20

Wksp 10.0 75 30 0 55 100 0 50
Wkcf 6.0 0 100 10 30 60 80 50
Park 3.0 90 30 100 90 70 0 80

Except the Costs criterion, all other criteria admit for grading a qualitative satisfaction
scale from 0% (worst) to 100% (best). We may thus notice in Table 3 that site A is the
most expensive, but also 100% satisfying the Proximity as well as the Standing criterion.
Whereas the site C is the cheapest one; providing however no satisfaction at all on both
the Standing and the Working Space criteria.

In Table 3 we may also see that the Costs criterion admits the highest significance (45.0),
followed by the Future turnover criteria (32.0 + 26.0 + 23.0 = 81.0), The Working
conditions criteria are the less significant (10.0 + 6.0, + 3.0 = 19.0). It follows that
the CEO considers maximizing the future turnover the most important objective (81.0),
followed by theminizing yearly Costs objective (45.0), and less important, themaximizing
working conditions objective (19.0).

Concerning yearly costs, we suppose that the CEO is indifferent up to a performance
difference of 1000¿, and he actually prefers a site if there is at least a positive difference
of 2500¿. The grades observed on the six qualitative criteria (measured in percentages
of satisfaction) are very subjective and rather imprecise. The CEO is hence indifferent
up to a satisfaction difference of 10%, and he claims a significant preference when the
satisfaction difference is at least of 20%. Furthermore, a satisfaction difference of 80%
represents for him a considerably large performance difference, triggering a veto situation
the case given (see [BIS-2013]).

In view of Table 3, what is now the office site we may recommend to the CEO as best
choice ?

7.2 Performance tableau

A Python encoded performance tableau is available for downloading here officeChoice.py.

We may inspect the performance tableau data with the computing resources provided by
the perfTabs module.
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1 >>> from perfTabs import *

2 >>> t = PerformanceTableau('officeChoice')

3 >>> help(t) # for discovering all the methods available

4 >>> t.showPerformanceTableau(Transposed=True)

5 *---- performance tableau -----*

6 criteria | weights | 'A' 'B' 'C' 'D' 'E' 'F'␣

→˓ 'G'

7 ---------|---------------------------------------------------------------------

→˓------------

8 'C' | 45 | -35000.00 -17800.00 -6700.00 -14100.00 -34800.00 -18600.

→˓00 -12000.00

9 'Cf' | 6 | 0.00 100.00 10.00 30.00 60.00 80.

→˓00 50.00

10 'P' | 3 | 90.00 30.00 100.00 90.00 70.00 0.

→˓00 80.00

11 'Pr' | 32 | 100.00 20.00 80.00 70.00 40.00 0.

→˓00 60.00

12 'St' | 23 | 100.00 10.00 0.00 30.00 90.00 70.

→˓00 20.00

13 'V' | 26 | 60.00 80.00 70.00 50.00 60.00 0.

→˓00 100.00

14 'W' | 10 | 75.00 30.00 0.00 55.00 100.00 0.

→˓00 50.00

We thus recover all the input data. To measure the actual preference discrimina-
tion we observe on each criterion, we may use the perfTabs.PerformanceTableau.

showCriteria() method.

1 >>> t.showCriteria(IntegerWeights=True)

2 *---- criteria -----*

3 C 'Costs'

4 Scale = (Decimal('0.00'), Decimal('50000.00'))

5 Weight = 45

6 Threshold ind : 1000.00 + 0.00x ; percentile: 0.095

7 Threshold pref : 2500.00 + 0.00x ; percentile: 0.143

8 Cf 'Comfort'

9 Scale = (Decimal('0.00'), Decimal('100.00'))

10 Weight = 6

11 Threshold ind : 10.00 + 0.00x ; percentile: 0.095

12 Threshold pref : 20.00 + 0.00x ; percentile: 0.286

13 Threshold veto : 80.00 + 0.00x ; percentile: 0.905

14 ...

On the Costs criterion, 9.5% of the performance differences are considered insignificant
and 14.3% below the preference discrimination threshold (lines 6-7). On the qualitative
Comfort criterion, we observe again 9.5% of insignificant performance differences (line
11). Due to the imprecision in the subjective grading, we notice here 28.6% of performance
differences below the preference discrimination threshold (Line 12). Furthermore, 100.0 -
90.5 = 9.5% of the performance differences are judged considerably large (Line 13); 80%
and more of satisfaction differences triggering in fact a veto situation. Same information
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is available for all the other criteria.

A colorful comparison of all the performances is shown on Fig. 1 by the heatmap statis-
tics, illustrating the respective quantile class of each performance. As the set of potential
alternatives is tiny, we choose here a classification into performance quintiles.

>>> t.showHTMLPerformanceHeatmap(colorLevels=5,\

rankingRule=None)

Fig. 1: Unranked heatmap of the office choice performance tableau

Site Ave shows extreme and contradictory performances: highest Costs and no Working
Comfort on one hand, and total satisfaction with respect to Standing, Proximity and
Parking facilities on the other hand. Similar, but opposite, situation is given for site Ces :
unsatisfactoryWorking Space, no Standing and noWorking Comfort on the one hand, and
lowest Costs, best Proximity and Parking facilities on the other hand. Contrary to these
contradictory alternatives, we observe two appealing compromise decision alternatives:
sites Dom and Gar. Finally, site Fen is clearly the less satisfactory alternative of all.

7.3 Outranking digraph

To help now the CEO choosing the best site, we are going to compute pairwise outrankings
(see [BIS-2013]) on the set of potential sites. For two sites x and y, the situation “x
outranks y”, denoted (x S y), is given if there is:

1. a significant majority of criteria concordantly supporting that site x is at least
as satisfactory as site y, and

2. no considerable counter-performance observed on any discordant criterion.

The credibility of each pairwise outranking situation (see [BIS-2013]), denoted r(x S y), is
measured in a bipolar significance valuation [-1.00, 1.00], where positive terms r(x S y) >
0.0 indicate a validated, and negative terms r(x S y) < 0.0 indicate a non-validated
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outrankings; whereas the median value r(x S y) = 0.0 represents an indeterminate
situation (see [BIS-2004]).

Fig. 2: The office choice outranking digraph

For computing such a bipolar-valued outranking digraph from the given performance
tableau t, we use the BipolarOutrankingDigraph constructor from the outrankingDi-
graphs module. The Digraph.showHTMLRelationTable method shows here the resulting
bipolar-valued adjacency matrix in a system browser window (see Fig. 2).

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> g = BipolarOutrankingDigraph(t)

3 >>> g.showHTMLRelationTable()

In Fig. 2 we may notice that Alternative D is positively outranking all other potential
office sites (a Condorcet winner). Yet, alternatives A (the most expensive) and C (the
cheapest) are not outranked by any other site; they are in fact weak Condorcet winners.

1 >>> g.condorcetWinners()

2 ['D']

3 >>> g.weakCondorcetWinners()

4 ['A', 'C', 'D']

We may get even more insight in the apparent outranking situations when looking at the
Condorcet digraph (see Fig. 3).

1 >>> g.exportGraphViz('officeChoice')

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to officeChoice.dot

4 dot -Grankdir=BT -Tpng officeChoice.dot -o officeChoice.png
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Fig. 3: The office choice outranking digraph

One may check that the outranking digraph g does not admit in fact any cyclic strict
preference situation.

1 >>> g.computeChordlessCircuits()

2 []

3 >>> g.showChordlessCircuits()

4 No circuits observed in this digraph.

5 *---- Chordless circuits ----*

6 0 circuits.

7.4 Rubis best choice recommendations

Following the Rubis outranking method (see [BIS-2008]), potential best choice recom-
mendations are determined by the outranking prekernels –weakly independent and strictly
outranking choices– of the outranking digraph (see the tutorial on On computing digraph
kernels (page 163)). The case given, we previously need to break open all chordless odd
circuits at their weakest link.

1 >>> from digraphs import BrokenCocsDigraph

2 >>> bcg = BrokenCocsDigraph(g)

3 >>> bcg.brokenLinks

4 set()
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As we observe indeed no such chordless circuits here, we may directly compute the prek-
ernels of the outranking digraph g.

Listing 7.1: Computing outranking and outranked prek-
ernels

1 >>> g.showPreKernels()

2 *--- Computing preKernels ---*

3 Dominant preKernels :

4 ['D']

5 independence : 1.0

6 dominance : 0.02

7 absorbency : -1.0

8 covering : 1.000

9 ['B', 'E', 'C']

10 independence : 0.00

11 dominance : 0.10

12 absorbency : -1.0

13 covering : 0.500

14 ['A', 'G']

15 independence : 0.00

16 dominance : 0.78

17 absorbency : 0.00

18 covering : 0.700

19 Absorbent preKernels :

20 ['F', 'A']

21 independence : 0.00

22 dominance : 0.00

23 absorbency : 1.0

24 covering : 0.700

25 *----- statistics -----

26 graph name: rel_officeChoice.xml

27 number of solutions

28 dominant kernels : 3

29 absorbent kernels: 1

30 cardinality frequency distributions

31 cardinality : [0, 1, 2, 3, 4, 5, 6, 7]

32 dominant kernel : [0, 1, 1, 1, 0, 0, 0, 0]

33 absorbent kernel: [0, 0, 1, 0, 0, 0, 0, 0]

34 Execution time : 0.00018 sec.

35 Results in sets: dompreKernels and abspreKernels.

We notice in Listing 7.1 three potential best choice recommendations: the Condorcet
winner D (Line 4), the triplet B, C and E (Line 9), and finally the pair A and G (Line
14). The best choice recommendation is now given by the most determined prekernel;
the one supported by the most significant criteria coalition. This result is shown with the
showBestChoiceRecommendation command. Notice that this method actually works by
default on the broken chords digraph bcg.
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Listing 7.2: Computing a best choice recommendation

1 >>> g.showBestChoiceRecommendation(CoDual=False)

2 *****************************************

3 Rubis best choice recommendation(s) (BCR)

4 (in decreasing order of determinateness)

5 Credibility domain: [-1.00,1.00]

6 === >> potential best choice(s)

7 * choice : ['D']

8 independence : 1.00

9 dominance : 0.02

10 absorbency : -1.00

11 covering (%) : 100.00

12 determinateness (%) : 51.03

13 - most credible action(s) = { 'D': 0.02, }

14 === >> potential best choice(s)

15 * choice : ['A', 'G']

16 independence : 0.00

17 dominance : 0.78

18 absorbency : 0.00

19 covering (%) : 70.00

20 determinateness (%) : 50.00

21 - most credible action(s) = { }

22 === >> potential best choice(s)

23 * choice : ['B', 'C', 'E']

24 independence : 0.00

25 dominance : 0.10

26 absorbency : -1.00

27 covering (%) : 50.00

28 determinateness (%) : 50.00

29 - most credible action(s) = { }

30 === >> potential worst choice(s)

31 * choice : ['A', 'F']

32 independence : 0.00

33 dominance : 0.00

34 absorbency : 1.00

35 covered (%) : 70.00

36 determinateness (%) : 50.00

37 - most credible action(s) = { }

38 Execution time: 0.014 seconds

We notice in Listing 7.2 (Line 7) above that the most significantly supported best choice
recommendation is indeed the Condorcet winner D supported by a majority of 51.03% of
the criteria significance (see Line 12). Both other potential best choice recommendations,
as well as the potential worst choice recommendation, are not positively validated as best,
resp. worst choices. They may or may not be considered so. Alternative A, with extreme
contradictory performances, appears both, in a best and a worst choice recommendation
(see Lines 27 and 37) and seams hence not actually comparable to its competitors.
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7.5 Computing strict best choice recommendations

When comparing now the performances of alternatives D and G on a pairwise perspective
(see below), we notice that, with the given preference discrimination thresholds, alter-
native G is actually certainly at least as good as alternative D : r(G outranks D) =
+145/145 = +1.0.

1 >>> g.showPairwiseComparison('G','D')

2 *------------ pairwise comparison ----*

3 Comparing actions : (G, D)

4 crit. wght. g(x) g(y) diff. | ind pref concord |

5 =========================================================================

6 C 45.00 -12000.00 -14100.00 +2100.00 | 1000.00 2500.00 +45.00 |

7 Cf 6.00 50.00 30.00 +20.00 | 10.00 20.00 +6.00 |

8 P 3.00 80.00 90.00 -10.00 | 10.00 20.00 +3.00 |

9 Pr 32.00 60.00 70.00 -10.00 | 10.00 20.00 +32.00 |

10 St 23.00 20.00 30.00 -10.00 | 10.00 20.00 +23.00 |

11 V 26.00 100.00 50.00 +50.00 | 10.00 20.00 +26.00 |

12 W 10.00 50.00 55.00 -5.00 | 10.00 20.00 +10.00 |

13 =========================================================================

14 Valuation in range: -145.00 to +145.00; global concordance: +145.00

However, we must as well notice that the cheapest alternative C is in fact strictly
outranking alternative G : r(C outranks G) = +15/145 > 0.0, and r(G outranks C ) =
-15/145 < 0.0.

1 >>> g.showPairwiseComparison('C','G')

2 *------------ pairwise comparison ----*

3 Comparing actions : (C, G)/(G, C)

4 crit. wght. g(x) g(y) diff. | ind. pref. (C,G)/(G,C) |

5 ==========================================================================

6 C 45.00 -6700.00 -12000.00 +5300.00 | 1000.00 2500.00 +45.00/-45.00 |

7 Cf 6.00 10.00 50.00 -40.00 | 10.00 20.00 -6.00/ +6.00 |

8 P 3.00 100.00 80.00 +20.00 | 10.00 20.00 +3.00/ -3.00 |

9 Pr 32.00 80.00 60.00 +20.00 | 10.00 20.00 +32.00/-32.00 |

10 St 23.00 0.00 20.00 -20.00 | 10.00 20.00 -23.00/+23.00 |

11 V 26.00 70.00 100.00 -30.00 | 10.00 20.00 -26.00/+26.00 |

12 W 10.00 0.00 50.00 -50.00 | 10.00 20.00 -10.00/+10.00 |

13 =========================================================================

14 Valuation in range: -145.00 to +145.00; global concordance: +15.00/-15.00

To model these strict outranking situations, we may recompute the best choice recom-
mendation on the codual, the converse (~) of the dual (-)14, of the outranking digraph
instance g (see [BIS-2013]), as follows.

Listing 7.3: Computing the strict best choice recommen-
dation

1 >>> g.showBestChoiceRecommendation(CoDual=True,\

2 ChoiceVector=True)

(continues on next page)
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3 * --- Best and worst choice recommendation(s) ---*

4 (in decreasing order of determinateness)

5 Credibility domain: [-1.00,1.00]

6 === >> potential best choice(s)

7 * choice : ['A', 'C', 'D']

8 independence : 0.00

9 dominance : 0.10

10 absorbency : 0.00

11 covering (%) : 41.67

12 determinateness (%) : 50.59

13 - characteristic vector = { 'D': 0.02, 'G': 0.00, 'C': 0.00,

14 'A': 0.00, 'F': -0.02, 'E': -0.02,

15 'B': -0.02, }

16 === >> potential worst choice(s)

17 * choice : ['A', 'F']

18 independence : 0.00

19 dominance : -0.52

20 absorbency : 1.00

21 covered (%) : 50.00

22 determinateness (%) : 50.00

23 - characteristic vector = { 'G': 0.00, 'F': 0.00, 'E': 0.00,

24 'D': 0.00, 'C': 0.00, 'B': 0.00,

25 'A': 0.00, }

It is interesting to notice in Listing 7.3 (Line 6) that the strict best choice recom-
mendation consists in the set of weak Condorcet winners: ‘A’, ‘C’ and ‘D’. In the corre-
sponding characteristic vector (see Line 14-15), representing the bipolar credibility degree
with which each alternative may indeed be considered a best choice (see [BIS-2006a],
[BIS-2006b]), we find confirmed that alternative D is the only positively validated one,
whereas both extreme alternatives - A (the most expensive) and C (the cheapest) - stay
in an indeterminate situation. They may be potential best choice candidates besides
D. Notice furthermore that compromise alternative G, while not actually included in an
outranking prekernel, shows as well an indeterminate situation with respect to being or
not being a potential best choice candidate.

We may also notice (see Line 17 and Line 21) that both alternatives A and F are reported
as certainly outranked choices, hence as potential worst choice recommendation .
This confirms again the global incomparability status of alternative A.

7.6 Weakly ordering the outranking digraph

To get a more complete insight in the overall strict outranking situations, we may use
the transitiveDigraphs.RankingByChoosingDigraph constructor imported from the
transitiveDigraphs module, for computing a ranking-by-choosing result from the strict
outranking digraph instance gcd.
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1 >>> from transitiveDigraphs import RankingByChoosingDigraph

2 >>> gcd = ~(-g)

3 >>> rbc = RankingByChoosingDigraph(gcd)

4 Threading ... ## multiprocessing if 2 cores are available

5 Exiting computing threads

6 >>> rbc.showRankingByChoosing()

7 Ranking by Choosing and Rejecting

8 1st ranked ['D']

9 2nd ranked ['C', 'G']

10 2nd last ranked ['B', 'C', 'E']

11 1st last ranked ['A', 'F']

12 >>> rbc.exportGraphViz('officeChoiceRanking')

13 *---- exporting a dot file for GraphViz tools ---------*

14 Exporting to officeChoiceRanking.dot

15 0 { rank = same; A; C; D; }

16 1 { rank = same; G; }

17 2 { rank = same; E; B; }

18 3 { rank = same; F; }

19 dot -Grankdir=TB -Tpng officeChoiceRanking.dot -o officeChoiceRanking.png

Fig. 4: Ranking-by-choosing from the office choice outranking digraph

In this ranking-by-choosing method, where we operate the epistemic fusion of iterated
(strict) best and worst choices, compromise alternative D is indeed ranked before com-
promise alternative G. If the computing node supports multiple processor cores, best and
worst choosing iterations are run in parallel. The overall partial ordering result shows
again the important fact that the most expensive site A, and the cheapest site C, both
appear incomparable with most of the other alternatives, as is apparent from the Hasse
diagram (see above) of the ranking-by-choosing relation.
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The best choice recommendation appears hence depending on the very importance the
CEO is attaching to each of the three decision objectives he is considering. In the setting
here, where he considers that maximizing the future turnover is the most important
objective followed by minimizing the Costs and, less important, maximizing the working
conditions, site D represents actually the best compromise. However, if Costs do not
play much a role, it would be perhaps better to decide to move to the most advantageous
site A; or if, on the contrary, Costs do matter a lot, moving to the cheapest alternative
C could definitely represent a more convincing recommendation.

It might be worth, as an exercise, to modify these criteria significance weights in the
officeChoice.py data file in such a way that

� all criteria under an objective appear equi-significant, and

� all three decision objectives are considered equally important.

What will become the best choice recommendation under this working hypothesis?

See also the lecture 7 notes from the MICS Algorithmic Decision Theory course:
[ADT-L7].

Back to Content Table (page 3)

8 Alice’s best choice: A case study19

� The decision problem (page 87)

� The performance tableau (page 88)

� Building a best choice recommendation (page 91)

� Robustness analysis (page 97)

Alice D. , 19 years old German student finishing her secondary studies
in Köln (Germany), desires to undertake foreign languages studies. She will probably
receive her “Abitur” with satisfactory and/or good marks and wants to start her further
studies thereafter.

She would not mind staying in Köln, yet is ready to move elsewhere if necessary. The
length of the higher studies do concern her, as she wants to earn her life as soon as

19 This case study is inspired by aMultiple Criteria Decision Analysis case study published in Eisenführ
Fr., Langer Th., and Weber M., Fallstudien zu rationalem Entscheiden, Springer 2001, pp. 1-17.
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possible. Her parents however agree to financially support her study fees, as well as, her
living costs during her studies.

8.1 The decision problem

Alice has already identified 10 potential study programs.

Table 1: Alice’s potential study programs

ID Diploma Institution City

T-UD Qualified translator (T) University (UD) Düsseldorf
T-FHK Qualified translator (T) Higher Technical School (FHK) Köln
T-FHM Qualified translator (T) Higher Technical School (FHM) München
I-FHK Graduate interpreter (I) Higher Technical School (FHK) Köln
T-USB Qualified translator (T) University (USB) Saarbrücken
I-USB Graduate interpreter (I) University (USB) Saarbrücken
T-UHB Qualified translator (T) University (UHB) Heidelberg
I-UHB Graduate interpreter (I) University (UHB) Heidelberg
S-HKK Specialized secretary (S) Chamber of Commerce (HKK) Köln
C-HKK Foreign correspondent (C) Chamber of Commerce (HKK) Köln

In Table 1 we notice that Alice considers three Graduate Interpreter studies (8 or 9
Semesters), respectively in Köln, in Saarbrücken or in Heidelberg; and five Qualified
translator studies (8 or 9 Semesters), respectively in Köln, in Düsseldorf, in Saarbrücken,
in Heidelberg or in Munich. She also considers two short (4 Semesters) study programs
at the Chamber of Commerce in Köln.

Four decision objectives of more or less equal importance are guiding Alice’s choice:

1. maximize the attractiveness of the study place (GEO),

2. maximize the attractiveness of her further studies (LEA),

3. minimize her financial dependency on her parents (FIN),

4. maximize her professional perspectives (PRA).

The decision consequences Alice wishes to take into account for evaluating the potential
study programs with respect to each of the four objectives are modelled by the following
coherent family of criteria26.
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Table 2: Alice’s family of performance criteria

ID Name Comment Objective Weight

DH Proximity Distance in km to her home (min) GEO 3
BC Big City Number of inhabitants (max) GEO 3

AS Studies Attractiveness of the studies (max) LEA 6

SF Fees Annual study fees (min) FIN 2
LC Living Monthly living costs (min) FIN 2
SL Length Length of the studies (min) FIN 2

AP Profession Attractiveness of the profession (max) PRA 2
AI Income Annual income after studying (max) PRA 2
PR Prestige Occupational prestige (max) PRA 2

Within each decision objective, the performance criteria are considered to be equisignifi-
cant. Hence, the four decision objectives show a same importance weight of 6 (see Table
2).

8.2 The performance tableau

The actual evaluations of Alice’s potential study programs are stored in a file named
AliceChoice.py of perfTabs.PerformanceTableau format21.

Listing 8.1: Alice’s performance tableau

1 >>> from perfTabs import PerformanceTableau

2 >>> t = PerformanceTableau('AliceChoice')

3 >>> t.showObjectives()

4 *------ decision objectives -------"

5 GEO: Geographical aspect

6 DH Distance to parent's home 3

7 BC Number of inhabitants 3

8 Total weight: 6 (2 criteria)

9 LEA: Learning aspect

10 AS Attractiveness of the study program 6

11 Total weight: 6.00 (1 criteria)

12 FIN: Financial aspect

13 SF Annual registration fees 2

14 LC Monthly living costs 2

15 SL Study time 2

16 Total weight: 6.00 (3 criteria)

17 PRA: Professional aspect

(continues on next page)

21 Alice’s performance tableau AliceChoice.py is available in the examples directory of the Digraph3
software collection.
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18 AP Attractiveness of the profession 2

19 AI Annual professional income after studying 2

20 OP Occupational Prestige 2

21 Total weight: 6.00 (3 criteria)

Details of the performance criteria may be consulted in a browser view (see Fig. 1 below).

>>> t.showHTMLCriteria()

Fig. 1: Alice’s performance criteria

It is worthwhile noticing in Fig. 1 above that, on her subjective attractiveness scale of the
study programs (criterion AS ), Alice considers a performance differences of 7 points to be
considerable and triggering, the case given, a veto situation. Notice also the proportional
indifference (1%) and preference (5%) discrimination thresholds shown on criterion BC -
number of inhabitants.

In the following heatmap view, we may now consult Alice’s performance evaluations.

>>> t.showHTMLPerformanceHeatmap(

colorLevels=5,Correlations=True,ndigits=0)
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Fig. 2: Heatmap of Alice’s performance tableau

Alice is subjectively evaluating the Attractiveness of the studies (criterion AS ) on an
ordinal scale from 0 (weak) to 10 (excellent). Similarly, she is subjectively evaluating the
Attractiveness of the respective professions (criterion AP) on a three level ordinal scale
from 0 (weak), 1 (fair) to 2 (good). Considering the Occupational Prestige (criterion
OP), she looked up the SIOPS20. All the other evaluation data she found on the internet
(see Fig. 2).

Notice by the way that evaluations on performance criteria to be minimized, like Distance
to Home (criterion DH ) or Study time (criterion SL), are registered as negative values,
so that smaller measures are, in this case, preferred to larger ones.

Her ten potential study programs are ordered with the NetFlows ranking rule applied to
the corresponding bipolar-valued outranking digraph23. Graduate interpreter studies in
Köln (I-FHK ) or Saarbrücken (I-USB), followed by Qualified Translator studies in Köln
(T-FHK ) appear to be Alice’s most preferred alternatives. The least attractive study
programs for her appear to be studies at the Chamber of Commerce of Köln (C-HKK,
S-HKK ).

It is finally interesting to observe in Fig. 2 (third row) that the most significant perfor-
mance criteria, appear to be for Alice, on the one side, the Attractiveness of the study
program (criterion AS, tau = +0.72) followed by the Attractiveness of the future profes-
sion (criterion AP, tau = +0.62). On the other side, Study times (criterion SL, tau =

20 Ganzeboom H.B.G, Treiman D.J. “Internationally Comparable Measures of Occupational Status
for the 1988 International Standard Classification of Occupations”, Social Science Research 25, 201–239
(1996).

23 See the tutorial on ranking with multiple incommensurable criteria (page 59).
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-0.24), Big city (criterion BC, tau = -0.07) as well as Monthly living costs (criterion LC,
tau = -0.04) appear to be for her not so significant27.

8.3 Building a best choice recommendation

Let us now have a look at the resulting pairwise outranking situations.

Listing 8.2: Alice’s outranking digraph

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> dg = BipolarOutrankingDigraph(t)

3 >>> dg

4 *------- Object instance description ------*

5 Instance class : BipolarOutrankingDigraph

6 Instance name : rel_AliceChoice

7 # Actions : 10

8 # Criteria : 9

9 Size : 67

10 Determinateness (%) : 73.91

11 Valuation domain : [-1.00;1.00]

12 >>> dg.computeSymmetryDegree(Comments=True)

13 Symmetry degree of graph <rel_AliceChoice> : 0.49

From Alice’s performance tableau we obtain 67 positively validated pairwise outranking
situations in the digraph dg, supported by a 74% majority of criteria significance (see
Listing 8.2 Line 9-10).

Due to the poorly discriminating performance evaluations, nearly half of these outrank-
ing situations (see Line 12) are symmetric and reveal actually more or less indifference
situations between the potential study programs. This is well illustrated in the relation
map of the outranking digraph (see Fig. 3).

>>> dg.showHTMLRelationMap(tableTitle='Outranking relation map',\

rankingRule='Copeland')

27 See also the corresponding Advanced Topic in the Digraph3 documentation.
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Fig. 3: ‘Copeland’-ranked outranking relation map

We have mentioned that Alice considers a performance difference of 7 points on the At-
tractiveness of studies criterion AS to be considerable which triggers, the case given, a
potential polarisation of the outranking characteristics. In Fig. 3 above, these polarisa-
tions appear in the last column and last row. We may inspect the occurrence of such
polarisations as follows.

Listing 8.3: Veto and counter-veto situations

1 >>> dg.showVetos()

2 *---- Veto situations ---

3 number of veto situations : 3

4 1: r(S-HKK >= I-FHK) = -0.17

5 criterion: AS

6 Considerable performance difference : -7.00

7 Veto discrimination threshold : -7.00

8 Polarisation: r(S-HKK >= I-FHK) = -0.17 ==> -1.00

9 2: r(S-HKK >= I-USB) = -0.17

10 criterion: AS

11 Considerable performance difference : -7.00

12 Veto discrimination threshold : -7.00

13 Polarisation: r(S-HKK >= I-USB) = -0.17 ==> -1.00

14 3: r(S-HKK >= I-UHB) = -0.17

15 criterion: AS

16 Considerable performance difference : -7.00

(continues on next page)
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17 Veto discrimination threshold : -7.00

18 Polarisation: r(S-HKK >= I-UHB) = -0.17 ==> -1.00

19 *---- Counter-veto situations ---

20 number of counter-veto situations : 3

21 1: r(I-FHK >= S-HKK) = 0.83

22 criterion: AS

23 Considerable performance difference : 7.00

24 Counter-veto threshold : 7.00

25 Polarisation: r(I-FHK >= S-HKK) = 0.83 ==> +1.00

26 2: r(I-USB >= S-HKK) = 0.17

27 criterion: AS

28 Considerable performance difference : 7.00

29 Counter-veto threshold : 7.00

30 Polarisation: r(I-USB >= S-HKK) = 0.17 ==> +1.00

31 3: r(I-UHB >= S-HKK) = 0.17

32 criterion: AS

33 Considerable performance difference : 7.00

34 Counter-veto threshold : 7.00

35 Polarisation: r(I-UHB >= S-HKK) = 0.17 ==> +1.00

In Listing 8.3, we see that considerable performance differences concerning the Attractive-
ness of the studies (AS criterion) are indeed observed between the Specialised Secretary
study programm offered in Köln and the Graduate Interpreter study programs offered
in Köln, Saarbrücken and Heidelberg. They polarise, hence, three more or less invalid
outranking situations to certainly invalid (Lines 9, 14, 19) and corresponding three more
or less valid converse outranking situations to certainly valid ones (Lines 25, 30, 35).

We may finally notice in the relation map, shown in Fig. 3, that the four best-ranked
study programs, I-FHK, I-USB, I-UHB and T-FHK, are in fact Condorcet winners (see
Listing 8.4 Line 2), i.e. they are all four indifferent one of the other and positively outrank
all other alternatives, a result confirmed below by our best choice recommendation (Line
8).

Listing 8.4: Alice’s best choice recommendation

1 >>> dg.computeCondorcetWinners()

2 ['I-FHK', 'I-UHB', 'I-USB', 'T-FHK']

3 >>> dg.showBestChoiceRecommendation()

4 Best choice recommendation(s) (BCR)

5 (in decreasing order of determinateness)

6 Credibility domain: [-1.00,1.00]

7 === >> potential best choice(s)

8 choice : ['I-FHK','I-UHB','I-USB','T-FHK']

9 independence : 0.17

10 dominance : 0.08

11 absorbency : -0.83

12 covering (%) : 62.50

13 determinateness (%) : 68.75

14 most credible action(s) = {'I-FHK': 0.75,'T-FHK': 0.17,

(continues on next page)
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15 'I-USB': 0.17,'I-UHB': 0.17}

16 === >> potential worst choice(s)

17 choice : ['C-HKK', 'S-HKK']

18 independence : 0.50

19 dominance : -0.83

20 absorbency : 0.17

21 covered (%) : 100.00

22 determinateness (%) : 58.33

23 most credible action(s) = {'S-HKK': 0.17,'C-HKK': 0.17}

Most credible best choice among the four best-ranked study programs eventually becomes
the Graduate Interpreter study program at the Technical High School in Köln (see Listing
8.4 Line 14) supported by a (0.75 + 1)/2.0 = 87.5% (18/24) majority of global criteria
significance24.

In the relation map, shown in Fig. 3, we see in the left lower corner that the asymmet-
ric part of the outranking relation, i.e. the corresponding strict outranking relation, is
actually transitive (see Listing 8.5 Line 2). Hence, a graphviz drawing of its skeleton, ori-
ented by the previous best, respectively worst choice, may well illustrate our best choice
recommendation.

Listing 8.5: Drawing the best choice recommendation

1 >>> dgcd = ~(-dg)

2 >>> dgcd.isTransitive()

3 True

4 >>> dgcd.closeTransitive(Reverse=True)

5 >>> dgcd.exportGraphViz('aliceBestChoice',

6 bestChoice=['I-FHK'],

7 worstChoice=['S-HKK','C-HKK'])

8 *---- exporting a dot file for GraphViz tools ---------*

9 Exporting to aliceBestChoice.dot

10 dot -Grankdir=BT -Tpng aliceBestChoice.dot -o aliceBestChoice.png

24 See also the Advanced Topic about computing best choice membership characteristics in the Di-
graph3 documentation.
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Fig. 4: Alice’s best choice recommendation

In Fig. 4 we notice that the Graduate Interpreter studies come first, followed by the
Qualified Translator studies. Last come the Chamber of Commerce’s specialised studies.
This confirms again the high significance that Alice attaches to the attractiveness of her
further studies and of her future profession (see criteria AS and AP in Fig. 2).

Let us now, for instance, check the pairwise outranking situations observed between the
first and second-ranked alternative, i.e. Garduate Interpreter studies in Köln versus
Graduate Interpreter studies in Saabrücken (see I-FHK and I-USB in Fig. 2).

>>> dg.showHTMLPairwiseOutrankings('I-FHK','I-USB')
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Fig. 5: Comparing the first and second best-ranked study programs

The Köln alternative is performing at least as well as the Saarbrücken alternative on
all the performance criteria, except the Annual income (of significance 2/24). Conversely,
the Saarbrücken alternative is clearly outperformed from the geographical (0/6) as well
as from the financial perspective (2/6).

In a similar way, we may finally compute a weak ranking of all the potential study pro-
grams with the help of the transitiveDigraphs.RankingByChoosingDigraph construc-
tor (see Listing 8.6 below), who computes a bipolar ranking by conjointly best-choosing
and last-rejecting [BIS-1999].
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Listing 8.6: Weakly ranking by bipolar best-choosing and
last-rejecting

1 >>> from transitiveDigraphs import\

2 RankingByChoosingDigraph

3 >>> rbc = RankingByChoosingDigraph(dg)

4 >>> rbc.showRankingByChoosing()

5 Ranking by Choosing and Rejecting

6 1st ranked ['I-FHK']

7 2nd ranked ['I-USB']

8 3rd ranked ['I-UHB']

9 4th ranked ['T-FHK']

10 5th ranked ['T-UD']

11 5th last ranked ['T-UD']

12 4th last ranked ['T-UHB', 'T-USB']

13 3rd last ranked ['T-FHM']

14 2nd last ranked ['C-HKK']

15 1st last ranked ['S-HKK']

In Listing 8.6, we find confirmed that the Interpreter studies appear all preferrred to the
Translator studies. Furthermore, the Interpreter studies in Saarbrücken appear preferred
to the same studies in Heidelberg. The Köln alternative is apparently the preferred one of
all the Translater studies. And, the Foreign Correspondent and the Specialised Secretary
studies appear second-last and last ranked.

Yet, how robust are our findings with respect to potential settings of the decision objec-
tives’ importance and the performance criteria significance ?

8.4 Robustness analysis

Alice considers her four decision objectives as being more or less equally important. Here
we have, however, allocated strictly equal importance weights with strictly equi-significant
criteria per objective. How robust is our previous best choice recommendation when, now,
we would consider the importance of the objectives and, hence, the significance of the
respective performance criteria to be more or less uncertain ?

To answer this question, we will consider the respective criteria significance weights wj
to be triangular random variables in the range 0 to 2wj with mode = wj. We may
compute a corresponding 90%-confident outranking digraph with the help of the
outrankingDigraphs.ConfidentBipolarOutrankingDigraph constructor22.

Listing 8.7: The 90% confident outranking digraph

1 >>> from outrankingDigraphs import\

2 ConfidentBipolarOutrankingDigraph

3 >>> cdg = ConfidentBipolarOutrankingDigraph(t,\

4 distribution='triangular',confidence=90.0)

(continues on next page)

22 See also the corresponding Advanced Topic in the Digraph3 documentation.
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5 >>> cdg

6 *------- Object instance description ------*

7 Instance class : ConfidentBipolarOutrankingDigraph

8 Instance name : rel_AliceChoice_CLT

9 # Actions : 10

10 # Criteria : 9

11 Size : 44

12 Valuation domain : [-1.00;1.00]

13 Uncertainty model : triangular(a=0,b=2w)

14 Likelihood domain : [-1.0;+1.0]

15 Confidence level : 90.0%

16 Confident majority : 14/24 (58.3%)

17 Determinateness (%) : 68.19

Of the original 67 valid outranking situations, we retain 44 outranking situations as being
90%-confident (see Listing 8.7 Line 10). The corresponding 90%-confident qualified
majority of criteria significance amounts to 14/24 = 58.3% (Line 15).

Concerning now a 90%-confident best choice recommendation, we are lucky (see Listing
8.8 below).

Listing 8.8: The 90% confident best choice recommenda-
tion

1 >>> cdg.computeCondorcetWinners()

2 ['I-FHK']

3 >>> cdg.showBestChoiceRecommendation()

4 ***********************

5 Best choice recommendation(s) (BCR)

6 (in decreasing order of determinateness)

7 Credibility domain: [-1.00,1.00]

8 === >> potential best choice(s)

9 choice : ['I-FHK','I-UHB','I-USB',

10 'T-FHK','T-FHM']

11 independence : 0.00

12 dominance : 0.42

13 absorbency : 0.00

14 covering (%) : 20.00

15 determinateness (%) : 61.25

16 - most credible action(s) = { 'I-FHK': 0.75, }

The Graduate Interpreter studies in Köln remain indeed a 90%-confident Condorcet win-
ner (Line 2). Hence, the same study program also remains our 90%-confident most cred-
ible best choice supported by a continual 18/24 (87.5%) majority of the global criteria
significance (see Lines 9 and 15).

When previously comparing the two best-ranked study programs (see Fig. 5), we have
observed that I-FHK actually positively outranks I-USB on all four decision objectives.
When admitting equi-significant criteria significances per objective, this outranking situ-
ation is hence valid independently of the importance weights Alice may allocate to each
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of her decision objectives.

We may compute these unopposed outranking situations25 with help of the
outrankingDigraphs.UnOpposedBipolarOutrankingDigraph constructor.

Listing 8.9: Computing the unopposed outranking situ-
ations

1 >>> from outrankingDigraphs import UnOpposedBipolarOutrankingDigraph

2 >>> uop = UnOpposedBipolarOutrankingDigraph(t)

3 >>> uop

4 *------- Object instance description ------*

5 Instance class : UnOpposedBipolarOutrankingDigraph

6 Instance name : AliceChoice_unopposed_outrankings

7 # Actions : 10

8 # Criteria : 9

9 Size : 28

10 Oppositeness (%) : 58.21

11 Determinateness (%) : 62.94

12 Valuation domain : [-1.00;1.00]

13 >>> uop.isTransitivity()

14 True

We keep 28 out the 67 standard outranking situations, which leads to an oppositeness
degree of (1.0 - 28/67) = 58.21% (Listing 8.9 Line 10). Remarkable furthermore is that
this unopposed outranking digraph uop is actually transitive, i.e. modelling a partial
ranking of the study programs (Line 14).

We may hence make use of the exportGraphViz method of the transitiveDigraphs.

TransitiveDigraph class for drawing the corresponding partial ranking.

>>> from transitiveDigraphs import TransitiveDigraph

>>> TransitiveDigraph.exportGraphViz(uop,\

'AliceChoice_unopposed')

*---- exporting a dot file for GraphViz tools ---------*

Exporting to AliceChoice_unopposed.dot

dot -Grankdir=TB -Tpng AliceChoice_unopposed.dot\

-o AliceChoice_unopposed.png

25 See also the corresponding Advanced Topic in the Digraph3 documentation.

99



Fig. 6: Unopposed partial ranking of the potential study programs

Again, when equi-signficant performance criteria are assumed per decision objective, we
observe in Fig. 6 that I-FHK remains the stable best choice, independently of the actual
importance weights that Alice may wish to allocate to her four decision objectives.

In view of her performance tableau in Fig. 2, Graduate Interpreter studies at the Technical
High School Köln, thus, represent definitely Alice’s very best choice.

For further reading about the Rubis Best Choice methodology, one may consult in
[BIS-2015] the study of a real decision aid case about choosing a best poster in a scientific
conference.

Back to Content Table (page 3)
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9 Rating with multiple incommensurable criteria

� K-sorting on a single criterion (page 101)

� Quantiles sorting with multiple criteria (page 102)

� Ranking big performance tableaux (page 106)

We apply order statistics for sorting a set X of n potential decision actions, evaluated on
m incommensurable performance criteria, into q quantile equivalence classes, based on
pairwise outranking characteristics involving the quantile class limits observed on each
criterion. Thus we may implement a weak ordering algorithm of complexity O(nmq).

9.1 K-sorting on a single criterion

A single criterion sorting category K is a (usually) lower-closed interval [𝑚𝑘;𝑀𝑘[ on a real-
valued performance measurement scale, with 𝑚𝑘 ≤ 𝑀𝑘. If x is a measured performance
on this scale, we may distinguish three sorting situations.

1. 𝑥 < 𝑚𝑘 and (𝑥 < 𝑀𝑘): The performance x is lower than category K.

2. 𝑥 > 𝑚𝑘 and 𝑥 < 𝑀𝑘: The performance x belongs to category K.

3. 𝑥 > 𝑚𝑘 and 𝑥 > 𝑀𝑘: The performance x is higher than category K.

As the relation < is the dual of > (̸>), it will be sufficient to check that 𝑥 > 𝑚𝑘 as well
as 𝑥 ̸> 𝑀𝑘 are true for x to be considered a member of category K.

Upper-closed categories (in a more mathematical integration style) may as well be consid-
ered. In this case it is sufficient to check that 𝑚𝑘 ̸> 𝑥 as well as 𝑀𝑘 ≥ 𝑥 are true for x to
be considered a member of category K. It is worthwhile noticing that a category K such
that 𝑚𝑘 = 𝑀𝑘 is hence always empty by definition. In order to be able to properly sort
over the complete range of values to be sorted, we will need to use a special, two-sided
closed last, respectively first, category.

Let 𝐾 = 𝐾1, ..., 𝐾𝑞 be a non trivial partition of the criterion’s performance measurement
scale into 𝑞 ≥ 2 ordered categories 𝐾𝑘 – i.e. lower-closed intervals [𝑚𝑘;𝑀𝑘[ – such that
𝑚𝑘 < 𝑀𝑘, 𝑀𝑘 = 𝑚𝑘+1 for k = 0, . . . , q - 1 and 𝑀𝑞 = ∞. And, let 𝐴 = {𝑎1, 𝑎2, 𝑎3, ...} be
a finite set of not all equal performance measures observed on the scale in question.

Property: For all performance measure 𝑥 ∈ 𝐴 there exists now a unique k such that
𝑥 ∈ 𝐾𝑘. If we assimilate, like in descriptive statistics, all the measures gathered in a
category 𝐾𝑘 to the central value of the category – i.e. (𝑚𝑘 +𝑀𝑘)/2 – the sorting result
will hence define a weak order (complete preorder) on A.

Let 𝑄 = {𝑄0, 𝑄1, ..., 𝑄𝑞} denote the set of q + 1 increasing order-statistical quantiles –like
quartiles or deciles– we may compute from the ordered set A of performance measures
observed on a performance scale. If 𝑄0 = min(𝑋), we may, with the following intervals:
[𝑄0;𝑄1[, [𝑄1;𝑄2[, . . . , [𝑄𝑞−1;∞[, hence define a set of q lower-closed sorting categories.
And, in the case of upper-closed categories, if𝑄𝑞 = max(𝑋), we would obtain the intervals
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] −∞;𝑄1], ]𝑄1;𝑄2], . . . , ]𝑄𝑞−1;𝑄𝑞]. The corresponding sorting of A will result, in both
cases, in a repartition of all measures x into the q quantile categories 𝐾𝑘 for k = 1, . . . ,
q.

Example: Let A = { 𝑎7 = 7.03, 𝑎15 = 9.45, 𝑎11 = 20.35, 𝑎16 = 25.94, 𝑎10 = 31.44,
𝑎9 = 34.48, 𝑎12 = 34.50, 𝑎13 = 35.61, 𝑎14 = 36.54, 𝑎19 = 42.83, 𝑎5 = 50.04, 𝑎2 =
59.85, 𝑎17 = 61.35, 𝑎18 = 61.61, 𝑎3 = 76.91, 𝑎6 = 91.39, 𝑎1 = 91.79, 𝑎4 = 96.52,
𝑎8 = 96.56, 𝑎20 = 98.42 } be a set of 20 increasing performance measures observed on a
given criterion. The lower-closed category limits we obtain with quartiles (q = 4) are:
𝑄0 = 7.03 = 𝑎7, 𝑄1 = 34.485, 𝑄2 = 54.945 (median performance), and 𝑄3 = 91.69. And
the sorting into these four categories defines on A a complete preorder with the following
four equivalence classes: 𝐾1 = {𝑎7, 𝑎10, 𝑎11, 𝑎10, 𝑎15, 𝑎16}, 𝐾2 = {𝑎5, 𝑎9, 𝑎13, 𝑎14, 𝑎19}, 𝐾3 =
{𝑎2, 𝑎3, 𝑎6, 𝑎17, 𝑎18}, and 𝐾4 = {𝑎1, 𝑎4, 𝑎8, 𝑎20}.

9.2 Quantiles sorting with multiple criteria

Let us now suppose that we are given a performance tableau with a set X of n decision
alternatives evaluated on a coherent family of m performance criteria associated with
the corresponding outranking relation % defined on X. We denote 𝑥𝑗 the performance of
alternative x observed on criterion j.

Suppose furthermore that we want to sort the decision alternatives into q upper-closed
quantile equivalence classes. We therefore consider a series : 𝑘 = 𝑘/𝑞 for k = 0, . . . , q
of q+1 equally spaced quantiles, like quartiles: 0, 0.25, 0.5, 0.75, 1; quintiles: 0, 0.2, 0.4,
0.6, 0.8, 1: or deciles: 0, 0.1, 0.2, . . . , 0.9, 1, for instance.

The upper-closed q𝑘 class corresponds to the m quantile intervals ]𝑞𝑗(𝑝𝑘−1); 𝑞𝑗(𝑝𝑘)] ob-
served on each criterion j, where k = 2, . . . , q , 𝑞𝑗(𝑝𝑞) = max𝑋(𝑥𝑗), and the first class
gathers all performances below or equal to 𝑄𝑗(𝑝1).

The lower-closed q𝑘 class corresponds to the m quantile intervals [𝑞𝑗(𝑝𝑘−1); 𝑞𝑗(𝑝𝑘)[ ob-
served on each criterion j, where k = 1, . . . , q-1, 𝑞𝑗(𝑝0) = min𝑋(𝑥𝑗), and the last class
gathers all performances above or equal to 𝑄𝑗(𝑝𝑞−1).

We call q-tiles a complete series of k = 1, . . . , q upper-closed q𝑘, respectively lower-closed
q𝑘, multiple criteria quantile classes.

Property: With the help of the bipolar-valued characteristic of the outranking relation
𝑟(%) we may compute the bipolar-valued characteristic of the assertion: x belongs to
upper-closed q-tiles class q𝑘 class, resp. lower-closed class q𝑘, as follows.

𝑟(𝑥 ∈ q𝑘) = min
[︀
− 𝑟

(︀
q(𝑝𝑞−1

)︀
% 𝑥), 𝑟

(︀
q(𝑝𝑞

)︀
% 𝑥)

]︀
𝑟(𝑥 ∈ q𝑘) = min

[︀
𝑟
(︀
𝑥 % q(𝑝𝑞−1

)︀
, −𝑟

(︀
𝑥 % q(𝑝𝑞

)︀]︀
The outranking relation % verifying the coduality principle, −𝑟

(︀
q(𝑝𝑞−1) % 𝑥

)︀
=

𝑟
(︀
q(𝑝𝑞−1) ≺ 𝑥

)︀
, resp. −𝑟

(︀
𝑥 % q(𝑝𝑞) = 𝑟

(︀
𝑥 ≺ q(𝑝𝑞

)︀
.

We may compute, for instance, a five-tiling of a given random performance tableau with
the help of the sortingDigraphs.QuantilesSortingDigraph class.
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Listing 9.1: Computing a quintiles sorting result

1 >>> from randomPerfTabs import *

2 >>> t = RandomPerformanceTableau(numberOfActions=50,seed=5)

3 >>> from sortingDigraphs import QuantilesSortingDigraph

4 >>> qs = QuantilesSortingDigraph(t,limitingQuantiles=5)

5 >>> qs

6 *----- Object instance description -----------*

7 Instance class : QuantilesSortingDigraph

8 Instance name : sorting_with_5-tile_limits

9 # Actions : 50

10 # Criteria : 7

11 # Categories : 5

12 Lowerclosed : False

13 Size : 841

14 Valuation domain : [-100.00;100.00]

15 Determinateness (%) : 81.39

16 Attributes : ['actions', 'actionsOrig',

17 'criteria', 'evaluation', 'runTimes', 'name',

18 'limitingQuantiles', 'LowerClosed',

19 'categories', 'criteriaCategoryLimits',

20 'profiles', 'profileLimits', 'hasNoVeto',

21 'valuationdomain', 'nbrThreads', 'relation',

22 'categoryContent', 'order', 'gamma', 'notGamma']

23 *------ Constructor run times (in sec.) ------*

24 # Threads : 1

25 Total time : 0.03120

26 Data input : 0.00300

27 Compute profiles : 0.00075

28 Compute relation : 0.02581

29 Weak Ordering : 0.00052

30 >>> qs.showCriteriaCategoryLimits()

31 Quantile Class Limits (q = 5)

32 Upper-closed classes

33 crit. 0.20 0.40 0.60 0.80 1.00

34 *----------------------------------------------

35 g1 31.35 41.09 58.53 71.91 98.08

36 g2 27.81 39.19 49.87 61.66 96.18

37 g3 25.10 34.78 49.45 63.97 92.59

38 g4 24.61 37.91 53.91 71.02 89.84

39 g5 26.94 36.43 52.16 72.52 96.25

40 g6 23.94 44.06 54.92 67.34 95.97

41 g7 30.94 47.40 55.46 69.04 97.10

42 >>> qs.showSorting()

43 *--- Sorting results in descending order ---*

44 ]0.80 - 1.00]: ['a22']

45 ]0.60 - 0.80]: ['a03', 'a07', 'a08', 'a11', 'a14', 'a17',

46 'a19', 'a20', 'a29', 'a32', 'a33', 'a37',

47 'a39', 'a41', 'a42', 'a49']

48 ]0.40 - 0.60]: ['a01', 'a02', 'a04', 'a05', 'a06', 'a08',

(continues on next page)
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49 'a09', 'a16', 'a17', 'a18', 'a19', 'a21',

50 'a24', 'a27', 'a28', 'a30', 'a31', 'a35',

51 'a36', 'a40', 'a43', 'a46', 'a47', 'a48',

52 'a49', 'a50']

53 ]0.20 - 0.40]: ['a04', 'a10', 'a12', 'a13', 'a15', 'a23',

54 'a25', 'a26', 'a34', 'a38', 'a43', 'a44',

55 'a45', 'a49']

56 ] < - 0.20]: ['a44']

Most of the decision actions (26) are gathered in the median quintile ]0.40− 0.60] class,
whereas the highest quintile ]0.80−1.00] and the lowest quintile ] < −0.20] classes gather
each one a unique decision alternative (a22, resp. a44 ) (see Listing 9.1 Lines 43-).

We may inspect as follows the details of the corresponding sorting characteristics.

Listing 9.2: Bipolar-valued sorting characteristics (ex-
tract)

1 >>> qs.valuationdomain

2 {'min': Decimal('-100.0'), 'med': Decimal('0'),

3 'max': Decimal('100.0')}

4 >>> qs.showSortingCharacteristics()

5 x in q^k r(q^k-1 < x) r(q^k >= x) r(x in q^k)

6 a22 in ]< - 0.20] 100.00 -85.71 -85.71

7 a22 in ]0.20 - 0.40] 85.71 -71.43 -71.43

8 a22 in ]0.40 - 0.60] 71.43 -71.43 -71.43

9 a22 in ]0.60 - 0.80] 71.43 -14.29 -14.29

10 a22 in ]0.80 - 1.00] 14.29 100.00 14.29

11 ...

12 ...

13 a44 in ]< - 0.20] 100.00 0.00 0.00

14 a44 in ]0.20 - 0.40] 0.00 57.14 0.00

15 a44 in ]0.40 - 0.60] -57.14 85.71 -57.14

16 a44 in ]0.60 - 0.80] -85.71 85.71 -85.71

17 a44 in ]0.80 - 1.00] -85.71 85.71 -85.71

18 ...

19 ...

20 a49 in ]< - 0.20] 100.00 -42.86 -42.86

21 a49 in ]0.20 - 0.40] 42.86 0.00 0.00

22 a49 in ]0.40 - 0.60] 0.00 0.00 0.00

23 a49 in ]0.60 - 0.80] 0.00 57.14 0.00

24 a49 in ]0.80 - 1.00] -57.14 85.71 -57.14

Alternative a22 verifies indeed positively both sorting conditions only for the highest
quintile [0.80− 1.00] class (see Listing 9.2 Lines 10). Whereas alternatives a44 and a49,
for instance, weakly verify both sorting conditions each one for two, resp. three, adjacent
quintile classes (see Lines 13-14 and 21-23).

Quantiles sorting results indeed always verify the following Properties.

1. Coherence: Each object is sorted into a non-empty subset of adjacent q-tiles
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classes. An alternative that would miss evaluations on all the criteria will be sorted
conjointly in all q-tiled classes.

2. Uniqueness: If 𝑟(𝑥 ∈ q𝑘) ̸= 0 for k = 1, . . . , q, then performance x is sorted into
exactly one single q-tiled class.

3. Separability: Computing the sorting result for performance x is independent from
the computing of the other performances’ sorting results. This property gives access
to efficient parallel processing of class membership characteristics.

The q-tiles sorting result leaves us hence with more or less overlapping ordered quantile
equivalence classes. For constructing now a linearly ranked q-tiles partition of X , we
may apply three strategies:

1. Average (default): In decreasing lexicographic order of the average of the lower
and upper quantile limits and the upper quantile class limit;

2. Optimistic: In decreasing lexicographic order of the upper and lower quantile class
limits;

3. Pessimistic: In decreasing lexicographic order of the lower and upper quantile
class limits;

Listing 9.3: Weakly ranking the quintiles sorting result

1 >>> qs.showQuantileOrdering(strategy='average')

2 ]0.80-1.00] : ['a22']

3 ]0.60-0.80] : ['a03', 'a07', 'a11', 'a14', 'a20', 'a29',

4 'a32', 'a33', 'a37', 'a39', 'a41', 'a42']

5 ]0.40-0.80] : ['a08', 'a17', 'a19']

6 ]0.20-0.80] : ['a49']

7 ]0.40-0.60] : ['a01', 'a02', 'a05', 'a06', 'a09', 'a16',

8 'a18', 'a21', 'a24', 'a27', 'a28', 'a30',

9 'a31', 'a35', 'a36', 'a40', 'a46', 'a47',

10 'a48', 'a50']

11 ]0.20-0.60] : ['a04', 'a43']

12 ]0.20-0.40] : ['a10', 'a12', 'a13', 'a15', 'a23', 'a25',

13 'a26', 'a34', 'a38', 'a45']

14 ] < -0.40] : ['a44']

following, for instance, the average ranking strategy, we find confirmed in the weak rank-
ing shown in Listing 9.3, that alternative a49 is indeed sorted into three adjacent quintiles
classes, namely ]0.20 − 0.80] (see Line 6) and precedes the ]0.40 − 0.60] class, of same
average of lower and upper limits.

Noticing the computational efficiency of the quantiles sorting construction (see Listing
9.1 Lines 23-29), coupled with the separability property of the quantile class mem-
bership characteristics computation, we will make usage of the sortingDigraphs.

QuantilesSortingDigraph class for ranking big performance tableaux.
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9.3 Ranking big performance tableaux

Indeed, none of the usual ranking heuristics (see previous tutorial), using essentially only
the information given by the pairwise outranking characteristics, are scalable for big
outranking digraphs gathering millions of pairwise outranking situations. We may
notice, however, that a given outranking digraph -the association of a set of decision
alternatives and an outranking relation- is, following the methodological requirements
of the outranking approach, necessarily associated with a corresponding performance
tableau. And, we may use this underlying performance data for linearly decomposing
big sets of decision alternatives into ordered quantiles equivalence classes using the
quantiles sorting technique seen in the previous Section. This decomposition will lead to
a pre-ranked sparse outranking digraph model.

In the coding example in Listing 9.4, we generate for instance, first (Lines 2-4), a cost
benefit performance tableau of 100 decision alternatives and, secondly (Lines 5-6), we
construct a sparseOutrankingDigraphs.PreRankedOutrankingDigraph instance called
bg. Notice by the way the BigData flag (Line 4) used here for generating a parsimoniously
commented performance tableau.

Listing 9.4: Computing a pre-ranked outranking digraph

1 >>> from sparseOutrankingDigraphs import\

2 PreRankedOutrankingDigraph

3 >>> tp = RandomCBPerformanceTableau(numberOfActions=100,\

4 BigData=True,seed=100)

5 >>> bg = PreRankedOutrankingDigraph(tp,quantiles=10,\

6 LowerClosed=False,\

7 componentRankingRule='NetFlows')

8 >>> bg

9 *----- Object instance description ------*

10 Instance class : PreRankedOutrankingDigraph

11 Instance name : randomCBperftab_pr

12 # Actions : 100

13 # Criteria : 7

14 Sorting by : 10-Tiling

15 Ordering strategy : average

16 Ranking rule : NetFlows

17 # Components : 20

18 Minimal order : 1

19 Maximal order : 20

20 Average order : 5.0

21 fill rate : 11.475%

22 ---- Constructor run times (in sec.) ----

23 #Threads : 1

24 Total time : 0.14232

25 Data imput : 0.00230

26 QuantilesSorting : 0.06648

27 Preordering : 0.00032

28 Decomposing : 0.06890

29 Ordering : 0.00603
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The total run time of the sparseOutrankingDigraphs.PreRankedOutrankingDigraph

constructor is about 0.14 sec (see Listing 9.4 Line 24). The deciles sorting, preordering and
decomposing leads to 20 linearly ordered quantiles equivalence classes. The corresponding
pre-ranked decomposition may be visualized as follows.

Listing 9.5: The quantiles decomposition of a pre-ranked
outranking digraph

1 >>> bg.showDecomposition()

2 *--- quantiles decomposition in decreasing order---*

3 c01. ]0.70-0.90] : [46, 67, 100]

4 c02. ]0.70-0.80] : [16, 19, 42, 56, 66, 79, 86, 87]

5 c03. ]0.50-0.80] : [39]

6 c04. ]0.60-0.70] : [13, 36, 41, 68, 69, 80, 85, 94]

7 c05. ]0.40-0.80] : [49]

8 c06. ]0.50-0.70] : [14, 20, 45]

9 c07. ]0.40-0.70] : [43]

10 c08. ]0.50-0.60] : [3, 9, 21, 23, 27, 35, 37, 38, 50, 54, 55,

11 60, 72, 73, 74, 78, 82, 88, 92, 97]

12 c09. ]0.30-0.70] : [70]

13 c10. ]0.40-0.60] : [24]

14 c11. ]0.20-0.70] : [6]

15 c12. ]0.30-0.60] : [33]

16 c13. ]0.40-0.50] : [7, 8, 15, 25, 30, 32, 44, 48, 52, 57,

17 58, 61, 64, 71, 77, 81, 84, 89, 91, 98]

18 c14. ]0.20-0.60] : [1]

19 c15. ]0.30-0.50] : [2, 17, 62, 93]

20 c16. ]0.30-0.40] : [5, 18, 22, 26, 28, 29, 31, 34, 47, 51,

21 76, 83, 90, 95]

22 c17. ]0.20-0.40] : [63, 96]

23 c18. ]0.20-0.30] : [11, 12, 40, 53, 59, 65, 75, 99]

24 c19. ]0.10-0.30] : [10]

25 c20. ]0.10-0.20] : [4]

The best deciles class (]70%-90%]) gathers decision alternatives 46, 67, and 100. Worst
decile (]10%-20%]) gathers alternative 4 (see Listing 9.5 Lines 3 and 25).

Each one of these 20 ordered components may now be locally ranked by using a suitable
ranking rule. Best operational results, both in run times and quality, are more or less
equally given with the Copeland and the NetFlows rules. The eventually obtained linear
ordering (from the worst to best) is stored in a bg.boostedOrder attribute. A reversed
linear ranking (from the best to the worst) is stored in a bg.boostedRanking attribute.

Listing 9.6: Showing the componentwise NetFlows rank-
ing

1 >>> bg.boostedRanking

2 [100, 67, 46, 16, 79, 87, 86, 56, 42, 66, 19, 39, 13, 94,

3 85, 69, 80, 36, 68, 41, 49, 14, 45, 20, 43, 55, 50, 92,

4 23, 97, 54, 21, 74, 78, 35, 9, 38, 88, 82, 3, 27, 37,

5 60, 73, 72, 70, 24, 6, 33, 58, 25, 15, 48, 30, 89, 77,

(continues on next page)
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6 52, 7, 32, 98, 61, 57, 71, 81, 91, 64, 84, 44, 8, 1, 2,

7 93, 62, 17, 83, 26, 28, 90, 47, 31, 18, 29, 22, 76, 95,

8 51, 34, 5, 63, 96, 59, 40, 65, 75, 99, 11, 53, 12, 10, 4]

Alternative 100 appears first ranked, whereas alternative 4 is last ranked (see Listing 9.6
Line 2 and 8). The quality of this ranking result may be assessed by first, computing its
ordinal correlation with the corresponding standard outranking relation; And, secondly,
by showing the fairness of the ranking consensus.

Listing 9.7: Quality of the componentwise NetFlows ’s
ranking result

1 >>> g = BipolarOutrankingDigraph(tp,Normalized=True)

2 >>> corr = g.computeRankingCorrelation(bg.boostedRanking)

3 >>> g.showCorrelation(corr)

4 Correlation indexes:

5 Extended Kendall tau : +0.685

6 Epistemic determination : 0.344

7 Bipolar-valued equivalence : +0.235

8 >>> g.showRankingConsensusQuality(bg.boostedRanking)

9 criterion (weight): correlation

10 -------------------------------

11 c1 (0.167): +0.238

12 c3 (0.167): +0.227

13 b2 (0.125): +0.221

14 b4 (0.125): +0.181

15 c2 (0.167): +0.160

16 b1 (0.125): +0.145

17 b3 (0.125): +0.139

18 Summary:

19 Weighted mean marginal correlation (a): +0.190

20 Standard deviation (b) : +0.039

21 Ranking fairness (a)-(b) : +0.152

The NetFlows as well as the Copeland ranking heuristics are readily scalable with ad hoc
HPC tuning to several millions of decision alternatives (see [BIS-2016]).

Back to Content Table (page 3)
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10 Rating with learned quantile norms

� Introduction (page 109)

� Incremental learning of historical performance quantiles (page 110)

� Rating new performances with quantile norms (page 113)

10.1 Introduction

In this tutorial we address the problem of rating multiple criteria performances
of a set of potential decision alternatives with respect to empirical order statistics, i.e.
performance quantiles learned from historical performance data gathered from similar
decision alternatives observed in the past (see [CPSTAT-L5]).

To illustrate the decision problem we face, consider for a moment that, in a given decision
aid study, we observe, for instance in the Table below, the multi-criteria performances of
two potential decision alternatives, named a1001 and a1010, marked on 7 incommen-
surable preference criteria: 2 costs criteria c1 and c2 (to minimize) and 6 benefits
criteria b1 to b5 (to maximize).

Criterion b1 b2 b3 b4 b5 c1 c2

weight 2 2 2 2 2 5 5
a1001 37.0 2 2 61.0 31.0 -4 -40.0
a1010 32.0 9 6 55.0 51.0 -4 -35.0

The performances on benefits criteria b1, b4 and b5 are measured on a cardinal scale
from 0.0 (worst) to 100.0 (best) whereas, the performances on the benefits criteria b2 and
b3 and on the cost criterion c1 are measured on an ordinal scale from 0 (worst) to 10
(best), respectively -10 (worst) to 0 (best). The performances on the cost criterion c2
are again measured on a cardinal negative scale from -100.00 (worst) to 0.0 (best).

The importance (sum of weights) of the costs criteria is equal to the importance (sum
of weights) of the benefits criteria taken all together.

The non trivial decision problem we now face here, is to decide, how the multiple criteria
performances of a1001, respectively a1010, may be rated (excellent ? good ?, or fair ?;
perhaps even, weak ? or very weak ?) in an order statistical sense, when compared
with all potential similar multi-criteria performances one has already encountered in the
past.

To solve this absolute rating decision problem, first, we need to estimate multi-criteria
performance quantiles from historical records.
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10.2 Incremental learning of historical performance quantiles

See also the technical documentation of the performanceQuantiles module.

Suppose that we see flying in random multiple criteria performances from a given model
of random performance tableau (see the randomPerfTabs module). The question we
address here is to estimate empirical performance quantiles on the basis of so far observed
performance vectors. For this task, we are inspired by [CHAM-2006] and [NR3-2007], who
present an efficient algorithm for incrementally updating a quantile-binned cumulative
distribution function (CDF) with newly observed CDFs.

The performanceQuantiles.PerformanceQuantiles class implements such a perfor-
mance quantiles estimation based on a given performance tableau. Its main components
are:

� Ordered objectives and a criteria dictionaries from a valid performance tableau
instance;

� A list quantileFrequencies of quantile frequencies like quartiles [0.0, 0.25, 05,
0.75,1.0], quintiles [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] or deciles [0.0, 0.1, 0.2, . . . 1.0] for
instance;

� An ordered dictionary limitingQuantiles of so far estimated lower (default) or
upper quantile class limits for each frequency per criterion;

� An ordered dictionary historySizes for keeping track of the number of evaluations
seen so far per criterion. Missing data may make these sizes vary from criterion to
criterion.

Below, an example Python session concerning 900 decision alternatives randomly gen-
erated from a Cost-Benefit Performance tableau model from which are also drawn the
performances of alternatives a1001 and a1010 above.

Listing 10.1: Computing performance quantiles from a
given performance tableau

1 >>> from performanceQuantiles import PerformanceQuantiles

2 >>> from randomPerfTabs import RandomCBPerformanceTableau

3 >>> nbrActions=900

4 >>> nbrCrit = 7

5 >>> seed = 100

6 >>> tp = RandomCBPerformanceTableau(numberOfActions=nbrActions,\

7 numberOfCriteria=nbrCrit,seed=seed)

8 >>> pq = PerformanceQuantiles(tp,\

9 numberOfBins = 'quartiles',\

10 LowerClosed=True)

11 >>> pq

12 *------- PerformanceQuantiles instance description ------*

13 Instance class : PerformanceQuantiles

14 Instance name : 4-tiled_performances

15 # Objectives : 2

16 # Criteria : 7

(continues on next page)
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17 # Quantiles : 4

18 # History sizes : {'c1': 887, 'b1': 888, 'b2': 891, 'b3': 895,

19 'b4': 892, 'c2': 893, 'b5': 887}

20 Attributes : ['perfTabType', 'valueDigits', 'actionsTypeStatistics',

21 'objectives', 'BigData', 'missingDataProbability',

22 'criteria', 'LowerClosed', 'name',

23 'quantilesFrequencies', 'historySizes',

24 'limitingQuantiles', 'cdf']

The performanceQuantiles.PerformanceQuantiles class parameter numberOfBins
(see Listing 10.1 Line 9 above), choosing the wished number of quantile frequencies,
may be either quartiles (4 bins), quintiles (5 bins), deciles (10 bins), dodeciles (20
bins) or any other integer number of quantile bins. The quantile bins may be either lower
closed (default) or upper-closed.

Listing 10.2: Printing out the estimated quartile limits

1 >>> pq.showLimitingQuantiles(ByObjectives=True)

2 ---- Historical performance quantiles -----*

3 Costs

4 criteria | weights | '0.00' '0.25' '0.50' '0.75' '1.00'

5 ---------|-------------------------------------------------------

6 'c1' | 5 | -10 -7 -5 -3 0

7 'c2' | 5 | -96.37 -70.65 -50.10 -30.00 -1.43

8 Benefits

9 criteria | weights | '0.00' '0.25' '0.50' '0.75' '1.00'

10 ---------|-------------------------------------------------------

11 'b1' | 2 | 1.99 29.82 49,44 70.73 99.83

12 'b2' | 2 | 0 3 5 7 10

13 'b3' | 2 | 0 3 5 7 10

14 'b4' | 2 | 3.27 30.10 50.82 70.89 98.05

15 'b5' | 2 | 0.85 29.08 48.55 69.98 97.56

Both objectives are equi-important; the sum of weights (10) of the costs criteria balance
the sum of weights (10) of the benefits criteria (see Listing 10.2 column 2). The preference
direction of the costs criteria c1 and c2 is negative; the lesser the costs the better it
is, whereas all the benefits criteria b1 to b5 show positive preference directions, i.e. the
higher the benefits the better it is. The columns entitled ‘0.00’, resp. ‘1.00’ show the
quartile Q0, resp. Q4, i.e. the worst, resp. best performance observed so far on each
criterion. Column ‘0.50’ shows the median (Q2 ) performance observed on the criteria.

New decision alternatives with random multiple criteria performance vectors from
the same random performance tableau model may now be generated with ad hoc
random performance generators. We provide for experimental purpose, in the
randomPerfTabs module, three such generators: one for the standard randomPerfTabs.

RandomPerformanceTableau model, one the for the two objectives randomPerfTabs.

RandomCBPerformanceTableau Cost-Benefit model, and one for the randomPerfTabs.

Random3ObjectivesPerformanceTableaumodel with three objectives concerning respec-
tively economic, environmental or social aspects.
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Given a new Performance Tableau with 100 new decision alternatives, the so far estimated
historical quantile limits may be updated as follows:

Listing 10.3: Generating 100 new random decision alter-
natives of the same model

1 >>> from randomPerfTabs import RandomPerformanceGenerator

2 >>> rpg = RandomPerformanceGenerator(tp,seed=seed)

3 >>> newTab = rpg.randomPerformanceTableau(100)

4 >>> # Updating the quartile norms shown above

5 >>> pq.updateQuantiles(newTab,historySize=None)

Parameter historySize (see Listing 10.3 Line 5) of the performanceQuantiles.

PerformanceQuantiles.updateQuantiles() method allows to balance the new eval-
uations against the historical ones. With historySize = None (the default setting),
the balance in the example above is 900/1000 (90%, weight of historical data) against
100/1000 (10%, weight of the new incoming observations). Putting historySize = 0,
for instance, will ignore all historical data (0/100 against 100/100) and restart building
the quantile estimation with solely the new incoming data. The updated quantile limits
may be shown in a browser view (see Fig. 1).

1 >>> # showing the updated quantile limits in a browser view

2 >>> pq.showHTMLLimitingQuantiles(Transposed=True)

Fig. 1: Showing the updated quartiles limits
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10.3 Rating new performances with quantile norms

For absolute rating of a newly given set of decision alternatives with the help of empirical
performance quantiles estimated from historical data, we provide the sortingDigraphs.
NormedQuantilesRatingDigraph class, a specialisation of the sortingDigraphs.

SortingDigraph class.

The constructor requires a valid performanceQuantiles.PerformanceQuantiles in-
stance.

Note: It is important to notice that the sortingDigraphs.

NormedQuantilesRatingDigraph class, contrary to the generic outrankingDigraphs.

OutrankingDigraph class, does not inherit from the generic perfTabs.

PerformanceTableau class, but instead from the performanceQuantiles.

PerformanceQuantiles class. The actions in such a sortingDigraphs.

NormedQuantilesRatingDigraph class instance contain not only the newly given
decision alternatives, but also the historical quantile profiles obtained from a given
performanceQuantiles.PerformanceQuantiles class instance, i.e. estimated quantile
bins’ performance limits from historical performance data.

We reconsider the PerformanceQuantiles object instance pq as computed in the previous
section. Let newActions be a list of 10 new decision alternatives generated with the same
random performance tableau model and including the two decision alternatives a1001
and a1010 mentioned at the beginning.

Listing 10.4: Computing a normed rating of 10 new de-
cision alternatives

1 >>> from sortingDigraphs import NormedQuantilesRatingDigraph

2 >>> newActions = rpg.randomActions(10)

3 >>> nqr = NormedQuantilesRatingDigraph(pq,newActions,rankingRule='best')

4 >>> nqr

5 *---- Object instance description

6 Instance class : NormedQuantilesRatingDigraph

7 Instance name : normedRatingDigraph

8 # Criteria : 7

9 # Quantile profiles : 4

10 # New actions : 10

11 Size : 96

12 Determinateness (%) : 53.00

13 Attributes: ['runTimes','objectives','criteria',

14 'LowerClosed','quantilesFrequencies','limitingQuantiles',

15 'historySizes','cdf','name','newActions','evaluation',

16 'categories','criteriaCategoryLimits','profiles','profileLimits',

17 'hasNoVeto','actions','completeRelation','relation',

18 'concordanceRelation','valuationdomain','order','gamma',

19 'notGamma','rankingRule','rankingCorrelation','rankingScores',

20 'actionsRanking','ratingCategories','ratingRelation','relationOrig']

21 *---- Constructor run times (in sec.)
(continues on next page)

113



(continued from previous page)

22 #Threads : 1

23 Total time : 0.02218

24 Data input : 0.00134

25 Quantile classes : 0.00008

26 Compute profiles : 0.00021

27 Compute relation : 0.01869

28 Compute rating : 0.00186

29 Compute sorting : 0.00000

Data input to the sortingDigraphs.NormedQuantilesRatingDigraph class constructor
(see Listing 10.4 Line 3) are a valid PerformanceQuantiles object pq and a compatible
list newActions of new decision alternatives generated from the same random origin.

Let us have a look at the digraph’s nodes, here called newActions.

Listing 10.5: Performance tableau of the new incoming
decision alternatives

1 >>> nqr.showPerformanceTableau(actionsSubset=nqr.newActions)

2 *---- performance tableau -----*

3 criteria | a1001 a1002 a1003 a1004 a1005 a1006 a1007 a1008 a1009 a1010

4 ---------|-------------------------------------------------------------

5 'b1' | 37.0 27.0 24.0 16.0 42.0 33.0 39.0 64.0 42.0 32.0

6 'b2' | 2.0 5.0 8.0 3.0 3.0 3.0 6.0 5.0 4.0 9.0

7 'b3' | 2.0 4.0 2.0 1.0 6.0 3.0 2.0 6.0 6.0 6.0

8 'b4' | 61.0 54.0 74.0 25.0 28.0 20.0 20.0 49.0 44.0 55.0

9 'b5' | 31.0 63.0 61.0 48.0 30.0 39.0 16.0 96.0 57.0 51.0

10 'c1' | -4.0 -6.0 -8.0 -5.0 -1.0 -5.0 -1.0 -6.0 -6.0 -4.0

11 'c2' | -40.0 -23.0 -37.0 -37.0 -24.0 -27.0 -73.0 -43.0 -94.0 -35.0

Among the 10 new incoming decision alternatives (see Listing 10.5), we recognize alter-
natives a1001 (see column 2) and a1010 (see last column) we have mentioned in our
introduction.

The sortingDigraphs.NormedQuantilesRatingDigraph class instance’s actions dictio-
nary includes as well the closed lower limits of the four quartile classes: m1 = [0.0- [, m2
= [0.25- [, m3 = [0.5- [, m4 = [0.75 - [. We find these limits in a profiles attribute (see
Listing 10.6 below).

Listing 10.6: Showing the limiting profiles of the rating
quantiles

1 >>> nqr.showPerformanceTableau(actionsSubset=nqr.profiles)

2 *---- Quartiles limit profiles -----*

3 criteria | 'm1' 'm2' 'm3' 'm4'

4 ---------|----------------------------

5 'b1' | 2.0 28.8 49.6 75.3

6 'b2' | 0.0 2.9 4.9 6.7

7 'b3' | 0.0 2.9 4.9 8.0

8 'b4' | 3.3 35.9 58.6 72.0

(continues on next page)
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9 'b5' | 0.8 32.8 48.1 69.7

10 'c1' | -10.0 -7.4 -5.4 -3.4

11 'c2' | -96.4 -72.2 -52.3 -34.0

The main run time (see Listing 10.4 Lines 23-29) is spent by the class constructor in
computing a bipolar-valued outranking relation on the extended actions set including
both the new alternatives as well as the quartile class limits. In case of large volumes, i.e.
many new decision alternatives and centile classes for instance, a multi-threading version
may be used when multiple processing cores are available (see the technical description
of the sortingDigraphs.NormedQuantilesRatingDigraph class).

The actual rating procedure will rely on a complete ranking of the new decision alterna-
tives as well as the quantile class limits obtained from the corresponding bipolar-valued
outranking digraph. Two efficient and scalable ranking rules, the Copeland and its
valued version, the Netflows rule may be used for this purpose. The rankingRule pa-
rameter allows to choose one of both. With rankingRule=’best’ (see Listing 10.6 Line 2 )
the NormedQuantilesRatingDigraph constructor will choose the ranking rule that results
in the highest ordinal correlation with the given outranking relation (see [BIS-2012]).

In this rating example, the Copeland rule appears to be the more appropriate ranking
rule.

Listing 10.7: Copeland ranking of new alternatives and
historical quartile limits

1 >>> nqr.rankingRule

2 'Copeland'

3 >>> nqr.actionsRanking

4 ['m4', 'a1005', 'a1010', 'a1002', 'a1008', 'a1006', 'a1001',

5 'a1003', 'm3', 'a1007', 'a1004', 'a1009', 'm2', 'm1']

6 >>> nqr.showCorrelation(nqr.rankingCorrelation)

7 Correlation indexes:

8 Crisp ordinal correlation : +0.945

9 Epistemic determination : 0.522

10 Bipolar-valued equivalence : +0.493

We achieve here (see Listing 10.7) a linear ranking without ties (from best to worst) of the
digraph’s actions set, i.e. including the new decision alternatives as well as the quartile
limits m1 to m4, which is very close in an ordinal sense (𝜏 = 0.945) to the underlying
strict outranking relation.

The eventual rating procedure is based in this example on the lower quartile limits, such
that we may collect the quartile classes’ contents in increasing order of the quartiles.

1 >>> nqr.ratingCategories

2 OrderedDict([

3 ('m2', ['a1007','a1004','a1009']),

4 ('m3', ['a1005','a1010','a1002','a1008','a1006','a1001','a1003'])

5 ])

We notice above that no new decision alternatives are actually rated in the lowest [0.0-
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0.25[, respectively highest [0.75- [ quartile classes. Indeed, the rating result is shown, in
descending order, as follows:

Listing 10.8: Showing a quantiles rating result

1 >>> nqr.showQuantilesRating()

2 *-------- Quartiles rating result ---------

3 [0.50 - 0.75[ ['a1005', 'a1010', 'a1002', 'a1008',

4 'a1006', 'a1001', 'a1003']

5 [0.25 - 0.50[ ['a1007', 'a1004', 'a1009']

The same result may more conveniently be consulted in a browser view
via a specialised rating heatmap format ( see perfTabs:PerformanceTableau.

showHTMLPerformanceHeatmap() method (see Fig. 2).

1 >>> nqr.showHTMLRatingHeatmap(pageTitle='Heatmap of Quartiles Rating',

2 Correlations=True,colorLevels=5)

Fig. 2: Heatmap of normed quartiles ranking

Using furthermore a specialised version of the transitiveDigraphs.

TransitiveDigraph.exportGraphViz() method allows drawing the same rating
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result in a Hasse diagram format (see Fig. 3).

1 >>> nqr.exportRatingGraphViz('normedRatingDigraph')

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to normedRatingDigraph.dot

4 dot -Grankdir=TB -Tpng normedRatingDigraph.dot -o normedRatingDigraph.png

Fig. 3: Normed quartiles rating digraph

We may now answer the normed rating decision problem stated at the beginning.
Decision alternative a1001 and alternative a1010 (see below) are both rated into the same
quartile Q3 class (see Fig. 3), even if the Copeland ranking, obtained from the underlying
strict outranking digraph (see Fig. 2), suggests that alternative a1010 is effectively better
performing than alternative a1001.

Criterion b1 b2 b3 b4 b5 c1 c2

weight 2 2 2 2 2 5 5
a1001 37.0 2 2 61.0 31.0 -4 -40.0
a1010 32.0 9 6 55.0 51.0 -4 -35.0

A preciser rating result may indeed be achieved when using deciles instead of quartiles
for estimating the historical marginal cumulative distribution functions.
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Listing 10.9: Normed deciles rating result

1 >>> pq1 = PerformanceQuantiles(tp, numberOfBins = 'deciles',\

2 LowerClosed=True)

3 >>> pq1.updateQuantiles(newTab,historySize=None)

4 >>> nqr1 = NormedQuantilesRatingDigraph(pq1,newActions,rankingRule='best')

5 >>> nqr1.showQuantilesRating()

6 *-------- Deciles rating result ---------

7 [0.60 - 0.70[ ['a1005', 'a1010', 'a1008', 'a1002']

8 [0.50 - 0.60[ ['a1006', 'a1001', 'a1003']

9 [0.40 - 0.50[ ['a1007', 'a1004']

10 [0.30 - 0.40[ ['a1009']

Compared with the quartiles rating result, we notice in Listing 10.9 that the seven al-
ternatives (a1001, a1002, a1003, a1005, a1006, a1008 and a1010 ), rated before into the
third quartile class [0.50-0.75[, are now divided up: alternatives a1002, a1005, a1008 and
a1010 attain now the 7th decile class [0.60-0.70[, whereas alternatives a1001, a1003 and
a1006 attain only the 6th decile class [0.50-0.60[. Of the three Q2 [0.25-0.50[ rated alter-
natives (a1004, a1007 and a1009 ), alternatives a1004 and a1007 are now rated into the
5th decile class [0.40-0.50[ and a1009 is lowest rated into the 4th decile class [0.30-0.40[.

A browser view may again more conveniently illustrate this refined rating result (see Fig.
4).

1 >>> nqr1.showHTMLRatingHeatmap(pageTitle='Heatmap of the deciles rating',\

2 colorLevels=5,Correlations=True)
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Fig. 4: Heatmap of normed deciles rating

In this deciles rating, decision alternatives a1001 and a1010 are now, as expected, rated
in the 6th decile (D6), respectively in the 7th decile (D7).

To avoid having to recompute performance deciles from historical data when wishing to
refine a rating result, it is useful, depending on the actual size of the historical data, to
initially compute performance quantiles with a relatively high number of bins, for instance
dodeciles or centiles. It is then possible to correctly interpolate quartiles or deciles for
instance, when constructing the rating digraph.
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Listing 10.10: From deciles interpolated quartiles rating
result

1 >>> nqr2 = NormedQuantilesRatingDigraph(pq1,newActions,

2 quantiles='quartiles')

3 >>> nqr2.showQuantilesRating()

4 *-------- Deciles rating result ---------

5 [0.50 - 0.75[ ['a1005', 'a1010', 'a1002', 'a1008',

6 'a1006', 'a1001', 'a1003']

7 [0.25 - 0.50[ ['a1004', 'a1007', 'a1009']

With the quantiles parameter (see Listing 10.10 Line 2), we may recover by interpolation
the same quartiles rating as obtained directly with historical performance quartiles (see
Listing 10.8). Mind that a correct interpolation of quantiles from a given cumulative
distribution function requires more or less uniform distributions of observations in each
bin.

More generally, in the case of industrial production monitoring problems, for instance,
where large volumes of historical performance data may be available, it may be of interest
to estimate even more precisely the marginal cumulative distribution functions, especially
when tail rating results, i.e. distinguishing very best, or very worst multiple criteria
performances, become a critical issue. Similarly, the historySize parameter may be used
for monitoring on the fly unstable random multiple criteria performance data.

Back to Content Table (page 3)

11 Where do study the best students ? : A case study

� The performance tableau (page 121)

� The outranking digraph (page 124)

� Nine-tiling the average enrolment quality scores (page 126)

In 2004, the German magazine Der Spiegel conducted an extensive online survey assessing
the apparent quality of German University students28. About 70,000 university students
from 15 academic disciplines, like German studies, Economics, Physics, Mathematics,
Medecine, were questioned on their ‘Abitur’ and university examens’ marks, time of
studies and age, grants, awards and publications, IT proficiency, linguistic skills, practical
work experience, foreign mobility and civil engagement. Each student received in return a
global quality score by a specific weighing of the collected data depending on the disicpline
of the student.29.

28 Ref: Der Spiegel 48/2004 p.181 Url: https://www.spiegel.de/thema/studentenspiegel/ .
29 The methology guiding the Spiegel survey may be consulted in German here .

120

https://www.spiegel.de/thema/studentenspiegel/


The published results of the survey concern eventually about 50,000 students majorly
enroled in one of the fifteen academic disciplines at the 41 German Universities or Higher
Technical Institutes offering at least 8 of the fifteen disciplines.

We would like now to rate these 41 German higher education institutions with respect to
their apparent enrolment quality.

11.1 The performance tableau

The published data of the 2004 Spiegel student survey are stored in a file named studen-
tenSpiegel04.py of perfTabs.PerformanceTableau format.

Listing 11.1: The 2004 Spiegel students survey global
results

1 >>> from perfTabs import PerformanceTableau

2 >>> t = PerformanceTableau('studentenSpiegel04')

3 >>> disciplines = [t for t in t.criteria]

4 >>> t.showHTMLPerformanceHeatmap(\

5 criteriaList=disciplines,ndigits=1)
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Fig. 1: Quality of enroled students per academic discipline

All fifteen academic disciplines are considered equally significant for the rating decisions
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(see Fig. 1 row 2). The average enrolment quality scores are coloured along a 7-tiling
scheme and the universities are ranked with the NetFlows rule applied to the correspond-
ing pairwise outranking situations.

In Fig. 1 we may furthermore notice that the Technical University Dresden is the only
Institution which offers all fifteen academic disciplines. Whereas, on the one side, the
Technical University of München and the University of Kaiserslautern only offer Sciences
and Technology disciplines. On the other side, the University of Mannheim, is only
offering Humanities and Law Studies.

Details of the rating criteria may be consulted in a browser view (see Fig. 2 below).

>>> t.showHTMLCriteria()

Fig. 2: Detals of the rating criteria

The computing of a quality score for a student actually depends on the enroled discipline.
The average quality measurement scales may thus differ from discipline to discipline, like
Law Studies and Politology (see Fig. 2). The average enrolment quality scores shown in
Fig. 2, hence, appear to be incommensurable between disciplines. To take furthermore
into account a potential imprecision of the individual scores’ computation, we shall as-
sume that, for all disciplines, a difference of 0.1 is insignificant and a difference of 0.5
positively attests a better average students’ quality.

Let us now inspect the resulting bipolar-valued outranking digraph.
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11.2 The outranking digraph

Listing 11.2: Inspecting the outranking digraph

1 >>> g = BipolarOutrankingDigraph(t)

2 >>> g

3 *------- Object instance description ------*

4 Instance class : BipolarOutrankingDigraph

5 Instance name : rel_studentenSpiegel04

6 # Actions : 41

7 # Criteria : 15

8 Size : 863

9 Determinateness (%) : 63.75

10 Valuation domain : [-1.00;1.00]

11 >>> g.computeTransitivityDegree(Comments=True)

12 Transitivity degree of digraph <rel_studentenSpiegel04>:

13 #triples x>y>z: 57837, #closed: 32009, #open: 25828

14 (#closed/#triples) = 0.553

15 >>> g.computeSymmetryDegree(Comments=True)

16 Symmetry degree of digraph <rel_studentenSpiegel04>:

17 #arcs x>y: 793, #symmetric: 70, #asymmetric: 723

18 #arcs/#symmetric = 0.088

The actual outranking digraph obtained with the average quality scores per academic
discipline shows 863 validatesd pairwise outranking situations between the Universities.
Unfortunately, the transitivity of the outranking digraph is far from being satisfied: nearly
half of the transitive closure is missing. Despite the rather large preference discrimination
threshold we have assumed, there does not occur many indifference situations.

We may furthermore check if there exists any cyclic outranking situations.

Listing 11.3: Computing the chordlessCircuits

1 >>> g.computeChordlessCircuits()

2 >>> g.showChordlessCircuits()

3 *---- Chordless circuits ----*

4 46 circuits.

5 1: ['aach', 'bertu', 'brau'] , credibility : 0.200

6 2: ['aach', 'bertu', 'brem'] , credibility : 0.067

7 3: ['aach', 'bie', 'darm', 'brau'] , credibility : 0.067

8 4: ['aug', 'saar', 'mnst'] , credibility : 0.133

9 5: ['aug', 'main', 'mnh'] , credibility : 0.067

10 6: ['aug', 'mu', 'mnst'] , credibility : 0.133

11 7: ['aug', 'mu', 'hei'] , credibility : 0.067

12 8: ['berf', 'ksl', 'chem'] , credibility : 0.067

13 9: ['berf', 'ksl', 'dres'] , credibility : 0.067

14 10: ['berf', 'tri', 'marb'] , credibility : 0.067

15 11: ['berh', 'kons', 'stu'] , credibility : 0.133

16 12: ['berh', 'kons', 'hei'] , credibility : 0.067

17 13: ['bie', 'darm', 'boc'] , credibility : 0.067

18 14: ['bie', 'darm', 'gie'] , credibility : 0.067

(continues on next page)
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19 15: ['bon', 'tri', 'marb'] , credibility : 0.067

20 16: ['brau', 'dsd', 'darm'] , credibility : 0.067

21 17: ['chem', 'marb', 'koel'] , credibility : 0.067

22 18: ['chem', 'marb', 'ksl'] , credibility : 0.133

23 19: ['chem', 'wrzb', 'koel'] , credibility : 0.067

24 20: ['chem', 'wrzb', 'reg'] , credibility : 0.133

25 21: ['chem', 'wrzb', 'ksl'] , credibility : 0.133

26 22: ['chem', 'saar', 'koel'] , credibility : 0.067

27 23: ['chem', 'saar', 'ksl'] , credibility : 0.133

28 24: ['chem', 'saar', 'dres'] , credibility : 0.133

29 25: ['chem', 'saar', 'mnst'] , credibility : 0.133

30 26: ['chem', 'jena', 'koel'] , credibility : 0.067

31 27: ['chem', 'jena', 'ksl'] , credibility : 0.133

32 28: ['chem', 'jena', 'dres'] , credibility : 0.133

33 29: ['dres', 'marb', 'ksl'] , credibility : 0.067

34 30: ['dres', 'marb', 'saar'] , credibility : 0.067

35 31: ['dres', 'main', 'mnh'] , credibility : 0.067

36 32: ['erl', 'tri', 'marb'] , credibility : 0.067

37 33: ['goet', 'tri', 'marb'] , credibility : 0.067

38 34: ['jena', 'saar', 'mnst'] , credibility : 0.133

39 35: ['jena', 'main', 'mnh'] , credibility : 0.067

40 36: ['koel', 'main', 'mnh'] , credibility : 0.067

41 37: ['koel', 'tri', 'marb'] , credibility : 0.067

42 38: ['ksl', 'main', 'mnh'] , credibility : 0.067

43 39: ['ksl', 'tri', 'marb'] , credibility : 0.067

44 40: ['main', 'mnh', 'marb'] , credibility : 0.067

45 41: ['main', 'mnh', 'wrzb'] , credibility : 0.067

46 42: ['main', 'mnh', 'mu'] , credibility : 0.067

47 43: ['marb', 'saar', 'wrzb'] , credibility : 0.133

48 44: ['marb', 'saar', 'tri'] , credibility : 0.067

49 45: ['marb', 'saar', 'mnst'] , credibility : 0.133

50 46: ['mnh', 'mu', 'stu'] , credibility : 0.133

Here we observe 46 such outranking circuits, like: Konstanz >= Berlin-Humboldt >=
Stuttgart >= Konstanz (see Listing 11.3 circuit 6 above), With the NetFlows ranking
rule, they appear in fact 6th, 7th and 8th ranked (see (Fig. 1). The occurence of so
many outranking circuits makes any linear ranking doubtful, independently of the specific
ranking rule we might apply.

In this case, it is more convincing to operate quantiles rating of the sutdents’ quality
scores, as is, indeed, proposed by the Spiegel magazine publication.
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11.3 Nine-tiling the average enrolment quality scores

We are going to rate the Universities with a normed 9-tiles rating procedure. Therefore
we need, first, to estimate 9-tiling score limits per academic discipline.

Listing 11.4: Computing the 9-tiling enrolment quality
scores limits

1 >>> from performanceQuantiles import *

2 >>> pq = PerformanceQuantiles(t,numberOfBins=9)

3 >>> pq

4 *------- PerformanceQuantiles instance description ------*

5 Instance class : PerformanceQuantiles

6 Instance name : 9-tiled_performances

7 # Criteria : 15

8 # Quantiles : 9

9 # History sizes : {'germ': 39, 'pol': 34, 'psy': 34, 'soc': 32,

10 'law': 32, 'eco': 21, 'mgt': 34, 'phys': 37,

11 'chem': 35, 'math': 27, 'info': 33,

12 'elec': 14, 'mec': 13, 'bio': 34, 'med': 28}

13 >>> pq.showHTMLLimitingQuantiles(Transposed=True,\

14 ndigits=1,title='9-tiled quality score limits')

Fig. 3: 9-tiling score limits per academic discipline

The history sizes reported in Listing 11.4 indicate the number of Universities offering
each one of the fifteen disciplines. German Studies, for instance, are thus offered in 39
out of 41 Universities, whereas Electrical and Mechanical Engineering are only offered
in 14, respectively 13 Instituions. None of the fifteen disciplines are offered in all the 41
Universities.
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We add, now, these nine-tiling score limits to the 41 Universities and sort out, with the
help of the sortingDigraphs.NormedQuantilesRatingDigraph class, the 9-tiles quality
equivalence classes.

Listing 11.5: Rating the Universities into enrolment qual-
ity 9-tiles

1 >>> from sortingDigraphs import NormedQuantilesRatingDigraph

2 >>> nqr = NormedQuantilesRatingDigraph(pq,t,rankingRule='NetFlows')

3 >>> nqr.showQuantilesRating()

4 *-------- Quantiles rating result ---------

5 [0.67 - 0.78[ ['frei', 'tum', 'mu']

6 [0.56 - 0.67[ ['hei', 'kons', 'leip', 'berh', 'stu',

7 'tueb', 'aug', 'mnst', 'reg', 'mnh']

8 [0.44 - 0.56[ ['jena', 'dres', 'wrzb', 'marb', 'saar',

9 'ksl', 'berf', 'chem', 'erl', 'goet',

10 'tri', 'koel']

11 [0.33 - 0.44[ ['bon', 'main', 'brem', 'darm', 'gie',

12 'bertu', 'ham', 'aach']

13 [0.22 - 0.33[ ['fran', 'dsd', 'brau', 'han', 'kiel',

14 'boc', 'bie']

15 [0.11 - 0.22[ ['duis']

The average enrolment quality at the Universities of Freiburg and München, as well as
at the Technical University of München are first rated (see Listing 11.5 Line 5). Last-
rated appears the average enrolment quality at the University of Duisburg (Line 15).
Midfield appear to be the Universities of Jena, Dresden,Würzburg,Marburg, Saarbrücken,
Kaiserslautern, Berlin (Frei), Chemnitz, Erlangen-Nürnberg, Göttingen, Trier and Köln.

We may nicely illustrate this rating result with the help of a corresponding heatmap view.

>>> nqr.showHTMLRatingHeatmap(colorLevels=7,\

ndigits=1,rankingRule='NetFlows')
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Fig. 4: Heatmap view of the 9-tiles rating result
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The ranking correlation between the pairwise outranking situations and the shown Net-
Flows ranking is quite high ( +0.923, see Fig. 4 first row).

A corresponding graphviz drawing gives the following result.

>>> nqr.exportRatingGraphViz(fileName='ratingResult',\

graphSize='12,12')

*---- exporting a dot file for GraphViz tools ---------*

Exporting to ratingResult.dot

dot -Grankdir=TB -Tpdf dot -o ratingResult.pdf
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Fig. 5: Graphviz drawing of the 9-tiles rating result
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12.1 C-compiled Python modules

The Digraph3 collection provides cythonized6, i.e. C-compiled and optimised versions
of the main python modules for tackling multiple criteria decision problems facing very
large sets of decision alternatives ( > 10000 ). Such problems appear usually with a
combinatorial organisation of the potential decision alternatives, as is frequently the case
in bioinformatics for instance. If HPC facilities with nodes supporting numerous cores (>
20) and big RAM (> 50GB) are available, ranking up to several millions of alternatives
(see [BIS-2016]) becomes effectively tractable.

Four cythonized Digraph3 modules, prefixed with the letter c and taking a pyx exten-
sion, are provided with their corresponding setup tools in the Digraph3/cython directory,
namely

� cRandPerfTabs.pyx

� cIntegerOutrankingDigraphs.pyx

� cIntegerSortingDigraphs.pyx

� cSparseIntegerOutrankingDigraphs.pyx

Their automatic compilation and installation, alongside the standard Digraph3 python3
modules, requires the cython compiler6 ( . . . $ pip3 install cython ) and a C compiler
(. . . $ sudo apt install gcc on Ubuntu).

Warning: These cythonized modules, specifically designed for being run
on HPC clusters (see https://hpc.uni.lu), require the Unix forking start

6 See https://cython.org/
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method of subprocesses (see start methods of the multiprocessing module
(https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-
methods)) and therefore, due to forking problems on Mac OS platforms, may
only operate safely on Linux platforms.

12.2 Big Data performance tableaux

In order to efficiently type the C variables, the cRandPerfTabs module provides the usual
random performance tableau models, but, with integer action keys, float performance
evaluations, integer criteria weights and float discrimination thresholds. And, to limit
as much as possible memory occupation of class instances, all the usual verbose comments
are dropped from the description of the actions and criteria dictionaries.

1 >>> from cRandPerfTabs import *

2 >>> t = cRandomPerformanceTableau(numberOfActions=4,numberOfCriteria=2)

3 >>> t

4 *------- PerformanceTableau instance description ------*

5 Instance class : cRandomPerformanceTableau

6 Seed : None

7 Instance name : cRandomperftab

8 # Actions : 4

9 # Criteria : 2

10 Attributes : ['randomSeed', 'name', 'actions', 'criteria',

11 'evaluation', 'weightPreorder']

12 >>> t.actions

13 OrderedDict([(1, {'name': '#1'}), (2, {'name': '#2'}),

14 (3, {'name': '#3'}), (4, {'name': '#4'})])

15 >>> t.criteria

16 OrderedDict([

17 ('g1', {'name': 'RandomPerformanceTableau() instance',

18 'comment': 'Arguments: ; weightDistribution=equisignificant;

19 weightScale=(1, 1); commonMode=None',

20 'thresholds': {'ind': (10.0, 0.0),

21 'pref': (20.0, 0.0),

22 'veto': (80.0, 0.0)},

23 'scale': (0.0, 100.0),

24 'weight': 1,

25 'preferenceDirection': 'max'}),

26 ('g2', {'name': 'RandomPerformanceTableau() instance',

27 'comment': 'Arguments: ; weightDistribution=equisignificant;

28 weightScale=(1, 1); commonMode=None',

29 'thresholds': {'ind': (10.0, 0.0),

30 'pref': (20.0, 0.0),

31 'veto': (80.0, 0.0)},

32 'scale': (0.0, 100.0),

33 'weight': 1,

34 'preferenceDirection': 'max'})])

(continues on next page)
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(continued from previous page)

35 >>> t.evaluation

36 {'g1': {1: 35.17, 2: 56.4, 3: 1.94, 4: 5.51},

37 'g2': {1: 95.12, 2: 90.54, 3: 51.84, 4: 15.42}}

38 >>> t.showPerformanceTableau()

39 Criteria | 'g1' 'g2'

40 Actions | 1 1

41 ---------|---------------

42 '#1' | 91.18 90.42

43 '#2' | 66.82 41.31

44 '#3' | 35.76 28.86

45 '#4' | 7.78 37.64

Conversions from the Big Data model to the standard model and vice versa are provided.

1 >>> t1 = t.convert2Standard()

2 >>> t1.convertWeight2Decimal()

3 >>> t1.convertEvaluation2Decimal()

4 >>> t1

5 *------- PerformanceTableau instance description ------*

6 Instance class : PerformanceTableau

7 Seed : None

8 Instance name : std_cRandomperftab

9 # Actions : 4

10 # Criteria : 2

11 Attributes : ['name', 'actions', 'criteria', 'weightPreorder',

12 'evaluation', 'randomSeed']

12.3 C-implemented integer-valued outranking digraphs

The C compiled version of the bipolar-valued digraph models takes integer relation char-
acteristic values.

1 >>> t = cRandomPerformanceTableau(numberOfActions=1000,numberOfCriteria=2)

2 >>> from cIntegerOutrankingDigraphs import *

3 >>> g = IntegerBipolarOutrankingDigraph(t,Threading=True,nbrCores=4)

4 >>> g

5 *------- Object instance description ------*

6 Instance class : IntegerBipolarOutrankingDigraph

7 Instance name : rel_cRandomperftab

8 # Actions : 1000

9 # Criteria : 2

10 Size : 465024

11 Determinateness : 56.877

12 Valuation domain : {'min': -2, 'med': 0, 'max': 2,

13 'hasIntegerValuation': True}

14 ---- Constructor run times (in sec.) ----

15 Total time : 4.23880

16 Data input : 0.01203
(continues on next page)
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17 Compute relation : 3.60788

18 Gamma sets : 0.61889

19 #Threads : 4

20 Attributes : ['name', 'actions', 'criteria', 'totalWeight',

21 'valuationdomain', 'methodData', 'evaluation',

22 'order', 'runTimes', 'nbrThreads', 'relation',

23 'gamma', 'notGamma']

On a classic intel-i7 equipped PC with four single threaded cores, the
cIntegerOutrankingDigraphs.IntegerBipolarOutrankingDigraph constructor takes
about four seconds for computing amillion pairwise outranking characteristic values. In
a similar setting, the standard outrankingDigraphs.BipolarOutrankingDigraph class
constructor operates more than two times slower.

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> g1 = BipolarOutrankingDigraph(t1,Threading=True,nbrCores=4)

3 >>> g1

4 *------- Object instance description ------*

5 Instance class : BipolarOutrankingDigraph

6 Instance name : rel_std_cRandomperftab

7 # Actions : 1000

8 # Criteria : 2

9 Size : 465024

10 Determinateness : 56.817

11 Valuation domain : {'min': Decimal('-100.0'),

12 'med': Decimal('0.0'),

13 'max': Decimal('100.0'),

14 'precision': Decimal('0')}

15 ---- Constructor run times (in sec.) ----

16 Total time : 8.63340

17 Data input : 0.01564

18 Compute relation : 7.52787

19 Gamma sets : 1.08987

20 #Threads : 4

By far, most of the run time is in each case needed for computing the individual pairwise
outranking characteristic values. Notice also below the memory occupations of both
outranking digraph instances.

1 >>> from digraphsTools import total_size

2 >>> total_size(g)

3 108662777

4 >>> total_size(g1)

5 212679272

6 >>> total_size(g.relation)/total_size(g)

7 0.34

8 >>> total_size(g.gamma)/total_size(g)

9 0.45

About 103MB for g and 202MB for g1. The standard Decimal valued
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BipolarOutrankingDigraph instance g1 thus nearly doubles the memory occupation
of the corresponding IntegerBipolarOutrankingDigraph g instance (see Line 3 and 5
above). 3/4 of this memory occupation is due to the g.relation (34%) and the g.gamma
(45%) dictionaries. And these ratios quadratically grow with the digraph order. To limit
the object sizes for really big outranking digraphs, we need to abandon the complete
implementation of adjacency tables and gamma functions.

12.4 The sparse outranking digraph implementation

The idea is to first decompose the complete outranking relation into an ordered collection
of equivalent quantile performance classes. Let us consider for this illustration a random
performance tableau with 100 decision alternatives evaluated on 7 criteria.

1 >>> from cRandPerfTabs import *

2 >>> t = cRandomPerformanceTableau(numberOfActions=100,

3 numberOfCriteria=7,seed=100)

We sort the 100 decision alternatives into overlapping quartile classes and rank with
respect to the average quantile limits.

1 >>> from cSparseIntegerOutrankingDigraphs import *

2 >>> sg = SparseIntegerOutrankingDigraph(t,quantiles=4)

3 >>> sg

4 *----- Object instance description --------------*

5 Instance class : SparseIntegerOutrankingDigraph

6 Instance name : cRandomperftab_mp

7 # Actions : 100

8 # Criteria : 7

9 Sorting by : 4-Tiling

10 Ordering strategy : average

11 Ranking rule : Copeland

12 # Components : 6

13 Minimal order : 1

14 Maximal order : 35

15 Average order : 16.7

16 fill rate : 24.970%

17 *---- Constructor run times (in sec.) ----

18 Nbr of threads : 1

19 Total time : 0.08212

20 QuantilesSorting : 0.01481

21 Preordering : 0.00022

22 Decomposing : 0.06707

23 Ordering : 0.00000

24 Attributes : ['runTimes', 'name', 'actions', 'criteria',

25 'evaluation', 'order', 'dimension',

26 'sortingParameters', 'nbrOfCPUs',

27 'valuationdomain', 'profiles', 'categories',

28 'sorting', 'minimalComponentSize',

29 'decomposition', 'nbrComponents', 'nd',

(continues on next page)
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30 'components', 'fillRate',

31 'maximalComponentSize', 'componentRankingRule',

32 'boostedRanking']

We obtain in this example here a decomposition into 6 linearly ordered components with
a maximal component size of 35 for component c3.

1 >>> sg.showDecomposition()

2 *--- quantiles decomposition in decreasing order---*

3 c1. ]0.75-1.00] : [3, 22, 24, 34, 41, 44, 50, 53, 56, 62, 93]

4 c2. ]0.50-1.00] : [7, 29, 43, 58, 63, 81, 96]

5 c3. ]0.50-0.75] : [1, 2, 5, 8, 10, 11, 20, 21, 25, 28, 30, 33,

6 35, 36, 45, 48, 57, 59, 61, 65, 66, 68, 70,

7 71, 73, 76, 82, 85, 89, 90, 91, 92, 94, 95, 97]

8 c4. ]0.25-0.75] : [17, 19, 26, 27, 40, 46, 55, 64, 69, 87, 98, 100]

9 c5. ]0.25-0.50] : [4, 6, 9, 12, 13, 14, 15, 16, 18, 23, 31, 32,

10 37, 38, 39, 42, 47, 49, 51, 52, 54, 60, 67, 72,

11 74, 75, 77, 78, 80, 86, 88, 99]

12 c6. ]<-0.25] : [79, 83, 84]

A restricted outranking relation is stored for each component with more than one al-
ternative. The resulting global relation map of the first ranked 75 alternatives looks as
follows.

>>> sg.showRelationMap(toIndex=75)
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Fig. 1: Sparse quartiles-sorting decomposed outranking relation (extract).

Legend:
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� outranking for certain ( ⊤ )

� outranked for certain ( ⊥ )

� more or less outranking (+ )

� more or less outranked (-)

� indeterminate ( )

With a fill rate of 25%, the memory occupation of this sparse outranking digraph sg
instance takes now only 769kB, compared to the 1.7MB required by a corresponding
standard IntegerBipolarOutrankingDigraph instance.

>>> print('%.0f kB' % (total_size(sg)/1024) )

769kB

For sparse outranking digraphs, the adjacency table is implemented as a dynamic self.
relation(x,y) function instead of a double dictionary self.relation[x][y].

1 def relation(self, int x, int y):

2 """

3 *Parameters*:

4 * x (int action key),

5 * y (int action key).

6 Dynamic construction of the global outranking

7 characteristic function *r(x S y)*.

8 """

9 cdef int Min, Med, Max, rx, ry

10 Min = self.valuationdomain['min']

11 Med = self.valuationdomain['med']

12 Max = self.valuationdomain['max']

13 if x == y:

14 return Med

15 cx = self.actions[x]['component']

16 cy = self.actions[y]['component']

17 #print(self.components)

18 rx = self.components[cx]['rank']

19 ry = self.components[cy]['rank']

20 if rx == ry:

21 try:

22 rxpg = self.components[cx]['subGraph'].relation

23 return rxpg[x][y]

24 except AttributeError:

25 componentRanking = self.components[cx]['componentRanking']

26 if componentRanking.index(x) < componentRanking.index(x):

27 return Max

28 else:

29 return Min

30 elif rx > ry:

31 return Min

32 else:

33 return Max

138



12.5 Ranking big sets of decision alternatives

We may now rank the complete set of 100 decision alternatives by locally ranking with
the Copeland or the NetFlows rule, for instance, all these individual components.

1 >>> sg.boostedRanking

2 [22, 53, 3, 34, 56, 62, 24, 44, 50, 93, 41, 63, 29, 58,

3 96, 7, 43, 81, 91, 35, 25, 76, 66, 65, 8, 10, 1, 11, 61,

4 30, 48, 45, 68, 5, 89, 57, 59, 85, 82, 73, 33, 94, 70,

5 97, 20, 92, 71, 90, 95, 21, 28, 2, 36, 87, 40, 98, 46, 55,

6 100, 64, 17, 26, 27, 19, 69, 6, 38, 4, 37, 60, 31, 77, 78,

7 47, 99, 18, 12, 80, 54, 88, 39, 9, 72, 86, 42, 13, 23, 67,

8 52, 15, 32, 49, 51, 74, 16, 14, 75, 79, 83, 84]

When actually computing linear rankings of a set of alternatives, the local outranking re-
lations are of no practical usage, and we may furthermore reduce the memory occupation
of the resulting digraph by

1. refining the ordering of the quantile classes by taking into account how well an
alternative is outranking the lower limit of its quantile class, respectively the upper
limit of its quantile class is not outranking the alternative;

2. dropping the local outranking digraphs and keeping for each quantile class only a
locally ranked list of alternatives.

We provide therefore the cSparseIntegerOutrankingDigraphs.

cQuantilesRankingDigraph class.

1 >>> qr = cQuantilesRankingDigraph(t,4)

2 >>> qr

3 *----- Object instance description --------------*

4 Instance class : cQuantilesRankingDigraph

5 Instance name : cRandomperftab_mp

6 # Actions : 100

7 # Criteria : 7

8 Sorting by : 4-Tiling

9 Ordering strategy : optimal

10 Ranking rule : Copeland

11 # Components : 47

12 Minimal order : 1

13 Maximal order : 10

14 Average order : 2.1

15 fill rate : 2.566%

16 *---- Constructor run times (in sec.) ----*

17 Nbr of threads : 1

18 Total time : 0.03702

19 QuantilesSorting : 0.01785

20 Preordering : 0.00022

21 Decomposing : 0.01892

22 Ordering : 0.00000

23 Attributes : ['runTimes', 'name', 'actions', 'order',

(continues on next page)
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24 'dimension', 'sortingParameters', 'nbrOfCPUs',

25 'valuationdomain', 'profiles', 'categories',

26 'sorting', 'minimalComponentSize',

27 'decomposition', 'nbrComponents', 'nd',

28 'components', 'fillRate', 'maximalComponentSize',

29 'componentRankingRule', 'boostedRanking']

With this optimised quantile ordering strategy, we obtain now 47 performance equivalence
classes.

1 >>> qr.components

2 OrderedDict([

3 ('c01', {'rank': 1,

4 'lowQtileLimit': ']0.75',

5 'highQtileLimit': '1.00]',

6 'componentRanking': [53]}),

7 ('c02', {'rank': 2,

8 'lowQtileLimit': ']0.75',

9 'highQtileLimit': '1.00]',

10 'componentRanking': [3, 23, 63, 50]}),

11 ('c03', {'rank': 3,

12 'lowQtileLimit': ']0.75',

13 'highQtileLimit': '1.00]',

14 'componentRanking': [34, 44, 56, 24, 93, 41]}),

15 ...

16 ...

17 ...

18 ('c45', {'rank': 45,

19 'lowQtileLimit': ']0.25',

20 'highQtileLimit': '0.50]',

21 'componentRanking': [49]}),

22 ('c46', {'rank': 46,

23 'lowQtileLimit': ']0.25',

24 'highQtileLimit': '0.50]',

25 'componentRanking': [52, 16, 86]}),

26 ('c47', {'rank': 47,

27 'lowQtileLimit': ']<',

28 'highQtileLimit': '0.25]',

29 'componentRanking': [79, 83, 84]})])

30 >>> print('%.0f kB' % (total_size(qr)/1024) )

31 208kB

We observe an even more considerably less voluminous memory occupation: 208kB com-
pared to the 769kB of the SparseIntegerOutrankingDigraph instance. It is opportune,
however, to measure the loss of quality of the resulting Copeland ranking when working
with sparse outranking digraphs.

1 >>> from cIntegerOutrankingDigraphs import *

2 >>> ig = IntegerBipolarOutrankingDigraph(t)

(continues on next page)
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3 >>> print('Complete outranking : %+.4f '\

4 % (ig.computeOrderCorrelation(ig.computeCopelandOrder())\

5 ['correlation']))

6 Complete outranking : +0.7474

7 >>> print('Sparse 4-tiling : %+.4f '\

8 % (ig.computeOrderCorrelation(\

9 list(reversed(sg.boostedRanking)))['correlation']))

10 Sparse 4-tiling : +0.7172

11 >>> print('Optimzed sparse 4-tiling: %+.4f '\

12 % (ig.computeOrderCorrelation(\

13 list(reversed(qr.boostedRanking)))['correlation']))

14 Optimzed sparse 4-tiling: +0.7051

The best ranking correlation with the pairwise outranking situations (+0.75) is naturally
given when we apply the Copeland rule to the complete outranking digraph. When
we apply the same rule to the sparse 4-tiled outranking digraph, we get a correlation
of +0.72, and when applying the Copeland rule to the optimised 4-tiled digraph, we
still obtain a correlation of +0.71. These results actually depend on the number of
quantiles we use as well as on the given model of random performance tableau. In case of
Random3ObjectivesPerformanceTableau instances, for instance, we would get in a similar
setting a complete outranking correlation of +0.86, a sparse 4-tiling correlation of +0.82,
and an optimzed sparse 4-tiling correlation of +0.81.

12.6 HPC quantiles ranking records

Following from the separability property of the q-tiles sorting of each action into each
q-tiles class, the q-sorting algorithm may be safely split into as much threads as are
multiple processing cores available in parallel. Furthermore, the ranking procedure being
local to each diagonal component, these procedures may as well be safely processed in
parallel threads on each component restricted outrankingdigraph.

Using the HPC platform of the University of Luxembourg (https://hpc.uni.lu/), the
following run times for very big ranking problems could be achieved both:

� on Iris -skylake nodes with 28 cores7, and

� on the 3TB -bigmem Gaia-183 node with 64 cores8,

by running the cythonized python modules in an Intel compiled virtual Python 3.6.5
environment [GCC Intel(R) 17.0.1 –enable-optimizations c++ gcc 6.3 mode] on Debian
8 Linux.

7 See https://hpc.uni.lu/systems/iris/
8 See https://hpc.uni.lu/systems/gaia/
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Fig. 2: HPC-UL Ranking Performance Records (Spring 2018)

Example python session on the HPC-UL Iris-126 -skylake node7

1 (myPy365ICC) [rbisdorff@iris-126 Test]$ python

2 Python 3.6.5 (default, May 9 2018, 09:54:28)

3 [GCC Intel(R) C++ gcc 6.3 mode] on linux

4 Type "help", "copyright", "credits" or "license" for more information.

5 >>>

1 >>> from cRandPerfTabs import\

2 cRandom3ObjectivesPerformanceTableau as cR3ObjPT

3 >>> pt = cR3ObjPT(numberOfActions=1000000,

4 numberOfCriteria=21,

5 weightDistribution='equiobjectives',

6 commonScale = (0.0,1000.0),

7 commonThresholds = [(2.5,0.0),(5.0,0.0),(75.0,0.0)],

8 commonMode = ['beta','variable',None],

9 missingDataProbability=0.05,

10 seed=16)

11 >>> import cSparseIntegerOutrankingDigraphs as iBg

12 >>> qr = iBg.cQuantilesRankingDigraph(pt,quantiles=10,

13 quantilesOrderingStrategy='optimal',

14 minimalComponentSize=1,

15 componentRankingRule='NetFlows',

16 LowerClosed=False,

17 Threading=True,

18 tempDir='/tmp',

19 nbrOfCPUs=28)

20 >>> qr

21 *----- Object instance description --------------*

22 Instance class : cQuantilesRankingDigraph

23 Instance name : random3ObjectivesPerfTab_mp

24 # Actions : 1000000

25 # Criteria : 21

26 Sorting by : 10-Tiling

27 Ordering strategy : optimal

28 Ranking rule : NetFlows

29 # Components : 233645

30 Minimal order : 1
(continues on next page)
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31 Maximal order : 153

32 Average order : 4.3

33 fill rate : 0.001%

34 *---- Constructor run times (in sec.) ----*

35 Nbr of threads : 28

36 Total time : 177.02770

37 QuantilesSorting : 99.55377

38 Preordering : 5.17954

39 Decomposing : 72.29356

On this 2x14c Intel Xeon Gold 6132 @ 2.6 GHz equipped HPC node with 132GB RAM7,
deciles sorting and locally ranking amillion decision alternatives evaluated on 21 incom-
mensurable criteria, by balancing an economic, an environmental and a societal decision
objective, takes us about 3 minutes (see Lines 37-42 above); with 1.5 minutes for the
deciles sorting and, a bit more than one minute, for the local ranking of the individual
components.

The optimised deciles sorting leads to 233645 components (see Lines 32-36 above) with
a maximal order of 153. The fill rate of the adjacency table is reduced to 0.001%. Of
the potential trillion (10^12) pairwise outrankings, we effectively keep only 10 millions
(10^7). This high number of components results from the high number of involved
performance criteria (21), leading in fact to a very refined epistemic discrimination of
majority outranking margins.

A non-optimised deciles sorting would instead give at most 110 components with in-
evitably very big intractable local digraph orders. Proceeding with a more detailed quan-
tiles sorting, for reducing the induced decomposing run times, leads however quickly to
intractable quantiles sorting times. A good compromise is given when the quantiles sort-
ing and decomposing steps show somehow equivalent run times; as is the case in our
example session: 99.6 versus 77.3 seconds (see Lines 40 and 42 above).

Let us inspect the 21 marginal performances of the five best-ranked alternatives listed
below.

1 >>> pt.showPerformanceTableau(\

2 actionsSubset=qr.boostedRanking[:5],\

3 Transposed=True)

4 *---- performance tableau -----*

5 criteria | weights | #773909 #668947 #567308 #578560 #426464

6 ---------|-------------------------------------------------------

7 'Ec01' | 42 | 969.81 844.71 917.00 NA 808.35

8 'So02' | 48 | NA 891.52 836.43 NA 899.22

9 'En03' | 56 | 687.10 NA 503.38 873.90 NA

10 'So04' | 48 | 455.05 845.29 866.16 800.39 956.14

11 'En05' | 56 | 809.60 846.87 939.46 851.83 950.51

12 'Ec06' | 42 | 919.62 802.45 717.39 832.44 974.63

13 'Ec07' | 42 | 889.01 722.09 606.11 902.28 574.08

14 'So08' | 48 | 862.19 699.38 907.34 571.18 943.34

15 'En09' | 56 | 857.34 817.44 819.92 674.60 376.70

(continues on next page)
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16 'Ec10' | 42 | NA 874.86 NA 847.75 739.94

17 'En11' | 56 | NA 824.24 855.76 NA 953.77

18 'Ec12' | 42 | 802.18 871.06 488.76 841.41 599.17

19 'En13' | 56 | 827.73 839.70 864.48 720.31 877.23

20 'So14' | 48 | 943.31 580.69 827.45 815.18 461.04

21 'En15' | 56 | 794.57 801.44 924.29 938.70 863.72

22 'Ec16' | 42 | 581.15 599.87 949.84 367.34 859.70

23 'So17' | 48 | 881.55 856.05 NA 796.10 655.37

24 'Ec18' | 42 | 863.44 520.24 919.75 865.14 914.32

25 'So19' | 48 | NA NA NA 790.43 842.85

26 'Ec20' | 42 | 582.52 831.93 820.92 881.68 864.81

27 'So21' | 48 | 880.87 NA 628.96 746.67 863.82

The given ranking problem involves 8 criteria assessing the economic performances, 7
criteria assessing the societal performances and 6 criteria assessing the environmental
performances of the decision alternatives. The sum of criteria significance weights (336)
is the same for all three decision objectives. The five best-ranked alternatives are, in
decreasing order: #773909, #668947, #567308, #578560 and #426464.

Their random performance evaluations were obviously drawn on all criteria with a good
(+) performance profile, i.e. a Beta(alpha = 5.8661, beta = 2.62203) law (see the tutorial
Generating random performance tableaux (page 32)).

1 >>> for x in qr.boostedRanking[:5]:

2 print(pt.actions[x]['name'],\

3 pt.actions[x]['profile'])

4 #773909 {'Eco': '+', 'Soc': '+', 'Env': '+'}

5 #668947 {'Eco': '+', 'Soc': '+', 'Env': '+'}

6 #567308 {'Eco': '+', 'Soc': '+', 'Env': '+'}

7 #578560 {'Eco': '+', 'Soc': '+', 'Env': '+'}

8 #426464 {'Eco': '+', 'Soc': '+', 'Env': '+'}

We consider now a partial performance tableau best10, consisting only, for instance, of the
ten best-ranked alternatives, with which we may compute a corresponding integer
outranking digraph valued in the range (-1008, +1008).

1 >>> best10 = cPartialPerformanceTableau(pt,qr.boostedRanking[:10])

2 >>> from cIntegerOutrankingDigraphs import *

3 >>> g = IntegerBipolarOutrankingDigraph(best10)

4 >>> g.valuationdomain

5 {'min': -1008, 'med': 0, 'max': 1008, 'hasIntegerValuation': True}

6 >>> g.showRelationTable(ReflexiveTerms=False)

7 * ---- Relation Table -----

8 r(x>y) | #773909 #668947 #567308 #578560 #426464 #298061 #155874 #815552

→˓#279729 #928564

9 --------|----------------------------------------------------------------------

→˓-------------

10 #773909 | - +390 +90 +270 -50 +340 +220 +60 ␣

→˓+116 +222

(continues on next page)
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11 #668947 | +78 - +42 +250 -22 +218 +56 +172 ␣

→˓+74 +64

12 #567308 | +70 +418 - +180 +156 +174 +266 +78 ␣

→˓+256 +306

13 #578560 | -4 +78 +28 - -12 +100 -48 +154 -

→˓110 -10

14 #426464 | +202 +258 +284 +138 - +416 +312 +382 ␣

→˓+534 +278

15 #298061 | -48 +68 +172 +32 -42 - +54 +48 ␣

→˓+248 +374

16 #155874 | +72 +378 +322 +174 +274 +466 - +212 ␣

→˓+308 +418

17 #815552 | +78 +126 +272 +318 +54 +194 +172 - -

→˓14 +22

18 #279729 | +240 +230 -110 +290 +72 +140 +388 +62 -␣

→˓ +250

19 #928564 | +22 +228 -14 +246 +36 +78 +56 +110 ␣

→˓+318 -

20 r(x>y) image range := [-1008;+1008]

21 >>> g.condorcetWinners()

22 [155874, 426464, 567308]

23 >>> g.computeChordlessCircuits()

24 []

25 >>> g.computeTransitivityDegree()

26 0.78

Three alternatives -#155874, #426464 and #567308- qualify as Condorcet winners, i.e.
they each positively outrank all the other nine alternatives. No chordless outranking
circuits are detected, yet the transitivity of the apparent outranking relation is not given.
And, no clear ranking alignment hence appears when inspecting the strict outranking
digraph (i.e. the codual ~(-g) of g) shown in Fig. 3.

1 >>> (~(-g)).exportGraphViz()

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to converse-dual_rel_best10.dot

4 dot -Tpng converse-dual_rel_best10.dot -o converse-dual_rel_best10.png
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Fig. 3: Validated strict outranking situations between the ten best-ranked alternatives

Restricted to these ten best-ranked alternatives, the Copeland, the NetFlows as well as
the Kemeny ranking rule will all rank alternative #426464 first and alternative #578560
last. Otherwise the three ranking rules produce in this case more or less different rankings.

1 >>> g.computeCopelandRanking()

2 [426464, 567308, 155874, 279729, 773909, 928564, 668947, 815552, 298061,␣

→˓578560]

3 >>> g.computeNetFlowsRanking()

4 [426464, 155874, 773909, 567308, 815552, 279729, 928564, 298061, 668947,␣

→˓578560]

5 >>> from linearOrders import *

6 >>> ke = KemenyOrder(g,orderLimit=10)

7 >>> ke.kemenyRanking

8 [426464, 773909, 155874, 815552, 567308, 298061, 928564, 279729, 668947,␣

→˓578560]

Note: It is therefore important to always keep in mind that, based on pairwise outrank-
ing situations, there does not exist any unique optimal ranking; especially when we
face such big data problems. Changing the number of quantiles, the component ranking
rule, the optimised quantile ordering strategy, all this will indeed produce, sometimes
even substantially, diverse global ranking results.

Back to Content Table (page 3)
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13 Working with the graphs module

� Structure of a Graph object (page 147)

� q-coloring of a graph (page 150)

� MIS and clique enumeration (page 152)

� Line graphs and maximal matchings (page 153)

� Grids and the Ising model (page 155)

� Simulating Metropolis random walks (page 156)

See also the technical documentation of the graphs module.

13.1 Structure of a Graph object

In the graphs module, the root graphs.Graph class provides a generic simple graph
model, without loops and multiple links. A given object of this class consists in:

1. the graph vertices : a dictionary of vertices with ‘name’ and ‘shortName’ at-
tributes,

2. the graph valuationDomain , a dictionary with three entries: the minimum (-
1, means certainly no link), the median (0, means missing information) and the
maximum characteristic value (+1, means certainly a link),

3. the graph edges : a dictionary with frozensets of pairs of vertices as entries carrying
a characteristic value in the range of the previous valuation domain,

4. and its associated gamma function : a dictionary containing the direct neighbors
of each vertex, automatically added by the object constructor.

See the technical documentation of the graphs module.

Example Python3 session

1 >>> from graphs import Graph

2 >>> g = Graph(numberOfVertices=7,edgeProbability=0.5)

3 >>> g.save(fileName='tutorialGraph')

The saved Graph instance named tutorialGraph.py is encoded in python3 as follows.

1 # Graph instance saved in Python format

2 vertices = {

3 'v1': {'shortName': 'v1', 'name': 'random vertex'},

(continues on next page)
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4 'v2': {'shortName': 'v2', 'name': 'random vertex'},

5 'v3': {'shortName': 'v3', 'name': 'random vertex'},

6 'v4': {'shortName': 'v4', 'name': 'random vertex'},

7 'v5': {'shortName': 'v5', 'name': 'random vertex'},

8 'v6': {'shortName': 'v6', 'name': 'random vertex'},

9 'v7': {'shortName': 'v7', 'name': 'random vertex'},

10 }

11 valuationDomain = {'min':-1,'med':0,'max':1}

12 edges = {

13 frozenset(['v1','v2']) : -1,

14 frozenset(['v1','v3']) : -1,

15 frozenset(['v1','v4']) : -1,

16 frozenset(['v1','v5']) : 1,

17 frozenset(['v1','v6']) : -1,

18 frozenset(['v1','v7']) : -1,

19 frozenset(['v2','v3']) : 1,

20 frozenset(['v2','v4']) : 1,

21 frozenset(['v2','v5']) : -1,

22 frozenset(['v2','v6']) : 1,

23 frozenset(['v2','v7']) : -1,

24 frozenset(['v3','v4']) : -1,

25 frozenset(['v3','v5']) : -1,

26 frozenset(['v3','v6']) : -1,

27 frozenset(['v3','v7']) : -1,

28 frozenset(['v4','v5']) : 1,

29 frozenset(['v4','v6']) : -1,

30 frozenset(['v4','v7']) : 1,

31 frozenset(['v5','v6']) : 1,

32 frozenset(['v5','v7']) : -1,

33 frozenset(['v6','v7']) : -1,

34 }

The stored graph can be recalled and plotted with the generic graphs.Graph.

exportGraphViz()1 method as follows.

1 >>> g = Graph('tutorialGraph')

2 >>> g.exportGraphViz()

3 *---- exporting a dot file for GraphViz tools ---------*

4 Exporting to tutorialGraph.dot

5 fdp -Tpng tutorialGraph.dot -o tutorialGraph.png
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Fig. 1: Tutorial graph instance

Properties, like the gamma function and vertex degrees and neighbourhood depths may
be shown with a graphs.Graph.showShort() method.

1 >>> g.showShort()

2 *---- short description of the graph ----*

3 Name : 'tutorialGraph'

4 Vertices : ['v1', 'v2', 'v3', 'v4', 'v5', 'v6', 'v7']

5 Valuation domain : {'min': -1, 'med': 0, 'max': 1}

6 Gamma function :

7 v1 -> ['v5']

8 v2 -> ['v6', 'v4', 'v3']

9 v3 -> ['v2']

10 v4 -> ['v5', 'v2', 'v7']

11 v5 -> ['v1', 'v6', 'v4']

12 v6 -> ['v2', 'v5']

13 v7 -> ['v4']

14 degrees : [0, 1, 2, 3, 4, 5, 6]

15 distribution : [0, 3, 1, 3, 0, 0, 0]

16 nbh depths : [0, 1, 2, 3, 4, 5, 6, 'inf.']

17 distribution : [0, 0, 1, 4, 2, 0, 0, 0]

A Graph instance corresponds bijectively to a symmetric Digraph instance and we may
easily convert from one to the other with the graphs.Graph.graph2Digraph(), and vice
versa with the digraphs.Digraph.digraph2Graph() method. Thus, all resources of the
digraphs.Digraph class, suitable for symmetric digraphs, become readily available, and
vice versa.

1 >>> dg = g.graph2Digraph()

2 >>> dg.showRelationTable(ndigits=0,ReflexiveTerms=False)

3 * ---- Relation Table -----

4 S | 'v1' 'v2' 'v3' 'v4' 'v5' 'v6' 'v7'

5 -----|------------------------------------------

(continues on next page)
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6 'v1' | - -1 -1 -1 1 -1 -1

7 'v2' | -1 - 1 1 -1 1 -1

8 'v3' | -1 1 - -1 -1 -1 -1

9 'v4' | -1 1 -1 - 1 -1 1

10 'v5' | 1 -1 -1 1 - 1 -1

11 'v6' | -1 1 -1 -1 1 - -1

12 'v7' | -1 -1 -1 1 -1 -1 -

13 >>> g1 = dg.digraph2Graph()

14 >>> g1.showShort()

15 *---- short description of the graph ----*

16 Name : 'tutorialGraph'

17 Vertices : ['v1', 'v2', 'v3', 'v4', 'v5', 'v6', 'v7']

18 Valuation domain : {'med': 0, 'min': -1, 'max': 1}

19 Gamma function :

20 v1 -> ['v5']

21 v2 -> ['v3', 'v6', 'v4']

22 v3 -> ['v2']

23 v4 -> ['v5', 'v7', 'v2']

24 v5 -> ['v6', 'v1', 'v4']

25 v6 -> ['v5', 'v2']

26 v7 -> ['v4']

27 degrees : [0, 1, 2, 3, 4, 5, 6]

28 distribution : [0, 3, 1, 3, 0, 0, 0]

29 nbh depths : [0, 1, 2, 3, 4, 5, 6, 'inf.']

30 distribution : [0, 0, 1, 4, 2, 0, 0, 0]

13.2 q-coloring of a graph

A 3-coloring of the tutorial graph g may for instance be computed and plotted with the
graphs.Q_Coloring class as follows.

1 >>> from graphs import Q_Coloring

2 >>> qc = Q_Coloring(g)

3 Running a Gibbs Sampler for 42 step !

4 The q-coloring with 3 colors is feasible !!

5 >>> qc.showConfiguration()

6 v5 lightblue

7 v3 gold

8 v7 gold

9 v2 lightblue

10 v4 lightcoral

11 v1 gold

12 v6 lightcoral

13 >>> qc.exportGraphViz('tutorial-3-coloring')

14 *---- exporting a dot file for GraphViz tools ---------*

15 Exporting to tutorial-3-coloring.dot

16 fdp -Tpng tutorial-3-coloring.dot -o tutorial-3-coloring.png
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Fig. 2: 3-Coloring of the tutorial graph

Actually, with the given tutorial graph instance, a 2-coloring is already feasible.

1 >>> qc = Q_Coloring(g,colors=['gold','coral'])

2 Running a Gibbs Sampler for 42 step !

3 The q-coloring with 2 colors is feasible !!

4 >>> qc.showConfiguration()

5 v5 gold

6 v3 coral

7 v7 gold

8 v2 gold

9 v4 coral

10 v1 coral

11 v6 coral

12 >>> qc.exportGraphViz('tutorial-2-coloring')

13 Exporting to tutorial-2-coloring.dot

14 fdp -Tpng tutorial-2-coloring.dot -o tutorial-2-coloring.png
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Fig. 3: 2-coloring of the tutorial graph

13.3 MIS and clique enumeration

2-colorings define independent sets of vertices that are maximal in cardinality; for short
called a MIS. Computing such MISs in a given Graph instance may be achieved by the
graphs.Graph.showMIS() method.

1 >>> g = Graph('tutorialGraph')

2 >>> g.showMIS()

3 *--- Maximal Independent Sets ---*

4 ['v2', 'v5', 'v7']

5 ['v3', 'v5', 'v7']

6 ['v1', 'v2', 'v7']

7 ['v1', 'v3', 'v6', 'v7']

8 ['v1', 'v3', 'v4', 'v6']

9 number of solutions: 5

10 cardinality distribution

11 card.: [0, 1, 2, 3, 4, 5, 6, 7]

12 freq.: [0, 0, 0, 3, 2, 0, 0, 0]

13 execution time: 0.00032 sec.

14 Results in self.misset

15 >>> g.misset

16 [frozenset({'v7', 'v2', 'v5'}),

17 frozenset({'v3', 'v7', 'v5'}),

18 frozenset({'v1', 'v2', 'v7'}),

19 frozenset({'v1', 'v6', 'v7', 'v3'}),

20 frozenset({'v1', 'v6', 'v4', 'v3'})]

A MIS in the dual of a graph instance g (its negation -g14), corresponds to a maxi-
mal clique, i.e. a maximal complete subgraph in g. Maximal cliques may be directly
enumerated with the graphs.Graph.showCliques() method.

152



1 >>> g.showCliques()

2 *--- Maximal Cliques ---*

3 ['v2', 'v3']

4 ['v4', 'v7']

5 ['v2', 'v4']

6 ['v4', 'v5']

7 ['v1', 'v5']

8 ['v2', 'v6']

9 ['v5', 'v6']

10 number of solutions: 7

11 cardinality distribution

12 card.: [0, 1, 2, 3, 4, 5, 6, 7]

13 freq.: [0, 0, 7, 0, 0, 0, 0, 0]

14 execution time: 0.00049 sec.

15 Results in self.cliques

16 >>> g.cliques

17 [frozenset({'v2', 'v3'}), frozenset({'v4', 'v7'}),

18 frozenset({'v2', 'v4'}), frozenset({'v4', 'v5'}),

19 frozenset({'v1', 'v5'}), frozenset({'v6', 'v2'}),

20 frozenset({'v6', 'v5'})]

13.4 Line graphs and maximal matchings

The module also provides a graphs.LineGraph constructor. A line graph represents
the adjacencies between edges of the given graph instance. We may compute for
instance the line graph of the 5-cycle graph.

1 >>> g = CycleGraph(order=5)

2 >>> g

3 *------- Graph instance description ------*

4 Instance class : CycleGraph

5 Instance name : cycleGraph

6 Graph Order : 5

7 Graph Size : 5

8 Valuation domain : [-1.00; 1.00]

9 Attributes : ['name', 'order', 'vertices', 'valuationDomain',

10 'edges', 'size', 'gamma']

11 >>> lg = LineGraph(g)

12 >>> lg

13 *------- Graph instance description ------*

14 Instance class : LineGraph

15 Instance name : line-cycleGraph

16 Graph Order : 5

17 Graph Size : 5

18 Valuation domain : [-1.00; 1.00]

19 Attributes : ['name', 'graph', 'valuationDomain', 'vertices',

20 'order', 'edges', 'size', 'gamma']

21 >>> lg.showShort()

(continues on next page)
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22 *---- short description of the graph ----*

23 Name : 'line-cycleGraph'

24 Vertices : [frozenset({'v1', 'v2'}), frozenset({'v1', 'v5'}),␣

→˓frozenset({'v2', 'v3'}),

25 frozenset({'v3', 'v4'}), frozenset({'v4', 'v5'})]

26 Valuation domain : {'min': Decimal('-1'), 'med': Decimal('0'), 'max': Decimal(

→˓'1')}

27 Gamma function :

28 frozenset({'v1', 'v2'}) -> [frozenset({'v2', 'v3'}), frozenset({'v1', 'v5'})]

29 frozenset({'v1', 'v5'}) -> [frozenset({'v1', 'v2'}), frozenset({'v4', 'v5'})]

30 frozenset({'v2', 'v3'}) -> [frozenset({'v1', 'v2'}), frozenset({'v3', 'v4'})]

31 frozenset({'v3', 'v4'}) -> [frozenset({'v2', 'v3'}), frozenset({'v4', 'v5'})]

32 frozenset({'v4', 'v5'}) -> [frozenset({'v4', 'v3'}), frozenset({'v1', 'v5'})]

33 degrees : [0, 1, 2, 3, 4]

34 distribution : [0, 0, 5, 0, 0]

35 nbh depths : [0, 1, 2, 3, 4, 'inf.']

36 distribution : [0, 0, 5, 0, 0, 0]

Iterated line graph constructions are usually expanding, except for chordless cycles, where
the same cycle is repeated, and for non-closed paths, where iterated line graphs progres-
sively reduce one by one the number of vertices and edges and become eventually an
empty graph.

Notice that the MISs in the line graph provide maximal matchings - maximal sets of
independent edges - of the original graph.

1 >>> c8 = CycleGraph(order=8)

2 >>> lc8 = LineGraph(c8)

3 >>> lc8.showMIS()

4 *--- Maximal Independent Sets ---*

5 [frozenset({'v3', 'v4'}), frozenset({'v5', 'v6'}), frozenset({'v1', 'v8'})]

6 [frozenset({'v2', 'v3'}), frozenset({'v5', 'v6'}), frozenset({'v1', 'v8'})]

7 [frozenset({'v8', 'v7'}), frozenset({'v2', 'v3'}), frozenset({'v5', 'v6'})]

8 [frozenset({'v8', 'v7'}), frozenset({'v2', 'v3'}), frozenset({'v4', 'v5'})]

9 [frozenset({'v7', 'v6'}), frozenset({'v3', 'v4'}), frozenset({'v1', 'v8'})]

10 [frozenset({'v2', 'v1'}), frozenset({'v8', 'v7'}), frozenset({'v4', 'v5'})]

11 [frozenset({'v2', 'v1'}), frozenset({'v7', 'v6'}), frozenset({'v4', 'v5'})]

12 [frozenset({'v2', 'v1'}), frozenset({'v7', 'v6'}), frozenset({'v3', 'v4'})]

13 [frozenset({'v7', 'v6'}), frozenset({'v2', 'v3'}), frozenset({'v1', 'v8'}),

14 frozenset({'v4', 'v5'})]

15 [frozenset({'v2', 'v1'}), frozenset({'v8', 'v7'}), frozenset({'v3', 'v4'}),

16 frozenset({'v5', 'v6'})]

17 number of solutions: 10

18 cardinality distribution

19 card.: [0, 1, 2, 3, 4, 5, 6, 7, 8]

20 freq.: [0, 0, 0, 8, 2, 0, 0, 0, 0]

21 execution time: 0.00029 sec.

The two last MISs of cardinality 4 (see Lines 13-16 above) give isomorphic perfect
maximum matchings of the 8-cycle graph. Every vertex of the cycle is adjacent to a
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matching edge. Odd cycle graphs do not admit any perfect matching.

1 >>> maxMatching = c8.computeMaximumMatching()

2 >>> c8.exportGraphViz(fileName='maxMatchingcycleGraph',

3 matching=maxMatching)

4 *---- exporting a dot file for GraphViz tools ---------*

5 Exporting to maxMatchingcyleGraph.dot

6 Matching: {frozenset({'v1', 'v2'}), frozenset({'v5', 'v6'}),

7 frozenset({'v3', 'v4'}), frozenset({'v7', 'v8'}) }

8 circo -Tpng maxMatchingcyleGraph.dot -o maxMatchingcyleGraph.png

Fig. 4: A perfect maximum matching of the 8-cycle graph

13.5 Grids and the Ising model

Special classes of graphs, like n x m rectangular or triangular grids (graphs.
GridGraph and graphs.IsingModel) are available in the graphs module. For instance,
we may use a Gibbs sampler again for simulating an Ising Model on such a grid.

1 >>> from graphs import GridGraph, IsingModel

2 >>> g = GridGraph(n=15,m=15)

3 >>> g.showShort()

4 *----- show short --------------*

5 Grid graph : grid-6-6

6 n : 6

7 m : 6

8 order : 36

9 >>> im = IsingModel(g,beta=0.3,nSim=100000,Debug=False)

10 Running a Gibbs Sampler for 100000 step !

11 >>> im.exportGraphViz(colors=['lightblue','lightcoral'])

(continues on next page)
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12 *---- exporting a dot file for GraphViz tools ---------*

13 Exporting to grid-15-15-ising.dot

14 fdp -Tpng grid-15-15-ising.dot -o grid-15-15-ising.png

Fig. 5: Ising model of the 15x15 grid graph

13.6 Simulating Metropolis random walks

Finally, we provide the graphs.MetropolisChain class, a specialization of the graphs.
Graph class, for implementing a generic Metropolis MCMC (Monte Carlo Markov
Chain) sampler for simulating random walks on a given graph following a given probability
probs = {‘v1’: x, ‘v2’: y, ...} for visiting each vertex (see Lines 14-22).

1 >>> from graphs import MetropolisChain

2 >>> g = Graph(numberOfVertices=5,edgeProbability=0.5)

3 >>> g.showShort()

4 *---- short description of the graph ----*

(continues on next page)
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5 Name : 'randomGraph'

6 Vertices : ['v1', 'v2', 'v3', 'v4', 'v5']

7 Valuation domain : {'max': 1, 'med': 0, 'min': -1}

8 Gamma function :

9 v1 -> ['v2', 'v3', 'v4']

10 v2 -> ['v1', 'v4']

11 v3 -> ['v5', 'v1']

12 v4 -> ['v2', 'v5', 'v1']

13 v5 -> ['v3', 'v4']

14 >>> probs = {} # initialize a potential stationary probability vector

15 >>> n = g.order # for instance: probs[v_i] = n-i/Sum(1:n) for i in 1:n

16 >>> i = 0

17 >>> verticesList = [x for x in g.vertices]

18 >>> verticesList.sort()

19 >>> for v in verticesList:

20 probs[v] = (n - i)/(n*(n+1)/2)

21 i += 1

22 >>> met = MetropolisChain(g,probs)

23 >>> frequency = met.checkSampling(verticesList[0],nSim=30000)

24 >>> for v in verticesList:

25 print(v,probs[v],frequency[v])

26 v1 0.3333 0.3343

27 v2 0.2666 0.2680

28 v3 0.2 0.2030

29 v4 0.1333 0.1311

30 v5 0.0666 0.0635

31 >>> met.showTransitionMatrix()

32 * ---- Transition Matrix -----

33 Pij | 'v1' 'v2' 'v3' 'v4' 'v5'

34 -----|-------------------------------------

35 'v1' | 0.23 0.33 0.30 0.13 0.00

36 'v2' | 0.42 0.42 0.00 0.17 0.00

37 'v3' | 0.50 0.00 0.33 0.00 0.17

38 'v4' | 0.33 0.33 0.00 0.08 0.25

39 'v5' | 0.00 0.00 0.50 0.50 0.00

The checkSampling() method (see Line 23) generates a random walk of nSim=30000
steps on the given graph and records by the way the observed relative frequency with
which each vertex is passed by. In this example, the stationary transition probability
distribution, shown by the showTransitionMatrix() method above (see Lines 31-), is
quite adequately simulated.

For more technical information and more code examples, look into the technical docu-
mentation of the graphs module. For the readers interested in algorithmic applications
of Markov Chains we may recommend consulting O. Häggström’s 2002 book: [FMCAA].

Back to Content Table (page 3)
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14 Computing the non isomorphic MISs of the 12-cycle

graph

� Introduction (page 158)

� Computing the maximal independent sets (MISs) (page 159)

� Computing the automorphism group (page 161)

� Computing the isomorphic MISs (page 161)

14.1 Introduction

Due to the public success of our common 2008 publication with Jean-Luc Marichal
[ISOMIS-08] , we present in this tutorial an example Python session for computing the
non isomorphic maximal independent sets (MISs) from the 12-cycle graph, i.e. a
digraphs.CirculantDigraph class instance of order 12 and symmetric circulants 1 and
-1.

1 >>> from digraphs import CirculantDigraph

2 >>> c12 = CirculantDigraph(order=12,circulants=[1,-1])

3 >>> c12 # 12-cycle digraph instance

4 *------- Digraph instance description ------*

5 Instance class : CirculantDigraph

6 Instance name : c12

7 Digraph Order : 12

8 Digraph Size : 24

9 Valuation domain : [-1.0, 1.0]

10 Determinateness : 100.000

11 Attributes : ['name', 'order', 'circulants', 'actions',

12 'valuationdomain', 'relation', 'gamma',

13 'notGamma']

Such n-cycle graphs are also provided as undirected graph instances by the graphs.

CycleGraph class.

1 >>> from graphs import CycleGraph

2 >>> cg12 = CycleGraph(order=12)

3 >>> cg12

4 *------- Graph instance description ------*

5 Instance class : CycleGraph

6 Instance name : cycleGraph

7 Graph Order : 12

8 Graph Size : 12

9 Valuation domain : [-1.0, 1.0]

10 Attributes : ['name', 'order', 'vertices', 'valuationDomain',

(continues on next page)
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11 'edges', 'size', 'gamma']

12 >>> cg12.exportGraphViz('cg12')

Fig. 1: The 12-cycle graph

14.2 Computing the maximal independent sets (MISs)

A non isomorphic MIS corresponds in fact to a set of isomorphic MISs, i.e. an orbit of
MISs under the automorphism group of the 12-cycle graph. We are now first computing all
maximal independent sets that are detectable in the 12-cycle digraph with the digraphs.
Digraph.showMIS() method.

1 >>> c12.showMIS(withListing=False)

2 *--- Maximal independent choices ---*

3 number of solutions: 29

4 cardinality distribution

5 card.: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

6 freq.: [0, 0, 0, 0, 3, 24, 2, 0, 0, 0, 0, 0, 0]

7 Results in c12.misset

In the 12-cycle graph, we observe 29 labelled MISs: – 3 of cardinality 4, 24 of cardinality
5, and 2 of cardinality 6. In case of n-cycle graphs with n > 20, as the cardinality of the
MISs becomes big, it is preferable to use the shell perrinMIS command compiled from
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C and installed3 along with all the Digraphs3 python modules for computing the set of
MISs observed in the graph.

1 ...$ echo 12 | /usr/local/bin/perrinMIS

2 # -------------------------------------- #

3 # Generating MIS set of Cn with the #

4 # Perrin sequence algorithm. #

5 # Temporary files used. #

6 # even versus odd order optimised. #

7 # RB December 2006 #

8 # Current revision Dec 2018 #

9 # -------------------------------------- #

10 Input cycle order ? <-- 12

11 mis 1 : 100100100100

12 mis 2 : 010010010010

13 mis 3 : 001001001001

14 ...

15 ...

16 ...

17 mis 27 : 001001010101

18 mis 28 : 101010101010

19 mis 29 : 010101010101

20 Cardinalities:

21 0 : 0

22 1 : 0

23 2 : 0

24 3 : 0

25 4 : 3

26 5 : 24

27 6 : 2

28 7 : 0

29 8 : 0

30 9 : 0

31 10 : 0

32 11 : 0

33 12 : 0

34 Total: 29

35 execution time: 0 sec. and 2 millisec.

Reading in the result of the perrinMIS shell command, stored in a file called by default
curd.dat, may be operated with the digraphs.Digraph.readPerrinMisset() method.

1 >>> c12.readPerrinMisset(file='curd.dat')

2 >>> c12.misset

3 {frozenset({'5', '7', '10', '1', '3'}),

4 frozenset({'9', '11', '5', '2', '7'}),

(continues on next page)

3 The perrinMIS shell command may be installed system wide with the command .../Digraph3$

make installPerrin from the main Digraph3 directory. It is stored by default into </usr/local/

bin/>. This may be changed with the INSTALLDIR flag. The command .../Digraph3$ make

installPerrinUser installs it instead without sudo into the user’s private <$Home/.bin> directory.
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5 frozenset({'7', '2', '4', '10', '12'}),

6 ...

7 ...

8 ...

9 frozenset({'8', '4', '10', '1', '6'}),

10 frozenset({'11', '4', '1', '9', '6'}),

11 frozenset({'8', '2', '4', '10', '12', '6'})

12 }

14.3 Computing the automorphism group

For computing the corresponding non isomorphic MISs, we actually need the automor-
phism group of the c12-cycle graph. The digraphs.Digraph class therefore provides
the digraphs.Digraph.automorphismGenerators() method which adds automorphism
group generators to a digraphs.Digraph class instance with the help of the external
shell <dreadnaut> command from the nauty software package2.

1 >>> c12.automorphismGenerators()

2 ...

3 Permutations

4 {'1': '1', '2': '12', '3': '11', '4': '10', '5':

5 '9', '6': '8', '7': '7', '8': '6', '9': '5', '10':

6 '4', '11': '3', '12': '2'}

7 {'1': '2', '2': '1', '3': '12', '4': '11', '5': '10',

8 '6': '9', '7': '8', '8': '7', '9': '6', '10': '5',

9 '11': '4', '12': '3'}

10 >>> print('grpsize = ', c12.automorphismGroupSize)

11 grpsize = 24

The 12-cycle graph automorphism group is generated with both the permutations above
and has group size 24.

14.4 Computing the isomorphic MISs

The command digraphs.Digraph.showOrbits() renders now the labelled representa-
tives of each of the four orbits of isomorphic MISs observed in the 12-cycle graph (see
Lines 7-10).

1 >>> c12.showOrbits(c12.misset,withListing=False)

2 ...

3 *---- Global result ----

4 Number of MIS: 29

(continues on next page)

2 Dependency: The digraphs.Digraph.automorphismGenerators() method uses the shell
dreadnaut command from the nauty software package. See https://www3.cs.stonybrook.edu/~algorith/
implement/nauty/implement.shtml . On Mac OS there exist dmg installers and on Ubuntu Linux or
Debian, one may easily install it with ...$ sudo apt-get install nauty.
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(continued from previous page)

5 Number of orbits : 4

6 Labelled representatives and cardinality:

7 1: ['2','4','6','8','10','12'], 2

8 2: ['2','5','8','11'], 3

9 3: ['2','4','6','9','11'], 12

10 4: ['1','4','7','9','11'], 12

11 Symmetry vector

12 stabilizer size: [1, 2, 3, ..., 8, 9, ..., 12, 13, ...]

13 frequency : [0, 2, 0, ..., 1, 0, ..., 1, 0, ...]

The corresponding group stabilizers’ sizes and frequencies – orbit 1 with 12 symmetry
axes, orbit 2 with 8 symmetry axes, and orbits 3 and 4 both with one symmetry axis (see
Lines 11-13), are illustrated in the corresponding unlabelled graphs of Fig. 2 below.

Fig. 2: The symmetry axes of the four non isomorphic MISs of the 12-cycle graph

The non isomorphic MISs in the 12-cycle graph represent in fact all the ways one may
write the number 12 as the circular sum of ‘2’s and ‘3’s without distinguishing opposite
directions of writing. The first orbit corresponds to writing six times a ‘2’; the second
orbit corresponds to writing four times a ‘3’. The third and fourth orbit correspond to
writing two times a ‘3’ and three times a ‘2’. There are two non isomorphic ways to do
this latter circular sum. Either separating the ‘3’s by one and two ‘2’s, or by zero and
three ‘2’s (see Bisdorff & Marichal [ISOMIS-08] ).

Back to Content Table (page 3)
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15 On computing digraph kernels

� What is a graph kernel ? (page 163)

� Initial and terminal kernels (page 168)

� Kernels in lateralized digraphs (page 173)

� Computing good and bad choice recommendations (page 176)

� Tractability (page 180)

15.1 What is a graph kernel ?

We call choice in a graph, respectively a digraph, a subset of its vertices, resp. of its
nodes or actions. A choice Y is called internally stable or independent when there
exist no links (edges) or relations (arcs) between its members. Furthermore, a choice Y
is called externally stable when for each vertex, node or action x not in Y, there exists
at least a member y of Y such that x is linked or related to y. Now, an internally and
externally stable choice is called a kernel.

A first trivial example is immediately given by the maximal independent vertices sets
(MISs) of the n-cycle graph (see Computing the non isomorphic MISs of the 12-cycle
graph (page 158)). Indeed, each MIS in the n-cycle graph is by definition independent,
i.e. internally stable, and each non selected vertex in the n-cycle graph is in relation with
either one or even two members of the MIS. See, for instance, the four non isomorphic
MISs of the 12-cycle graph as shown in Fig. 2.

In all graph or symmetric digraph, the maximality condition imposed on the internal
stability is equivalent to the external stability condition. Indeed, if there would exist a
vertex or node not related to any of the elements of a choice, then we may safely add this
vertex or node to the given choice without violating its internal stability. All kernels must
hence be maximal independent choices. In fact, in a topological sense, they correspond
to maximal holes in the given graph.

We may illustrate this coincidence between MISs and kernels in graphs and symmetric
digraphs with the following random 3-regular graph instance (see Fig. 1).

1 >>> from graphs import RandomRegularGraph

2 >>> g = RandomRegularGraph(order=12,degree=3,seed=100)

3 >>> g.exportGraphViz('random3RegularGraph')

4 *---- exporting a dot file for GraphViz tools ---------*

5 Exporting to random3RegularGraph.dot

6 fdp -Tpng random3RegularGraph.dot -o random3RegularGraph.png
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Fig. 1: A random 3-regular graph instance

A randomMIS in this graph may be computed for instance by using the graphs.MISModel
class.

1 >>> from graphs import MISModel

2 >>> mg = MISModel(g)

3 Iteration: 1

4 Running a Gibbs Sampler for 660 step !

5 {'a06', 'a02', 'a12', 'a10'} is maximal !

6 >>> mg.exportGraphViz('random3RegularGraph_mis')

7 *---- exporting a dot file for GraphViz tools ---------*

8 Exporting to random3RegularGraph-mis.dot

9 fdp -Tpng random3RegularGraph-mis.dot -o random3RegularGraph-mis.png

Fig. 2: A random MIS colored in the random 3-regular graph

It is easily verified in Fig. 2 above, that the computed MIS renders indeed a valid kernel
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of the given graph. The complete set of kernels of this 3-regular graph instance coincides
hence with the set of its MISs.

1 >>> g.showMIS()

2 *--- Maximal Independent Sets ---*

3 ['a01', 'a02', 'a03', 'a07']

4 ['a01', 'a04', 'a05', 'a08']

5 ['a04', 'a05', 'a08', 'a09']

6 ['a01', 'a04', 'a05', 'a10']

7 ['a04', 'a05', 'a09', 'a10']

8 ['a02', 'a03', 'a07', 'a12']

9 ['a01', 'a03', 'a07', 'a11']

10 ['a05', 'a08', 'a09', 'a11']

11 ['a03', 'a07', 'a11', 'a12']

12 ['a07', 'a09', 'a11', 'a12']

13 ['a08', 'a09', 'a11', 'a12']

14 ['a04', 'a05', 'a06', 'a08']

15 ['a04', 'a05', 'a06', 'a10']

16 ['a02', 'a04', 'a06', 'a10']

17 ['a02', 'a03', 'a06', 'a12']

18 ['a02', 'a06', 'a10', 'a12']

19 ['a01', 'a02', 'a04', 'a07', 'a10']

20 ['a02', 'a04', 'a07', 'a09', 'a10']

21 ['a02', 'a07', 'a09', 'a10', 'a12']

22 ['a01', 'a03', 'a05', 'a08', 'a11']

23 ['a03', 'a05', 'a06', 'a08', 'a11']

24 ['a03', 'a06', 'a08', 'a11', 'a12']

25 number of solutions: 22

26 cardinality distribution

27 card.: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

28 freq.: [0, 0, 0, 0, 16, 6, 0, 0, 0, 0, 0, 0, 0]

29 execution time: 0.00045 sec.

30 Results in self.misset

31 >>> g.misset

32 [frozenset({'a02', 'a01', 'a07', 'a03'}),

33 frozenset({'a04', 'a01', 'a08', 'a05'}),

34 frozenset({'a09', 'a04', 'a08', 'a05'}),

35 ...

36 ...

37 frozenset({'a06', 'a02', 'a12', 'a10'}),

38 frozenset({'a06', 'a11', 'a08', 'a03', 'a05'}),

39 frozenset({'a03', 'a06', 'a11', 'a12', 'a08'})]

We cannot resist in looking in this 3-regular graph for non isomorphic kernels (MISs,
see previous tutorial). To do so we must first, convert the given graph instance into a
digraph instance. Then, compute its automorphism generators, and finally, identify the
isomorphic kernel orbits.

1 >>> dg = g.graph2Digraph()

2 >>> dg.automorphismGenerators()

(continues on next page)
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3 *----- saving digraph in nauty dre format -------------*

4 Actions index:

5 1 : a01

6 2 : a02

7 3 : a03

8 4 : a04

9 5 : a05

10 6 : a06

11 7 : a07

12 8 : a08

13 9 : a09

14 10 : a10

15 11 : a11

16 12 : a12

17 {'1': 'a01', '2': 'a02', '3': 'a03', '4': 'a04', '5': 'a05',

18 '6': 'a06', '7': 'a07', '8': 'a08', '9': 'a09', '10': 'a10',

19 '11': 'a11', '12': 'a12'}

20 # automorphisms extraction from dre file #

21 # Using input file: randomRegularGraph.dre

22 echo '<randomRegularGraph.dre -m p >randomRegularGraph.auto x' | dreadnaut

23 # permutation = 1['1', '11', '7', '5', '4', '9', '3', '10', '6', '8', '2', '12

→˓']

24 >>> dg.showOrbits(g.misset)

25 *--- Isomorphic reduction of choices

26 ...

27 current representative: frozenset({'a09', 'a11', 'a12', 'a08'})

28 length : 4

29 number of isomorph choices 2

30 isormorph choices

31 ['a06', 'a02', 'a12', 'a10'] # <<== the random MIS shown above

32 ['a09', 'a11', 'a12', 'a08']

33 ----------------------------

34 *---- Global result ----

35 Number of choices: 22

36 Number of orbits : 11

37 Labelled representatives:

38 ['a06', 'a04', 'a10', 'a05']

39 ['a09', 'a07', 'a10', 'a04', 'a02']

40 ['a06', 'a11', 'a12', 'a08', 'a03']

41 ['a04', 'a01', 'a10', 'a05']

42 ['a07', 'a02', 'a12', 'a03']

43 ['a09', 'a11', 'a12', 'a07']

44 ['a06', 'a04', 'a08', 'a05']

45 ['a06', 'a04', 'a02', 'a10']

46 ['a01', 'a11', 'a07', 'a03']

47 ['a01', 'a11', 'a08', 'a03', 'a05']

48 ['a09', 'a11', 'a12', 'a08']

49 Symmetry vector

50 stabilizer size : [1, 2]

(continues on next page)

166



(continued from previous page)

51 frequency : [11, 0]

In our random 3-regular graph instance (see Fig. 1), we may thus find eleven non isomor-
phic kernels with orbit sizes equal to two. We illustrate below the isomorphic twin of the
random MIS example shown in Fig. 2 .

Fig. 3: Two isomorphic kernels of the random 3-regular graph instance

All graphs and symmetric digraphs admit MISs, hence also kernels.

It is worthwhile noticing that themaximal matchings of a graph correspond bijectively
to its line graph’s kernels (see the graphs.LineGraph class).

1 >>> from graphs import CycleGraph

2 >>> c8 = CycleGraph(order=8)

3 >>> maxMatching = c8.computeMaximumMatching()

4 >>> c8.exportGraphViz(fileName='maxMatchingcycleGraph',

5 matching=maxMatching)

6 *---- exporting a dot file for GraphViz tools ---------*

7 Exporting to maxMatchingcyleGraph.dot

8 Matching: {frozenset({'v1', 'v2'}), frozenset({'v5', 'v6'}),

9 frozenset({'v3', 'v4'}), frozenset({'v7', 'v8'}) }

10 circo -Tpng maxMatchingcyleGraph.dot -o maxMatchingcyleGraph.png
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Fig. 4: Perfect maximum matching in the 8-cycle graph

In the context of digraphs, i.e. oriented graphs, the kernel concept gets much richer and
separates from the symmetric MIS concept.

15.2 Initial and terminal kernels

In an oriented graph context, the internal stability condition of the kernel concept re-
mains untouched; however, the external stability condition gets indeed split up by the
orientation into two lateral cases:

1. A dominant stability condition, where each non selected node is dominated by at
least one member of the kernel;

2. An absorbent stability condition, where each non selected node is absorbed by at
least one member of the kernel.

A both internally and dominant, resp. absorbent stable choice is called a dominant or
initial, resp. an absorbent or terminal kernel. From a topological perspective, the
initial kernel concept looks from the outside of the digraph into its interior, whereas
the terminal kernel looks from the interior of a digraph toward its outside. From an
algebraic perspective, the initial kernel is a prefix operand, and the terminal kernel is a
postfix operand in the Berge kernel equation systems (see Digraph3 advanced topic on
bipolar-valued kernel membership characteristics).

Furthermore, as the kernel concept involves conjointly a positive logical refutation
(the internal stability) and a positive logical affirmation (the external stability), it
appeared rather quickly necessary in our operational developments to adopt a bipolar
characteristic [-1,1] valuation domain, modelling negation by change of numerical sign
and including explicitly a third median logical value (0) expressing logical indetermi-
nateness (neither positive, nor negative, see [BIS-2000] and [BIS-2004]).
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In such a bipolar-valued context, we call prekernel a choice which is externally stable
and for which the internal stability condition is valid or indeterminate. We say that
the independence condition is in this case only weakly validated. Notice that all kernels
are hence prekernels, but not vice-versa.

In graphs or symmetric digraphs, where there is essentially no apparent ‘ laterality ‘, all
prekernels are initial and terminal at the same time. They correspond to what we call
holes in the graph. An universal example is given by the complete digraph.

1 >>> from digraphs import CompleteDigraph

2 >>> u = CompleteDigraph(order=5)

3 >>> u

4 *------- Digraph instance description ------*

5 Instance class : CompleteDigraph

6 Instance name : complete

7 Digraph Order : 5

8 Digraph Size : 20

9 Valuation domain : [-1.00 ; 1.00]

10 ---------------------------------

11 >>> u.showPreKernels()

12 *--- Computing preKernels ---*

13 Dominant kernels :

14 ['1'] independence: 1.0; dominance : 1.0; absorbency : 1.0

15 ['2'] independence: 1.0; dominance : 1.0; absorbency : 1.0

16 ['3'] independence: 1.0; dominance : 1.0; absorbency : 1.0

17 ['4'] independence: 1.0; dominance : 1.0; absorbency : 1.0

18 ['5'] independence: 1.0; dominance : 1.0; absorbency : 1.0

19 Absorbent kernels :

20 ['1'] independence: 1.0; dominance : 1.0; absorbency : 1.0

21 ['2'] independence: 1.0; dominance : 1.0; absorbency : 1.0

22 ['3'] independence: 1.0; dominance : 1.0; absorbency : 1.0

23 ['4'] independence: 1.0; dominance : 1.0; absorbency : 1.0

24 ['5'] independence: 1.0; dominance : 1.0; absorbency : 1.0

25 *----- statistics -----

26 graph name: complete

27 number of solutions

28 dominant kernels : 5

29 absorbent kernels: 5

30 cardinality frequency distributions

31 cardinality : [0, 1, 2, 3, 4, 5]

32 dominant kernel : [0, 5, 0, 0, 0, 0]

33 absorbent kernel: [0, 5, 0, 0, 0, 0]

34 Execution time : 0.00004 sec.

35 Results in sets: dompreKernels and abspreKernels.

In a complete digraph, each single node is indeed both an initial and a terminal prekernel
candidate and there is no definite begin or end of the digraph to be detected. Laterality
is here entirely relative to a specific singleton chosen as reference point of view. The same
absence of laterality is apparent in two other universal digraph models, the empty and
the indeterminate digraph.
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1 >>> ed = EmptyDigraph(order=5)

2 >>> ed.showPreKernels()

3 *--- Computing preKernels ---*

4 Dominant kernel :

5 ['1', '2', '3', '4', '5']

6 independence : 1.0

7 dominance : 1.0

8 absorbency : 1.0

9 Absorbent kernel :

10 ['1', '2', '3', '4', '5']

11 independence : 1.0

12 dominance : 1.0

13 absorbency : 1.0

14 ...

In the empty digraph, the whole set of nodes gives indeed at the same time the unique
initial and terminal prekernel. Similarly, for the indeterminate digraph.

1 >>> from digraphs import IndeterminateDigraph

2 >>> id = IndeterminateDigraph(order=5)

3 >>> id.showPreKernels()

4 *--- Computing preKernels ---*

5 Dominant prekernel :

6 ['1', '2', '3', '4', '5']

7 independence : 0.0 # <<== indeterminate

8 dominance : 1.0

9 absorbency : 1.0

10 Absorbent prekernel :

11 ['1', '2', '3', '4', '5']

12 independence : 0.0 # <<== indeterminate

13 dominance : 1.0

14 absorbency : 1.0

Both these results make sense, as in a completely empty or indeterminate digraph, there
is no interior of the digraph defined, only a border which is hence at the same time an
initial and terminal prekernel. Notice however, that in the latter indeterminate case, the
complete set of nodes verifies only weakly the internal stability condition (see above).

Other common digraph models, although being clearly oriented, may show nevertheless
no apparent laterality, like odd chordless circuits, i.e. holes surrounded by an oriented
cycle -a circuit- of odd length. They do not admit in fact any initial or terminal prekernel.

1 >>> from digraphs import CirculantDigraph

2 >>> c5 = CirculantDigraph(order=5,circulants=[1])

3 >>> c5.showPreKernels()

4 *----- statistics -----

5 digraph name: c5

6 number of solutions

7 dominant prekernels : 0

8 absorbent prekernels: 0
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Chordless circuits of even length 2 x k, with k > 1, contain however two isomorphic
prekernels of cardinality k which qualify conjointly as initial and terminal candidates.

1 >>> c6 = CirculantDigraph(order=6,circulants=[1])

2 >>> c6.showPreKernels()

3 *--- Computing preKernels ---*

4 Dominant preKernels :

5 ['1', '3', '5'] independence: 1.0, dominance: 1.0, absorbency: 1.0

6 ['2', '4', '6'] independence: 1.0, dominance: 1.0, absorbency: 1.0

7 Absorbent preKernels :

8 ['1', '3', '5'] independence: 1.0, dominance: 1.0, absorbency: 1.0

9 ['2', '4', '6'] independence: 1.0, dominance: 1.0, absorbency: 1.0

Chordless circuits of even length may thus be indifferently oriented along two opposite
directions. Notice by the way that the duals of all chordless circuits of odd or even
length, i.e. filled circuits also called anti-holes (see Fig. 5), never contain any potential
prekernel candidates.

1 >>> dc6 = -c6 # dc6 = DualDigraph(c6)

2 >>> dc6.showPreKernels()

3 *----- statistics -----

4 graph name: dual_c6

5 number of solutions

6 dominant prekernels : 0

7 absorbent prekernels: 0

8 >>> dc6.exportGraphViz(fileName='dualChordlessCircuit')

9 *---- exporting a dot file for GraphViz tools ---------*

10 Exporting to dualChordlessCircuit.dot

11 circo -Tpng dualChordlessCircuit.dot -o dualChordlessCircuit.png

Fig. 5: The dual of the chordless 6-circuit
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We call weak, a chordless circuit with indeterminate inner part. The digraphs.

CirculantDigraph class provides a parameter for constructing such a kind of weak chord-
less circuits.

1 >>> c6 = CirculantDigraph(order=6, circulants=[1],

2 IndeterminateInnerPart=True)

It is worth noticing that the dual version (14) of a weak circuit corresponds to its converse
version, i.e. -c6 = ~c6 (see Fig. 6).

1 >>> (-c6).exportGraphViz()

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to dual_c6.dot

4 circo -Tpng dual_c6.dot -o dual_c6.png

5 >>> (~c6).exportGraphViz()

6 *---- exporting a dot file for GraphViz tools ---------*

7 Exporting to converse_c6.dot

8 circo -Tpng converse_c6.dot -o converse_c6.png

Fig. 6: Dual and converse of the weak 6-circuit

It immediately follows that weak chordless circuits are part of the class of digraphs that
are invariant under the codual transform, cn = - (~ cn ) = ~ ( -cn )13. In the case,
now, of an odd weak chordless circuit, neither the weak chordless circuit, nor its dual,
converse, or codual versions will admit any initial or terminal prekernels.
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15.3 Kernels in lateralized digraphs

Humans do live in an apparent physical space of plain transitive lateral orientation,
fully empowered in finite geometrical 3D models with linear orders, where first, resp.
last ranked, nodes deliver unique initial, resp. terminal, kernels. Similarly, in finite
preorders, the first, resp. last, equivalence classes deliver the unique initial, resp. unique
terminal, kernels. More generally, in finite partial orders, i.e. asymmetric and transitive
digraphs, topological sort algorithms will easily reveal on the first, resp. last, level all
unique initial, resp. terminal, kernels.

In genuine random digraphs, however, we may need to check for each of its MISs, whether
one, both, or none of the lateralized external stability conditions may be satisfied. Con-
sider, for instance, the following random digraph instance of order 7 and generated with
an arc probability of 30%.

1 >>> from randomDigraphs import RandomDigraph

2 >>> rd = RandomDigraph(order=7,arcProbability=0.3,seed=5)

3 >>> rd.exportGraphViz('randomLaterality')

4 *---- exporting a dot file for GraphViz tools ---------*

5 Exporting to randomLaterality.dot

6 dot -Grankdir=BT -Tpng randomLaterality.dot -o randomLaterality.png

Fig. 7: A random digraph instance of order 7 and arc probability 0.3
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The random digraph shown in Fig. 7 above has no apparent special properties, except
from being connected (see Line 3 below).

1 >>> rd.showComponents()

2 *--- Connected Components ---*

3 1: ['a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7']

4 >>> rd.computeSymmetryDegree(Comments=True,InPercents=True)

5 Symmetry degree (%) of digraph <randomDigraph>:

6 #arcs x>y: 14, #symmetric: 1, #asymmetric: 13

7 #symmetric/#arcs = 7.1

8 >>> rd.computeChordlessCircuits()

9 [] # no chordless circuits detected

10 >>> rd.computeTransitivityDegree(Comments=True,InPercents=True)

11 Transitivity degree (%) of graph <randomDigraph>:

12 #triples x>y>z: 23, #closed: 11, #open: 12

13 #closed/#triples = 47.8

The given digraph instance is neither asymmetric (a3 <–> a6) nor symmetric (a2 –> a1,
a1 -/> a2) (see Line 6 above); there are no chordless circuits (see Line 9 above); and, the
digraph is not transitive (a5 -> a2 -> a1, but a5 -/> a1). More than half of the required
transitive closure is missing (see Line 12 above).

Now, we know that its potential prekernels must be among its set of maximal independent
choices.

1 >>> rd.showMIS()

2 *--- Maximal independent choices ---*

3 ['a2', 'a4', 'a6']

4 ['a6', 'a1']

5 ['a5', 'a1']

6 ['a3', 'a1']

7 ['a4', 'a3']

8 ['a7']

9 ------

10 >>> rd.showPreKernels()

11 *--- Computing preKernels ---*

12 Dominant preKernels :

13 ['a2', 'a4', 'a6']

14 independence : 1.0

15 dominance : 1.0

16 absorbency : -1.0

17 covering : 0.500

18 ['a4', 'a3']

19 independence : 1.0

20 dominance : 1.0

21 absorbency : -1.0

22 covering : 0.600 # <<==

23 Absorbent preKernels :

24 ['a3', 'a1']

25 independence : 1.0

26 dominance : -1.0

(continues on next page)
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27 absorbency : 1.0

28 covering : 0.500

29 ['a6', 'a1']

30 independence : 1.0

31 dominance : -1.0

32 absorbency : 1.0

33 covering : 0.600 # <<==

34 ...

Among the six MISs contained in this random digraph (see above Lines 3-8) we discover
two initial and two terminal kernels (Lines 12-34). Notice by the way the covering val-
ues (between 0.0 and 1.0) shown by the digraphs.Digraph.showPreKernels() method
(Lines 17, 22, 28 and 33). The higher this value, the more the corresponding kernel can-
didate makes apparent the digraph’s laterality. We may hence redraw the same digraph
in Fig. 8 by looking into its interior via the best covering initial kernel candidate: the
dominant choice {‘a3’,’4a’} (coloured in yellow), and looking out of it via the best covered
terminal kernel candidate: the absorbent choice {‘a1’,’a6’} (coloured in blue).

1 >>> rd.exportGraphViz(fileName='orientedLaterality',\

2 bestChoice=set(['a3', 'a4']),\

3 worstChoice=set(['a1', 'a6']))

4 *---- exporting a dot file for GraphViz tools ---------*

5 Exporting to orientedLaterality.dot

6 dot -Grankdir=BT -Tpng orientedLaterality.dot -o orientedLaterality.png

Fig. 8: A random digraph oriented by best covering initial and best covered terminal
kernel
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In algorithmic decision theory, initial and terminal prekernels may provide convincing
best, resp. worst, choice recommendations (see Computing a best choice recommendation
(page 74)).

15.4 Computing good and bad choice recommendations

To illustrate this idea, let us finally compute good and bad choice recommendations in
the following random bipolar-valued outranking digraph.

1 >>> from outrankingDigraphs import *

2 >>> g = RandomBipolarOutrankingDigraph(seed=5)

3 >>> g

4 *------- Object instance description ------*

5 Instance class : RandomBipolarOutrankingDigraph

6 Instance name : randomOutranking

7 # Actions : 7

8 # Criteria : 7

9 Size : 26

10 Determinateness : 34.275

11 Valuation domain : {'min': -100.0, 'med': 0.0, 'max': 100.0}

12 >>> g.showHTMLPerformanceTableau()

Fig. 9: The performance tableau of a random outranking digraph instance

The underlying random performance tableau (see Fig. 9) shows the performance grad-
ing of 7 potential decision actions with respect to 7 decision criteria supporting each an
increasing performance scale from 0 to 100. Notice the missing performance data con-
cerning decision actions ‘a2’ and ‘a5’. The resulting strict outranking - i.e. a weighted
majority supported - better than without considerable counter-performance - digraph is
shown in Fig. 10 below.

1 >>> gcd = ~(-g) # Codual: the converse of the negation

2 >>> gcd.exportGraphViz(fileName='tutOutRanking')

3 *---- exporting a dot file for GraphViz tools ---------*

(continues on next page)
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4 Exporting to tutOutranking.dot

5 dot -Grankdir=BT -Tpng tutOutranking.dot -o tutOutranking.png

Fig. 10: A random strict outranking digraph instance

All decision actions appear strictly better performing than action ‘a7’. We call it a
Condorcet looser and it is an evident terminal prekernel candidate. On the other
side, three actions: ‘a1’, ‘a2’ and ‘a4’ are not dominated. They give together an initial
prekernel candidate.

1 >>> gcd.showPreKernels()

2 *--- Computing preKernels ---*

3 Dominant preKernels :

4 ['a1', 'a2', 'a4']

5 independence : 0.00

6 dominance : 6.98

7 absorbency : -48.84

8 covering : 0.667

9 Absorbent preKernels :

10 ['a3', 'a7']

11 independence : 0.00

12 dominance : -74.42

13 absorbency : 16.28

14 covered : 0.800
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With such unique disjoint initial and terminal prekernels (see Line 4 and 10), the given
digraph instance is hence clearly lateralized. Indeed, these initial and terminal prekernels
of the codual outranking digraph reveal best, resp. worst, choice recommendations one
may formulate on the basis of a given outranking digraph instance.

1 >>> g.showBestChoiceRecommendation()

2 ***********************

3 Rubis best choice recommendation(s) (BCR)

4 (in decreasing order of determinateness)

5 Credibility domain: [-100.00,100.00]

6 === >> potential best choice(s)

7 * choice : ['a1', 'a2', 'a4']

8 independence : 0.00

9 dominance : 6.98

10 absorbency : -48.84

11 covering (%) : 66.67

12 determinateness (%) : 57.97

13 - most credible action(s) = { 'a4': 20.93, 'a2': 20.93, }

14 === >> potential worst choice(s)

15 * choice : ['a3', 'a7']

16 independence : 0.00

17 dominance : -74.42

18 absorbency : 16.28

19 covered (%) : 80.00

20 determinateness (%) : 64.62

21 - most credible action(s) = { 'a7': 48.84, }

Notice that solving the valued Berge kernel equations (see Bipolar-Valued Kernels in the
Advanced Topics) provides furthermore a positive characterization of the most credible
decision actions in each respective choice recommendation (see Lines 14 and 23 above).
Actions ‘a2’ and ‘a4’ are equivalent candidates for a unique best choice, and action ‘a7’
is clearly confirmed as the worst choice.

In Fig. 11 below, we orient the drawing of the strict outranking digraph instance with
the help of these best and worst choice recommendations.

1 >>> gcd.exportGraphViz(fileName='bestWorstOrientation',

2 bestChoice=['a2','a4'], worstChoice=['a7'])

3 *---- exporting a dot file for GraphViz tools ---------*

4 Exporting to bestWorstOrientation.dot

5 dot -Grankdir=BT -Tpng bestWorstOrientation.dot -o bestWorstOrientation.png
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Fig. 11: The strict outranking digraph oriented by its best and worst choice recommen-
dations

The gray arrows in Fig. 11, like the one between actions ‘a4’ and ‘a1’, represent inde-
terminate preferential situations. Action ‘a1’ appears hence to be rather incomparable
to all the other, except action ‘a7’. It may be interesting to compare this result with
a Copeland ranking of the underlying performance tableau (see Ranking with multiple
incommensurable criteria (page 59)).

1 >>> g.showHTMLPerformanceHeatmap(colorLevels=5, ndigits=0,

2 Correlations=True, rankingRule='Copeland')

Fig. 12: heatmap with Copeland ranking of the performance tableau
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In the resulting linear ranking (see Fig. 12), action ‘a4’ is set at first rank, followed
by action ‘a2’. This makes sense as ‘a4’ shows three performances in the first quintile,
whereas ‘a2’ is only partially evaluated and shows only two such excellent performances.
But ‘a4’ also shows a very weak performance in the first quintile. Both decision actions,
hence, don’t show eventually a performance profile that would make apparent a clear
preference situation in favour of one or the other. In this sense, the prekernels based best
choice recommendations may appear more faithful with respect to the actually definite
strict outranking relation than any ‘forced’ linear ranking result as shown in Fig. 12
above.

15.5 Tractability

Finally, let us give some hints on the tractability of kernel computations. Detecting
all (pre)kernels in a digraph is a famously NP-hard computational problem. Checking
external stability conditions for an independent choice is equivalent to checking its max-
imality and may be done in the linear complexity of the order of the digraph. However,
checking all independent choices contained in a digraph may get hard already for tiny
sparse digraphs of order n > 20 (see [BIS-2006b]). Indeed, the worst case is given by
an empty or indeterminate digraph where the set of all potential independent choices to
check is in fact the power set of the vertices.

1 >>> e = EmptyDigraph(order=20)

2 >>> e.showMIS() # by visiting all 2^20 independent choices

3 *--- Maximal independent choices ---*

4 [ '1', '2', '3', '4', '5', '6', '7', '8', '9', '10',

5 '11', '12', '13', '14', '15', '16', '17', '18', '19', '20']

6 number of solutions: 1

7 execution time: 1.47640 sec. # <<== !!!

8 >>> 2**20

9 1048576

Now, there exist more efficient specialized algorithms for directly enumerating MISs and
dominant or absorbent kernels contained in specific digraph models without visiting all
independent choices (see [BIS-2006b]). Alain Hertz provided kindly such a MISs enumer-
ation algorithm for the Digraph3 project (see digraphs.Digraph.showMIS_AH()). When
the number of independent choices is big compared to the actual number of MISs, like in
very sparse or empty digraphs, the performance difference may be dramatic (see Line 7
above and Line 15 below).

1 >>> e.showMIS_AH() # by visiting only maximal independent choices

2 *-----------------------------------*

3 * Python implementation of Hertz's *

4 * algorithm for generating all MISs *

5 * R.B. version 7(6)-25-Apr-2006 *

6 *-----------------------------------*

7 ===>>> Initial solution :

8 [ '1', '2', '3', '4', '5', '6', '7', '8', '9', '10',

9 '11', '12', '13', '14', '15', '16', '17', '18', '19', '20']

(continues on next page)
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10 *---- results ----*

11 [ '1', '2', '3', '4', '5', '6', '7', '8', '9', '10',

12 '11', '12', '13', '14', '15', '16', '17', '18', '19', '20']

13 *---- statistics ----*

14 mis solutions : 1

15 execution time : 0.00026 sec. # <<== !!!

16 iteration history: 1

For more or less dense strict outranking digraphs of modest order, as facing usually in
algorithmic decision theory applications, enumerating all independent choices remains
however in most cases tractable, especially by using a very efficient Python generator
(see digraphs.Digraph.independentChoices() below).

1 def independentChoices(self,U):

2 """

3 Generator for all independent choices with associated

4 dominated, absorbed and independent neighborhoods

5 of digraph instance self.

6 Initiate with U = self.singletons().

7 Yields [(independent choice, domnb, absnb, indnb)].

8 """

9 if U == []:

10 yield [(frozenset(),set(),set(),set(self.actions))]

11 else:

12 x = list(U.pop())

13 for S in self.independentChoices(U):

14 yield S

15 if x[0] <= S[0][3]:

16 Sxgamdom = S[0][1] | x[1]

17 Sxgamabs = S[0][2] | x[2]

18 Sxindep = S[0][3] & x[3]

19 Sxchoice = S[0][0] | x[0]

20 Sx = [(Sxchoice,Sxgamdom,Sxgamabs,Sxindep)]

21 yield Sx

And, checking maximality of independent choices via the external stability conditions
during their enumeration (see digraphs.Digraph.computePreKernels() below) pro-
vides the effective advantage of computing all initial and terminal prekernels in a single
loop (see Line 10 and [BIS-2006b]).

1 def computePreKernels(self):

2 """

3 computing dominant and absorbent preKernels:

4 Result in self.dompreKernels and self.abspreKernels

5 """

6 actions = set(self.actions)

7 n = len(actions)

8 dompreKernels = set()

9 abspreKernels = set()

(continues on next page)
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10 for choice in self.independentChoices(self.singletons()):

11 restactions = actions - choice[0][0]

12 if restactions <= choice[0][1]:

13 dompreKernels.add(choice[0][0])

14 if restactions <= choice[0][2]:

15 abspreKernels.add(choice[0][0])

16 self.dompreKernels = dompreKernels

17 self.abspreKernels = abspreKernels

Back to Content Table (page 3)

16 About split, interval and permutation graphs

� A multiply perfect graph (page 182)

� Who is the liar ? (page 184)

� Generating permutation graphs (page 187)

� Recognizing permutation graphs (page 190)

16.1 A multiply perfect graph

Following Martin Golumbic (see [GOL-2004] p. 149), we call a given graph g :

� Comparability graph when g is transitively orientable;

� Triangulated graph when g does not contain any chordless cycle of length 4 and
more;

� Interval graph when g is triangulated and its dual -g is a comparability graph;

� Permutation graph when g and its dual -g are both comparability graphs;

� Split graph when g and its dual -g are both triangulated graphs.

To illustrate these perfect graph classes, we will generate from 8 intervals, randomly cho-
sen in the default integer range [0,10], a graphs.RandomIntervalIntersectionsGraph

instance g (see Listing 16.1 Line 2 below).

Listing 16.1: A multiply perfect random interval inter-
section graph

1 >>> from graphs import RandomIntervalIntersectionsGraph

2 >>> g = RandomIntervalIntersectionsGraph(order=8,seed=100)

3 >>> g

(continues on next page)
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4 *------- Graph instance description ------*

5 Instance class : RandomIntervalIntersectionsGraph

6 Instance name : randIntervalIntersections

7 Seed : 100

8 Graph Order : 8

9 Graph Size : 23

10 Valuation domain : [-1.0; 1.0]

11 Attributes : ['seed', 'name', 'order', 'intervals',

12 'vertices', 'valuationDomain',

13 'edges', 'size', 'gamma']

14 >>> print(g.intervals)

15 [(2, 7), (2, 7), (5, 6), (6, 8), (1, 8), (1, 1), (4, 7), (0, 10)]

With seed = 100, we obtain here an interval graph, in fact a perfect graph, which is
conjointly a triangulated, a comparability, a split and a permutation graph.

Listing 16.2: testing perfect graph categories

1 >>> g.isPerfectGraph(Comments=True)

2 Graph randIntervalIntersections is perfect !

3 >>> g.isIntervalGraph(Comments=True)

4 Graph 'randIntervalIntersections' is triangulated.

5 Graph 'dual_randIntervalIntersections' is transitively orientable.

6 => Graph 'randIntervalIntersections' is an interval graph.

7 >>> g.isSplitGraph(Comments=True)

8 Graph 'randIntervalIntersections' is triangulated.

9 Graph 'dual_randIntervalIntersections' is triangulated.

10 => Graph 'randIntervalIntersections' is a split graph.

11 >>> g.isPermutationGraph(Comments=True)

12 Graph 'randIntervalIntersections' is transitively orientable.

13 Graph 'dual_randIntervalIntersections' is transitively orientable.

14 => Graph 'randIntervalIntersections' is a permutation graph.

15 >>> print(g.computePermutation())

16 ['v5', 'v6', 'v4', 'v2', 'v1', 'v3', 'v7', 'v8']

17 ['v8', 'v6', 'v1', 'v2', 'v3', 'v4', 'v7', 'v5']

18 [8, 2, 6, 5, 7, 4, 3, 1]

19 >>> g.exportGraphViz('randomSplitGraph')

20 *---- exporting a dot file for GraphViz tools ---------*

21 Exporting to randomSplitGraph.dot

22 fdp -Tpng randomSplitGraph.dot -o randomSplitGraph.png
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Fig. 1: A conjointly triangulated, comparability, interval, permutation and split graph

In Fig. 1 we may readily recognize the essential characteristic of split graphs, namely
being always splitable into two disjoint sub-graphs: an independent choice (v6 ) and a
clique (v1, v2, v3, v4, v5, v7, v8 ); which explains their name.

Notice however that the four properties:

1. g is a comparability graph;

2. g is a cocomparability graph, i.e. -g is a comparability graph;

3. g is a triangulated graph;

4. g is a cotriangulated graph, i.e. -g is a comparability graph;

are independent of one another (see [GOL-2004] p. 275).

16.2 Who is the liar ?

Claude Berge’s famous mystery story (see [GOL-2004] p.20) may well illustrate the im-
portance of being an interval graph.

Suppose that the file berge.py18 contains the following graphs.Graph instance data:

1 vertices = {

2 'A': {'name': 'Abe', 'shortName': 'A'},

3 'B': {'name': 'Burt', 'shortName': 'B'},

4 'C': {'name': 'Charlotte', 'shortName': 'C'},

(continues on next page)

18 ADigraph3 graphs.Graph encoded file is available in the examples directory of the Digraph3 software
collection.
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5 'D': {'name': 'Desmond', 'shortName': 'D'},

6 'E': {'name': 'Eddie', 'shortName': 'E'},

7 'I': {'name': 'Ida', 'shortName': 'I'},

8 }

9 valuationDomain = {'min':-1,'med':0,'max':1}

10 edges = {

11 frozenset(['A','B']) : 1,

12 frozenset(['A','C']) : -1,

13 frozenset(['A','D']) : 1,

14 frozenset(['A','E']) : 1,

15 frozenset(['A','I']) : -1,

16 frozenset(['B','C']) : -1,

17 frozenset(['B','D']) : -1,

18 frozenset(['B','E']) : 1,

19 frozenset(['B','I']) : 1,

20 frozenset(['C','D']) : 1,

21 frozenset(['C','E']) : 1,

22 frozenset(['C','I']) : 1,

23 frozenset(['D','E']) : -1,

24 frozenset(['D','I']) : 1,

25 frozenset(['E','I']) : 1,

26 }

Six professors (labeled A, B, C, D, E and I ) had been to the library on the day that a
rare tractate was stolen. Each entered once, stayed for some time, and then left. If two
professors were in the library at the same time, then at least one of them saw the other.
Detectives questioned the professors and gathered the testimonies that A saw B and E ;
B saw A and I ; C saw D and I ; D saw A and I ; E saw B and I ; and I saw C and
E. This data is gathered in the previous file, where each positive edge {𝑥, 𝑦} models the
testimony that, either x saw y, or y saw x.

1 >>> from graphs import Graph

2 >>> g = Graph('berge')

3 >>> g.showShort()

4 *---- short description of the graph ----*

5 Name : 'berge'

6 Vertices : ['A', 'B', 'C', 'D', 'E', 'I']

7 Valuation domain : {'min': -1, 'med': 0, 'max': 1}

8 Gamma function :

9 A -> ['D', 'B', 'E']

10 B -> ['E', 'I', 'A']

11 C -> ['E', 'D', 'I']

12 D -> ['C', 'I', 'A']

13 E -> ['C', 'B', 'I', 'A']

14 I -> ['C', 'E', 'B', 'D']

15 >>> g.exportGraphViz('berge1')

16 *---- exporting a dot file for GraphViz tools ---------*

17 Exporting to berge1.dot

18 fdp -Tpng berge1.dot -o berge1.png
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Fig. 2: Graph representation of the testimonies of the professors

From graph theory we know that time interval intersections graphs must in fact be inter-
val graphs, i.e. triangulated and co-comparative graphs. The testimonies graph should
therefore not contain any chordless cycle of four and more vertices. Now, the presence or
not of such chordless cycles in the testimonies graph may be checked as follows.

1 >>> g.computeChordlessCycles()

2 Chordless cycle certificate -->>> ['D', 'C', 'E', 'A', 'D']

3 Chordless cycle certificate -->>> ['D', 'I', 'E', 'A', 'D']

4 Chordless cycle certificate -->>> ['D', 'I', 'B', 'A', 'D']

5 [(['D', 'C', 'E', 'A', 'D'], frozenset({'C', 'D', 'E', 'A'})),

6 (['D', 'I', 'E', 'A', 'D'], frozenset({'D', 'E', 'I', 'A'})),

7 (['D', 'I', 'B', 'A', 'D'], frozenset({'D', 'B', 'I', 'A'}))]

We see three intersection cycles of length 4, which is impossible to occur on the linear
time line. Obviously one professor lied!

And it is D ; if we put to doubt his testimony that he saw A (see Line 1 below), we
obtain indeed a triangulated graph instance whose dual is a comparability graph.

1 >>> g.setEdgeValue( ('D','A'), 0)

2 >>> g.showShort()

3 *---- short description of the graph ----*

4 Name : 'berge'

5 Vertices : ['A', 'B', 'C', 'D', 'E', 'I']

6 Valuation domain : {'med': 0, 'min': -1, 'max': 1}

7 Gamma function :

8 A -> ['B', 'E']

9 B -> ['A', 'I', 'E']

10 C -> ['I', 'E', 'D']

11 D -> ['I', 'C']

12 E -> ['A', 'I', 'B', 'C']

13 I -> ['B', 'E', 'D', 'C']

14 >>> g.isIntervalGraph(Comments=True)

15 Graph 'berge' is triangulated.

(continues on next page)
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16 Graph 'dual_berge' is transitively orientable.

17 => Graph 'berge' is an interval graph.

18 >>> g.exportGraphViz('berge2')

19 *---- exporting a dot file for GraphViz tools ---------*

20 Exporting to berge2.dot

21 fdp -Tpng berge2.dot -o berge2.png

Fig. 3: The triangulated testimonies graph

16.3 Generating permutation graphs

A graph is called a permutation or inversion graph if there exists a permutation of
its list of vertices such that the graph is isomorphic to the inversions operated by the
permutation in this list (see [GOL-2004] Chapter 7, pp 157-170). This kind is also part
of the class of perfect graphs.

1 >>> from graphs import PermutationGraph

2 >>> g = PermutationGraph(permutation = [4, 3, 6, 1, 5, 2])

3 >>> g

4 *------- Graph instance description ------*

5 Instance class : PermutationGraph

6 Instance name : permutationGraph

7 Graph Order : 6

8 Permutation : [4, 3, 6, 1, 5, 2]

9 Graph Size : 9

10 Valuation domain : [-1.00; 1.00]

11 Attributes : ['name', 'vertices', 'order', 'permutation',

12 'valuationDomain', 'edges', 'size', 'gamma']

13 >>> g.isPerfectGraph()

14 True

15 >>> g.exportGraphViz()

16 *---- exporting a dot file for GraphViz tools ---------*

(continues on next page)
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17 Exporting to permutationGraph.dot

18 fdp -Tpng permutationGraph.dot -o permutationGraph.png

Fig. 4: The default permutation graph

By using color sorting queues, the minimal vertex coloring for a permutation graph is
computable in 𝑂(𝑛𝑙𝑜𝑔(𝑛)) (see [GOL-2004]).

1 >>> g.computeMinimalVertexColoring(Comments=True)

2 vertex 1: lightcoral

3 vertex 2: lightcoral

4 vertex 3: lightblue

5 vertex 4: gold

6 vertex 5: lightblue

7 vertex 6: gold

8 >>> g.exportGraphViz(fileName='coloredPermutationGraph',\

9 WithVertexColoring=True)

10 *---- exporting a dot file for GraphViz tools ---------*

11 Exporting to coloredPermutationGraph.dot

12 fdp -Tpng coloredPermutationGraph.dot -o coloredPermutationGraph.png

Fig. 5: Minimal vertex coloring of the permutation graph

The correspondingly colored matching diagram of the nine inversions -the actual
edges of the permutation graph-, which are induced by the given permutation [4, 3, 6,
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1, 5, 2], may as well be drawn with the graphviz neato layout and explicitly positioned
horizontal lists of vertices (see Fig. 6).

1 >>> g.exportPermutationGraphViz(WithEdgeColoring=True)

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to perm_permutationGraph.dot

4 neato -n -Tpng perm_permutationGraph.dot -o perm_permutationGraph.png

Fig. 6: Colored matching diagram of the permutation [4, 3, 6, 1, 5, 2]

As mentioned before, a permutation graph and its dual are transitively orientable.
The graphs.PermutationGraph.transitiveOrientation() method constructs from a
given permutation graph a digraph where each edge of the permutation graph is converted
into an arc oriented in increasing alphabetic order of the adjacent vertices’ keys (see
[GOL-2004]). This orientation of the edges of a permutation graph is always transitive
and delivers a transitive ordering of the vertices.

1 >>> dg = g.transitiveOrientation()

2 >>> dg

3 *------- Digraph instance description ------*

4 Instance class : TransitiveDigraph

5 Instance name : oriented_permutationGraph

6 Digraph Order : 6

7 Digraph Size : 9

8 Valuation domain : [-1.00; 1.00]

9 Determinateness : 100.000

10 Attributes : ['name', 'order', 'actions', 'valuationdomain',

11 'relation', 'gamma', 'notGamma', 'size']

12 >>> print('Transitivity degree: %.3f ' % dg.computeTransitivityDegree() )

13 Transitivity degree: 1.000

14 >>> dg.exportGraphViz()

15 *---- exporting a dot file for GraphViz tools ---------*

16 Exporting to oriented_permutationGraph.dot

17 0 { rank = same; 1; 2; }

18 1 { rank = same; 5; 3; }

19 2 { rank = same; 4; 6; }

20 dot -Grankdir=TB -Tpng oriented_permutationGraph.dot -o oriented_

→˓permutationGraph.png (continues on next page)
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Fig. 7: Hasse diagram of the transitive orientation of the permutation graph

The dual of a permutation graph is again a permutation graph and as such also transi-
tively orientable.

1 >>> dgd = (-g).transitiveOrientation()

2 >>> print('Dual transitivity degree: %.3f ' %\

3 dgd.computeTransitivityDegree() )

4 Dual transitivity degree: 1.000

16.4 Recognizing permutation graphs

Now, a given graph g is a permutation graph if and only if both g and -g are
transitively orientable. This property gives a polynomial test procedure (in 𝑂(𝑛3) due to
the transitivity check) for recognizing permutation graphs.

Let us consider, for instance, the following random graph of order 8 generated with an
edge probability of 40% and a random seed equal to 4335.

1 >>> from graphs import *

2 >>> g = RandomGraph(order=8,edgeProbability=0.4,seed=4335)

3 >>> g

4 *------- Graph instance description ------*

5 Instance class : RandomGraph

6 Instance name : randomGraph

7 Seed : 4335

8 Edge probability : 0.4

9 Graph Order : 8

(continues on next page)
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10 Graph Size : 10

11 Valuation domain : [-1.00; 1.00]

12 Attributes : ['name', 'order', 'vertices', 'valuationDomain',

13 'seed', 'edges', 'size',

14 'gamma', 'edgeProbability']

15 >>> g.isPerfectGraph()

16 True

17 >>> g.exportGraphViz()

Fig. 8: Random graph of order 8 generated with edge probability 0.4

If the random perfect graph instance g (see Fig. 8) is indeed a permutation graph, g and its
dual -g should be transitively orientable, i.e. comparability graphs (see [GOL-2004]).
With the graphs.Graph.isComparabilityGraph() test, we may easily check this fact.
This method proceeds indeed by trying to construct a transitive neighbourhood decom-
position of a given graph instance and, if successful, stores the resulting edge orientations
into a self.edgeOrientations attribute (see [GOL-2004] p.129-132).

1 >>> if g.isComparabilityGraph():

2 print(g.edgeOrientations)

3 {('v1', 'v1'): 0, ('v1', 'v2'): 1, ('v2', 'v1'): -1, ('v1', 'v3'): 1,

4 ('v3', 'v1'): -1, ('v1', 'v4'): 1, ('v4', 'v1'): -1, ('v1', 'v5'): 0,

5 ('v5', 'v1'): 0, ('v1', 'v6'): 1, ('v6', 'v1'): -1, ('v1', 'v7'): 0,

6 ('v7', 'v1'): 0, ('v1', 'v8'): 1, ('v8', 'v1'): -1, ('v2', 'v2'): 0,

7 ('v2', 'v3'): 0, ('v3', 'v2'): 0, ('v2', 'v4'): 0, ('v4', 'v2'): 0,

8 ('v2', 'v5'): 0, ('v5', 'v2'): 0, ('v2', 'v6'): 0, ('v6', 'v2'): 0,

9 ('v2', 'v7'): 0, ('v7', 'v2'): 0, ('v2', 'v8'): 0, ('v8', 'v2'): 0,

10 ('v3', 'v3'): 0, ('v3', 'v4'): 0, ('v4', 'v3'): 0, ('v3', 'v5'): 0,

11 ('v5', 'v3'): 0, ('v3', 'v6'): 0, ('v6', 'v3'): 0, ('v3', 'v7'): 0,

(continues on next page)
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12 ('v7', 'v3'): 0, ('v3', 'v8'): 0, ('v8', 'v3'): 0, ('v4', 'v4'): 0,

13 ('v4', 'v5'): 0, ('v5', 'v4'): 0, ('v4', 'v6'): 0, ('v6', 'v4'): 0,

14 ('v4', 'v7'): 0, ('v7', 'v4'): 0, ('v4', 'v8'): 0, ('v8', 'v4'): 0,

15 ('v5', 'v5'): 0, ('v5', 'v6'): 1, ('v6', 'v5'): -1, ('v5', 'v7'): 1,

16 ('v7', 'v5'): -1, ('v5', 'v8'): 1, ('v8', 'v5'): -1, ('v6', 'v6'): 0,

17 ('v6', 'v7'): 0, ('v7', 'v6'): 0, ('v6', 'v8'): 1, ('v8', 'v6'): -1,

18 ('v7', 'v7'): 0, ('v7', 'v8'): 1, ('v8', 'v7'): -1, ('v8', 'v8'): 0}

Fig. 9: Transitive neighbourhoods of the graph g

The resulting orientation of the edges of g (see Fig. 9) is indeed transitive. The same
procedure applied to the dual graph gd = -g gives a transitive orientation to the edges of
-g.

1 >>> gd = -g

2 >>> if gd.isComparabilityGraph():

3 print(gd.edgeOrientations)

4 {('v1', 'v1'): 0, ('v1', 'v2'): 0, ('v2', 'v1'): 0, ('v1', 'v3'): 0,

5 ('v3', 'v1'): 0, ('v1', 'v4'): 0, ('v4', 'v1'): 0, ('v1', 'v5'): 1,

6 ('v5', 'v1'): -1, ('v1', 'v6'): 0, ('v6', 'v1'): 0, ('v1', 'v7'): 1,

7 ('v7', 'v1'): -1, ('v1', 'v8'): 0, ('v8', 'v1'): 0, ('v2', 'v2'): 0,

8 ('v2', 'v3'): -2, ('v3', 'v2'): 2, ('v2', 'v4'): -3, ('v4', 'v2'): 3,

9 ('v2', 'v5'): 1, ('v5', 'v2'): -1, ('v2', 'v6'): 1, ('v6', 'v2'): -1,

10 ('v2', 'v7'): 1, ('v7', 'v2'): -1, ('v2', 'v8'): 1, ('v8', 'v2'): -1,

11 ('v3', 'v3'): 0, ('v3', 'v4'): -3, ('v4', 'v3'): 3, ('v3', 'v5'): 1,

12 ('v5', 'v3'): -1, ('v3', 'v6'): 1, ('v6', 'v3'): -1, ('v3', 'v7'): 1,

13 ('v7', 'v3'): -1, ('v3', 'v8'): 1, ('v8', 'v3'): -1, ('v4', 'v4'): 0,

14 ('v4', 'v5'): 1, ('v5', 'v4'): -1, ('v4', 'v6'): 1, ('v6', 'v4'): -1,

15 ('v4', 'v7'): 1, ('v7', 'v4'): -1, ('v4', 'v8'): 1, ('v8', 'v4'): -1,

(continues on next page)
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16 ('v5', 'v5'): 0, ('v5', 'v6'): 0, ('v6', 'v5'): 0, ('v5', 'v7'): 0,

17 ('v7', 'v5'): 0, ('v5', 'v8'): 0, ('v8', 'v5'): 0, ('v6', 'v6'): 0,

18 ('v6', 'v7'): 1, ('v7', 'v6'): -1, ('v6', 'v8'): 0, ('v8', 'v6'): 0,

19 ('v7', 'v7'): 0, ('v7', 'v8'): 0, ('v8', 'v7'): 0, ('v8', 'v8'): 0}

Fig. 10: Transitive neighbourhoods of the dual graph -g

It is worthwhile noticing that the orientation of g is achieved with a single neighbourhood
decomposition, covering all the vertices. Whereas, the orientation of the dual -g needs a
decomposition into three subsequent neighbourhoods marked in black, red and blue (see
Fig. 10).

Let us recheck these facts by explicitly constructing transitively oriented digraph instances
with the graphs.Graph.computeTransitivelyOrientedDigraph() method.

1 >>> og = g.computeTransitivelyOrientedDigraph(PartiallyDetermined=True)

2 >>> print('Transitivity degree: %.3f ' % (og.transitivityDegree))

3 Transitivity degree: 1.000

4 >>> ogd = (-g).computeTransitivelyOrientedDigraph(PartiallyDetermined=True)

5 >>> print('Transitivity degree: %.3f ' % (ogd.transitivityDegree))

6 Transitivity degree: 1.000

The PartiallyDetermined=True flag (see Lines 1 and 5) is required here in order to
orient only the actual edges of the graphs. Relations between vertices not linked by
an edge will be put to the indeterminate characteristic value 0. This will allow us to
compute, later on, convenient disjunctive digraph fusions.

As both graphs are indeed transitively orientable (see Lines 3 and 6 above), we may
conclude that the given random graph g is actually a permutation graph instance. Yet,
we still need to find now its corresponding permutation. We therefore implement a recipee
given by Martin Golumbic [GOL-2004] p.159.

We will first fuse both og and ogd orientations above with an epistemic disjunction
(see the digraphsTools.omax() operator), hence, the partially determined orientations
requested above.
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Listing 16.3: Fusing graph orientations

1 >>> from digraphs import FusionDigraph

2 >>> f1 = FusionDigraph(og,ogd,operator='o-max')

3 >>> s1 = f1.computeCopelandRanking()

4 >>> print(s1)

5 ['v5', 'v7', 'v1', 'v6', 'v8', 'v4', 'v3', 'v2']

We obtain by the Copeland ranking rule (see Ranking with multiple incommensurable
criteria (page 59) and the digraphs.Digraph.computeCopelandRanking() method) a
linear ordering of the vertices (see Listing 16.3 Line 5 above).

We reverse now the orientation of the edges in og (see -og in Line 1 below) in order to
generate, again by disjunctive fusion, the inversions that are produced by the permutation
we are looking for. Computing again a ranking with the Copeland rule, will show the
correspondingly permuted list of vertices (see Line 4 below).

1 >>> f2 = FusionDigraph((-og),ogd,operator='o-max')

2 >>> s2 = f2.computeCopelandRanking()

3 >>> print(s2)

4 ['v8', 'v7', 'v6', 'v5', 'v4', 'v3', 'v2', 'v1']

Vertex v8 is put from position 5 to position 1, vertex v7 is put from position 2 to position
2, vertex v6 from position 4 to position 3, ‘vertex v5 from position 1 to position 4, etc
. . . . We generate these position swaps for all vertices and obtain thus the required
permutation (see Line 5 below).

1 >>> permutation = [0 for j in range(g.order)]

2 >>> for j in range(g.order):

3 permutation[s2.index(s1[j])] = j+1

4 >>> print(permutation)

5 [5, 2, 4, 1, 6, 7, 8, 3]

It is worthwhile noticing by the way that transitive orientations of a given graph and its
dual are usually not unique and, so may also be the resulting permutations. However,
they all correspond to isomorphic graphs (see [GOL-2004]). In our case here, we observe
two different permutations and their reverses:

1 s1: ['v1', 'v4', 'v3', 'v2', 'v5', 'v6', 'v7', 'v8']

2 s2: ['v4', 'v3', 'v2', 'v8', 'v6', 'v1', 'v7', 'v5']

3 (s1 -> s2): [2, 3, 4, 8, 6, 1, 7, 5]

4 (s2 -> s1): [6, 1, 2, 3, 8, 5, 7, 4]

And:

1 s3: ['v5', 'v7', 'v1', 'v6', 'v8', 'v4', 'v3', 'v2']

2 s4: ['v8', 'v7', 'v6', 'v5', 'v4', 'v3', 'v2', 'v1']

3 (s3 -> s4): [5, 2, 4, 1, 6, 7, 8, 3]

4 (s4 -> s3) = [4, 2, 8, 3, 1, 5, 6, 7]

The graphs.Graph.computePermutation()method does directly operate all these steps:
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- computing transitive orientations, - ranking their epistemic fusion and, - delivering a
corresponding permutation.

1 >>> g.computePermutation(Comments=True)

2 ['v1', 'v2', 'v3', 'v4', 'v5', 'v6', 'v7', 'v8']

3 ['v2', 'v3', 'v4', 'v8', 'v6', 'v1', 'v7', 'v5']

4 [2, 3, 4, 8, 6, 1, 7, 5]

We may finally check that, for instance, the two permutations [2, 3, 4, 8, 6, 1, 7, 5] and
[4, 2, 8, 3, 1, 5, 6, 7] observed above, will correctly generate corresponding isomorphic
permutation graphs.

1 >>> gtesta = PermutationGraph(permutation=[2, 3, 4, 8, 6, 1, 7, 5])

2 >>> gtestb = PermutationGraph(permutation=[4, 2, 8, 3, 1, 5, 6, 7])

3 >>> gtesta.exportGraphViz('gtesta')

4 >>> gtestb.exportGraphViz('gtestb')

Fig. 11: Isomorphic permutation graphs

And, we recover indeed two isomorphic copies of the original random graph (compare
Fig. 11 with Fig. 8).

Back to Content Table (page 3)

17 On tree graphs and graph forests

� Generating random tree graphs (page 196)

� Recognizing tree graphs (page 199)

� Spanning trees and forests (page 200)
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� Maximum determined spanning forests (page 202)

17.1 Generating random tree graphs

Using the graphs.RandomTree class, we may, for instance, generate a random tree graph
with 9 vertices.

1 >>> t = RandomTree(order=9,seed=100)

2 >>> t

3 *------- Graph instance description ------*

4 Instance class : RandomTree

5 Instance name : randomTree

6 Graph Order : 9

7 Graph Size : 8

8 Valuation domain : [-1.00; 1.00]

9 Attributes : ['name', 'order', 'vertices', 'valuationDomain',

10 'edges', 'prueferCode', 'size', 'gamma']

11 *---- RandomTree specific data ----*

12 Prüfer code : ['v3', 'v8', 'v8', 'v3', 'v7', 'v6', 'v7']

13 >>> t.exportGraphViz('tutRandomTree')

14 *---- exporting a dot file for GraphViz tools ---------*

15 Exporting to tutRandomTree.dot

16 neato -Tpng tutRandomTree.dot -o tutRandomTree.png
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Fig. 1: Random Tree instance of order 9

A tree graph of order n contains n-1 edges (see Line 8 and 9) and we may distinguish
vertices like v1, v2, v4, v5 or v9 of degree 1, called the leaves of the tree, and vertices
like v3, v6, v7 or v8 of degree 2 or more, called the nodes of the tree.

The structure of a tree of order 𝑛 > 2 is entirely characterised by a corresponding Prüfer
code -i.e. a list of vertices keys- of length n-2. See, for instance in Line 12 the code [‘v3’,
‘v8’, ‘v8’, ‘v3’, ‘v7’, ‘v6’, ‘v7’] corresponding to our sample tree graph t.

Each position of the code indicates the parent of the remaining leaf with the smallest
vertex label. Vertex v3 is thus the parent of v1 and we drop leaf v1, v8 is now the parent
of leaf v2 and we drop v2, vertex v8 is again the parent of leaf v4 and we drop v4, vertex
v3 is the parent of leaf v5 and we drop v5, v7 is now the parent of leaf v3 and we may
drop v3, v6 becomes the parent of leaf v8 and we drop v8, v7 becomes now the parent
of leaf v6 and we may drop v6. The two eventually remaining vertices, v7 and v9, give
the last link in the reconstructed tree (see [BAR-1991]).

It is as well possible to first, generate a random Prüfer code of length n-2 from a set of n
vertices and then, construct the corresponding tree of order n by reversing the procedure
illustrated above (see [BAR-1991]).

1 >>> verticesList = ['v1','v2','v3','v4','v5','v6','v7']

2 >>> n = len(verticesList)

3 >>> from random import seed, choice

(continues on next page)
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4 >>> seed(101)

5 >>> code = []

6 >>> for k in range(n-2):

7 code.append( choice(verticesList) )

8 >>> print(code)

9 ['v5', 'v7', 'v2', 'v5', 'v3']

10 >>> t = RandomTree(prueferCode=['v5', 'v7', 'v2', 'v5', 'v3'])

11 >>> t

12 *------- Graph instance description ------*

13 Instance class : RandomTree

14 Instance name : randomTree

15 Graph Order : 7

16 Graph Size : 6

17 Valuation domain : [-1.00; 1.00]

18 Attributes : ['name', 'order', 'vertices', 'valuationDomain',

19 'edges', 'prueferCode', 'size', 'gamma']

20 *---- RandomTree specific data ----*

21 Prüfer code : ['v5', 'v7', 'v2', 'v5', 'v3']

22 >>> t.exportGraphViz('tutPruefTree')

23 *---- exporting a dot file for GraphViz tools ---------*

24 Exporting to tutPruefTree.dot

25 neato -Tpng tutPruefTree.dot -o tutPruefTree.png

Fig. 2: Tree instance from a random Prüfer code

Following from the bijection between a labelled tree and its Prüfer code, we actually
know that there exist 𝑛𝑛−2 different tree graphs with the same n vertices.

Given a genuine graph, how can we recognize that it is in fact a tree instance ?
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17.2 Recognizing tree graphs

Given a graph g of order n and size s, the following 5 assertions A1, A2, A3, A4 and A5
are all equivalent (see [BAR-1991]):

� A1 : g is a tree;

� A2 : g is without (chordless) cycles and 𝑛 = 𝑠+ 1;

� A3 : g is connected and 𝑛 = 𝑠+ 1;

� A4 : Any two vertices of g are always connected by a unique path;

� A5 : g is connected and dropping any single edge will always disconnect g.

Assertion A3, for instance, gives a simple test for recognizing a tree graph. In case of
a lazy evaluation of the test in Line 3 below, it is opportune, from a computational
complexity perspective, to first, check the order and size of the graph, before checking its
potential connectedness.

1 >>> from graphs import RandomGraph

2 >>> g = RandomGraph(order=6,edgeProbability=0.3,seed=62)

3 >>> if g.order == (g.size +1) and g.isConnected():

4 print('The graph is a tree ?', True)

5 else:

6 print('The graph is a tree ?',False)

7 The graph is a tree ? True

The random graph of order 6 and edge probability 30%, generated with seed 62, is actually
a tree graph instance, as we may readily confirm from its graphviz drawing in Fig. 3 (see
also the graphs.Graph.isTree() method for an implemented alternative test).

>>> g.exportGraphViz(

*---- exporting a dot file for GraphViz tools ---------*

Exporting to test62.dot

fdp -Tpng test62.dot -o test62.png

199



Fig. 3: Recognizing a tree instance

Yet, we still have to recover its corresponding Prüfer code. Therefore, we may use the
graphs.RandomTree.tree2Pruefer() method.

>>> from graphs import RandomTree

>>> RandomTree.tree2Pruefer(g)

['v6', 'v1', 'v2', 'v1', 'v2', 'v5']

Let us now turn toward a major application of tree graphs, namely spanning trees and
forests related to graph traversals.

17.3 Spanning trees and forests

With the graphs.RandomSpanningTree class we may generate, from a given connected
graph g instance, uniform random instances of a spanning tree by using Wilson’s
algorithm [WIL-1996]

Note: Wilson’s algorithm only works for connected graphs4.

1 >>> from graphs import *

2 >>> g = RandomGraph(order=9,edgeProbability=0.4,seed=100)

3 >>> spt = RandomSpanningTree(g)

4 >>> spt

5 *------- Graph instance description ------*

(continues on next page)

4 Wilson’s algorithm uses loop-erased random walks. See https://en.wikipedia.org/wiki/
Loop-erased_random_walk .
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6 Instance class : RandomSpanningTree

7 Instance name : randomGraph_randomSpanningTree

8 Graph Order : 9

9 Graph Size : 8

10 Valuation domain : [-1.00; 1.00]

11 Attributes : ['name','vertices','order','valuationDomain',

12 'edges','size','gamma','dfs','date',

13 'dfsx','prueferCode']

14 *---- RandomTree specific data ----*

15 Prüfer code : ['v7', 'v9', 'v5', 'v1', 'v8', 'v4', 'v9']

16 >>> spt.exportGraphViz(fileName='randomSpanningTree',\

17 WithSpanningTree=True)

18 *---- exporting a dot file for GraphViz tools ---------*

19 Exporting to randomSpanningTree.dot

20 [['v1', 'v5', 'v6', 'v5', 'v1', 'v8', 'v9', 'v3', 'v9', 'v4',

21 'v7', 'v2', 'v7', 'v4', 'v9', 'v8', 'v1']]

22 neato -Tpng randomSpanningTree.dot -o randomSpanningTree.png

Fig. 4: Random spanning tree

More general, and in case of a not connected graph, we may generate with the graphs.
RandomSpanningForest class a not necessarily uniform random instance of a spanning
forest -one or more random tree graphs- generated from a random depth first search
of the graph components’ traversals.

1 >>> g = RandomGraph(order=15,edgeProbability=0.1,seed=140)

2 >>> g.computeComponents()

3 [{'v12', 'v01', 'v13'}, {'v02', 'v06'},

4 {'v08', 'v03', 'v07'}, {'v15', 'v11', 'v10', 'v04', 'v05'},

5 {'v09', 'v14'}]

6 >>> spf = RandomSpanningForest(g,seed=100)

7 >>> spf.exportGraphViz(fileName='spanningForest',WithSpanningTree=True)

8 *---- exporting a dot file for GraphViz tools ---------*

(continues on next page)
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9 Exporting to spanningForest.dot

10 [['v03', 'v07', 'v08', 'v07', 'v03'],

11 ['v13', 'v12', 'v13', 'v01', 'v13'],

12 ['v02', 'v06', 'v02'],

13 ['v15', 'v11', 'v04', 'v11', 'v15', 'v10', 'v05', 'v10', 'v15'],

14 ['v09', 'v14', 'v09']]

15 neato -Tpng spanningForest.dot -o spanningForest.png

Fig. 5: Random spanning forest instance

17.4 Maximum determined spanning forests

In case of valued graphs supporting weighted edges, we may finally construct a most
determined spanning tree (or forest if not connected) using Kruskal ’s greedy minimum-
spanning-tree algorithm5 on the dual valuation of the graph [KRU-1956].

We consider, for instance, a randomly valued graph with five vertices and seven edges
bipolar-valued in [-1.0; 1.0].

1 >>> from graphs import *

2 >>> g = RandomValuationGraph(seed=2)

3 >>> print(g)

4 *------- Graph instance description ------*

5 Instance class : RandomValuationGraph

6 Instance name : randomGraph

7 Graph Order : 5

8 Graph Size : 7

(continues on next page)

5 Kruskal ’s algorithm is a minimum-spanning-tree algorithm which finds an edge of the least possi-
ble weight that connects any two trees in the forest. See https://en.wikipedia.org/wiki/Kruskal%27s_
algorithm .
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9 Valuation domain : [-1.00; 1.00]

10 Attributes : ['name', 'order', 'vertices', 'valuationDomain',

11 'edges', 'size', 'gamma']

To inspect the edges’ actual weights, we first transform the graph into a corresponding di-
graph (see Line 1 below) and use the digraphs.Digraph.showRelationTable() method
(see Line 2 below) for printing its symmetric adjacency matrix.

1 >>> dg = g.graph2Digraph()

2 >>> dg.showRelationTable()

3 * ---- Relation Table -----

4 S | 'v1' 'v2' 'v3' 'v4' 'v5'

5 ------|-------------------------------------------

6 'v1' | 0.00 0.91 0.90 -0.89 -0.83

7 'v2' | 0.91 0.00 0.67 0.47 0.34

8 'v3' | 0.90 0.67 0.00 -0.38 0.21

9 'v4' | -0.89 0.47 -0.38 0.00 0.21

10 'v5' | -0.83 0.34 0.21 0.21 0.00

11 Valuation domain: [-1.00;1.00]

To compute the most determined spanning tree or forest, we may use the graphs.

BestDeterminedSpanningForest class constructor.

1 >>> mt = BestDeterminedSpanningForest(g)

2 >>> print(mt)

3 *------- Graph instance description ------*

4 Instance class : BestDeterminedSpanningForest

5 Instance name : randomGraph_randomSpanningForest

6 Graph Order : 5

7 Graph Size : 4

8 Valuation domain : [-1.00; 1.00]

9 Attributes : ['name','vertices','order','valuationDomain',

10 'edges','size','gamma','dfs',

11 'date', 'averageTreeDetermination']

12 *---- best determined spanning tree specific data ----*

13 Depth first search path(s) :

14 [['v1', 'v2', 'v4', 'v2', 'v5', 'v2', 'v1', 'v3', 'v1']]

15 Average determination(s) : [Decimal('0.655')]

The given graph is connected and, hence, admits a single spanning tree (see Fig. 6) of
maximum mean determination = (0.47 + 0.91 + 0.90 + 0.34)/4 = 0.655 (see Lines
9, 6 and 10 in the relation table above).

1 >>> mt.exportGraphViz(fileName='bestDeterminedspanningTree',\

2 WithSpanningTree=True)

3 *---- exporting a dot file for GraphViz tools ---------*

4 Exporting to spanningTree.dot

5 [['v4', 'v2', 'v1', 'v3', 'v1', 'v2', 'v5', 'v2', 'v4']]

6 neato -Tpng bestDeterminedSpanningTree.dot -o bestDeterminedSpanningTree.png
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Fig. 6: Best determined spanning tree

One may easily verify that all other potential spanning trees, including instead the edges
{v3, v5} and/or {v4, v5} - will show a lower average determination.

Back to Content Table (page 3)
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