SDN-RADAR: Network Troubleshooting Combining
User Experience and SDN Capabilities

Gabriela Gheorghe, Tigran Avanesov, Maria-Rita Palattella, Thomas Engel
SnT, Université du Luxembourg,
Email: first-name.last-name @uni.lu

Abstract—Software-defined deployments are growing into
data center and enterprise network infrastructures. The typical
promises of software-defined networks (SDN) are improved time
for market, decreased risk and operational costs for services,
flexibility and unified management. However, little is known
and shared about how to actually manage an SDN network,
especially in localising underperforming network paths (what we
call “troubleshooting”’). We describe a novel approach to ease
large network troubleshooting by leveraging SDN features and
incorporating distributed monitoring of network traffic. We sug-
gest SDN-RADAR, a tool that can help network administrators
understand which is the most likely faulty network link. To the
best of our knowledge this is the first troubleshooting solution
that combines user-side performance measurements with network
data extracted from the SDN controller.

I. INTRODUCTION

For massively distributed services, infrastructure failures
can often damage user experience. When failures happen,
service degradation costs money. For example, downtime in
a U.S.-data center is worth more than $5000 per minute [1].
Unfortunately, locating failures in distributed infrastructures
that span multiple domains and locations is not an easy task.
First, the chaining of network protocols makes it difficult
to understand the cause of a fault. A typical infrastructure
(e.g., Wikipedia) spans several locations, DNS servers, load
balancers, caching servers, replicated databases, and several
webservers. Should there be delays in web content delivery or
should the content be stale, it would be difficult for a network
administrator to find out where in the protocol chain (HTTP,
DNS, etc) the problem originates. Second, debugging tools are
typically linked to certain protocols. Many IT administrators
of traditional networks are still using ping, traceroute and
tcpdump, as noticed in [2], [3], but this is not scalable for
large networks with multiple protocols (e.g., IPv4 and IPv6)
that can even be encapsulated one into another. Third, network
troubleshooting is hard because traffic can be forwarded over
different/multiple paths in the network; forwarding devices and
end-user devices are heterogeneous, or can be virtualised.

With the spread of SDN deployments, it is natural to
ask if managing and troubleshooting (or‘debugging’) future
infrastructures (fully, or partially SDN-enabled) will become
more challenging than it already is. At this point it becomes
highly relevant to tackle questions such as: what can be reused

This publication is based in part on work performed in the framework of the
CoSDN project, INTER/POLLUX/12/4434480, funded by the Fonds National
de la Recherche Luxembourg, and partly by the GEN6 EU-project 297239.

978-1-4799-7899-1/15/$31.00 (© 2015 IEEE

Ciprian Popoviciu
Nephos6 Inc.,
Email: chip@nephos6.com

from existing network management tools in an SDN network?
How can SDN features help in network troubleshooting? To
answer such questions, in this paper we are proposing a
solution that can help administrators of large SDN-enabled
networks monitor and debug network faults that affect service
delivery on the user side. Our intention is to help building an
early warning system that can raise flags if certain paths taken
by application traffic are underperforming. Information about
what actually happens with traffic within the infrastructure (for
example, paths taken, changes in the headers, etc.) is missing
in current troubleshooting technologies, and our view is that
such information becomes very valuable when combined with
network configuration and topology data to quantify the size
and scope of the network issue that has occurred. With SDN
capabilities, such a warning system can be optimised because
of the north-bound features that the controller is offering: in
particular, switch topology information, hosts database and
a unique interface to query switches. This approach is also
valuable in that it facilitates the transition to SDN, as it can
help operationalize and optimize hybrid environments.

The contributions of our work are twofold. First, this
paper proposes a general and flexible architecture to mon-
itor and locate network performance issues, by leveraging
SDN features to identify the most probable underperforming
links in the network. Our solution integrates a distributed
monitoring infrastructure that can be extended or replaced
by more sophisticated monitoring tools. Second, we have
developed a prototype of the proposed design, using state of
the art SDN technologies in the open-source community (i.e.,
OpenDaylight, OpenVSwitch and Mininet) A heuristic method
to indicate probable underperforming links is suggested, and
a fomalisation of this method is also given.

II. RELATED WORK

Traditional network troubleshooting. As previously ob-
served [4], [3], network troubleshooting is generally still in
a very early stage. “Rudimentary” probing tools like ping,
traceroute, tcpdump, or nmap statistics are still being used
for detecting network issues, but they are insufficient for large
complex infrastructures with high amounts of traffic.

Network troubleshooting (troubles are packet drops, delays,
or reordering) has been approached with a range of packet
marking techniques. X-Trace [5] traces multiple applications
across different administrative domains, and at different net-
work layers. Net-Replay [6] focuses on recovering from issues



by diagnosis and selective packet replay. Such approaches re-
quire the modification of clients, servers, and network devices
to add protocol headers where relevant trace information is
kept. Netcheck [7] diagnoses network problems based on traces
derived from syscall invocations from multiple hosts; Netcheck
only relies on a general model of a network, but is not aware of
network topology and device state or configuration. Automated
test packet generation [2] is a technique to automatically
generate a minimal set of packets to test network liveness (at
the level of links) and reachability (in terms of rules installed
in network devices), for a given topology and configuration.
This approach is somehow akin to ours in that monitoring
traffic is injected into the monitored network, but additionally
SDN-RADAR focuses on actual user-perceived performance.

SDN troubleshooting. Network Debugger (NDB) is a gener-
alised tracing tool that resembles tcpdump but has knowledge
of paths [8]. NDB cannot diagnose performance bugs, but
bugs related to the correctness of forwarding (e.g., logical
errors, switch implementation errors, packet format errors).
Troubleshooting packet drops for different protocols, forward-
ing loops, and congestion points based on packet histories
is done by NetSight [9]. NetSight reconstructs packet history
by combining network topology with “postcards”, events that
are sent back to a debug point every time a packet traverses
a switch. Another black-box network debugging approach,
OFRewind [10], suggests a record-and-replay technique by
which to infer, in retrospect, those OpenFlow events that gen-
erated a bug. OFRewind is more an network experimentation
technique, while SDN-RADAR’s approach is live monitoring
of user experience. A comprehensive survey of SDN networks
was recently made by Kreutz et al. [4]. The authors acknowl-
edged it is still hard to tell what happens to packets in the
network between source and destination, and how they are
modified by network devices.

We can conclude that few if any related works concentrate
on monitoring end-user experience as a starting point for trou-
bleshooting. Most of the current troubleshooting approaches
incur high costs in terms of network instrumentation, scal-
ability and maintenance. More effort should be invested in
understanding where to start looking for faults based on their
effects, as well as in correlating perceived service degradation,
with possible causes.

III. SONAR AND DISTRIBUTED MONITORING

Network management and troubleshooting tools are not
aware of how far the service infrastructure is from satisfying
service delivery needs, at any time. We give two real examples
to illustrate this point. First, the networking team at Louisiana
State University (LSU) acknowledged that traditional network
management tools cannot inform about service reachability
across various services. The value of this information became
apparent when their autonomous system was blacklisted for
IPv6 communication based on Google’s assessment of poor
user experience over IPv6 for some users within the LSU
network. Traditional tools could not help identify and address
the issue. Second, in the case of a large infrastructure such
as the elections presentation service [11], a network outage
or DDoS attack would require that a human administrator
correlate a large set of log data, from several locations, and rely
on intuition and experience to understand what the issue can

be, what segment of users it affects, and its scope in the system.
Such examples show that existing tools fall short in the face of
complex network troubleshooting needs. Current technologies
are not focused on users (many IT professionals and decision
makers are complaining about the lack of user experience
visibility), have vendor lock-in, usually are expensive and
require heavy instrumentation of the network [4].

v6Sonar or simply Sonar [12] is a platform that implements
the concept of distributed monitoring and troubleshooting.
Sonar agents are scripts with a small footprint (i.e., consuming
very little local resources) that are platform independent. They
are configurable and collect the key data needed in calculating
synthetic user experience for specific services. The agents are
deployed on small embedded platforms or on existing network
infrastructure equipment and are managed by a controller
designed to interface with other controllers and orchestrators
(e.g. OpenStack http://openstack.org). Agents are dynamically
managed by the controller and can be assigned complex work-
flows mimicking a typical user workflow (for example, a set
of website interactions). In this way, they can convey valuable
information on how users experience an online service.

IV. TROUBLESHOOTING WITH SDN-RADAR

With the present work, we aim to help network administra-
tors quickly determine the location and type of a network fault.
Our approach to troubleshooting is unique in that it starts from
a user perspective and progressively works its way towards
the source of the fault. Normally the way users experience a
web-based distributed service should be homogeneous from all
locations. However, users experience the service conditioned
by the quality of the underlying network links, which varies
across domains and communication protocols. It is possible
to put a threshold over the acceptable end-user perceived
degradation, and start troubleshooting once such a threshold
is surpassed. The choosing of such a threshold value can
stem from an existing service level agreement (SLA). SLAs
are usually specifically tailored to the service context and
define limits of service delivery quality. For example, the
average speed to answer a request is a common metric; some
SLAs in VoIP contexts can refer to notions such as the
“expectation factor”! — the amount of service degradation
that users accept in service quality, in exchange for service
access. Since the agents offered by the Sonar tool were already
available, our solution is novel in that it combines Sonar’s
continuous monitoring capability, with the central and local
network knowledge delivered by the SDN infrastructure, in
order to assist in the fault localisation process.

SDN-RADAR is designed as a runtime application for
network troubleshooting that “gets the pulse” of a target
service from the point of view of user experience from various
locations. When there is a drop in user experience from a
particular location, the troubleshooting application seeks to
locate the fault by retrieving the path actually taken by test
packets from that location, and calculates which are the most
likely segments on that path where the fault occurred. The
architecture shown in Figure 1 consists of several elements:

ICisco I0S IP SLAs Configuration Guide handbook, http://www.cisco.com/
c/en/us/td/docs/ios/12_4/ip_sla/configuration/guide/hsla_c/hsvoipj.pdf



Network administration

Troubleshooting

\
1 :
:

‘ .
‘ .
| .
‘ .
| .
| .
‘ .
‘ :
‘ j
| .
| .
‘ .
| .
| j
| .
‘ .
‘ .
‘ .
‘ .
‘ .
‘ ;

Controllers

22222 oo § }} =22 [ !
28802 ooo | — ] ooa i
Agents Controller SDN Controller i OpenFlow,
!
Network
¥* —
|
w2 e .
— < )4 = |
LR NN N
Target \
senice
'\ i
SDN Network ‘7'@\‘ i
[Za )
p\\A
A 2R
Users
PP

Fig. 1. SDN-RADAR architecture.

Target service. The target service is the set of infrastructure
elements responsible for delivering the end service to users.
In most cases the service delivering infrastructure consists of:
multiple servers, load-balancers, proxies, firewalls, etc.

Agent. The agent essentially represents a user of the target
service, and measures user experience over the target service.
It is connected to switches in the network and periodically
measures a set of user experience parameters.

Agents controller. The agents controller coordinates the work
of agents and collects their reports. The controller can request
to the agents to monitor a specific target, or a set of targets.
It can also specify what kind of measurements the agent(s)
should perform and their periodicity. The reported measure-
ment values are stored in the controller’s database.

SDN Controller and switches. Actual OpenFlow-based
SDN network devices.

Troubleshooting application. This application that takes into
account the measurements reported by the agents (via the
agents controller) and any other features provided by SDN
controller (like network topology) to identify problematic
links in the network. The results can be displayed to the net-
work administrators allowing them to take further measures
for improving the network performance.

Agents give the administrator an idea about the degradation
of end-user experience experienced from different locations.
The agent information tells the administrator how big is the
drop, and which are the locations to experience it. It would

be useful to understand what is happening to the packets
from those locations on their way to the target service and
back, what path these packets take, and what modifications
their headers underwent on the way. With the centralised
management design of SDN networks, the administrator can
easily retrieve network topology information and understand
the paths taken by packets at certain locations.

V. SDN-RADAR IMPLEMENTATION

We implemented the proof of concept for the described
architecture (Figure 1) [14]. Mininet [15], a simulated network
environment was used to obtain an openflow network with
hosts As a controller we used OpenDaylight [16] in the Hy-
drogen release. The communication with the troubleshooting
app which is written in Python is performed using the ODL
REST API. Monitoring agents run at different locations in the
network and perform periodic measurements, such as round
trip time (RTT) of a packet until it reaches the target host rep-
resented by a single host in Mininet. In the prototype the agents
measure RTT to the target every 5 seconds from their network
location. We used RabbitMQ (http://www.rabbitmq.com) and
JSON messages for communication to the the troubleshooting
application.

Knowing the topology is important to map the agents to
the network diagram which allows one to better interpret the
data that agent X produces. We can detect which path in the
network topology is used to transmit packets from X to the
monitored service by querying switches. Once we know the
path, we associate the measurement with it and we store it
for comparison. Both topology and unified interface to the
switches are available in ODL.

Aiming to provide a tool for administrators to perform
network troubleshooting, we have developed a graphical appli-
cation interface. The troubleshooting application has a Python-
based backend and web frontend that displays the network
topology, location of the agents, their current measurements
as well as network paths taken by the packets from a given
source to the target host. The interface also allows the user
to set different hosts as targets of agent monitoring and to
set the threshold that will separate the reported measurements
into acceptable or non-acceptable ones ((e.g., RTT < 250ms).
Depending on the measurements, the agents that report them
are marked with red, or green color (representing unacceptable
or acceptable measurement values). For the convenience, the
information about hosts and links extracted from the SDN
controller is also available via the application interface. When
the troubleshooting is performed, each link suspected of un-
derperforming is automatically assigned a weight, indicating
to the user where to start a more thorough analysis.

1) Faulty link detection algorithm: To detect a faulty link
along an underperforming path, we have designed an algorithm
that associates weights to network links, in such a way that a
bigger weight means a higher probability of a failure point. The
algorithm aims to discover the links shared by several paths:
the more underperforming paths a link belongs to, the higher
the probability that the detected service degradation occurs on
this link. As such, the algorithm will associate a higher weight
to this link. Also, if the link belongs to a problem-free path,
we establish that link does not cause problems, so it will get
the smallest weight (0).



To formalize the network context and to describe our
algorithm, we use a multi-graph structure for the network. In
what follows we introduce some basic notions of the model.

Nodes and connectors. Let V' be the set of network nodes
(hosts, switches). Each node v € V' can have multiple ports
enumerated with integers (i.e., enumerated switch ports). We
will call a pair node-port a connector — it uniquely identifies
a connection point in the network. For example, if we have
a switch v with 16 ports, its connectors will be (v, %), where
i =1,2,...,16. The set of all connectors of nodes in V is
marked as C\y, .

Link is a pair of two connectors. Specifically, ((v, 1), (u,2))
is a link connecting port 1 of node v with port 2 of node wu.

The network is defined as a pair (V, E), where V is a set of
nodes and F is a set of links E € 26V *¢v (2% is a powerset
of a set X, and x is the Cartesian product).

Network path is a sequence of links [(s;,d;)]i=1,..x such
that d; = s;4q foralli =1,...,k— 1. If for each ¢, s; is a
pair of connectors (v;,p;) and d; = (u;, q;), then we call vy
the source node of the path and uy, the destination node of
it. The current implementation non-restrictively assumes that
the path from A to B is the same as the path from B to A.

What happens when agents running on some hosts A C V'
report their measurements? First of all, using our path detection
module, we extract a path (as defined above) from each agent
until the target node ¢ € V. This means that for each agent
a € A we obtain path p, with source node a and destination
node ¢. Also, given the measurement m(a,t) for the host
t reported by this agent a and a threshold #, we obtain a
simple classification function f : {pa},c 4 + {0, 1} such that
f(pa) = 0 if m(a,t) < 6, and f(p,) = 1 otherwise. Paths
p having f(p) = 0 are considered trouble-free and all links
along those paths are whitelisted.

We base our troubleshooting application on two assump-
tions. First, every underperforming path contains at least one
link causing the problem. Second, we assume that in the case of
a problem, it is most probable that exactly one link is causing
it, but we shouldn’t exclude the case that multiple links are
underperforming at the same time. Having this intuition, we
assign the weights to the links pointing to the most probable
points of failure: the bigger the weight, the more critical the
probable link issue.

Let R (“Red”) be the set of underperforming paths, i.e.,
R={p: f(p) =1} and G (“Green”) be the set of problem-
free paths, i.e., G = {p: f(p) =0}. Now, we can simply
count, per each link in every path in R, the number of
underperforming paths that include it and then normalize w.r.t.
the total number of the underperforming paths (in this way the
maximal possible weight will be 1). Also we should “whitelist”
the links (by giving them weight 0) from the paths of agents
that returned acceptable measurements. Then the weight is
defined as (|R| is the cardinal of set R):

w(l) = % if3peR:lcpand Age G:l€q.
o, ifdgeG:leq.

As the output of our trouble localization procedure, we
obtain weights (via function w) for links suspected of network
issues. In short, the worse the link underperforms, the higher

its weight; if the link is on a problem-free path, the path is
safely ignored; for other links we have no infromation.

2) Extracting network topology: Topology discovery is a
base network service that is typical for control platforms. The
Topology module of ODL (in the Hydrogen release) provides
the list of all links between the switches together with their
properties. The Switchmanager module can provide the list of
all switches and their attributes, while the Hosttracker module
has an up-to-date database of the active hosts in the network.
From the latter module we request the such information like a
given host’s MAC and IP addresses, and the switch and its port
to which the host is connected. By merging the information
from these modules, we were able to obtain a complete picture
about the topology and display it to the SDN-RADAR’s user.

3) Path extraction: In order to locate a network problem
for a given type of traffic, it is crucial to know what exactly
happens to the packets. More precisely, we are interested in
the path taken by each packet: which switches it traverses and
which links it goes through. Unfortunately, there is no direct
and easy way to trace a packet in OpenFlow-based networks.
The problem of tracing packets in SDN is a hot research topic.
For example, in [17] the authors proposed to use test packets
with a special marker which is written in a header field and
trace such packets using additional high-priority rules installed
to the switches. The method requires a packet header field is
not used by the current network setup and also requires to
tag switches in a special way that can impose constraints on
a minimal size of such field. A related idea is used in [18],
where an unused field is employed to carry a precalculated
(based on the topology) code which can be decoded to show
the full path that the packet took. Still, this approach may be
problematic for large networks.

In the proof of concept we assumed that the routing rules
are installed only by the default sample routing application
of the OpenDaylight controller (Hydrogen release), called
SimpleForwarding. Once a new host H appears in the network,
the SimpleForwarding application add in each switch a rule
that matches the destination IP of a packet with the IP address
of H, and forwards the packet to the next switch in the shortest
path to H. The last switch in the shortest path also sets
the packet destination MAC to the target H’s MAC before
forwarding the packet to host H.

The knowledge of the rule templates used by the Simple-
Forwarding application allowed us to easily detect the next
hop. That is, if we want to know which path a packet will
traverse from host A with destination IP of host B, we look
first at all rules of the switch connected to A and find one
which would match such packet. This rule will tell us to
which port the packet is outputed and we can see (using the
topology module) to which next switch that port is linked. By
continuing this procedure until reaching host B, we end up
with a sequence of connectors (pairs switch-port) representing
the path we were looking for.

The advantage of the SDN-RADAR approach is that it
does not produce any modifications on the switches in contrast
to the methods mentioned above, and only requires a read
permission. This is an important benefit especially if the tool
is used in an already set up and running network.



4) Functional tests: In our network with running agents,
target host and OpenFlow switches connected to the ODL
controller, Mininet allows to customize a given interface with
the fc tool. In particular, we can inject an artificial delay into
network links?. We used this functionality to artificially delay
traffic on one link and run our troubleshooting tool. Indeed,
the result took the delay into consideration. The prototype
reported two links with weight 1. One of these two links was
actually slowed down by us, and thus was underperforming, so
the algorithm correctly localized the possibly underperforming
link. To pinpoint the exact underperforming link we just
needed to deploy an additional agent. This means that the more
agents are used, the more precise the result of our algorithm.

VI. DISCUSSION AND FUTURE WORK

This work presents SDN-RADAR, a novel approach and
tool for network troubleshooting where user-side performance
measurements are first-class citizens. The aim is to assist
network administrators in finding out the cause of network
issues based on (i) service degradation metrics as a starting
point of the troubleshooting process, and (ii)) SDN management
features such as runtime network topology and forwarding
device state. This approach has several advantages: it does not
incur big instrumentation costs, and it works across different
locations, business domains and service delivery protocols.
Moreover, as we have shown in our proof of concept, the
approach allows for an implementation that does not require to
introduce any changes in the running network configuration.
As a major contribution, we developed the first proof of
concept that shows that with our approach it is possible to
monitor, at runtime, the paths packets take into the network
and which are the underperforming network links (i.e., paths
experiencing congestion or packet drops).

Our algorithm considers network paths as the domain of
search for network issues, and these issues relate to user
experience. Bad user experience (e.g., slow or non-updating
frontend, errors when loading a web page) can be an indicator
of network faults such as broken links, network misconfig-
urations and misbihaving switches. SDN-RADAR does not
perform root-cause analysis; it is intended, rather, to be a
warning system from the perspective of the user about a
network fault that affects service delivery. SDN-RADAR can
be complemented by solutions that address the correlation
between service degradation and affected component (DNS,
transport, etc). Apart from its reduced cost as opposed to
existing vendors’, SDN-RADAR has the advantage that it
directly ties into business metrics. Enterprise management can
easily understand and reason in terms of user experience,
and that is the starting point of the measurements that are
part of the troubleshooting process. Of course, for accurately
understanding user experience, one should build a model for
different types of user interactions with the service that would
better represent user population from various locations. We
plan to generalise our path detection technique, and test SDN-
RADAR in a large-scale production-ready environment and
with different topologies as our next steps.

2See the Network Emulation Utility http://www.linuxfoundation.org/
collaborate/workgroups/networking/netem.

(1]

(2]

(3]

(4]

(51

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]
(17]

[18]

REFERENCES

“Emerson Network Power, Ponemon Institute Study Quantifies
Cost of Data Center Downtime,” hhttp://emersonnetworkpower.com/
en-US/Brands/Liebert/Documents/White%20Papers/data-center-costs_
24659-R02-11.pdf, 2014.

H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic Test
Packet Generation,” in Proceedings of the 8th International Conference
on Emerging Networking Experiments and Technologies, ser. CONEXT
’12. ACM, 2012, pp. 241-252.

B. Heller, C. Scott, N. McKeown, S. Shenker, A. Wundsam, H. Zeng,
S. Whitlock, V. Jeyakumar, N. Handigol, J. McCauley, K. Zarifis, and
P. Kazemian, “Leveraging sdn layering to systematically troubleshoot
networks,” in HotSDN ’13. ACM, 2013, pp. 37-42.

D. Kreutz, . M. V. Ramos, P. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A
comprehensive survey,” CoRR, vol. abs/1406.0440, 2014. [Online].
Available: http://arxiv.org/abs/1406.0440

R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and 1. Stoica, “X-trace:
A pervasive network tracing framework,” in Proceedings of the 4th
USENIX Conference on Networked Systems Design &#38; Implemen-
tation, ser. NSDI'07. Berkeley, CA, USA: USENIX Association, 2007.

A. Anand and A. Akella, “Netreplay: A new network primitive,”
SIGMETRICS Perform. Eval. Rev., vol. 37, no. 3, pp. 14-19, Jan. 2010.

Y. Zhuang, E. Gessiou, S. Portzer, F. Fund, M. Muhammad, I. Beschast-
nikh, and J. Cappos, “NetCheck: Network Diagnoses from Blackbox
Traces,” in 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14). Seattle, WA: USENIX Association,
Apr. 2014, pp. 115-128.

N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
“Where is the debugger for my software-defined network?” in Proceed-
ings of the First Workshop on Hot Topics in Software Defined Networks,
ser. HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 55-60.

N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
“I know what your packet did last hop: Using packet histories to
troubleshoot networks,” in //th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). Seattle, WA: USENIX
Association, Apr. 2014, pp. 71-85.

A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, “OFRewind:
Enabling Record and Replay Troubleshooting for Networks,” in Proc.
2011 USENIX Conference on USENIX Annual Technical Conference,
ser. USENIXATC’11. USENIX Association, 2011, pp. 29-29.

G. Gheorghe, “Secure Election Infrastructures Based on IPv6
Clouds,” http://www.gen6-project.eu/fileadmin/user_upload/5_Booklet_
Secure_Election_print_plain.pdf, 2014.

Nephos6 Inc., “Sonar Solution Overview,” http://www.nephos6.com/
pdf/Sonar-Brochure.pdf, 2014.

F. Jacob, B. Joris, S. Lepage, J. Dusart, and J.-M. Frere, “Role of the
conserved amino acids of the SDN loop (Ser130, Asp131 and Asn132)
in a class A beta-lactamase studied by site-directed mutagenesis,”
Biochem. J, vol. 271, pp. 399406, 1990.

T. Avanesov, G. Gheorghe, M. Palattella, M. Kantor, C. Popoviciu, and
T. Engel, “Network troubleshooting with sdn-radar,” in accepted as a
demo to Integrated Network Management (IM 2015), 2015 IFIP/IEEE
International Symposium on, 2015.

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX.
ACM, 2010, pp. 19:1-19:6.

“OpenDaylight project,” http://www.opendaylight.org.

K. Agarwal, E. Rozner, C. Dixon, and J. Carter, “Sdn traceroute: Tracing
sdn forwarding without changing network behavior,” in Proceedings of

the Third Workshop on Hot Topics in Software Defined Networking, ser.
HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 145-150.

H. Zhang, C. Lumezanu, J. Rhee, N. Arora, Q. Xu, and G. Jiang,
“Enabling layer 2 pathlet tracing through context encoding in software-
defined networking,” in Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, ser. HotSDN ’14. New York,
NY, USA: ACM, 2014, pp. 169-174.



