TOWARDS AMBIENT INTELLIGENT APPLICATIONS
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Knowledge comes from data aggregation...

... In order to reason in a particular domain



But... Too much data can knowledge

1’Mm TELLING You!

THE MORE INFORMATION
WE SToRE UP THERE,
- THE CLOUDIER IT/LL GET.

© D.Fletcher for CloudTweaks.com




...this is the




The more data you send...

THIS |S YouR PRIVACY
THIS IS YOUR Agisaddad 85

The higher the



How to avoid the trap?

Distributed knowledge models that
perfectly fit in reasoning boxes



Part 1 -
Application

domains




Internet of Things (loT)

Networked interconnection of everyday objects, which are often equipped

with ubiquitous intelligence [Atzori et al. 2010]

Ubiquitous communication
Pervasive computing

Distributed, dynamic and heterogeneous

Typically composed of smart objects



Ambient Intelligence (Aml)

Foster a human-machine interaction, where technologies are deployed to

make computers disappear in the background [Remagnino et al. 2005]

‘nvisible interaction with humans
User-centric, adaptive, unobtrusive

loT is one way to realize Aml|

=y
ol Artificial
Human 3 A Intelligence
Computer

Interaction

Pervasive-
Ubiquitous
Computing

Sensors



Ambient Assisted Living (AAL)

Technical systems to support elderly people in their daily routine [Dohr et al.

2010]

Critical (health care domain)
Private, reactive, cost-effective

AAL is a specific case of Aml




Application domains

PRIVATE, REACTIVE, COST-EFFECTIVE

USER-CENTRIC, ADAPTIVE,
UNOBTRUSIVE

AM|

DISTRIBUTED, DYNAMIC,
HETEROGENEOUS

loT



Background - frameworks

: Distributed, dynamic and heterogeneous

loT

Models@run.time Component-based middleware

-
B
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Free the code from models !



Research questions

R1: How to efficiently model physical measurements?
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Research questions

R1: How to efficiently model physical measurements?
R2: How to enable distributed context awareness?
R3: How to adapt privacy when context changes?

R4: How to improve reasoning using contextual information ?



Part 2 -
Contributions



Contribution 1

Contribution 1
A continuous and efficient
data model for loT

Environment

7

Sensor 1

]

Y

Sensor 2 Local
knowledge
A

A
Sensor 3

Sensor 4

!

Contribution 2

A distributed rule-based contextual
reasoning platform for Ami

Context
Awareness

Context
rules and
preferences
A

Machine
Learning

Manual
setup

Contribution 3

Blurring
components

Multi
Objective
Optimization

Qualities to
optimize per
context
A

Manual E
setup !

Contribution 4

A contextual model-based machine learning
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Reasoning on physical measurements

[ ‘L \

L 1_J l__;' -

T
1389200000 1388400000

T
1389600000

T
1389800000

TimeStamp
07/01/16 16:46
07/01/16 16:47
07/01/16 16:48
07/01/16 17:55

Value
17.63525759
17.63525759
17.75439822
10.52543698

Intuition: Encode signal as sequence of polynomials instead of discrete

timestamped values



Problem statement

Physical properties are in time TimeStamp
07/01/16 16:46
Sampling rate can (energy saving/network loss)  07/01/16 16:47
07/01/16 16:48
Measurements are (sensor precision) 07/01/16 17:55
are supposed to be ..can we

enhance loT data manipulation by considering these characteristics and

ultimately speedup

(and other) activities on top?

Value
17.63525759
17.63525759
17.75439822
10.52543698



Example
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+ Original data  =====Polynomial reconstruction
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Initially 30 points
-> 5 polynomials

-> 5 records to store
14 doubles to store
instead of 30
(14=5+4+2+2+1)

Pre-processed data



How it works?

Insert operation using live machine learning process to build polynomials

Get closest segment to t
4|_) ¢
Insert (time t, value v) get polynomial ()

If(t) - vl <
precision

No segment found

deg(f++, | oS

re-train f

A 4

Failed Split ,| Start with
Segments deg 0, f=v




Integration into tools

meta attributes

Smartphone
id: String
name: String
Number: String

. smartgrid.SmartMeter smartgrid.Entity, smartgrid.Meter
sensors[0.."] maxAllowedPower: Long
‘1’ electricityActive: Bool
highPowerCurrentActive: Bool
AccelerometerSensor GPSSensor distance2concentrator: Int

id: String id: String hops2concentrator: Int
manufacturer: String manufacturer: String duration?Read: Double
accX: Continuous <<precision=0.001>> connectedSatellites: Integer
accZ: Continuous <<precision=0.001>> latitude: Continuous <<precision=1e-7>> activeEnergyProducedPolynomial: Continuous precision

accuracy: Continuous <<precision=0.02>> reactiveEnergyConsumedPolynomial: Continuous precision

\ reactiveEneryProducedPolynomial: Continuous precision
GyroscopeSensor
LuminositySensor id: String . register

id: String manufacturer: String » searchConcentrator : smartgrid.Concentrator
manufacturer: String gyroX: Continuous <<precision=0.02>>
value: Continuous <<precision=0.1>> gyroY: Continuous <<precision=0.02>>

gyroZ: Continuous <<precision=0.02>>




Common experimental protocol

We define 7 datasets, from the more constant to the more chaotic

Each dataset contains 5 000 000 values

Using KMF 4, Java version (core i7, 16GB, SSD), saving to leveldb

Database Sensor

DS1: Constant c=42

DS2: Linear function | y=5x

DS3: Temperature DHTI11 (0 50°C +/- 2°C)

DS4: Luminosity SEN-09088 (10 lux prcision)
DSS5: Electricity load | from Creos SmartMeters data
DS6: Music file 2 minutes samples from wav file
DS7: Pure random from random.org




Read operations speed

« Polynomials are at least 20-50x faster than discrete approach
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Write operations speed

« Polynomials are at least 5 times faster than discrete approach
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Bytes exchange rate

« Compression rate between 46 to 75%
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Resilience to data loss
\( —
\ [ | |

+ Original data  =====Polynomial reconstruction




Resilience to data loss

We of values in all experimental datasets
We get less

Database Discrete | Polynomial

DS1: Constant 0% 0%

DS2: Linear function | 5 % 0%

DS3: Temperature 8.5% 3%

DS4: Luminosity 9.9% 3.5%

DS5: Electricity 17 % 6%

DS6: Sound sensor 21% 13%

DS7: Random 31.8% 30.8%

AVERAGE ERROR WHEN WE TRY TO
APPROXIMATE MISSING VALUES



__________________________________________

Environment

__________________________________________
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Publication:

Assaad Moawad, Thomas Hartmann, Francgois Fouquet, Grégory Nain, Jacques
Klein, and Yves Le Traon. Beyond discrete modeling: A continuous and
efficient model for loT. In 2015 ACM/IEEE, 18th International Conference on
Model Driven Engineering Languages and Systems (MODELS), Ottawa Canada,
pages 90-99.
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Challenges

Imperfect /unreliable information

Highly dynamic and open environments

Distributed processing

How to derive context?

Security
camera

Security
camera
linked to
door bell

Broadband Internet

Remote desktop

Security
camera

Personal
portable
devices

(WiFl,
Bluetooth):
Smartphaone
Partable AN
jukebox

PDA

Digital camera
Car entertainment
system



Multi-agent systems

Composed of multiple interacting agents

We consider each agent to have a minimal:
Computation capabilities
Communication capabilities to other agents
Local knowledge base

Knowledge base about remote agents




Contextual defeasible logic (CDL)

A defeasible Multi Context system C, is a collection of contexts Ci
Each Context Ciis a 3-tuple (Vi,Ri, Ti):

Vi:Vocabulary used by Ci. Set of logic literals (Ex: a, —a)

Ri: Set of rules how to derive the literals

Ti: Preference ordering



Distributed Context awareness

Query *» Return null
received y y
about literal a
Yes ain local Remote rules 3
knowledge for a, or ma E
=

Send queries to

Return a remote agents Wait response

T

Response received

A

Solve preferences order




Example scenario

g

Sms module

Online medical profile

———
5] (=T

Bracelet

Health Care System (HCS)

Activity Recognition Machine (ARM)
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Example scenario

Online medical profile

BrrormalPulse=? 9
M.
Sms module Health Care System (HCS)

Activity Recognition Machine (ARM)




Example scenario
|_proneToriA=true |

Online medical profile

Bracelet

Sms module Health Care System (HCS)

Preference order: MED > ARM > BR |

Activity Recogml.‘ron Machine (ARM)




Example scenario
|_proneToriA=true |

Online medical profile

Bracelet

o
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Sms module Health Care System (HCS) - r"l‘rue

Preference order: MED > ARM > BR |

Activity Recogml.‘ron Machine (ARM)




Deadlock problem GO

By nature: distributed, dynamic and recursive processes
-> Might cause logic deadlocks

x Al->y A2andy A2->x Al

Orix Al ->y A2->z A3 ->t A4 ->...->x Al

Cannot be detected a-priori

Loop detection at runtime



Deadlock problem GO

By nature: distributed, dynamic and recursive processes
-> Might cause logic deadlocks

x Al->y A2andy A2->x Al

Orix Al ->y A2->z A3 ->t A4 ->...->x Al

Solution: Add history to queries to trace back the calls

Drawbacks: query size & processing time increase each step




Implementation

Using , distributed component based models:

Qumas-

HCS

Input ports ‘ R, Sheeill [ Output ports
““% QueryComponent &
A 4 A \
Knowledge Base Query Servants Input:
(Context) y Queryin
| Consoleln
¥ ¥ v
Local Rules Mapping rules Preferences Output:
QueryOut
ConsoleOQut




Validation

Tested with with different specs/platforms
All queries solved correctly / loops avoided
Average time: 150 ms, interval [20,250] ms ->
Linear complexity with number of components & rules

: Fits the need of AmI| & AAL



Summary

Contribution 2
A distributed rule-based contextual Publications:
reasoning platform for Amli

Assaad Moawad, Antonis Bikakis, Patrice Caire, Grégory Nain, and Yves Le

Traon. A rule-based contextual reasoning platform for ambient intelligent

Context
Awareness

Context environments. 7th International Symposium, RuleML, seattle USA, Springer

2013, pages 158-172.

Assaad Moawad, Antonis Bikakis, Patrice Caire, Grégory Nain, and Yves Le

Context

Local
knowledge
Remote
knowledge
rules and
preferences

____________________________________________________________

Traon. Rcore: A rule-based contextual reasoning platform for Aml. 7th

N e e e

International Symposium, RuleML @ ChallengeEnriched demo, 2013.
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Environment

An adaptive platform for AAL
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A contextual model-based machine learning



Problem statement

How to adapt the system when the context changes?

Nz
L

KEEP
CALM

K Privacy

= Utility

EVERYTHING
IS UNDER CONTROL

Normal Emergency




Approaches for privacy

oA
&
. . . . E - .
Several definitions of privacy £ Data Recipient
]
©
. . |
Several privacy risks i T
fe) \_—/
Most known techniques/metrics: %
&)
K- it g | | ] |
anonymity S| [Jon [ Cathy | Alice | Frank |
l-diversity

t-closeness
: A user is indistinguishable among k/I/t users

Executed by the data publisher -> Not suitable for a system



Utility

Quantity of information or quality of services after an exchange of

information

Information theory
Monetary value

User satisfaction/evaluation of a service



Binary data access

Binary access control (all or nothing) is not suitable for everything.

Sharing a precise GPS location with a weather app -> privacy breaches
At the same time, sharing nothing -> no utility

A region or city precision level can be a good trade-off




Privacy vs utility

Sending more information does not necessary increase the utility received.

The trade-off between privacy-utility is not linear

\\ Ex. Electric consumption:
0.982 \
"N N\ 104.56766 W/h

2° —t-closeness Electric consumption:

==|-diversit
\\ k-anonyr:ity 100'200 W/h

\

0.972

0.97

.65 0.7 0.
Privacy




How to share only necessary information?




Blurring components

H Blurring
Value blurring: S e
= Intensity : EDouble
. JARRA
N O I Se : 2 . 34 5 = > 2 . 5 247 H VGI(IJEB[UH’[HG H Time;[urrinq
G e n e ra |.i Z i n g : 2 o 3 6 5 - > 2 E Noise H Passfilter El Generalize H FreqReducer A;Averaging B AccessControl
A A

Tlme blurrlng : E] ’f’:ussian H ’fwPass ElHighPass | H Trim

Frequency reducing (1/sec -> 1/min)
Averaging over a period of time

Forbid access in certain periods



Proportional data access

Blurring components offer a proportional data access

Can have a

Can be

intensity

to form a chain

, for ex: blurring a video stream

Sensor x

2]

H H
2]
—@— Blurring 1 —@— Blurring 2

Data consumer E
y proxy




Finding a trade-off

Several conflicting objectives to optimize
How to find the good blurring chain and its parameters ?
Solution: Multi Objective Evolutionary Algorithms (MOEA)

But first, how to run MOEAs on top of component models ?

Privacy

Efficiency

Efficiency Utility



Polymer framework

Application

implements
MOEA interfaces

.

uses modeling layer to
implement the domain model
and MOEA interfaces

~ MOEA Modeling
Interfaces API
S
generates
provides MOEA :‘ """""""""""" ; out =
interfaces 1 i 'Ci core
: Kevoree Modeling Framework Meta-Model
—
i
i uses
i
1

creates clones

Polymer
MOEA Optimization Layer

Domain Model

1 Clone
icalculates

provides fitnesses,
executes required uses
mutations

fitnesses, executes
mutations and
crossovers

MOEA
(e.g. NSGA-II)

Generic contribution: allows to execute MOEA on top of

models generated by KMF/Kevoree

Publication:

Assaad Moawad, Thomas Hartmann, Frangois Fouquet, Grégory Nain, Jacques
Klein, and Johann Bourcier. Polymer: A model-driven approach for simpler,
safer, and evolutive multi-objective optimization development. In

MODELSWARD 2015, pages 286-293.



Adaptive blurring framework

Privac
Data consumers Data Owner Y
experts
T v v
Utility Privacy Risks and
requirement requirement countermeasures
database
l l |
k4
Evolutionary
Algorithm —
Polymer framework -> B
|
\ 2
Proposed Current
Architecture Architecture
Model Model
1T T Nordabls ol forme 1

Adaptable platform

Deploy @ Runtime

Kevoree components

P .



Xecution

Fitnesses of the best architecture
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Summary

Contribution 3
An adaptive blurring framework to balance
privacy and utility for AAL

___________________________________________________________

Blurring
components

Multi
Objective
Optimization

Context Adapted
model

Quialities to
optimize per
context

___________________________________________________________

Publications:

Patrice Caire, Assaad Moawad, Vasilis Efthymiou, Antonis Bikakis, and Yves
Le Traon. Privacy challenges in Ambient intelligent systems. Journal of
Ambient Intelligence and Smart Environments (JAISE). Accepted.

Assaad Moawad, Thomas Hartmann, Francgois Fouquet, Grégory Nain, Jacques
Klein, and Johann Bourcier. Polymer: A model-driven approach for simpler,
safer, and evolutive multi-objective optimization development. In
MODELSWARD 2015, pages 286-293.

Assaad Moawad, Thomas Hartmann, Francois Fouquet, Jacques Klein, and
Yves Le Traon. Adaptive blurring of sensor data to balance privacy and utility
for ubiquitous services. In SAC 2015, the 30th ACM/SIGAPP Symposium On
Applied Computing, pages 2271-2278. ACM, 2015
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Contextual model-based machine learning

Contribution 1 Contribution 2 Contribution 3
A continuous and efficient A distributed rule-based contextual An adaptive blurring framework to balance
data model for loT reasoning platform for Ami privacy and utility for AAL
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Manual Manual
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Contribution 4

A contextual model-based machine learning




Research questions

How to get benefits from contextual information?

How to detect contexts automatically? (Ongoing work)

First application domain

Anomaly detection in electric consumption




Profiling normal behavior

Probability Distr%bution Function (pdf)

POWER
Consumption
(Wh)

_1l"i ’ \»

D

X

TIME In Hours



Multi-Context profiling
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Context-aware machine learning

Context information -> can improve machine learning techniques
Fast training: 1.37 ms/value in average

Better results than a single profile

Attribute Single Profiler = Multi-context profiler
Precision 0.602 0.808
Recall 0.99 0.99
Accuracy 0.779 0918
F1 score 0.749 0.890

A GLOBAL OVERVEW OF RESULTS




Summary

Contribution 4
A contextual model-based machine learning

Multi
Objective
Optimization

Context
Awareness

Context Qualities to
rules and optimize per
preferences context

Machine
Learning

Publications:

Thomas Hartmann, Assaad Moawad, Francois Fouquet, Yves Reckinger,
Tejeddine Mouelhi, Jacques Klein, and Yves Le Traon. Suspicious electric
consumption detection based on multi-profiling using live machine learning.
In Smart Grid Communications (SmartGridComm), 2015 IEEE International

Conference on. IEEE, 2015
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Future work

Integrating techniques into modeling tools:
Extend modeling DSL to express learning behavior
Seamless integration of RAW and learned data into the same model
Meta-learning using in live
Optimize the learning parameters

Adapt MOEA to work on top of data stream
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C1- Defining continuous meta attribute

A continuous attribute value is define as a sequence of weights

Cij = {...,'wijk,...}

Following the following formula, these weights descripe a polynom:

fij(t) = W;j0 + Wij1 (t — tof,;) + ...+ w,,;jn(t — tm')ﬂ‘

Basic constrain:

Vj: |fcz‘j (t) = Yey (t)| < ey
where y.,;(t) is the physical measured value of the
attribute ¢;; at time ¢, and €.,; the maximum tolerated error

of this attribute as defined in the meta model.




C1- Data model structure -

get /set
attribute

Object A
_________________________ | -
Version resolution
Index tree Time
/ validity
root
t
ial Segment 0
t+5
N S - 5 (\]
AN ] Discrete Continuous | ...
AN attribute 1 attribute n o
S N
t+23 '
A Segment 2 '
. save/load X

Object B

Index tree

root

get /set
attribute

Time
validity

Segment ..,

Segment ...,

Q!

NoSQL (Key/Value Data Storage)




C3- The problem of encoding

Classical MOEA encoding: arrays, matrices, graphs, permutations
Encoding doesn't reflect any semantic or any type
All operators need to be manually adapted when the encoding changes

Skip genetic encoding -> Use model encoding



C3- Model-encoding problem

A full array copy of genetic encoding is cheap for classical approach
Problem 2: A full domain model clone can be very expensive

Solution : partial clone (mutable and non mutable fields)
Model A Model A’

H il
immutable zone mutable zone

immutable proxy

proxy ref

mutable zone”

mutable zone

immutable proxy




Integrating ML in KMF

class smartgrid.SmartMeter{
att activeEnergyConsumed: Double

rel profiler: smartgrid.ConsumptionProfiler
rel classifier: smartgrid.ConsumptionClassification

}

class smartgrid.ConsumptionProfiler {
with inference "GaussianProfiler" with temporalResolution 2592000000
dependency smartmeter: smartgrid.SmartMeter

input timeValue "@smartmeter | =HOURS(TIME)"
input activeEnergyConsumedValue "@smartmeter | =activeEnergyConsumed"

output probability: Double
Iy



