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The distributed order concept, which is a parallel connection of fractional order integrals and derivatives taken to the infinitesimal
limit in delta order, has been the main focus in many engineering areas recently. On the other hand, there are few numerical methods
available for analyzing distributed order systems, particularly under stochastic forcing. This paper proposes a novel numerical
scheme for analyzing the behavior of a distributed order linear single input single output control system under random forcing.
The method is based on the operational matrix technique to handle stochastic distributed order systems. The existing Monte Carlo,
polynomial chaos, and frequency methods were first adapted to the stochastic distributed order system for comparison. Numerical
examples were used to illustrate the accuracy and computational efficiency of the proposed method for the analysis of stochastic
distributed order systems. The stability of the systems under stochastic perturbations can also be inferred easily from the moment
of random output obtained using the proposed method. Based on the hybrid spectral framework, the optimal design was elaborated

on by minimizing the suitably defined constrained-optimization problem.

1. Introduction

Fractional/distributed order calculus is applied widely across
a range of disciplines, such as physics, biology, chemistry,
finance, physiology, and control engineering [1-6]. The mem-
ory property of fractional order calculus provides a novel tool
to model real-world plants better than integer order ones such
as diffusion plants [5]. Fractional calculus has been used for
modeling of turbulence in [2]. In [3], the concept of fractional
calculus is used for interpreting the underlying mechanism
of dielectric relaxation. A method for design fractional order
PI*D* controllers for deterministic systems is proposed in
[6].

The distributed order (DO) equation, which is a general-
ized concept fractional order, was first proposed by Caputo in
1969 [7] and solved by him in 1995 [8]. The general solution
of linear DO was then discussed systematically [9]. Later, the
DO concept was used to examine the diffusion equation [10],
the rheological properties of composite materials, and other
real complex physical phenomena [11-14]. Several different

methods for the time domain analysis of DO systems have
been reported [15-18]. On the other hand, a numerical
method for the analysis of a DO operator is still immature
and requires further development. In particular, there are
few methods to analyze DO systems under the excitation
of random processes. This motivated the theme of this
study: the development of a computational scheme for the
analysis basic of a DO system with stochastic settings. The
operational matrix (OP) has attracted considerable attention
for the analysis of a range of dynamic systems [19-21]. The
main characteristic of this technique is that different analysis
problems can be reduced to a system of algebraic equations
using different types of orthogonal functions, which greatly
simplifies the problem [19]. On the other hand, to the best of
the author’s knowledge, there are no reports on the analysis
of stochastic DO systems using an OP. Many natural systems
often suffer from stochastic noise that causes fluctuations
in their behavior, making them deviate from deterministic
models. Therefore, it is important to examine the statistical
characteristics of states (mean, variance) for those stochastic



systems. This problem is often called statistical analysis (or
uncertainty quantification) of a system [22-24]. This paper
proposes a numerical scheme based on the OP technique for
the statistical analysis of DO systems.

The Monte Carlo (MC) method is commonly used to
simulate a stochastic model [25, 26]. The method relies on
the sampling of independent realizations of random inputs
according to their prescribed probability distribution. The
data is fixed for each realization and the problem becomes
deterministic. Solving the multiple deterministic realizations
builds an ensemble of solutions, that is, the realization of
random solutions, from which statistical information can be
extracted, for example, the mean and variance. Nevertheless,
this method typically reveals slow convergence and has a
large computational demand. For example, the mean values
typically converge as 1/v/M, where M is the number of
samples.

Generalized polynomial chaos (gPC) [27-32] represents
a more recent tool for quantifying the uncertainty within
system models. The approach involves expressing stochastic
quantities as the orthogonal polynomials of random input
parameters. This method is actually a spectral representation
in random space and converges rapidly when the expanded
function depends smoothly on random parameters. On the
other hand, the stochastic inputs of many systems involve
random processes parameterized by truncated Karhunen-
Loeve (KL) expansions, and the dimensionality of the KL
expansions depends on the correlation lengths of these
processes. For input processes with low correlation lengths,
the number of dimensions required for an accurate represen-
tation can be extremely large.

The OP method [29], where a system is described by
a stochastic operator (operational matrix), is an alternative
approach for the simulation of stochastic integer order
systems. This method involves the inverse of the stochastic
operators as Neumann series and is most effective for systems
with inputs with low correlation lengths. On the other hand,
it is restricted to small random parametric uncertainty.

In a recent study [33], the authors introduced a hybrid
spectral method, which combines the advantages of both
the OP and polynomial chaos (PC), to simulate single input
single output (SISO) stochastic fractional order systems. In
the present study, the method reported in [33] was extended
to the statistical analysis of DO systems affected by stochastic
fluctuations. Here, the stochastic operator was approximated
using PC instead of a Neumann series. This method provides
the algebraic relationships between the first- and second-
order stochastic moments of the input and output of a system,
hence bypassing the KL expansions that can require large
dimensions for accurate results. In contrast to the traditional
OP method, the proposed method is not limited by the
magnitude of the uncertainty.

Section 2 briefly introduces a DO system and the OP tech-
nique for uncertainty quantification in this system, leading to
computation of the moments of random matrices. Section 3
summarizes the process of calculating the moments of the
random matrices using a stochastic collocation. Section 4
defines the suitable performance objectives coupled with
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the spectral method for the design of a stochastic linear
DO system. Section 5 provides examples to demonstrate the
use of the proposed method. The results of the proposed
deterministic system with a DO were compared with those
of other existing numerical and analytical methods. To
assess a stochastic DO system, the MC, gPC, and frequency
methods were first adopted to the stochastic DO system for
comparison because the analytical results were unavailable.
The results from the proposed method were then compared
with the numerical results from the MC, gPC, and frequency
methods.

2. Preliminary of Fractional and Distributed
Order System

In this section, we give some necessary definitions and
preliminaries of the fractional calculus theory which will be
used in this paper.

2.1. Governing Equation for System Dynamics with Fractional
Order Dynamics. Fractional calculus considers the general-
ization of the integration and differentiation operator to a
noninteger order [34, 35]:

e
% a>0
Dy =11 =0 (1)

t
J dn™ «<0,
0

where « € R is the order of the operator.
Among many formulations of the generalized derivative,
the Riemann-Liouville (RL) definition is used most often:

WD f 0= () [ L8

0 (t—7)' "

where I'(x) denotes the gamma function and m is an integer
satistyingm — 1 < & < m.

The RL fractional integral of a function f(t) is defined as
follows:

dr, (2)

1 r f@

RLIO f(t) = r((x) 0 (t_T)l—oc

Another popular definition of a fractional order derivative is
the Caputo (C) definition [36],

3)

o _ 1 ! m—oa—1 p(m)
cD, = Tm—) L (t-1) 7 (r)dr. (4)
The Laplace transform for a fractional order derivative under
zero initial conditions can be defined as L{D,* f ()} = s“F(s).
Note that, under a zero initial condition, the two
Riemann-Liouville and Caputo definitions are equivalent.
Therefore, a fractional order single input single output
(SISO) system can be described by a fractional order differ-
ential equation as a, D™ y(¢) +a, D™ y(t) +- - -+ ;D™ y(t) =
byDoPou(t) + - - - + b, DyPru(t) or by a transfer function:

Y(s) bt -+ hys
s+ e+ ags

(5)
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where o; and f; are the arbitrary real positive numbers
and u(t) and y(t) are the input and output of the system,
respectively.

2.2. Distributed Order Systems. The DO differential operation
is defined as follows [17]:

@ & «
DAV (t) = j p () D, f (t) des, ©)
b4l

where p(«) denotes the distribution function of order «.
Therefore, the general form of the DO differential equa-
tion is

Y aD Yy (t) =Y bDP Vu(t). )
i=1 j=1

For time domain analysis of the DO system, the integral in (7)
is discretized using the quadrature formula as follows [16, 17]:

j p() DS f (t) da ~ Zp(al) SF ), (8)
N

where oy, v, are the node and weight from the quadrature
formula, respectively. In other words, the DO equation is
approximated as a multiterm fractional order equation and
can be rearranged as (5).

2.3. Operational Matrices of Block Pulse Function for the
Analysis of Distributed Order Systems. Block pulse functions
(BPFs) are a complete set of orthogonal functions that are
defined over the time interval, [0, 7],

1 i‘L'Stsi‘r
y; = N N 9)

0 elsewhere,

where N is the number of block pulse functions.

Therefore, any function that can be absolutely integrated
on the time interval [0, 7] can be expanded to a series from
the block pulse basis as follows:

N
FO=y"OC =Yy (1), (10)

i=1
where 1//NT(t) = [y, (1), ..., yn(t)] constitutes the block pulse

basis. From here, the subscript N of y,,” (t) is dropped out for
the convenience of notation.

The expansion coeflicients (or spectral characteristics)
can be evaluated as follows:

N (@NT
G| FOwod ()
T JG-1)/Nlz
Furthermore, any function g(t,,t,) that is absolutely inte-
grable on the time interval [0, 7] x [0, 7] can be expanded as
follows:

N N
tl’ t2 Z Z 1]1!/1 (t 1//] (t2

i=1 j=1

v’ (t)C,w(ty), (12)

with expansion coefficients (or spectral characteristics) of

N (i/N)T (i/N)T
o=(2) [ ] alnn)n)
7/ Jig-1N1e Jig-n/n1e (13)

“y; (1) dtdt,.
Equation (3) can be expressed in terms of the OP [19],
L*f () =y (®" ALy, (14)

where the generalized OP integration of the block pulse
function, A, is

A,=P"

fl fz f3 fN
1 0 f1 fz fN—1 (15)

e
0 o e e 1,

The elements of the generalized OP integration can be given
by

o) (16)
for p=12,3,...,N.
The generalized OP of a derivative of order « is
B,A, =1, 17)

where I is the identity matrix.
The generalized OP of derivative can be used to approxi-
mate (2) as follows:

D f () =y ()" B,Cy. (18)

Therefore, using the OP, the discretization of DO can be
expressed as

Dtp(“)f (t) = J)’z

"

p(x) Dt“f (t) da
Q
~ ;p () (D f (1)) vy (19)

Q
= ;UZP (OCZ) (l// (t)T Bale) .

The DO system in (7) can be rewritten in terms of the OP, A,
as follows:




The input and output are related by the following equation:

Cy = AcCys
Y () = (Cy) w(®); (21)
U@ =(Cy) y@).

2.4. Stochastic Analysis of Distributed Order Systems. Con-
sider the system described by (7), which has the spectral
characteristics of input and output linked by (21). Assume that
the system is excited by random forcing with a given mean
and covariance function as follows:

E[U®] = (Cp,) v,

wpu = E{[U (8,) = My ()] [U (1) - My (£,) ]}

Z (tl)l//] (t2 1]

My (t) =

(22)

Il
uMz

=y (tl)T Ci,, ¥ (1),

where E[] denotes the expectation operator and the spectral
characteristics of the mean and covariance function of the
input are calculated in (11) and (13).

Using the OP, the spectral characteristics of the mean and
covariance of the output are given by the following [33] (the
details are available in Appendices):

Cmy =E [AG] CmU’

Cop = E[46{Cun +(C) (C) T A6] @

- CmY (CmY)T :
Therefore,

my () =y (t1)T Con, =V (tl)T E[AG]Cpp»

vy (Bot2) =y (1) Cep¥ () =vy (t)"
E [AG {CKUU + (Cmu) (Cmu)T} AGT] V/(tz)

~y () Cp, (C) ¥ (8).

The random parameters g;, b; result in the random OP A
in (23) and (24), and its (OP A ;) moment can be estimated
using a stochastic collocation method, which is described in
the next section.

When the parameters, a;, b;, are deterministic, (23) and
(24) become

=‘/’(t1)TA C

Kyy (t15t,)

(24)

my (t)

(25)

=y (1) A6 {Cay + (Cy ) (Cu)' } AGTw (1)

~y (1) Cp, (C) ¥ (8).
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Remarks. The relationship in (25) is invariant with respect to
the orthogonal polynomial used to construct the OP of the
fractional order integral and derivative. The relationships in
(24) and (25) are only available for a linear system.

3. Stochastic Collocation for
the Operational Matrix

A stochastic collocation method, which is described briefly
below, is based on the gPC and can easily estimate the means
and variances of complex dynamics. Therefore, it has been
used to estimate the moment of the random matrix in (24).

(i) Assume that a random OP has the form, A = A(§),
where & = (,&,,...,¢&,) is a vector of indepen-
dent random parameters with the probability density
functions p,(§;) : I, — R". Vector & has the joint
probability density function, p = [].,p;, with the
support, I = [T, I; € R™.

(ii) Choose a suitable quadrature set {Ei(m), w(m)}fr"l:1 for

each random parameter according to the probabil-

ity density so that a one-dimensional integration
can be approximated as accurately as possible by

[ AG)AE)EE = T, A w,™
the mth node and w™

, where & is
is the corresponding weight.

(iii) Construct a multidimensional cubature set by ten-
sorization of the one-dimensional quadrature set over
all the combined multi-index (j,,..., j,). Because
manipulation of the multi-index (ji,..., j,) is cum-
bersome in practice, a single index is preferable for
manipulating these equations. The multi-index is
often replaced by a graded lexicographic order index, j
[27]. Because the weighting functions of the cubature
are the same as the probability density functions, the
moment of the random matrix can be approximated

by

El4]= [ A®p@dE- ZA(”)
j=1
(26)

S AEP B (0,9, ).

The Matlab suite, OPQ, can be used to obtain the one-
dimensional quadrature sets and their corresponding orthog-
onal polynomials (polynomial chaos) with respect to the
different density weights [36].

The algorithm of the proposed method for the analysis of
a stochastic system can be summarized as follows:

(a) Calculate the coefficients C,, , C, of the expansions
of the mean and covariance of the input as shown in
(11) and (13).

(b) Rewrite the DO differential equation in (7) in terms
of OP as (20).
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(c) The coefhicients of expansions of the mean and covari-
ance function of the output are obtained from (23). In
(23), the moments of several random matrices need
to be calculated. The moment of a random matrix
is calculated by the stochastic collocation method as
(26).

(d) Finally, the mean and covariance of the output are
obtained as (24).

For a clearer understanding of the algorithm, a similar
algorithm is depicted graphically in [33] for the analysis of
stochastic linear fractional order systems.

4. Optimal PI'D* Controller Design

Assume that the system is described by (7), where coefficients
a;, b; are independent random variables with given distribu-
tions. The set point input is a random process with a given
mean and covariance function as follows:

T
My(t)=E[R®)]=(C,,) v,

rrr = E{[R(t) = Mg (t1)] [R () = Mg (1)1}

= ZZ‘/’:‘ (t)y;(t) Cin

i=1j=1

(27)

=y (tl)T Cr ¥ (1)

The system is in the closed loop configuration, as shown in
Figure 1, with a fractional order PI*D¥ controller [35] C(s) =
K, + (K;/s") + Kyt

The OP for this controller is

AC = KPI + KiA/l + KdBy’ (28)

where I, A, and B, are the identity matrix, the integration
OP of fractional order, A, and the OP of the fractional order
derivative, y, respectively.

Denote the OP for the system as A . Using block algebra
for OP operator, the OP for a closed loop system can be
obtained as follows:

A=(I+AgAc)  AgAc (29)

This closed loop OP can be used to obtain the first- and
second-order moment of the random output from (24).

The parameters of the PI"D¥ controller can be obtained
by optimizing the cost function defined as [37]

T
A o
oD, ] = i E L (ya () - y(®)" dt
T
= mi 2 2 (30)
~ KpKokdAp L {E[a0]+E[y 0]

—2E [y, O] E [y 0]} dt,

where [E[y(t)z] and E[y(t)] are obtained from (24).

. ® co 29 e

FIGURE 1: Closed loop control system.

5. Examples

Before going to detailed examples, let us give some infor-
mation about the existing methods. Ito calculus can be used
for the statistical analysis of integer order linear/nonlinear
systems only with ideal white noise (noise with direct delta
covariance function and infinite bandwidth). On the other
hand, the PC method can be used for a system with low
bandwidth noise. However, in the PC method the com-
putational load increases significantly as the bandwidth of
noise increases. The MC and Quasi-MC methods can be
used for arbitrary cases (i.e., with arbitrary type of noise).
However, they require a large computational effort for obtain-
ing accurate results. To overcome these limitations in each
existing method, a hybrid spectral method [33] was proposed
for the statistical analysis of fractional order linear SISO
systems with arbitrary type of random input. In this paper,
the methodology in [33] was extended to the DO case. Several
different case studies were considered to show the efficiency
of the proposed method handling different kind of random
inputs in a unified frame work: band-limited white noise
(noise with low bandwidth), ideal white noise, and fractional
Brownian motion with Hurst parameter H. It should be noted
that when H = 1/2, fractional Brownian motion becomes
Brownian motion, whose derivative is ideal white noise.

5.1. Examples 1(a) and 1(b): Band-Limited White Noise Input.
Because an integer order system can be considered as a special
case of DO systems, this example considers a simple linear
integer order system, G(s) = 1/(1+Ts) from [38] with a band-
limited white noise as the input.

Let the input have a zero mean and covariance function
of kyy(t,t,) = (Wg/m) sinc((t; — t,)Wg/m), where the sinc
function is defined as

sin (7rx)

) elsewhere
sinc (x) = X (31)

1 for x = 0.

The power spectral density of the input is

w| < W,
|w] B (32)

1
Sy (@) = { @2n)
0 |w] > Wy,
where Wy is known as bandwidth of the noise. As Wy
approaches to infinity, the process will become ideal white
noise.



Therefore, the power spectral density function of stochas-
tic output is given by

1 1
—— lwl<W
Sy (w) =427 1+ (Tw) (33)

0 |w| > Wj.

This is a linear system; the means of the input and output are
Zero.

Using the frequency method, the exact steady state
variance of output can be expressed as [38]

1 (W 1 1
D, =— ————dw = — arctan (WpT). (34)
o 2m Jwy 1+ (Tw) nT

The OP for this linear system is

Ao =(TT+A,) " A, (35)

where [ is the identity matrix; A, is the OP of integration (of
order one), which was calculated using (15) and (16).

This system lacks random parameters. The covariance
function of the system output is approximated by (25). From
(25), it can be seen that the mean of the output by the
proposed method is zero.

Two numerical cases are considered.

(a) Consider Wy = m; T = 2. Figure 2 shows the output
variance obtained by the proposed method for W = 7.
For comparison, the results by the gPC, MC, and frequency
methods are also given. Note that the frequency method in
(34) can provide the exact (analytical) steady state variance.
The random process input, U(t), was parameterized using a
noncanonical decomposition [33, 39] (the details are available
in Appendices). The results from the proposed method were
quite satisfactory. Table 1 lists the simulation parameters and
computational times required for each method.

(b) Consider Wy = 4m; T = 2. Figure 3 presents the
variance obtained by the proposed method for Wy = 4.
If the number of cubature nodes is kept as in case (a),
the gPC method cannot obtain an accurate result in the
steady state. The result indicates that in the gPC method the
number of cubature nodes needs to increase with increasing
bandwidth of the noise, and the computational load increases
for obtaining the same accurate result accordingly.

Table 1 presents the computational times and simulation
parameters for all methods. From this table and Figures 2 and
3, the proposed method provides better performance in terms
of accuracy and computational load.

Remark. The gPC approaches can be divided into two
subcategories: intrusive Galerkin [27, 31] approaches and
nonintrusive projection approaches [27-30, 32]. The advan-
tage of nonintrusive approach is ease of implementation. For
this reason, nonintrusive (collocation) methods have become
very popular. The intrusive Galerkin method offers the most
accurate solutions involving the least number of equations in
multidimensional random spaces, but it is more cumbersome
to implement. Thus, in this paper, the nonintrusive method is
referred to as the gPC method.
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—— Proposed (OP) ---- Monte Carlo
— Dy, (frequency method) gPC

FIGURE 2: Variances of the output in Example 1(a).

0.25 T -
0.2 J
o~ 0.15 - J
=
S ot ]
0.05 1
0 L L
0 5 10 15
t
—— Proposed gPC (400 cub. nodes)
— D, gPC (600 cub. nodes)
---- Monte Carlo gPC (1000 cub. nodes)

FIGURE 3: Variances of the output in Example 1(b).

5.2. Examples 2(a), 2(b), 2(c), and 2(d): Ideal White Noise

(a) Example 2(a): Double Delta Function Distributed Order
System. This example considers the statistical analysis of a
special case of DO integrator taken from the literature [40]
as follows:

Dy (1) = u, (36)

where p(a) = a,6(a — «;) + a,6(« — «,) and &() is the Dirac
delta function. Therefore, (36) is actually a double fractional
integrator,

aDy™ y (1) + @, D™ y (t) = u(t). (37)

The case where the input u(t) is an ideal white noise with a
zero mean and covariance function was considered:

kpy (1) =8(1)=08(t; - t,). (38)

The exact variance of the output is given by [40]

Dy(t) = 02 (t)
_ 2 (39)
1 t B a u(“z o)
_ _ZJ u2(0£2 1) [%a e (_1— du,
az 0 2 1>%2 az
where &, _, . () is the Mittag-Lefller function, which can be

calculated using the Matlab mlf.m function [41].
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TABLE 1: Simulation parameters and time profiles for obtaining the statistical characteristics by the MC, gPC, and proposed methods in

Examples 1(a), 1(b), 2(a), 2(b), 3, and 4(a).

Simulation parameters

Computational time (sec.)
Example
MC (Halton sampling) gPC Proposed MC gpPC Proposed
Example 1(a) 10000 400 512 basis functions 205.30 1.10 0.01
samples cubature nodes
Example 1(b) 10000 1000 512 basis functions 197.18 2.67 0.01
samples cubature nodes
10000 . .
Example 2(a) N/A 512 basis functions 199.64 N/A 0.01
samples
Example 2(b) 10000 N/A 2048 basis 82776 N/A 3.22
samples functions
10000 . .
Example 3 N/A 512 basis functions 210.66 N/A 0.01
samples
Example 4(a) 10000 62> 512basis functions  4503.90 60951 15.32
samples cubature nodes
2 ; . : : x107
1.5 T T T T
=t - g 1} Proposed T
S :
£ 05 Kf’
0 1 1 1 1
0 2 4 6 8 10 0 . . . .
¢ 0 2 4 6 8 10
t
—— Exact 0.01
—— Proposed 3
10 : . . . £
— v 0.005 |+
g 2
5 < Monte
£ 5 ] Carlo )
3 0
] 0 1 2 3 4 5
&
0 t
0 2 4 6 8 10

t

FIGURE 4: Variances of the output in Example 2(a) witha, = a, =1,
o, =3/4,and o, = 1.

The OP for system (37) is given by

(40)

where B, is the OP of derivative of order a;.

This system does not have random parameters. Therefore,
the covariance function of system output can be approxi-
mated by (25). The regularization technique [33] is used to
approximate the Dirac delta covariance function. Figure 4
presents the variance obtained using the proposed method
fora; = a, = 1, = 3/4, and «, = 1. The relative
error of the proposed method with respect to (39) is also
shown in Figure 4. The result by the proposed method is
quite satisfactory. Figure 5 compares the absolute error for
the output variance by the proposed and MC methods (with
respect to the exact variance in (39)). The simulation times

FIGURE 5: Absolute errors by the proposed and MC methods in
Example 2(a).

are listed in Table 1 for both methods. For MC simulations,
the Matlab code, fode_sol.m, from [42] was used. Again,
Table 1 and Figure 5 show that the proposed method has
better accuracy with less computational burden than the MC
method.

Remarks. The fact that the gPC method becomes compu-
tationally intractable for ideal white noise input makes the
proposed method more attractive.

(b) Example 2(b): Uniform Distributed Order Integrator. This
example considers the statistical analysis of a DO integrator
taken from [40]:

DSyt =u, p@)=10<ac<l. (41)
Again, this study considered the case where the input u(¢) is
an ideal white noise with a zero mean and covariance function

as shown in (38).



3 T T T T
. .
3 4 5
t
Monte Carlo
—— Exact
- -~ Proposed
0.01 T T T T
'I\/’\ non
. “““,\,”,I',, Pk i
< \ |"|l‘,l\\ s ’\1‘”’\.1‘1‘” ,““'IJ"\ A
= ? | I l‘ ™ N K
5 0.005 [ T |l\,,,.,l \|'H”""\,"l"”'u\'\lln//\’"";"\'4
5 ‘l\|l|\,||,u v TR RTET] v S
fa] uu‘l\, Mf vl \u\|
< 1l
O 1 1 1 1
0 1 2 3 4 5
t
—— Proposed
- -~ Monte Carlo

FIGURE 6: Output variance and absolute errors by the proposed and
MC methods in Example 2(b).

The variance of the output is given by the following [40]:

Dy, =0’ (t) = J- [¢“E, w)]’ du,
(42)

00 oy
E, (u) = J- ;dy.

u

The OP for system (41) is given by

-1

5
ZBaiwi] , (43)
i=1

where B, is the OP of derivative of order &; and {a;, w;};_,
are the nodes and weights from the Legendre quadrature.

Figure 6 shows the variance of the output by the proposed
method. The absolute error with respect to the exact variance
(42) is also shown.

(c) Example 2(c): PI*D* Controller Design for Uniform Dis-
tributed Order Integrator with Stochastic Input. From the
examples above, it can be seen that the proposed method
for predicting the mean and variance of the system output
provides better accuracy and lower computational load than
the other methods such as the MC and gPC. Therefore, it is
more suitable for direct optimal design by minimization of
the objective function in (30).

Consider a PI*D¥ controller as a closed loop configura-
tion with the uniform DO integrator above. The set point
r(t) is a random process with a unit mean and covariance
function kzp(7) = 0.018(7). This input r(¢) can be viewed as
a combination of the deterministic set point and zero mean
measurement noise [37].
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FIGURE 7: Mean and variances of the output of the system in Example
2(c) by the proposed controller.

Y(t)

FIGURE 8: 500 responses of stochastic system in Example 2(c) by the
proposed controller.

The control objective is to track the deterministic unit
step input. This can be achieved by minimizing objective
function defined in Section 4. The search space for the
optimal parameters of the controller was limited to 0 < K, <
50<K;<50<K;<501<A<190.1<u<19for
simplicity, as in other studies on the probabilistic approach
[29, 37]. The resulting controller can be expressed as C,(s) =
0.2805 + 1.1458/s"64%.

Figure 7 shows mean and variance of system output with
this controller. Figure 8 shows 500 possible responses of the
uncertain system with the proposed controller. From the
finiteness of the output variance, the stability of system can
be determined.

(d) Example 2(d): Improved Mean Tracking Control with
Iterative Learning Control. Since the proposed method allows
lower computational time for prediction of the mean of
system output under random forcing, it can be used with
iterative learning control in which input sequence is refined
from one trial to next trial [43].

Consider a problem where the mean of closed loop
system in Example 2(c) needs to track desired mean my =
0.1¢(10 — ¢). The following iterative learning control scheme
can be used for refining the mean of set point input:
=y('C,

my, (t) , =V E[44]C,, .

e (1) = my, (1) =my () =y (1) C,, ,
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FIGURE 9: Mean and variances of the output of the system in
Example 2(d). Line with red o: desired mean.

FIGURE 10: 512 responses of stochastic system in Example 2(d) with
iterative learning control algorithm.

mp,., (t) = mg (t) + e (£)

=y ()" Co, +0.5Y ®7" Con, -
(44)

where k € {0,1,2,...} and A is the closed loop OP.

Figure 9 shows the simulation results by the proposed
method. It can be seen from the figure that the iterative
learning algorithm in (44) improves the tracking error in
the mean as k increases. The MC simulations with 512
sample responses are shown in Figure 10. It can be seen that
the designed control algorithm can track the desired mean
despite the random forcing.

Remarks. Note that the low computational cost of the pro-
posed method enables using the iterative learning control
algorithm.

5.3. Example 3: Linear Integer Order with Fractional Brow-
nian Motion Input. For each H € (0,1), there is a
real-value Gaussian process (%By(t), t = 0) such that
Mg,y = E(%By(t)) = 0 and the covariance function
of E(But)By(s) = /U + [s = ¢ = 5],
s,t € R,. This process is called standard fractional Brownian
motion with the Hurst parameter H. If H = 1/2, then the
corresponding standard fractional Brownian motion is the
well-known standard Brownian motion.

Recently, there has been growing interest in linear systems
with fractional Brownian motion input [44-46]. On the other
hand, in contrast to standard Brownian motion, where the
moment of output can be obtained by Ito calculus, there are
very few methods available for obtaining the moment of the
stochastic output of a general linear system with a fractional
Brownian motion input.

Consider a random process X(t) that satisfies the follow-
ing:

X () ==X (t)+ By (1),
(45)
X (0) =0,

where 98,(t) is a fractional Brownian motion with the Hurst
parameter H. The mean of X(t) is Mx(¢t) = 0. The variance
of X(t) satisfies a differential equation [44]:

Dy (t) = 2Dy (t) + 2d (t, 1), (46)

where d(t, t) is given by

d(s,t)==(FT(1-e7)+j, () + jp (s.1)),

N | =

N

i) = e | wetdu, (47)

ja(st)=¢" J (t - u)?*H *du.
0

Figure 11 shows the evolution of variance of X(t) for H = 0.6
obtained from (46) and (47).
Equation (45) can be rewritten in terms of OP as follows:

Cx=U+B) "' Cy=ACgy (48)

where B is the OP of the derivative of order one. Therefore,
one can easily obtain the covariance of the random process,
X(t), by utilizing the OP for this system, A; = (I + B,
and covariance function of fractional Brownian motion and
(25). Figure 1l shows the variance of X(t) obtained using
the proposed method. Finally, the variance of X(t) by a MC
estimation is also given in the same figure.

5.4. Example 4: Linear Distributed Order with Stochastic
Parametric and Additive Uncertainties

(a) Example 4(a). This case considers a DO system with both

random parameters and random forcing. The system can be

expressed as

_Y(s) k

S U(Gs) (! ’
O _[0 s*da + 1

G(s) (49)

where k and 1 are uniform random variables in [0.5, 1.5]. The
system is in a closed loop configuration with a fractional PI
controller, C,(s) = 0.187 + 36.35/s'21° from [46]. Note that
the controller, C, (s), was designed for a nominal system, that
is, for G = 1/(s*° + 1). The input R(¢) is a band-limited white
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FIGURE 12: Mean and variances of the output of the system in
Example 4(a).

noise process with a unit mean and covariance function of
the following: kgp(t;,t,) = 0.02sinc((t; — t,)Wy/m), where
W = 0.027.

Figure 12 compares the mean and variance of the output
calculated by the proposed method using (24) with the
results from the gPC and MC methods. In this study, the
gPC and MC methods were first applied to the DO systems
under stochastic forcing for comparison. In the MC and gPC
methods, the DO term was discretized first and the routine
fode_sol.m [42] was then used to integrate the multiterm
fractional order version of the DO system. Again, the random
process input, U(t), was parameterized using a noncanonical
decomposition. Table 1 lists the simulation parameters and
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FIGURE 13: Mean and variance of system output for Example 4(b) by
the proposed and initial controllers.

computational times needed for each method. Figure 12 and
Table 1 show that the proposed method can provide similar
accuracy with much less computational effort than the other
methods. The advantage of the proposed method lies in its
use of operational matrices: the mean and covariance of
the output can be obtained directly from those of the input
without parameterization of the input.

(b) Example 4(b). The proposed method was applied to the
design of fractional order PID controller for this system.
The covariance of the output can be obtained directly from
those of the input without parameterization of the input. The
control objective is to track the deterministic unit step input.
The search space for the parameters of the controller was
limitedto 0 < K, < 50 < K; <50;0 < K; <505 <A< 15
0.1 < p < 1.5. Theresultis as follows: C,(s) = 5+50/(s)+5s"".

Figure 13 shows the mean and variance of the system
output by the proposed controller and the controller, C,(s) =
0.187 + 36.35/s"*1% from [46]. Figure 14 shows a bounded
region for 1000 possible responses of the uncertain system
with the proposed and initial controllers. The proposed
controller outperformed the initial controller.

6. Conclusions

A hybrid spectral method was proposed to analyze DO
systems in a stochastic setting with arbitrary random forcing
and parametric uncertainties. To analyze the system with
stochastic parameter perturbation, the stochastic collocation
was used to estimate the random operator. This combines the
advantages of both the OP technique and PC method. The use
of operational matrices explicitly provides the relationship
between the first- and second-order moment for the input
and output of a system, bypassing parameterization of the
random input when predicting the statistical characteris-
tics and reducing the dimensions of the random space.
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FIGURE 14: Bounded regions for 1000 MC simulations of the
stochastic system by the proposed and initial controllers in Example
4(b).

This can also effectively handle a system with a low corre-
lation length input (i.e., ideal white noise) by regularization.
The numerical examples show that the proposed method
provides superior accuracy and computational efficiency
for analyzing stochastic DO systems over other existing
methods, such as the gPC, MC, and frequency methods:
the frequency method can give the only result at the steady
state; the accuracy and efficiency of the gPC method are
degraded for a wideband process. Although the MC method
is straightforward, its accuracy and computational burden are
problematic. On the other hand, the explicit relationship in
(24) is only available for a linear system; the applicability of
the proposed method is restricted to linear systems.

Appendices
A. Derivation of (24)
Consider a system with its input and output linked by
Cy = AcCus
U®=y®" Cy, (A1)
YO =y® Cy=y®" AcCy,

where A is the OP of the system. The input and parameters
a;, bj are random.

Therefore, the mean of the input and the output in (A.1)
was calculated as

my () =E[U®] =y ®) E[Cy]=v®) C,p,
my () =E[YO] =y O E[Cy]=v(®)'C, (A2

=y () E[ACy],

1

where E[] denotes the expectation operator; C,, = E[Cy];
C,,, = E[Cy].
The statistical independence of A and Cy; leads to

my () =y ()" C,, =y () E[AG]C,, .

Therefore, the spectral characteristics (or expansion coeffi-
cients) of the mathematical expectations of input and output
are related by

(A3)

Cn, =E [AG] Cpy - (A.4)

Introducing the system’s signal in the spectral form leads to
an equation defining the correlation function of the output to
be written as follows:

Oyy (t1,t2) = E[Y (£,) Y (t,)]

=E [‘/’ (t1)T CyCy'y (tz)]
, . (A5)
=y(t) E [CYCY ] v (t,)
=y (tl)T E [AGCU (CU)T AGT] v(t,).
Therefore, (A.5) becomes
Opy (t1ots) =y (1)) E [AcCo, Ac" | (),  (A6)

where C, is the square matrix of expansion coeflicients
(spectral characteristics) of the input’s correlation function,
which is given by
buu (t-t,) = E[U (1) U (1,)]
T T
=y(t,) E [CU (Cv) ] v ()
T
=y (t) E[Cq,]¥ (1)
T
=y(t,) Co,, ¥ (ty).

The covariance function of the system’s input is defined as

(A7)

Kyu (tl’tz)
=E{[U (t,) —my (,)] [U () —my (£,)]}
=E[U(t,)U (t,)] = my (t,) my (t,)

= Oy (t1,ty) — my (8) my (t5) -

Expanding (A.8) in terms of the orthogonal functions gives
the following:

(A.8)

Ky (thts) = ¥ (tl)T Cen ¥ (t5)

=y (t;)" Co, v (1) (A.9)

—y (1) Cpy (Co) ¥ (82).

The spectral characteristics of the input signal’s moments are
given by

Crw = oy = Cony (Cy) - (A.10)
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Substituting (A.10) into (A.6) gives
Oyy (tioty) = ¥ (tl)T E [AGCOUUAGT] v(t,)
=y (1) E[Ag{Cq, + (Cuy) (ch)T} AT (am

y(ty).

The covariance function of the system’s output is then given
by

Kyy (tot,) = v (tl)T Cu, ¥ (1) = Oyy (t1.12)

—my (t;)my (t,) = v (tl)T

(A12)
E [AG {Ckw +(Comy) (Cmu)T} AGT] v(t)
-y (tl)T Cmy (Cmy )T y (tz) >
or in spectral form,
Cy, = E[Ag {Cap + (Cuy) (Cy) ' A67]
(A.13)

T
- Cmy (Cmy) '

Equation (A.13) gives the relationship between the spectral
characteristics of the moments of the system’s output and
input. Equations (A.4) and (A.13) are then combined to form
(24) in the paper

B. Noncanonical Decomposition of Stationary
Random Processes [39]

Consider a stationary random process with mean my, covari-
ance kyx(t; — t,) = Kyx(7), and variance o> = Kyx(0).
This process can be represented as Z(t, &}, ¢,) = ox(sin(&,t) +
&, cos(&,1)) + my with

E[&] =0
E [Elz] =1 (B.1)
iy = 28

where &, and &, are independent, &, is Gaussian, and &, is
a random variable with a probability density function (pdf)
given in (B.1).

Proof. Z(t) has a mean of
my =E[Z(t.§,5,)]

o (B.2)
=0y J._OO sin (§,t) f (§,) d&, + my = my

Mathematical Problems in Engineering

and a covariance function of

E[Z (1) 2 (1) = E [y {sin (6211)sin (63t,)
+&,” cos (&) cos (&,1,)
+&, cos (&) sin (&,t,)
+&sin (1) cos ()] = o E [sin (&1,)

-sin (&,t,) + cos (&,£;) cos (&,1,)]

(B.3)

= 0X2 Jj: cos (sz) f (fz) d&,,

where % (t) = Z(t)-m, = Z(t)—my is the central component
of the random process Z(¢). In (B.3), the properties of E[&,] =
0 and E[£,”] = 1 and the independence of £, &, are used to
simplify the equation.

The covariance function also can be calculated as the
inverse Fourier transform of the power spectral density

[o0]

Ky (T) = Ky (T) = J Syx () dw

—00

- (B.4)
= J Sxx (w) cos (wT) dw.

—00

Comparing (B.3) and (B.4) gives the pdf of €, in (B.1). Because
|- Sxx(&)/ox’dE, = 1, f(&,) is a proper pdf.

(A) A first-order Markov process with a mean my and

exponential covariance xpp(t) = ox’e " can be
parameterized as R = ogx(sin(&,t) + & cos(é,t)) +
mg(t), where & is Gaussian, as in (B.1), and f(&,) =

o/ + 522), &, € (—00, 0).

(B) Band-limited white noise with a mean my and covari-
ance Kgp(7) = c(Wy/m) sinc((Wy/m)T) can be param-
eterized as R = /cWp/n(sin(&,t)+&; cos(&,t))+my(t),
where &, is Gaussian, as in (B.1), and f(&,) = 1/2Wj,
52 € [_WB’WB]‘ 0
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