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Stochastic Analysis of Dead-time Systems using a Hybrid Spectral Method 
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Abstract: Control systems often operate in the presence of dead-time. However, in most works, these 

dead-time systems are studied in a deterministic manner, which have low precision and reliability. 

Many natural systems often suffer stochastic noise that causes fluctuations in their behavior, making 

their responses deviate from nominal models. Therefore, it is important to investigate such statistical 

characteristic of states (mean, variance, etc.) for those stochastic systems. This problem is often called 

statistical analysis of a system. A hybrid spectral method represents a powerful numerical tool for sta-

tistical analysis of stochastic linear system. Thus, a hybrid spectral technique is proposed for statistical 

analysis of the time delay system under affections of random parameters and inputs. Numerical exam-

ples are considered to demonstrate the validity of the proposed method. Comparison with the tradition-

al Monte-Carlo and the polynomial chaos methods is made to demonstrate the computationally less-

demanding feature of the proposed method. 

 

Keywords: Dead-time process, Monte-Carlo, operational matrix, polynomial chaos, uncertainty 

quantification. 

 

1. INTRODUCTION 

 

In many engineering applications, there is a need to 

simulate the mathematical model of process under study 

in the form of time delay system, especially in the 

process control area [1-4]. To take into account the effect 

of the model mismatch and unknown inputs, unknown 

quantities are modeled stochastically with known distri-

butions (e.g., random variable, random process input).  

The most well-known method for studying the effect 

of stochastic uncertainties is the sampling based 

methods: Monte-Carlo (MC) and Quasi Monte-Carlo 

(QMC) methods [5-8], which relies on the sampling of 

stochastic quantities according to their distributions. 

Since for the MC method the estimation of the mean 

converges with the inverse square root of the number of 

samples, the problem of simulating these stochastic 

models with low computational effort is still a challenge. 

Recently, the generalized polynomial chaos (gPC) 

method [9-13] has been widely accepted as an alternative 

to MC thanks to its accuracy and low computational 

demand for systems having inputs with relatively high 

correlation lengths. For simulating stochastic systems 

with the gPC method, the random inputs of many 

systems involve random processes approximated by 

truncated Karhunen-Loeve (KL) expansions, and the 

input’s dimensionality depends on the correlation lengths 

of these processes. For input with low correlation length, 

the number of dimensions required for accurate represen-

tation can be large, which increases the computational 

demanding by the gPC method substantially. 

In the recent work [12], the authors introduced a 

spectral method for simulating single input single output 

(SISO) dead-time systems with stochastic parameter 

uncer-tainties without considering stochastic additive 

input. In this work, a hybrid spectral method based on 

[14] is proposed for the analysis of dead-time system 

with a small dead-time under both stochastic parameter 

uncertainties and additive input. This paper is organized 

as follows: In Section 2, information about the 

operational matrix method (OP) is introduced. In Section 

3, the hybrid spectral method, which combines the 

advantages of stochastic collocation (SC) [10] and the 

operational matrix method for a time delay system is 

described. Numerical examples are considered in Section 

4 to illustrate the usefulness of the proposed method. 

 

2. OPERATIONAL MATRIX: THEORY 

 

2.1. Orthogonal function and function approximation 

Definition [15]: Orthogonal functions with respect to 

a weighting function (t).υ  

A set of functions: 

{ ( )},
i
tψ   1,...,i N=  (1) 

are said to be orthonormal with respect to a non-negative 

weighting function ( )tυ  over the interval [0, ]T  if: 

0

1,
( ) ( ) ( )

0, .

T

i j

i j
t t t dt

i j
ψ ψ υ

=⎧
= ⎨

≠⎩
∫  (2) 
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Any function f(t) that can be absolutely integrated on 

the time interval can be expanded into a series form: 

1

( ) ( ),
if i

i

f t c tψ

∞

=

=∑  (3) 

where }{
1

( )
i i
tψ

∞

=

 is a set of orthogonal basis function on 

this interval with their corresponding weight (t)υ  and 

coefficients given by: 

0
( ) ( ) ( ) .

i

T

f ic f t t t dtψ υ= ∫  (4) 

In practice, only the first N terms of the series (4) are 

considered, i.e.,: 

1

( ) ( ) (t)
i

N
T

f i N f

i

f t c t Cψ

=

= =∑ ψ  (5) 

with the truncated basis set and coefficient vector as: 

1 1
[ ,..., ] ; ( ) [ ( ),..., ( )].

T T
f N N NC c c t t tψ ψ= =ψ  (6) 

More details on different types of orthogonal functions 

can be found in [16,17] and references therein. 

 

2.2. Orthogonal function and function approximation 

The operational matrix of integration is a square 

matrix obtained by integrating each element of the basis 

vector and expressing the result in terms of the original 

set of basis functions [15]: 

0
( ) ( ),

t
T

N i N
d A tτ τ =∫ ψ ψ   [0, ].t T∈  (7) 

Consider the one-fold integration defined as: 

0
( ) ( ) .

t

x t y dτ τ= ∫  (8) 

Equation (8) can be expressed in terms of operational 

matrix of integration as in [9]: 

( ) ( ) ( ) ( ) ( ),T T
x N i y Nx t C t AC t= =ψ ψ  (9) 

where Cx and Cy are column vectors of coefficient 

expansions for x(t) and y(t), respectively. 

Operational matrix of derivative similarly derives as: 

( ) / ( ).T

N d N
d t dt A t=ψ ψ  (10) 

Consider the following derivative in (11): 

( ) / .y t dx dt=  (11) 

The derivative in (11) can be rewritten by applying 

derivative operational matrix as: 

( ) ( ) ( ) ( ) ( ).T T
y N d x Ny t C t A C t= =ψ ψ  (12) 

The operational matrix of derivative and integration 

for each set of orthogonal functions can be obtained 

directly from its definitions in (7) and (10). The exact 

analytical formulations for these matrices for different 

orthogonal sets are tabulated in [16-18]. 

A SISO linear system can be described by the 

differential equation: 

0 0
/ ... / ...

n n m m
n ma d u dt a b d y dt b+ + = + +  (13) 

or by the transfer function: 

0
( ) (s) /U(s) ( ... ) /( ... ).n m

n o m
G s Y a s a b s b= = + + + +  

 (14) 

Utilizing the operational matrix of derivatives, the 

system in (13) can be rewritten in terms of the 

operational matrix AG: 

1

0
[ ( ) ... ] [ ( ) ... ],

n m

G n d m d o
A a A a I b A b I

−

= + + + +  (15) 

where I is the identity matrix. 

Thus, the spectral characteristic (or expansion coeffi-

cients) for plant‘s input and output are linked by: 

.y G uC A C=  (16) 

A closed-loop control system normally involves 

several elements, such as a controller and plant in Fig. 1. 

Hence, the closed-loop’s operation matrix can be found 

using block diagram algebra similar to the block algebra 

used for transfer function as described below [9]: 

Consider a dead-time plant in Fig. 1: 

(s)exp( ).G Ls−  (17) 

The delay-free part of system G(s) is represented by an 

operational matrix AG. 

Applying Pade approximation and operation matrix 

technique, the time delay can be represented by a 

operational matrix AP. 

The operational matrix for the ideal PID controller 

C(s) = Kp + Ki/s + Kds becomes APID = KpI+KiAi +KdAd. 

The operational matrix for the closed-loop system thus 

is: 

1( ) ,
c L L

A I A A
−

= +  (18) 

where AL= APID AG AP is the loop operational matrix. 

Thus, the closed-loop system has its input and output 

linked by: 

; ( ) ( ) ;

( ) ( ) ( ) .

T
y c R R

T T
Y c R

C A C R t t C

Y t t C t A C

= =

= =

ψ

ψ ψ

 (19) 

 

3. STOCHASTIC ANALYIS FOR A DEAD-TIME 

SYSTEM USING A HYBRID SPECTRAL 

METHOD 

 

3.1. Orthogonal function and function approximation 

In general, the parameters of the plant given by (14) ai 

( )R s
( )Y s

PID ( )( ) Ls
G s e

−

 

Fig. 1. Closed-loop system for a SISO dead-time 

system. 
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and bj are assumed to be independent random parameters 

with known distribution. The input R(t) is assumed to be 

a random process with given mean and covariance 

functions as mR(t) and 1 2
( , ).

R
t tκ  

Expanding the mean in the form of (5): 

( ) [ ( )] ( ) .
R

T

R N m
m t E R t t C= = ψ  (20) 

Similarly, the covariance function of the input can be 

expanded into a two dimensional series as: 

1 2 1 2

1 1

1 2

( , ) ( ) ( )

( ) ( ),
RR

N N

RR i j ij

i j

T
N K N

t t t t c

t C t

κ ψ ψ

= =

=

=

∑∑

ψ ψ

 (21) 

where the coefficient matrix 
RR

C
κ

 is defined as: 

11 1 1

, 1

1

1 2 1 2 1 2
0 0

[ ] ;

( , ) ( ) ( ) .

RR

j N

N
ij i j

N Nj NN

T T

ij RR i j

c c c

C c

c c c

c t t t t dt dt

κ

κ ψ ψ

=

⎡ ⎤
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎣ ⎦

= ∫ ∫

� �

� � �

� �  (22) 

Due to an assumption on the stochastic nature of 

parameters and the input, the output is a random process 

with spectral characteristics (coefficient expansions) of 

mean and covariance functions given by [9]: 

[ ] ;

{ ( ) } ,

y R

YY RR R R

m C m

T T

C K m m C

C E A C

C E A C C C A
κ

=

⎡ ⎤= +⎣ ⎦

 (23) 

or 

1 2 1 2

( ) ( ) ;

( , ) ( ) ( ).

Y

YY

T

Y N m

T

YY N K N

m t t C

t t t C tκ

=

=

ψ

ψ ψ

 (24) 

Random parameters of the system result in a random 

closed-loop operational matrix A
c
 in (23) and (24), the 

moment of which can be estimated by a stochastic 

collocation method, described in the next subsection. 

 

3.2. Stochastic collocation for an operational matrix 

Assume that a random operational matrix has the 

form: 

( ),A A= ξ  (25) 

where 
1 2

( , ,..., )
n

ξ ξ ξ=ξ  is a vector of independent  

random parameters with probability density function (pdf)  
 

( ) : .
i i i

ρ ξ
+

Γ → �  The joint pdf of ξ  is 
1

n

i

i

ρ

=

=∏ρ  with 
 

the support 
1

.

n

n

i

i=

≡ Γ ∈∏Γ �  For each random parame- 
 

ter ,
i

ξ  choose a suitable quadrature set ( ) ( )
1{ , } iqm m

i mwξ
=

 

according to the probability density so that one-dimen-

sional integration can be accurately approximated by: 

( ) ( )

1

( ) ( ) ( ) ,
i

i

q
m m

i i i i i i

i

A d A wξ ρ ξ ξ ξ
Γ

=

=∑∫  (26) 

where ( )m

i
ξ  is the mth node and ( )m

w  is the correspond-

ing quadrature weight for the ith random component. 

Construct a multi-dimensional cubature set by tensoriz-

ing the one-dimensional quadrature set over all the com-

bined multi-indexes 
1

( ,..., ).
n

j j  Since manipulation of 

the multi-indexes 1( ,..., )
n

j j  is cumbersome in practice, 

a single index is preferable for the manipulation of these 

equations. The multi-index is often replaced by a graded 

lexicographic order index j [10]. Since the probability 

density functions are the same as the weighting functions 

of the cubature, the moment of the random matrix is ap-

proximated by: 

1

1 1

1

( ) ( )( ) ( )
1 1

1 1

[ ] ( ) ( )

... ( ,..., )( ... ).
n

n n

n

qq
j jj j

n n

j j

E A A d

A w wξ ξ
= =

=

=

∫

∑ ∑

Γ
ξ ρ ξ ξ

 (27) 

The MATLAB suite OPQ can be used to obtain one-

dimensional quadrature sets and their corresponding 

orthogonal polynomials (polynomial chaos) with respect 

to different weights [19]. The sparse grid cubature can be 

used in (27) for system with large number of parameter 

uncertainty [15]. 

Note that the hybrid spectral method leads to a semi-

analytical relationship between the first two stochastic 

moments of the system’s input and output and thus can 

significantly reduce computational times in comparison 

with other methods. Discussion about advantages and 

disadvantages of other methods can be referenced from 

[10,14]. 

Remark 1: w( j) is the cubature weight and should not 

be confused with the weight function of an orthogonal 

set ( ).tυ  

Remark 2: The work in [12] considers only stochastic 

parameter uncertainties with standard distribution only 

(Gaussian and Uniform distribution), while the described 

method above can handle both stochastic parameter 

uncertainties of non-standard distribution and additive 

input. 

Remark 3: In the standard OP method [9,20], the 

moments of the random matrices in (23) and (24) are 

approximated by Neumann series instead of using 

cubature (collocation). However, since a Neumann series 

is used to approximate a random matrix, this approach is 

inherently restricted to small magnitudes of uncertainties 

in the delay free part of system. 

 

3.3. Parameterization of random process for MC/QMC 

and gPC methods 

Statistical analysis using either MC/QMC or gPC 

methods requires the finite dimensional representation of 

the random process (parameterization of random 

process). In other words, a random process with given 

mean (t)
X

μ  and covariance 1 2( , ):t tκ  

1

( ) ( ) ( ) .
d

X i i i

i

X t t tμ λ ϕ ξ

=

= +∑  (28) 

What truncated order d should be used in (28) depends 
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on the decay property of the eigenvalues in the expansion, 

which depends on correlation length property of the co-

variance function of the process. For a random process of 

low correlation length, hundreds of terms of the 

expansion (28) are required for simulating white noise, 

leading to a system with the dimensions of random space 

with an order in the hundreds. 

For the gPC method, the number of the cubature nodes 

increases exponentially with the dimension of random 

space. Hence, as the dimension of random space is in-

creased, the computational burden is increased. For the 

white noise input, the gPC method becomes infeasible 

since hundred random variables are needed.  

For the MC/QMC methods, the convergence rate does 

not severely depend on the dimension of random space. 

Hence, hundreds of random variables still can be used. 

However, the accuracy of QMC/MC method is low. 

Remark 4: For the hybrid method (proposed), this pa-

rameterization is not necessary due to algebraic relation-

ship between input and output in (23) and (24). Hence, 

the proposed leads to a lower dimension in random space. 

 

4. EXAMPLES 

 

In this section, several examples are studied to show 

the effectiveness of the proposed method.  

 

Example 1.a: IPDT with non white noise forcing 

Consider a stochastic analysis problem for an IPDT 

process, exp( s) / ,K L s−  in closed-loop feedback with a 

simple proportional controller: 1;
p

K = 0;
i

K = 0.
d

K =  

The gain K of the system is a random variable with a 

triangular distribution Tr(0.5, 1, 1.5). The time delay is 

deterministic L=1. The triangular distribution is given by 

the distribution function [21]: 

2

2

(x a) /(( )( )) if
( , , )

1 (b x) /(( )( )) if .

b a c a a x c
Tr a c b

b a c a c x b

⎧ − − − ≤ ≤⎪
= ⎨

− − − − ≤ ≤⎪⎩
 

 (29) 

The input R(t) is a random process with mean 

( ) 1( )
R

m t t=  and covariance 
1 2 1

( , ) 0.25exp( 2
RR

t t tκ = −  

2
).t−  For the operational matrix, a block pulse function 

is used for this particular example for the sake of ease of 

construction. A (3/3) Pade approximation was used in 

this example. Higher order expansion will not lead to any 

improvement [20]. The statistics (mean and variance) of 

the output estimated using the hybrid spectral method are 

shown in Fig. 2. The means and variances estimated by 

the gPC and QMC methods are also shown in this figure. 

Note that for the gPC and QMC methods, there is no 

need for Pade approximation for handling time delay. 

Computational times and simulation parameters for the 

obtained statistics of the output by these methods are all 

listed in Table 1. From Table 1 and Fig. 2, it can be seen 

that the results of the gPC method resemble those of the 

hybrid spectral method as the number of cubature nodes 

increase. However, as the number of cubature nodes 

increase, the computational demand also increases. The 

MC method required the most computational effort as 

expected. It can be seen in the tables and figures that the 

hybrid spectral method gives almost the same accuracy 

with much less computational effort than the other 

methods. Thus, the hybrid spectral method can analyze 

IPDT systems in a computationally effective manner. For 

statistical analysis, the gPC and QMC require a finite 

dimensional representation of a random process. Non-

canonical decomposition [22] is used in this example for 

parameterization of random process input. The number 

of basic functions for the proposed method can be 

increased until consistent result is obtained.  

 

Example 1.b: IPDT with white noise forcing 

In this example, the effect of order of Pade 

approximation in the proposed method is studied. Let us 

consider again the same IPDT system as in previous 

example with the same controller. Both gain and dead-

time of system are now deterministic. This example was 

also used in [20] for showing the effect of Pade 

approximation for a time delay system with stochastic 

input.  

Reference input is an ideal white Gaussian noise with 

zero mean and covariance 
1 2 1 2

( , ) ( ).
RR

t t t tκ δ= −  Assume 

that the gain K=1, the exact (analytical) steady state 

variance of the system output is given by [23]: 

0.5cos( ) /(1 sin( )).
ss
y

D L L= −  (30) 

Fig. 3 compares the analytical variances of system 

outputs under random white noise forcing and those by 

the proposed method with different order of Pade 

approximation versus the time delay L. The plots show 

that the low order Pade approximations provide a 

satisfactory approximation unless the time delay is 

somewhat significant. Note that this system does not 

have random parameter, hence for the proposed method 

the dimension of random space is zero. 1024 BPFs was 

used for obtaining the results by the propose method and 

there is no need to use the cubature since the dimension 

of random space is zero. It can be seen that high order 

Pade approximations will not lead to significant 
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Fig. 2. Means and variances of output for Example 1.a.
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improvement in accuracy. Hence, the (3/3) Pade approxi-

mation was used for all case studies in this work. 

Since the analytical result is only available for steady 

state, the accuracy of the proposed method in transient 

time is validated by the QMC method. The gPC method 

becomes computational intractable for this case as 

explained below.  

For the gPC and QMC methods, the parameterization 

of random input is necessary as explained in subsection 

3.3. For simulation in the transient regime, ideal white 

noise is parameterized as in (28) with 100 terms 

(d = 100). 

Thus, the dimension of random space is 100. If 5 

quadrature nodes is used per one random dimension, the 

gPC requires 5100 cubature nodes. This poses a numerical 

challenge because this means one has to simulate the 

system 5100 times. On the other hand, the QMC method 

does not severely depend on the dimension of random 

space. Fig. 4 shows the variances of system output for 

L=0.5. As seen from this figure, the proposed method 

gave quite acceptable result in both steady state and 

transient regimes. Note that when the number of samples 

is not enough (8000 samples), the QMC method yielded 

oscillatory result. 

Remark 5: Although the convergence rate of the 

MC/QMC methods does not severely depend on the 

dimension of random space, it still depends on the 

magnitude of the variance of output. Hence, for the IPDT 

system with large time delay, when the variance rises 

quickly (see Fig. 3), accurate results are hardly obtained.  

 

Example 2: FOPDT system 

To demonstrate the computational efficiency of the 

proposed method for statistical analysis, the following 

FOPDT system of a heated tank in [3] was considered. 

An FOPDT process, exp( Ls) /( s 1),T− +  is in closed-

loop feedback with a simple PI controller with 
p

K =  

2.5; 1.67;
i

K = 0.
d

K =  The time constant T and delay 

L are random variables with triangular distributions 

Tr(0.5,1,1.5) and Tr(0,0.25,0.5), respectively. The 

system input is band-limited white noise with mean 

( ) 1( )
R

m t t=  and covariance function 
1 2

( , )
RR

t tκ =  

1 2
0.25sinc(( )/(2 )),t t π−  where the sinc function is 

defined as: 

sin( ) /( ) elsewhere
sinc( )

1 for 0.

x x

x

x

π π⎧
= ⎨

=⎩
 (31) 

Example 1.a showed that both gPC and proposed 

methods require significantly less computation to 

achieve a given accuracy in comparison with the 

traditional QMC method when the input is not white 

noise. Therefore this example compares these two 

methods only. The means and variances obtained by both 

methods are shown in Fig. 5. The results showed that the 

proposed method is capable of predicting the statistical 

characteristics in an accurate and effective manner. 

 

Example 3: Open loop unstable FOPDT system 

An unstable FOPDT process, exp( Ls) /( s 1),T− +  is 

in the closed-loop feedback system with a simple PI 

controller for which: 18.18;
p

K = − 8.18;
i

K = − 0.
d

K =  

The time constant T and delay L are random variables 

with uniform distribution in the intervals [-15,-10] and 

[0.2,0.5], respectively. The input R(t) is a random 

process with mean ( ) 1( )
R

m t t=  and covariance function 
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Fig. 3. Steady state variances of output as a function of 

time delay for Example 1.b [20]. 
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1 2 1 2
( , ) 0.01exp( 10 | |).

RR
t t t tκ = − −  Note that the correl-

ation length of input is now 1/10 while in Example 1 the 

correlation length was 1/2. The statistics of the output 

estimated using the proposed and gPC methods are 

shown in Fig. 6. Computational times and simulation 

parameters for the obtained statistics of the output by 

proposed and gPC methods are all listed in Table 1. 

It is clear that if the gPC method is used with the same 

number of cubature nodes as in Example 2, it can not get 

accurate result. The same effect was observed in 

Examples 1.a and 2. It can be seen that the hybrid 

spectral method gives almost the same accuracy with 

much less computational effort than the gPC method. 

 

5. CONCLUSIONS 

 

A hybrid spectral method was proposed for analysis of 

stochastic SISO linear dead-time systems with both 

stochastic parameter uncertainties and additive input for 

the first time. The proposed hybrid method combined the 

advantages of operational matrix and collocation 

methods. It bypasses the computationally demanding 

parameterization of random forcing when predicting the 

statistical characteristics of the system output, and hence 

reduces the dimension of the random space. It also 

allows handling of systems with large parameter 

uncertainties, which is impossible for standard 

operational techniques [9]. However, due to an inherent 

limitation of Pade approximation, the proposed method 

restricts to the system with a relatively small dead-time. 

Since the computational need for the proposed system is 

substantially reduced in comparison with the MC and 

gPC methods, it is more suitable for the optimization of 

systems under the influence of stochastic perturbations, 

which will be incorporated in future work. 
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