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Stochastic Analysis of Dead-time Systems using a Hybrid Spectral Method

Pham Luu Trung Duong and Moonyong Lee*

Abstract: Control systems often operate in the presence of dead-time. However, in most works, these
dead-time systems are studied in a deterministic manner, which have low precision and reliability.
Many natural systems often suffer stochastic noise that causes fluctuations in their behavior, making
their responses deviate from nominal models. Therefore, it is important to investigate such statistical
characteristic of states (mean, variance, etc.) for those stochastic systems. This problem is often called
statistical analysis of a system. A hybrid spectral method represents a powerful numerical tool for sta-
tistical analysis of stochastic linear system. Thus, a hybrid spectral technique is proposed for statistical
analysis of the time delay system under affections of random parameters and inputs. Numerical exam-
ples are considered to demonstrate the validity of the proposed method. Comparison with the tradition-
al Monte-Carlo and the polynomial chaos methods is made to demonstrate the computationally less-
demanding feature of the proposed method.

Keywords: Dead-time process, Monte-Carlo, operational matrix, polynomial chaos, uncertainty

quantification.

1. INTRODUCTION

In many engineering applications, there is a need to
simulate the mathematical model of process under study
in the form of time delay system, especially in the
process control area [1-4]. To take into account the effect
of the model mismatch and unknown inputs, unknown
quantities are modeled stochastically with known distri-
butions (e.g., random variable, random process input).

The most well-known method for studying the effect
of stochastic uncertainties is the sampling based
methods: Monte-Carlo (MC) and Quasi Monte-Carlo
(QMC) methods [5-8], which relies on the sampling of
stochastic quantities according to their distributions.
Since for the MC method the estimation of the mean
converges with the inverse square root of the number of
samples, the problem of simulating these stochastic
models with low computational effort is still a challenge.

Recently, the generalized polynomial chaos (gPC)
method [9-13] has been widely accepted as an alternative
to MC thanks to its accuracy and low computational
demand for systems having inputs with relatively high
correlation lengths. For simulating stochastic systems
with the gPC method, the random inputs of many
systems involve random processes approximated by
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truncated Karhunen-Loeve (KL) expansions, and the
input’s dimensionality depends on the correlation lengths
of these processes. For input with low correlation length,
the number of dimensions required for accurate represen-
tation can be large, which increases the computational
demanding by the gPC method substantially.

In the recent work [12], the authors introduced a
spectral method for simulating single input single output
(SISO) dead-time systems with stochastic parameter
uncer-tainties without considering stochastic additive
input. In this work, a hybrid spectral method based on
[14] is proposed for the analysis of dead-time system
with a small dead-time under both stochastic parameter
uncertainties and additive input. This paper is organized
as follows: In Section 2, information about the
operational matrix method (OP) is introduced. In Section
3, the hybrid spectral method, which combines the
advantages of stochastic collocation (SC) [10] and the
operational matrix method for a time delay system is
described. Numerical examples are considered in Section
4 to illustrate the usefulness of the proposed method.

2. OPERATIONAL MATRIX: THEORY

2.1. Orthogonal function and function approximation
Definition [15]: Orthogonal functions with respect to
a weighting function v(t).
A set of functions:

{w;®)}, i=1..,N €))

are said to be orthonormal with respect to a non-negative
weighting function vo(¢) over the interval [0,7] if:

" (O (Do(t)d = Loi=j 2
[ viw ;o)di = 0 ir) )
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Any function f(t) that can be absolutely integrated on
the time interval can be expanded into a series form:

f(’)=ZC/L:V/i(7)a (3)
i=1

where {y,(n}", is a set of orthogonal basis function on
this interval with their corresponding weight o(t) and
coefficients given by:

¢, = [ fOw v 4

In practice, only the first N terms of the series (4) are
considered, i.e.,:

N
F@O =Y cpi)=wy®"C; (3)
i=1
with the truncated basis set and coefficient vector as:

Cr =lcrmey]'s Wy =[py (0, y (O] (6)

More details on different types of orthogonal functions
can be found in [16,17] and references therein.

2.2. Orthogonal function and function approximation

The operational matrix of integration is a square
matrix obtained by integrating each element of the basis
vector and expressing the result in terms of the original
set of basis functions [15]:

t
jowN(r)dr =4y, (), 1€]0,T) (7)
Consider the one-fold integration defined as:

0= [y )
x(n)= ), y(@)dr.

Equation (8) can be expressed in terms of operational
matrix of integration as in [9]:

(1) =(C) Wy ()= (4C) wy @), 9

where C, and C, are column vectors of coefficient
expansions for x(f) and y(¢), respectively.
Operational matrix of derivative similarly derives as:

dyy (0)/dt = 4wy (1). (10)
Consider the following derivative in (11):
y(t)=dx/dt. (11)

The derivative in (11) can be rewritten by applying
derivative operational matrix as:

(@) =(C) Wy ()= (4,C) vy @) (12)

The operational matrix of derivative and integration
for each set of orthogonal functions can be obtained
directly from its definitions in (7) and (10). The exact
analytical formulations for these matrices for different
orthogonal sets are tabulated in [16-18].

A SISO linear system can be described by the
differential equation:

()
R(s) @ G(S)@*m "

Fig. 1. Closed-loop system for a SISO dead-time
system.

a, d"uldt" +..+ay=>b,d"y/dt" +...+b, (13)
or by the transfer function:

G(s)=Y(s)/U(s) = (a,s" +...+a,) (b, s" +...+ by).
(14)
Utilizing the operational matrix of derivatives, the
system in (13) can be rewritten in terms of the
operational matrix Ag:

Ac =[a,(A))" +..+apI] ' [b, (4)" +...+b,1], (15)

where I is the identity matrix.
Thus, the spectral characteristic (or expansion coeffi-
cients) for plant‘s input and output are linked by:

C, = 45C,. (16)

A closed-loop control system normally involves
several elements, such as a controller and plant in Fig. 1.
Hence, the closed-loop’s operation matrix can be found
using block diagram algebra similar to the block algebra
used for transfer function as described below [9]:

Consider a dead-time plant in Fig. 1:

G(s)exp(—Ls). (17)

The delay-free part of system G(s) is represented by an
operational matrix Ag.

Applying Pade approximation and operation matrix
technique, the time delay can be represented by a
operational matrix Ap.

The operational matrix for the ideal PID controller
C(s) =K, + K/s + K;s becomes Ap;p = K, [+K:A; +K4,.

The operational matrix for the closed-loop system thus
is:

A, =(I+4,)"4, (18)

where A;= Ap;p A Ap is the loop operational matrix.
Thus, the closed-loop system has its input and output
linked by:

C,=4,Cr;  RO=w(®) Cp;

T T (19)
Y(0)=y() Cy =w(1) A.Cp.
3. STOCHASTIC ANALYIS FOR A DEAD-TIME
SYSTEM USING A HYBRID SPECTRAL
METHOD

3.1. Orthogonal function and function approximation
In general, the parameters of the plant given by (14) a;
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and b; are assumed to be independent random parameters
with known distribution. The input R(¢) is assumed to be
a random process with given mean and covariance
functions as mg(f) and K, (#,1,).

Expanding the mean in the form of (5):

mg(t) = E[R(] =y () C,,,. (20)

Similarly, the covariance function of the input can be
expanded into a two dimensional series as:

Kpr(tsty) = ii% (1) ;(t,)ey
i=1 j=I 21
=yy( )TCKRR‘I’N(fz),
where the coefficient matrix C,. ~ is defined as:
Qe Oy
Crege =l T =| 3 3 ;

eyt O (22)

T (T
Cj = J.o Io Kpr (> 12 () (8 )yt

Due to an assumption on the stochastic nature of
parameters and the input, the output is a random process
with spectral characteristics (coefficient expansions) of
mean and covariance functions given by [9]:

Cp, = ELACIC
23
C,,, = E[AC {Cx o +Conp Cony )T}ACT], 23)
or
my () =y (@) C,,, o

Kyy (0,1) = Wy () Ckyy Wy (12)-

Random parameters of the system result in a random
closed-loop operational matrix 4. in (23) and (24), the
moment of which can be estimated by a stochastic
collocation method, described in the next subsection.

3.2. Stochastic collocation for an operational matrix
Assume that a random operational matrix has the
form:

A= A@Q), (25)

where &=(&,5,,...,&,) is a vector of independent
random parameters with probability density fun}gtion (pdb)

pi(&):T; > R*. Thejoint pdfof & is p=]]p, with
the support I' = HF,- e R”. For each randolr:ri parame-

i=1
ter &, choose a suitable quadrature set {£&",w"™}%_
according to the probability density so that one-dimen-
sional integration can be accurately approximated by:

qi
[ A& =Y A w™, (26)
! i=1

where & is the m" node and w™ is the correspond-
ing quadrature weight for the i random component.
Construct a multi-dimensional cubature set by tensoriz-
ing the one-dimensional quadrature set over all the com-
bined multi-indexes (ji,...,j,). Since manipulation of
the multi-indexes (ji,...,j,) is cumbersome in practice,
a single index is preferable for the manipulation of these
equations. The multi-index is often replaced by a graded
lexicographic order index j [10]. Since the probability
density functions are the same as the weighting functions
of the cubature, the moment of the random matrix is ap-
proximated by:

E[4]= [ A@)pE)d

& ) U G o Gy D
=Y LD AEI L E I L, I,

A=l Jjy=l

The MATLAB suite OPQ can be used to obtain one-
dimensional quadrature sets and their corresponding
orthogonal polynomials (polynomial chaos) with respect
to different weights [19]. The sparse grid cubature can be
used in (27) for system with large number of parameter
uncertainty [15].

Note that the hybrid spectral method leads to a semi-
analytical relationship between the first two stochastic
moments of the system’s input and output and thus can
significantly reduce computational times in comparison
with other methods. Discussion about advantages and
disadvantages of other methods can be referenced from
[10,14].

Remark 1: w7 is the cubature weight and should not
be confused with the weight function of an orthogonal
set v(¢).

Remark 2: The work in [12] considers only stochastic
parameter uncertainties with standard distribution only
(Gaussian and Uniform distribution), while the described
method above can handle both stochastic parameter
uncertainties of non-standard distribution and additive
input.

Remark 3: In the standard OP method [9,20], the
moments of the random matrices in (23) and (24) are
approximated by Neumann series instead of using
cubature (collocation). However, since a Neumann series
is used to approximate a random matrix, this approach is
inherently restricted to small magnitudes of uncertainties
in the delay free part of system.

3.3. Parameterization of random process for MC/QMC
and gPC methods

Statistical analysis using either MC/QMC or gPC

methods requires the finite dimensional representation of

the random process (parameterization of random

process). In other words, a random process with given

mean gy (t) and covariance x(#,7,):

d
X(0) = py (1) + D A9 (DE.. (28)
i=1

What truncated order d should be used in (28) depends
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on the decay property of the eigenvalues in the expansion,
which depends on correlation length property of the co-
variance function of the process. For a random process of
low correlation length, hundreds of terms of the
expansion (28) are required for simulating white noise,
leading to a system with the dimensions of random space
with an order in the hundreds.

For the gPC method, the number of the cubature nodes
increases exponentially with the dimension of random
space. Hence, as the dimension of random space is in-
creased, the computational burden is increased. For the
white noise input, the gPC method becomes infeasible
since hundred random variables are needed.

For the MC/QMC methods, the convergence rate does
not severely depend on the dimension of random space.
Hence, hundreds of random variables still can be used.
However, the accuracy of QMC/MC method is low.

Remark 4: For the hybrid method (proposed), this pa-
rameterization is not necessary due to algebraic relation-
ship between input and output in (23) and (24). Hence,
the proposed leads to a lower dimension in random space.

4. EXAMPLES

In this section, several examples are studied to show
the effectiveness of the proposed method.

Example 1.a: IPDT with non white noise forcing

Consider a stochastic analysis problem for an IPDT
process, Kexp(—Ls)/s, in closed-loop feedback with a
simple proportional controller: K, =1; K; =0; K, =0.
The gain K of the system is a random variable with a
triangular distribution 7#(0.5, 1, 1.5). The time delay is
deterministic L=1/. The triangular distribution is given by
the distribution function [21]:

if a<x<c

(x=2)* (b~ a)(c~a))
1-(b-x)* ((b—a)(c—a)) if c<x<b.
(29)
The input R(f) is a random process with mean
me () =1(¢) and covariance &gy (#,2,)=0.25 exp(—2|t]
—t, |). For the operational matrix, a block pulse function
is used for this particular example for the sake of ease of
construction. A (3/3) Pade approximation was used in
this example. Higher order expansion will not lead to any
improvement [20]. The statistics (mean and variance) of
the output estimated using the hybrid spectral method are
shown in Fig. 2. The means and variances estimated by
the gPC and QMC methods are also shown in this figure.
Note that for the gPC and QMC methods, there is no
need for Pade approximation for handling time delay.
Computational times and simulation parameters for the
obtained statistics of the output by these methods are all
listed in Table 1. From Table 1 and Fig. 2, it can be seen
that the results of the gPC method resemble those of the
hybrid spectral method as the number of cubature nodes
increase. However, as the number of cubature nodes
increase, the computational demand also increases. The

Tr(a,c,b) ={

2

M0 , S~ B

------- QMC(Halton sampling)
o Proposed

2PC(250 Cub nodes) [12]

£PC(375 Cub nodes)[12]

gPC(625 Cub nodes)[12]
T

0 2 4 6 8 10

-1

0.41

Dy(t) Ve "‘\\/\ ------- QMC (Halton sampling)

02t Proposed ]
. gPC(250 Cub nodes)[12]
gPC(375 Cub nodes)[12]
0 . N gPC(625 Cub_nodes)[12]

0 2 4 6 8 10
t[sec]

Fig. 2. Means and variances of output for Example 1.a.

MC method required the most computational effort as
expected. It can be seen in the tables and figures that the
hybrid spectral method gives almost the same accuracy
with much less computational effort than the other
methods. Thus, the hybrid spectral method can analyze
IPDT systems in a computationally effective manner. For
statistical analysis, the gPC and QMC require a finite
dimensional representation of a random process. Non-
canonical decomposition [22] is used in this example for
parameterization of random process input. The number
of basic functions for the proposed method can be
increased until consistent result is obtained.

Example 1.b: IPDT with white noise forcing

In this example, the effect of order of Pade
approximation in the proposed method is studied. Let us
consider again the same IPDT system as in previous
example with the same controller. Both gain and dead-
time of system are now deterministic. This example was
also used in [20] for showing the effect of Pade
approximation for a time delay system with stochastic
input.

Reference input is an ideal white Gaussian noise with
zero mean and covariance kpg(4,%,) = 6(f; —t,). Assume
that the gain K=/, the exact (analytical) steady state
variance of the system output is given by [23]:

D, =0.5cos(L)/(1-sin(L)). (30)

Fig. 3 compares the analytical variances of system
outputs under random white noise forcing and those by
the proposed method with different order of Pade
approximation versus the time delay L. The plots show
that the low order Pade approximations provide a
satisfactory approximation unless the time delay is
somewhat significant. Note that this system does not
have random parameter, hence for the proposed method
the dimension of random space is zero. 1024 BPFs was
used for obtaining the results by the propose method and
there is no need to use the cubature since the dimension
of random space is zero. It can be seen that high order
Pade approximations will not lead to significant
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Proposed (OP) with 2nd order Pade app

""" Proposed (OP) with 3rd order Pade app.

* Proposed (OP) with 4th order Pade app.
D 10f|— Analytical

. 1 1.
0 0.5 L 5

Fig. 3. Steady state variances of output as a function of
time delay for Example 1.b [20].

improvement in accuracy. Hence, the (3/3) Pade approxi-
mation was used for all case studies in this work.

Since the analytical result is only available for steady
state, the accuracy of the proposed method in transient
time is validated by the QMC method. The gPC method
becomes computational intractable for this case as
explained below.

For the gPC and QMC methods, the parameterization
of random input is necessary as explained in subsection
3.3. For simulation in the transient regime, ideal white
noise is parameterized as in (28) with 100 terms
(d=100).

Thus, the dimension of random space is 100. If 5
quadrature nodes is used per one random dimension, the
gPC requires 5'” cubature nodes. This poses a numerical
challenge because this means one has to simulate the
system 5' times. On the other hand, the QMC method
does not severely depend on the dimension of random
space. Fig. 4 shows the variances of system output for
L=0.5. As seen from this figure, the proposed method
gave quite acceptable result in both steady state and
transient regimes. Note that when the number of samples
is not enough (8000 samples), the QMC method yielded
oscillatory result.

0.8 o ”
0.7
0.61
0.5¢
D (1)
Y7041 QMC method (16000 Samples)| 1
| Y A QMC method (8000 samples)
’ — Proposed
02t | |- DySS(Eq. 30)
0.1t
00 1 3 4 5
t[sec.]

Fig. 4. Variances of system output for Example 1.b.

Remark 5: Although the convergence rate of the
MC/QMC methods does not severely depend on the
dimension of random space, it still depends on the
magnitude of the variance of output. Hence, for the IPDT
system with large time delay, when the variance rises
quickly (see Fig. 3), accurate results are hardly obtained.

Example 2: FOPDT system

To demonstrate the computational efficiency of the
proposed method for statistical analysis, the following
FOPDT system of a heated tank in [3] was considered.
An FOPDT process, exp(—Ls)/(Ts+1), is in closed-
loop feedback with a simple PI controller with K, =
2.5; K;=1.67; K; =0. The time constant 7 and delay
L are random variables with triangular distributions
7r(0.5,1,1.5) and 77(0,0.25,0.5), respectively. The
system input is band-limited white noise with mean

mp(t)=1(t) and covariance function Kpy(f,%)=
0.25sinc((t, —1,)/(27)), where the sinc function is
defined as:
. sin(zx)/(zwx) elsewhere
sinc(x) = (31)
I for x=0.

Example 1.a showed that both gPC and proposed
methods require significantly less computation to
achieve a given accuracy in comparison with the
traditional QMC method when the input is not white
noise. Therefore this example compares these two
methods only. The means and variances obtained by both
methods are shown in Fig. 5. The results showed that the
proposed method is capable of predicting the statistical
characteristics in an accurate and effective manner.

Example 3: Open loop unstable FOPDT system

An unstable FOPDT process, exp(—Ls)/(Ts+1), is
in the closed-loop feedback system with a simple PI
controller for which: K, = -18.18; K; =-8.18; K, =0.
The time constant T and delay L are random variables
with uniform distribution in the intervals [-15,-10] and
[0.2,0.5], respectively. The input R(z) is a random
process with mean my(¢#) =1(¢) and covariance function

1
0 gPC (375 cub. nodes) [12]
] I R p gPC (625 cub. nodes) [12]
My(t) — Proposed
00 2 4 6 8 10
0.3
0.2
D) gPC (375 cub. nodes) [12]
0.1f /| gPC (625 cub. nodes) [12]
— Proposed
00 2 4 6 8 10
t[sec.]

Fig. 5. Means and variances of output for Example 2.
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o~

/O
M, (1]
y — Proposed
gPC(3125 cub. nodes) [12]

— gPC(625 cub. nodes) [12]

0 5 10 15 20

0.03

0.02/ j i [— Proposed

D (t %E: gPC(3125 cub. nodes) [12]
il ‘*’\ ~=== gPC(625 cub. nodes) [12]

\r

O0 5 10 15 20
t[sec]

Fig. 6. Means and variances of output for Example 3.

Table 1. Computation time and simulation parameters.

Simulation parameters
Example QMC gPC Proposefi
(Samples) | (Cub. nodes) | (NO- of basis &
P ’ cub. nodes)
la 7000 250, 375 512&5
) 625
8000 .
1.b 16000 (intractable) 1024 & 0
2 N/A 375, 625 512 &25
3 N/A 625, 3125 1024 & 25
Computation time (sec.)
Example QMC gPC Proposed
19.5,25.5
la 409.1 41.0 2.8
455.5
1.b 899.9 N/A 3.1
2 N/A 26.1,45.8 14.2
3 N/A 46.9, 208.5 17.5

Krr(t,1,)=0.0lexp(-10 |7, —¢, |). Note that the correl-
ation length of input is now 1/10 while in Example 1 the
correlation length was 1/2. The statistics of the output
estimated using the proposed and gPC methods are
shown in Fig. 6. Computational times and simulation
parameters for the obtained statistics of the output by
proposed and gPC methods are all listed in Table 1.

It is clear that if the gPC method is used with the same
number of cubature nodes as in Example 2, it can not get
accurate result. The same effect was observed in
Examples 1.a and 2. It can be seen that the hybrid
spectral method gives almost the same accuracy with
much less computational effort than the gPC method.

5. CONCLUSIONS

A hybrid spectral method was proposed for analysis of
stochastic SISO linear dead-time systems with both
stochastic parameter uncertainties and additive input for
the first time. The proposed hybrid method combined the
advantages of operational matrix and collocation
methods. It bypasses the computationally demanding

parameterization of random forcing when predicting the
statistical characteristics of the system output, and hence
reduces the dimension of the random space. It also
allows handling of systems with large parameter
uncertainties, which is impossible for standard
operational techniques [9]. However, due to an inherent
limitation of Pade approximation, the proposed method
restricts to the system with a relatively small dead-time.
Since the computational need for the proposed system is
substantially reduced in comparison with the MC and
gPC methods, it is more suitable for the optimization of
systems under the influence of stochastic perturbations,
which will be incorporated in future work.
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