

ON 1-DIMENSIONAL SHEAVES ON PROJECTIVE PLANE
A TALK AT THE WORKSHOP “HIGGS BUNDLES AND HITCHIN SYSTEM – VBAC2016”
CENTRE INTERFACULTAIRE BERNOULLI, LAUSANNE

OLEKSANDR IENA

ABSTRACT. Let M be the Simpson moduli space of semistable sheaves on the projective plane with fixed linear Hilbert polynomial $P(m) = dm + c$. A generic sheaf in M is a vector bundle on its Fitting support, which is a planar projective curve of degree d . The sheaves that are not vector bundles on their support constitute a closed subvariety M' in M .

We study the geometry of M' in the case of Hilbert polynomials $dm - 1$, $d > 3$, and demonstrate that M' is a singular variety of codimension 2 in M .

We speculate on how the question we study is related to recompactifying of the Simpson moduli spaces by vector bundles.

CONTENTS

0. Introduction	1
1. First examples	2
2. Moduli spaces $M_{dm-1}(\mathbb{P}_2)$	3
3. Singular sheaves in M_{00}	3
4. Speculations on recompactifying the Simpson moduli spaces	4
References	5

0. INTRODUCTION

Let \mathbb{k} be an algebraically closed field of characteristic zero, say \mathbb{C} . Let V be a vector space over \mathbb{k} of dimension 3, and let $\mathbb{P}_2 = \mathbb{P}V$ be the corresponding projective plane.

Definition 0.1. *A 1-dimensional sheaf \mathcal{F} on \mathbb{P}_2 is a pure coherent with $\dim \text{Supp } \mathcal{F} = 1$, i. e., $C = \text{Supp } \mathcal{F} \subseteq \mathbb{P}_2$ is a curve.*

Since purity implies torsion-freeness on support and since torsion free sheaves on smooth curves are locally free, a generic 1-dimensional sheaf is a vector bundle on an algebraic curve.

One can see (cf. [14]) that 1-dimensional sheaves on \mathbb{P}_2 are in one-to-one correspondence with the pairs (E, f) , where $E = \bigoplus \mathcal{O}_{\mathbb{P}_2}(a_i)$ is a direct sum of line bundles on \mathbb{P}_2 and $E \otimes \mathcal{O}_{\mathbb{P}_2}(-1) \xrightarrow{f} E$ is an injective morphism of sheaves.

For a sheaf \mathcal{F} , let $P(m) = P_{\mathcal{F}}(m)$ be its Hilbert polynomial. Its degree equals the dimension of the support of \mathcal{F} , so 1-dimensional sheaves have linear Hilbert polynomials $dm + c$, $d, m \in \mathbb{Z}$.

Let $M = M_{dm+c}(\mathbb{P}_2)$ be the Simpson moduli space of semi-stable sheaves on \mathbb{P}_2 with Hilbert polynomial $dm + c$.

Recall that \mathcal{F} is called semistable resp. stable if it is pure and for every proper subsheaf $\mathcal{E} \subseteq \mathcal{F}$ with $P_{\mathcal{E}}(m) = d'm + c'$ it holds $c'/d' \leq c/d$ resp. $c'/d' < c/d$.

Properties of M .

- M is projective, irreducible, locally factorial, $\dim M = d^2 + 1$ (Le Potier [7]). If $\gcd(d, c) = 1$, M is a fine moduli space, there are only stable sheaves, M is smooth (Le Potier [7]).

Date: January 14, 2016.

2010 Mathematics Subject Classification. 14D20.

Key words and phrases. Simpson moduli spaces, coherent sheaves, vector bundles on curves, singular sheaves.

- Canonical singularities for $\gcd(d, c) \neq 1$ (Woolf [13]).
- For small d one has
 - the Betti numbers (Choi, Chung, Maican [1], [2], [3]);
 - description of M in terms of locally closed strata (Drézet, Maican [4], [10], [11]).
- Isomorphisms:
 - an obvious one $M_{dm+c} \cong M_{dm+c+d}$, $\mathcal{F} \mapsto \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_2}(1)$;
 - a non-obvious one $M_{dm+c} \cong M_{dm-c}$, $\mathcal{F} \mapsto \mathcal{E}xt^1(\mathcal{F}, \omega_{\mathbb{P}_2})$ (Maican [9])
- $M_{dm+c} \cong M_{d'm+c'}$ iff $d = d'$ and $c = \pm c' \pmod{d}$ (Woolf [13]).

Definition 0.2. A 1-dimensional sheaf \mathcal{F} is called singular if it is locally free on its support.

Let $M' \subseteq M$ be the closed subvariety of singular sheaves. If M' is non-empty, then $M \setminus M'$ is a space of vector bundles on support and M is its compactification. Since $\text{codim}_M M' > 1$ in general, this compactification is not maximal.

Questions.

- Study M' .
- Find a maximal compactification with a geometric meaning.
- Find a maximal compactification by vector bundles (on support).

We restrict ourselves to the case $\gcd(d, c) = 1$, i. e., to the case of the moduli spaces of isomorphism classes.

1. FIRST EXAMPLES

Trivial examples.

- A sheaf \mathcal{F} belongs to $M_{m+1}(\mathbb{P}_2)$ if and only $\mathcal{F} \cong \mathcal{O}_L$ for a line $L \subseteq \mathbb{P}_2$.
- A sheaf \mathcal{F} belongs to $M_{m+1}(\mathbb{P}_2)$ if and only $\mathcal{F} \cong \mathcal{O}_C$ for a conic $C \subseteq \mathbb{P}_2$.

In these cases $M' =$.

A non-trivial example. A sheaf \mathcal{F} belongs to $M = M_{3m-1}(\mathbb{P}_2)$ if and only if it is isomorphic to the ideal sheaf of a point p on a cubic planar curve $C \subseteq \mathbb{P}_2$, i. e., there is an exact sequence

$$0 \rightarrow \mathcal{F} \rightarrow \mathcal{O}_C \rightarrow \mathcal{O}_{\{p\}} \rightarrow 0.$$

Then M is isomorphic to the universal cubic curve

$$\{(p, C) \mid p \in C, \quad C \text{ is a cubic curve in } \mathbb{P}_2\}.$$

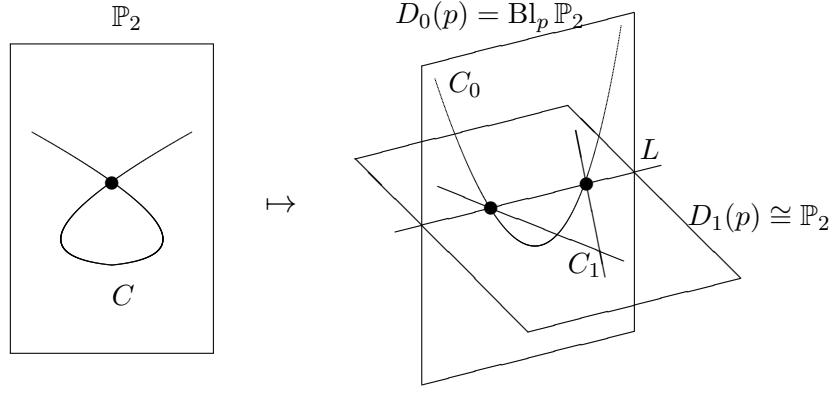
\mathcal{F} is singular iff $\mathcal{F}_p \not\cong \mathcal{O}_{C,p}$ iff $p \in \text{Sing } C$, hence M' is the universal singular locus

$$\{(p, C) \mid p \in \text{Sing } C, \quad C \text{ is a cubic curve in } \mathbb{P}_2\},$$

which is a smooth subvariety of codimension 2 in M .

A construction that interprets $\text{Bl}_{M'} M$ as a compactification of $M \setminus M'$ by vector bundles on curves in reducible surfaces $D(p)$ was given in [6]. A singular sheaf $\tilde{\mathcal{F}}$ given by $p \in C$ is substituted by sheaves on curves $C_0 \cup C_1 \subseteq D(p)$.

The surface $D(p)$ consists of two irreducible components $D_0(p) \cup D_1(p)$, where $D_0(p) = \text{Bl}_p \mathbb{P}_2$ is the blow up of \mathbb{P}_2 at p and $D_1(p)$ is a projective plane attached to $D_0(p)$ along the exceptional line.



This construction is very explicit and uses heavily the properties of M' , which motivated us to study the subvarieties of singular sheaves in the Simpson moduli spaces for Hilbert polynomials $dm + c$, $d \geq 4$.

2. MODULI SPACES $M_{dm-1}(\mathbb{P}_2)$

We consider the moduli spaces $M = M_{dm-1}(\mathbb{P}_2)$, $d \geq 4$. Their description in terms of locally closed strata, each of which is described as a quotient, is given in [4], [10], [11]. For an arbitrary d one has a good understanding [8] of the open Brill-Noether locus

$$M_0 = \{\mathcal{F} \in M \mid h^0(\mathcal{F}) = 0\}.$$

$\mathcal{F} \in M_0$ if and only if \mathcal{F} has a locally free resolution

$$0 \rightarrow \mathcal{E}_1 \xrightarrow{A} \mathcal{E}_0 \rightarrow \mathcal{F} \rightarrow 0, \quad \mathcal{E}_1 = \mathcal{O}_{\mathbb{P}_2}(-3) \oplus (d-2)\mathcal{O}_{\mathbb{P}_2}(-2), \quad \mathcal{E}_0 = (d-1)\mathcal{O}_{\mathbb{P}_2}(-1)$$

with $A = \begin{pmatrix} Q \\ \Phi \end{pmatrix}$ such that Q is a $1 \times (d-1)$ of quadratic forms and Φ is a stable Kronecker module, i. e., a $(d-2) \times (d-1)$ matrix of linear forms that is not equivalent under the action of $\text{GL}_{d-2}(\mathbb{k}) \times \text{GL}_{d-1}(\mathbb{k})$ to a matrix with a zero block of size $j \times (d-1-j)$, $j = 1, \dots, d-2$.

This describes M_0 as a quotient

$$\{A = \begin{pmatrix} Q \\ \Phi \end{pmatrix} \text{ as above}\} / \text{Aut}(\mathcal{E}_1) \times \text{Aut}(\mathcal{E}_0)$$

with the induced map to the quotient space of the stable Kronecker modules Φ

$$M_0 \rightarrow N, \quad N = N(3; d-2, d-1) = \{\Phi\} / \text{GL}_{d-2}(\mathbb{k}) \times \text{GL}_{d-1}(\mathbb{k}).$$

Taking all matrices A as above (not necessarily injective), one gets a projective quotient $\mathbb{B} = \{A\}^{ss} / \text{Aut}(\mathcal{E}_1) \times \text{Aut}(\mathcal{E}_0)$, with a map $\mathbb{B} \rightarrow N$, which is a projective bundle associated to a vector bundle of rank $3d$ over N (cf. [8]).

Consider an open subvariety $N_0 \subseteq N$ corresponding to Φ with coprime maximal minors. Then N_0 is isomorphic to an open subvariety $H_0 \subseteq \mathbb{P}_2^{[l]}$, $l = (d-1)(d-2)/2$, in the Hilbert scheme of l points on \mathbb{P}_2 that do not lie on a curve of degree $d-3$. The class of $[\Phi]$ is sent to the zero scheme of its maximal minors.

Put $M_{00} = \mathbb{B}|_{N_0}$, then $\text{codim}_M M \setminus M_0 \geq 2$ as shown in [14].

$\mathcal{F} \in M_{00}$ if and only if \mathcal{F} is a twisted ideal sheaf of $Z \in H_0$ on $C = \text{Supp } \mathcal{F}$:

$$0 \rightarrow \mathcal{F} \rightarrow \mathcal{O}_C(d-3) \rightarrow \mathcal{O}_Z \rightarrow 0.$$

The fibre over $[\Phi] \in N_0$ can be interpreted as curves of degree d through $Z \in H_0$ that corresponds to $[\Phi]$ under the isomorphism $N_0 \cong H_0$. Thus M_{00} can be seen as an open subvariety of the Hilbert flag scheme $H(l, d)$ of l points on a curve of degree d .

3. SINGULAR SHEAVES IN M_{00}

The results in this section are obtained in [5] together with Alain Leytem, a PhD student of Martin Schlichenmaier at the University of Luxembourg.

Let us mention some necessary conditions for $\mathcal{F} \in M_{00}$ to be singular.

- $C = \text{Supp } \mathcal{F}$ must be singular as torsion free sheaves on a smooth curves are locally free.

- As \mathcal{F} is a twisted ideal sheaf of $Z \subseteq C$, \mathcal{F} can only be singular at points from Z , thus $Z \cap \text{Sing } C \neq \emptyset$ if \mathcal{F} is singular.

Claim. *If Z consists of l different points, then \mathcal{F} is singular if and only if $Z \cap \text{Sing } C \neq \emptyset$.*

Indeed, \mathcal{F} is singular if and only if there exists $p \in Z$ with $\mathcal{F}_p \not\cong \mathcal{O}_{C,p}$, which, in turn, holds if and only if there is a point $p \in Z \cap \text{Sing } C$.

Let now $Z = \bigsqcup Z_i$, where Z_i is a (fat) point at $p_i \in \mathbb{P}_2$. Assume that for a given i , Z_i is a curvilinear point that in some local coordinates x, y at p_i is given as $Z(x - h(y), y^n)$. Let (C_i, p_i) be the germ of the smooth curve $C_i = Z(x - h(y))$.

Claim. *\mathcal{F} is non-singular at $p_i \in \text{Sing } C$ if and only if $(C, p_i) \cap (C_i, p_i) = (Z_i, p_i)$ (intersection of germs of curves).*

Proof. Straightforward: write $C = Z(\det \begin{pmatrix} x-h(y) & y^n \\ u(y) & v(x,y) \end{pmatrix})$ and study when the ideal of $Z_i \subseteq C$ is 1-generated. \square

If Z_i is a double point on a line L , then \mathcal{F} is non-singular at $p_i \in \text{Sing } C$ iff the tangent cone of C at p_i consists of two lines different from L . This shows that the sheaves singular at double points are limits of the sheaves singular at simple points.

Now fix a basis $(x_0, x_1, x_2) \in V^*$, assume $p_1 = \langle 1, 0, 0 \rangle = Z(x_1, x_2)$, and assume that Z contains at most 1 fat point and this fat point can only be a double point. Then the requirement for \mathcal{F} to be singular at p_1 imposes 2 linear independent conditions on C (independent from the conditions imposed by the condition $Z \subseteq C$):

- vanishing of the coefficients of the monomials $x_0^{d-1}x_1, x_0^{d-1}x_2$ in the equation of C if $Z_1 = p_1$ is a simple point;
- vanishing of the coefficients of the monomials $x_0^{d-1}x_1, x_0^{d-2}x_2^2$ in the equation of C if $Z_1 = Z(x_1, x_2^2)$ is a double point.

The imposed conditions are independent because Z does not lie on a curve of degree $d - 3$.

We conclude that for $M'_{00} = M_{00} \cap M' \subseteq M_{00} \rightarrow N_0 \cong H_0$, the fibre over the locus H_c of the configurations (l different points) is a union of l linear subspaces of codimension 2 in \mathbb{P}_{3d-1} (the fibre of $M_{00} \rightarrow N_0$). The fibre over

$$H_1 = \{Z \mid \text{with exactly 1 fat point}\}$$

is a union of $l - 1$ linear subspaces of codimension 2.

Conclusion. Fibres of M'_{00} over $N_c \sqcup N_1 \cong H_c \sqcup H_1$ are singular of codimension 2. Therefore, M'_{00} is singular of codimension 2 in M_{00} . Since $\text{codim}_M M \setminus M_{00} \geq 2$ (Yuan, [14]), we obtain the following theorem.

Theorem. *M' is singular of codimension 2 in M .*

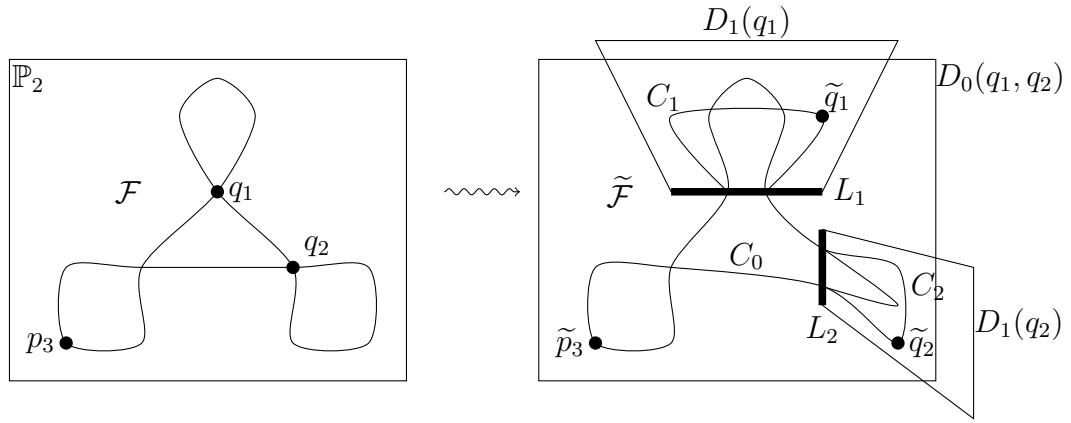
The restriction $M'_{00}|_{N_c}$ is a family of arrangements of linear subspaces of codimension 2 in \mathbb{P}_{3d-1} .

4. SPECULATIONS ON RECOMPACTIFYING THE SIMPSON MODULI SPACES

Aim. Interpret the blow-up

$$\text{Bl}_{M'} M \rightarrow M$$

as a process that substitutes a singular sheaf $\mathcal{F} \in M_{00}|_{H_c}$ given by $Z \subseteq C$ with non-empty $Z \cap \text{Sing } C = \{q_1, \dots, q_r\}$ by sheaves $\tilde{\mathcal{F}}$ on a curve $C' = C_0 \cup C_1 \cup \dots \cup C_r$ in a reduced surface $D(q_1, \dots, q_r)$ obtained by blowing up the points q_1, \dots, q_r and attaching to the exceptional lines L_1, \dots, L_r surfaces $D_1(q_i) \cong \mathbb{P}_2$ such that C_0 is the proper transform of C in $D_0(q_1, \dots, q_r) = \text{Bl}_{\{q_1, \dots, q_r\}} \mathbb{P}_2$ and $C_i \subseteq D_1(q_i)$. $\tilde{\mathcal{F}}$ is a twisted ideal sheaf of l points $\{\tilde{q}_1, \dots, \tilde{q}_r, \tilde{p}_{r+1}, \dots, \tilde{p}_l\}$ in C' with $\tilde{q}_i \in C_i \subseteq D_1(q_i)$ and the points $\tilde{p}_{r+1}, \dots, \tilde{p}_l$ being preimages of p_{r+1}, \dots, p_l in $D_0(q_1, \dots, q_r)$. The sheaf $\tilde{\mathcal{F}}$ is locally free on C' or “less singular”.



Iterating this (to be) construction we want to get a recompatification of the Simpson moduli spaces by vector bundles (on 1-dimensional support).

Remark. It should be mentioned that the construction indicated here resembles the construction from [12, Theorem 4.3]. I was happy to learn this from the talk of Szilárd Szabó given at this conference.

REFERENCES

- [1] J. Choi and K. Chung. Moduli Spaces of α -stable Pairs and Wall-Crossing on \mathbb{P}^2 . *ArXiv e-prints*, October 2012.
- [2] J. Choi and K. Chung. The geometry of the moduli space of one-dimensional sheaves. *ArXiv e-prints*, November 2013.
- [3] J. Choi and M. Maican. Torus action on the moduli spaces of plane sheaves. *ArXiv e-prints*, April 2013.
- [4] Jean-Marc Drézet and Mario Maican. On the geometry of the moduli spaces of semi-stable sheaves supported on plane quartics. *Geom. Dedicata*, 152:17–49, 2011.
- [5] O. Iena and A. Leytem. On the singular sheaves in the fine Simpson moduli spaces of 1-dimensional sheaves. *ArXiv e-prints*, November 2015.
- [6] Oleksandr Iena. *Modification of Simpson moduli spaces of 1-dimensional sheaves by vector bundles, an experimental example*. PhD thesis in Mathematics, Technische Universität Kaiserslautern, Germany, 2009.
- [7] J. Le Potier. Faisceaux semi-stables de dimension 1 sur le plan projectif. *Rev. Roumaine Math. Pures Appl.*, 38(7-8):635–678, 1993.
- [8] Mario Maican. On two notions of semistability. *Pac. J. Math.*, 234(1):69–135, 2008.
- [9] Mario Maican. A duality result for moduli spaces of semistable sheaves supported on projective curves. *Rend. Semin. Mat. Univ. Padova*, 123:55–68, 2010.
- [10] Mario Maican. On the moduli spaces of semi-stable plane sheaves of dimension one and multiplicity five. *Illinois J. Math.*, 55(4):1467–1532 (2013), 2011.
- [11] Mario Maican. The classification of semistable plane sheaves supported on sextic curves. *Kyoto J. Math.*, 53(4):739–786, 2013.
- [12] S. Szabó. The birational geometry of irregular Higgs bundles. *ArXiv e-prints*, February 2015.
- [13] M. Woolf. Nef and Effective Cones on the Moduli Space of Torsion Sheaves on the Projective Plane. *ArXiv e-prints*, May 2013.
- [14] Yao Yuan. Moduli spaces of semistable sheaves of dimension 1 on \mathbb{P}^2 . *Pure Appl. Math. Q.*, 10(4):723–766, 2014.

UNIVERSITY OF LUXEMBOURG, CAMPUS KIRCHBERG, MATHEMATICS RESEARCH UNIT, 6, RUE RICHARD COUDENHOVE-KALERGI, L-1359 LUXEMBOURG CITY, GRAND DUCHY OF LUXEMBOURG

E-mail address: oleksandr.ien@uni.lu