

Median algebra with a retraction: an example of variety closed under natural extension

Bruno Teheux
(joint work with Georges Hansoul)

The Big Picture

Claims about natural extensions

Natural extension provides

‘canonical extension’ for non lattice-based algebras ;
insight about the construction of canonical extension.

Back to the roots : canonical extension

$\mathbf{L} = \langle L, \vee, \wedge, 0, 1 \rangle$ is a DL

Canonical extension \mathbf{L}^δ of \mathbf{L} comes with topologies ι and δ :

- ▶ \mathbf{L}^δ is doubly algebraic.
- ▶ $\mathbf{L} \hookrightarrow \mathbf{L}^\delta$.
- ▶ \mathbf{L} is dense in \mathbf{L}_ι^δ .
- ▶ \mathbf{L} is dense and discrete in \mathbf{L}_δ^δ .

Canonical extension comes with a tool to extend maps

Problem. Given $f: \mathbf{L} \rightarrow \mathbf{E}$, define $f^\delta: \mathbf{L}^\delta \rightarrow \mathbf{E}^\delta$.

Solution.

- ▶ \mathbf{L} is made of the isolated points of \mathbf{L}^δ ,
- ▶ \mathbf{L} is dense in \mathbf{L}^δ ,
- ▶ $f^\delta := \liminf_\delta f$ and $f^\pi := \limsup_\delta f$.

Leads to canonical extension of ordered algebras :

Jónsson-Tarski (1951), Gehrke and Jónsson (1994), Dunn, Gehrke and Palmigiano (2005), Gehrke and Harding (2011), Gehrke and Vosmaer (2011), Davey and Priestley (2011)...

Why canonical extension ?

It provides completeness results for **modal logics** with respects to classes of **KRIPKE** frames :

Jónsson, B. (1994). On the canonicity of Sahlqvist identities. *Studia Logica*, 53(4), 473–491.

Gehrke, M., Nagahashi, H., and Venema, Y. (2005). A Sahlqvist theorem for distributive modal logic. *Ann. Pure Appl. Logic*, 131(1-3), 65–102.

Hansoul, G., and Teheux, B. (2013). Extending Łukasiewicz logics with a modality : algebraic approach to relational semantics. *Studia Logica*, 101(3), 505–545.

Is it possible to generalize canonical extension to non lattice-based algebras ?

Problem 1. Define the natural extension \mathbf{A}^δ of \mathbf{A} :

Davey, B. A., Gouveia, M., Haviar, M., and Priestley, H. (2011).

Natural extensions and profinite completions of algebras. *Algebra Universalis*, 66, 205–241.

Problem 2. Extend $f: \mathbf{A} \rightarrow \mathbf{B}$ to $f^\delta: \mathbf{A}^\delta \rightarrow \mathbf{B}^\delta$.

We give a [partial solution](#).

Natural extension of algebras

The framework of natural extension

\mathbf{A}^δ can be defined if \mathbf{A} belongs to some

$\text{ISP}(\mathcal{M})$

where \mathcal{M} is class of finite algebras of the same type.

\mathbf{A}^δ can more easily be computed if $\text{ISP}(\mathcal{M})$ is dualisable (in the sense of **natural dualities**).

We adopt the setting of natural dualities

$\mathbf{M} \equiv$ a finite algebra

A discrete alter-ego topological structure \underline{M}

$\mathbf{A} \in \text{ISP}(\mathbf{M})$

Algebra	Topology
\mathbf{M}	\underline{M}
$\mathcal{A} = \text{ISP}(\mathbf{M})$	$\mathcal{X} = \mathbb{S}_c \mathbb{P}^+(\underline{M})$
\mathbf{A}	$\mathbf{A}^* = \mathcal{A}(\mathbf{A}, \mathbf{M}) \leq_c \underline{M}^{\mathbf{A}}$
$\underline{X}_* = \mathcal{X}(\underline{X}, \underline{M}) \leq \mathbf{M}^X$	\underline{X}

Definition. \underline{M} yields a natural duality for $\text{ISP}(\mathbf{M})$ if

$$(\mathbf{A}^*)_* \simeq \mathbf{A}, \quad \mathbf{A} \in \text{ISP}(\mathbf{M}).$$

Natural extension of an algebra can be constructed from its dual

Priestley duality is a natural duality : $\mathbf{L} \simeq (\mathbf{L}^*)_*$

Proposition (Gehrke and Jónsson)

If $\mathbf{L} \in \text{DL}$ then \mathbf{L}^δ is the algebra of order-preserving maps from \mathbf{L}^* to \mathcal{Z} .

Assume that \mathbf{M} yields a duality for $\text{ISP}(\mathbf{M})$.

Proposition (Davey and al.)

If $\mathbf{A} \in \text{ISP}(\mathbf{M})$, then \mathbf{A}^δ is the algebra of structure-preserving maps from \mathbf{A}^* to \mathcal{M} .

Natural extension of median algebras

The variety of median algebras is an old friend...

The expression

$$(x \wedge y) \vee (x \wedge z) \vee (y \wedge z)$$

defines an operation $m_{\leq}(x, y, z)$ on a distributive lattice (L, \leq) .

Definition. (Avann, 1948)

median algebra $\mathbf{A} = (A, m) \iff$ subalgebra of some (L, m_{\leq})

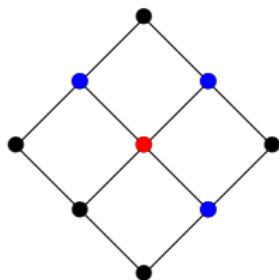
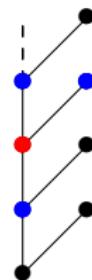
Example. Set $\mathbf{2} := \langle \{0, 1\}, m \rangle$ where m is the majority function.

Theorem. The variety \mathcal{A}_m of median algebras is $\text{ISP}(\mathbf{2})$.

$$(x \wedge y) \vee (x \wedge z) \vee (y \wedge z)$$

Examples.

$$m(\bullet, \bullet, \bullet) = \bullet$$



Median graphs

Some metric spaces

... in which semilattice orders can be defined

For every $a \in \mathbf{A}$, the relation \leq_a defined on \mathbf{A} by

$$b \leq_a c \quad \text{if} \quad m(a, b, c) = b.$$

is a \wedge -semilattice order on A with $b \wedge_a c = m(a, b, c)$.

Semilattices obtained in this way are the *median semilattices*.

Proposition. In a median semilattice, principal ideals are [distributive lattices](#).

Grau (1947), Birkhoff and Kiss (1947), Sholander (1952, 1954), Isbell (1980), Bandelt and Hedlíková (1983)...

There is a natural duality for median algebras

$$\mathcal{A}_m = \text{ISP}(\mathbf{2})$$

$$\mathbf{2} := \langle \{0, 1\}, \leq, \cdot^\bullet, 0, 1, \iota \rangle.$$

Theorem (Isbell (1980), Werner (1981)). The structure $\mathbf{2}$ yields a logarithmic duality for \mathcal{A}_m .

\mathbf{A}^δ is the algebra of structure-preserving maps $x: \mathbf{A}^* \rightarrow \mathbf{2}$.

Natural extension completes everything it can complete

Theorem. Let $a \in \mathbf{A}$.

- ▶ $\langle \mathbf{A}^\delta, \leq_a \rangle$ a bounded-complete extension of $\langle \mathbf{A}, \leq_a \rangle$.
- ▶ If \mathbf{I} is a distributive lattice in \mathbf{A} then $\text{cl}_{\mathbf{A}^\delta}(\mathbf{I}) = \mathbf{I}^\delta$

Natural extension of maps

\mathbf{A} can be defined topologically in \mathbf{A}^δ

$\mathcal{X}_p(\mathbf{A}^*, \underline{M}) \equiv$ set of morphisms defined on a closed substructure of \mathbf{A}^* .

Definition.

$$O_f := \{x \in \mathcal{X}(\mathbf{A}^*, \underline{M}) \mid x \supseteq f\}, \quad f \in \mathcal{X}_p(\mathbf{A}^*, \underline{M})$$

$$\Delta := \{O_f \mid f \in \mathcal{X}_p(\mathbf{A}^*, \underline{M})\}$$

Working assumption. \underline{M} yields a full logarithmic duality for $\mathbb{ISP}(\mathbf{M})$ and \underline{M} is injective in $\mathbb{ISCP}^+(\underline{M})$.

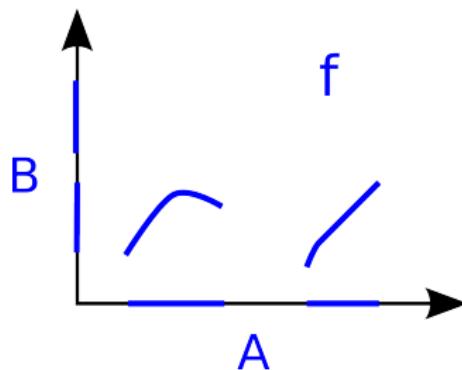
Proposition.

- ▶ Δ is a basis of topology δ
- ▶ \mathbf{A} is dense and discrete in \mathbf{A}^δ .
- ▶ In the settings of DL, we get the known topology.

We canonically extends maps to multi-maps

Input :

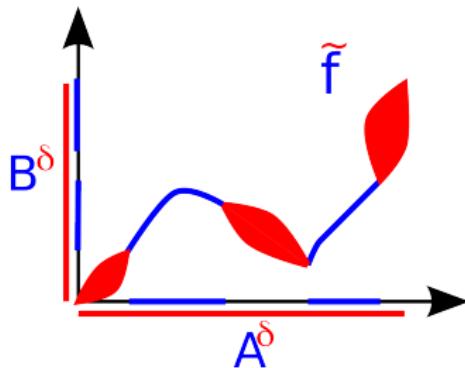
$$f : \mathbf{A} \rightarrow \mathbf{B}$$



We canonically extends maps to multi-maps

Input :

$$f : \mathbf{A} \rightarrow \mathbf{B}$$



Output :

$$f^+ : \mathbf{A}^\delta \rightarrow \Gamma(\mathbf{B}_\iota^\delta)$$

The multi-extension of $f : \mathbf{A} \rightarrow \mathbf{B}$

Intermediate step : Consider

$$\bar{f} : \mathbf{A} \rightarrow \Gamma(\mathbf{B}_\iota^\delta) : a \mapsto \{f(a)\}.$$

Recall that \mathbf{A} is dense in \mathbf{A}_δ^δ and $\Gamma(\mathbf{B}_\iota^\delta)$ is a complete lattice.

Definition. The *multi-extension f^+ of f* is defined by

$$f^+ : \mathbf{A}_\delta^\delta \rightarrow \Gamma(\mathbf{B}_\iota^\delta) : x \mapsto \limsup_\delta \bar{f}(x),$$

In other words,

$$f^+(x) = \bigcap \{\text{cl}_{\mathbf{B}_\iota^\delta}(f(A \cap V)) \mid V \in \delta_x\},$$

$$f^+(x)|_F = \bigcap \{f(A \cap V)|_F \mid V \in \delta_x\}, \quad F \in \mathbf{B}^\delta$$

The multi-extension is a continuous map

Definition.

We say that f is *smooth* if $\#f^+(x) = 1$ for all $x \in \mathbf{A}^\delta$.

Let $\sigma \downarrow$ be the *co-Scott* topology on $\Gamma(\mathbf{B}_\iota^\delta)$.

Proposition.

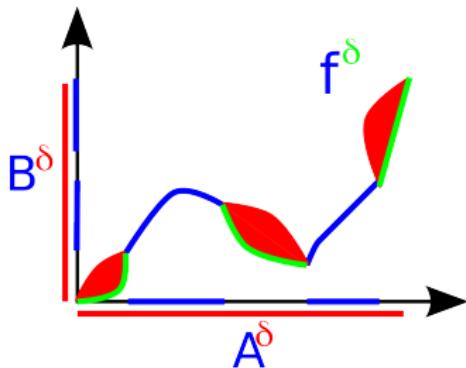
- ▶ f^+ is the smallest $(\delta, \sigma \downarrow)$ -continuous extension from \mathbf{A}_δ^δ to $\Gamma(\mathbf{B}_\iota^\delta)$.
- ▶ f is smooth if and only if it admits an (δ, ι) -continuous extension $f^\delta : \mathbf{A}^\delta \rightarrow \mathbf{B}^\delta$ satisfying $f^\delta(x) \in f^+(x)$.

This construction sheds light on canonical extension

Proposition. If $f: \mathbf{A} \rightarrow \mathbf{B}$ is a map between DLs with lower extension f^δ and upper extension f^π , then for any $x \in \mathbf{L}^\delta$

$$f^\delta(x) = \bigwedge f^+(x),$$

$$f^\pi(x) = \bigvee f^+(x).$$



Natural extension of median algebras with a retraction.

Natural extension of expansions of median algebras

General framework.

Let

$$\mathbf{A} = \langle A, m, r, a \rangle$$

where $\langle A, m \rangle \in \mathcal{A}_m$, $a \in \mathbf{A}$ and $r: \mathbf{A} \rightarrow \mathbf{A}$

Set

$$r^\delta(x) = \wedge_a r^+(x), \quad x \in \langle A, m \rangle^\delta.$$

$$\mathbf{A}^\delta := \langle \langle A, m \rangle^\delta, r^\delta, a \rangle$$

Natural properties

Definition. A property P of algebras in \mathcal{A} is *natural* if

$$\mathbf{A} \models P \implies \mathbf{A}^\delta \models P, \quad \mathbf{A} \in \mathcal{A}$$

Example. The property ‘being a median algebra of a Boolean algebra’ is natural.

Median algebras with a retraction

Definition. An idempotent homomorphism $r: \mathbf{A} \rightarrow \mathbf{A}$ such that $u(A)$ is convex is called a *retraction*.

Proposition. A map $r: \mathbf{A} \rightarrow \mathbf{A}$ is a retraction if and only if

$$r(m(x, y, z)) = m(x, r(y), r(z)), \quad x, y, z \in \mathbf{A}.$$

Definition. An algebra $\langle A, m, r, a \rangle$ is a *pointed retract algebra* if r is a retraction of the median algebra $\langle A, m \rangle$ and $a \in A$.

The variety of pointed retract algebras is natural

Theorem. If \mathbf{A} is a pointed retract algebra then \mathbf{A}^δ is a pointed retract algebra.

Sketch of the proof.

Proves equalities of the type

$$(r \circ m)^\delta = r^\delta \circ m$$

using continuity properties of the extensions. □

The variety of pointed algebras with operator is natural.

Definition. An algebra $\mathbf{A} = \langle A, m, f, a \rangle$ is a *pointed median algebra with operator* if $\langle A, m \rangle$ is a median algebra, $a \in A$ and

$$f(m(a, x, y)) = m(a, f(x), f(y)), \quad x, y \in A.$$

Theorem Let $\langle A, m, f, a \rangle$ be a pointed median algebra with operator.

- ▶ f is smooth.
- ▶ \mathbf{A}^δ is a pointed median algebra with operator.

Sketch of the proof.

f can be dualized as a relation R on \mathbf{A}^* and f^δ can be explicitly computed with R . □

Questions/Problems.

- ▶ Interesting instances of natural extensions of maps (in non-ordered based algebras).
- ▶ Successful applications of the whole theory.
- ▶ Find canonical (continuous) way to pick-up some element in $f^+(x)$.
- ▶ Intrinsic definition of δ in the non-dualizable setting.