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The Big Picture



Claims about natural extensions

Natural extension provides

‘canonical extension’ for non lattice-based algebras ;

insight about the construction of canonical extension.



Back to the roots : canonical extension

L = 〈L,∨,∧,0,1〉 is a DL

Canonical extension Lδ of L comes with topologies ι and δ :

I Lδ is doubly algebraic.

I L ↪→ Lδ.

I L is dense in Lδ
ι .

I L is dense and discrete in Lδ
δ.



Canonical extension comes with a tool to extend maps

Problem. Given f : L→ E, define f δ : Lδ → Eδ.

Solution.
I L is made of the isolated points of Lδ,
I L is dense in Lδ

δ,
I f δ := lim infδ f and f π := limsupδf .

Leads to canonical extension of ordered algebras :

Jónsson-Tarski (1951), Gehrke and Jónsson (1994), Dunn, Gehrke
and Palmigiano (2005), Gehrke and Harding (2011), Gehrke and
Vosmaer (2011), Davey and Priestley (2011). . .



Why canonical extension ?

It provides completeness results for modal logics with respects
to classes of KRIPKE frames :

Jónsson, B. (1994). On the canonicity of Sahlqvist identities. Studia
Logica, 53(4), 473–491.

Gehrke, M., Nagahashi, H., and Venema, Y. (2005). A Sahlqvist
theorem for distributive modal logic. Ann. Pure Appl. Logic, 131(1-3),
65–102.

Hansoul, G., and Teheux, B. (2013). Extending Łukasiewicz logics
with a modality : algebraic approach to relational semantics. Studia
Logica, 101(3), 505–545.



Is it possible to generalize canonical extension to non
lattice-based algebras ?

Problem 1. Define the natural extension Aδ of A :

Davey, B. A., Gouveia, M., Haviar, M., and Priestley, H. (2011).
Natural extensions and profinite completions of algebras. Algebra
Universalis, 66, 205–241.

Problem 2. Extend f : A→ B to f δ : Aδ → Bδ.

We give a partial solution.



Natural extension of algebras



The framework of natural extension

Aδ can be defined if A belongs to some

ISP(M)

whereM is class of finite algebras of the same type.

Aδ can more easily be computed if ISP(M) is dualisable (in the
sense of natural dualities).



We adopt the setting of natural dualities

M ≡ a finite algebra

A discrete alter-ego topological structure M˜
A ∈ ISP(M)

Algebra Topology

M M˜
A = ISP(M) X = IScP+(M˜ )

A A∗ = A(A,M) ≤c M˜ A

X˜ ∗ = X (X˜ ,M˜ ) ≤ MX X˜
Definition. M˜ yields a natural duality for ISP(M) if

(A∗)∗ ' A, A ∈ ISP(M).



Natural extension of an algebra can be constructed
from its dual

Priestley duality is a natural duality : L ' (L∗)∗

Proposition (Gehrke and Jónsson)
If L ∈ DL then Lδ is the algebra of order-preserving maps from
L∗ to 2˜.

Assume that M˜ yields a duality for ISP(M).

Proposition (Davey and al.)
If A ∈ ISP(M), then Aδ is the algebra of structure-preserving
maps from A∗ to M˜ .



Natural extension of median algebras



The variety of median algebras is an old friend. . .

The expression

(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

defines an operation m≤(x , y , z) on a distributive lattice (L,≤).

Definition. (Avann, 1948)

median algebra A = (A,m) ⇐⇒ subalgebra of some (L,m≤)

Example. Set 2 := 〈{0,1},m〉 where m is the majority function.

Theorem. The variety Am of median algebras is ISP(2).



(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

Examples.
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Median graphs

Some metric spaces



. . . in which semilattice orders can be defined

For every a ∈ A, the relation ≤a defined on A by

b ≤a c if m(a,b, c) = b.

is a ∧-semilattice order on A with b ∧a c = m(a,b, c).

Semillatices obtained in this way are the median semilattices.

Proposition. In a median semilattice, principal ideals are
distributive lattices.

Grau (1947), Birkhoff and Kiss (1947), Sholander (1952, 1954),
Isbell (1980), Bandelt and Hedlíková (1983). . .



There is a natural duality for median algebras

Am = ISP(2)

2˜ := 〈{0,1},≤, ·•,0,1, ι〉.

Theorem (Isbell (1980), Werner (1981)). The structure 2˜ yields a
logarithmic duality for Am.

Aδ is the algebra of structure-preserving maps x : A∗ → 2˜.



Natural extension completes everything it can
complete

Theorem. Let a ∈ A.
I 〈Aδ,≤a〉 a bounded-complete extension of 〈A,≤a〉.
I If I is a distributive lattice in A then clAδ

ι
(I) = Iδ



Natural extension of maps



A can be defined topologically in Aδ

Xp(A∗,M˜ ) ≡ set of morphisms defined on a closed
substructure of A∗.

Definition.

Of := {x ∈ X (A∗,M˜ ) | x ⊇ f}, f ∈ Xp(A∗,M˜ )

∆ := {Of | f ∈ Xp(A∗,M˜ )}

Working assumption. M˜ yields a full logarithmic duality for
ISP(M) and M˜ is injective in IScP+(M˜ ).

Proposition.
I ∆ is a basis of topology δ
I A is dense and discrete in Aδ.
I In the settings of DL, we get the known topology.



We canonically extends maps to multi-maps

Input :
f : A→ B

Output :
f+ : Aδ → Γ(Bδ

ι )



We canonically extends maps to multi-maps

Input :
f : A→ B

Output :
f+ : Aδ → Γ(Bδ

ι )



The multi-extension of f : A→ B

Intermediate step : Consider

f̄ : A→ Γ(Bδ
ι ) : a 7→ {f (a)}.

Recall that A is dense in Aδ
δ and Γ(Bδ

ι ) is a complete lattice.

Definition. The multi-extension f+ of f is defined by

f+ : Aδ
δ → Γ(Bδ

ι ) : x 7→ limsupδ f̄ (x),

In other words,

f+(x) =
⋂
{clBδ

ι
(f (A ∩ V )) | V ∈ δx},

f+(x)
∣∣
F =

⋂
{f (A ∩ V )

∣∣
F | V ∈ δx}, F b Bδ



The multi-extension is a continuous map

Definition.
We say that f is smooth if #f+(x) = 1 for all x ∈ Aδ.

Let σ↓ be the co-Scott topology on Γ(Bδ
ι ).

Proposition.

I f+ is the smallest (δ, σ↓)-continuous extension from Aδ
δ to

Γ(Bδ
ι ).

I f is smooth if and only if it admits an (δ, ι)-continuous
extension f δ : Aδ → Bδ satisfying f δ(x) ∈ f+(x).



This construction sheds light on canonical extension

Proposition. If f : A→ B is a map between DLs with lower
extension f δ and upper extension f π, then for any x ∈ Lδ

f δ(x) =
∧

f+(x),

f π(x) =
∨

f+(x).



Natural extension of median algebras with a
retraction.



Natural extension of expansions of median algebras

General framework.

Let
A = 〈A,m, r ,a〉

where 〈A,m〉 ∈ Am, a ∈ A and r : A→ A

Set
r δ(x) = ∧a r+(x), x ∈ 〈A,m〉δ.

Aδ := 〈〈A,m〉δ, r δ,a〉



Natural properties

Definition. A property P of algebras in A is natural if

A |= P =⇒ Aδ |= P, A ∈ A

Example. The property ‘being a median algebra of a Boolean
algebra’ is natural.



Median algebras with a retraction

Definition. An idempotent homomorphism r : A→ A such that
u(A) is convex is called a retraction.

Proposition. A map r : A→ A is a retraction if and only if

r(m(x , y , z)) = m(x , r(y), r(z)), x , y , z ∈ A.

Definition. An algebra 〈A,m, r ,a〉 is a pointed retract algebra if
r is a retraction of the median algebra 〈A,m〉 and a ∈ A.



The variety of pointed retract algebras is natural

Theorem. If A is a pointed retract algebra then Aδ is a pointed
retract algebra.

Sketch of the proof.
Proves equalities of the type

(r ◦m)δ = r δ ◦m

using continuity properties of the extensions.



The variety of pointed algebras with operator is
natural.

Definition. An algebra A = 〈A,m, f ,a〉 is a pointed median
algebra with operator if 〈A,m〉 is a median algebra, a ∈ A and

f (m(a, x , y)) = m(a, f (x), f (y)), x , y ∈ A.

Theorem Let 〈A,m, f ,a〉 be a pointed median algebra with
operator.

I f is smooth.
I Aδ is a pointed median algebra with operator.

Sketch of the proof.
f can be dualized as a relation R on A∗ and f δ can be explicitly
computed with R.



Questions/Problems.

I Interesting instances of natural extensions of maps (in
non-ordered based algebras).

I Successful applications of the whole theory.

I Find canonical (continuous) way to pick-up some element
in f+(x).

I Intrinsic definition of δ in the non-dualizable setting.


