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Abstract. In molecular biology, the subject of protein structure pre-
diction is of continued interest, not only to chart the molecular map of
living cells, but also to design proteins with new functions. In this work a
Preference-Based Genetic Algorithm (PBGA) is proposed aiming to op-
timise NK Landscape based benchmarks designed and shown to mimic
properties of the Inverse Folding Problem (IFP) of proteins. The pro-
posed algorithm incorporates a weighted sum model in order to combine
fitness and diversity into a single objective function scoring a set of in-
dividuals as a whole. By adjusting the sum weights, direct control of the
preferred emphasis on fitness vs. diversity in the algorithm population is
achieved by means of a selection scheme iteratively removing the least
contributing individuals. The proposed algorithm is compared to other
algorithms where better results are achieved both in terms of fitness and
diversity.

1 Introduction

Protein engineering in general aims at designing molecules with desired proper-
ties. A method that would allow to successfully design such molecules would
find applications in a number of areas such as designing improved enzymes
for biotechnology applications or new antibodies more specific towards already
known targets. However evaluating and therefore optimising real biological in-
stances is very computationally demanding. Nielsen et al. [6] recently proposed a
novel NK Landscape benchmark suite that mimics the properties of the Inverse
Folding Problem (IFP). The latter originally consists, given a protein sequence
of N amino acids, in finding other sequences that will result in the same 3D
structure. The resulting optimisation problem is highly multi-modal and the al-
gorithm proposed in this work addresses this aspect by adding a novel diversity
controlling mechanism. The preference-based approach employs a Weighted Sum
Model (WSM) in order to control the desired bias between fitness and diversity.
The resulting WSM score allows to iteratively determine and remove the indi-
vidual in the combined parent and offspring population with the lowest overall
fitness contribution with respect to the set preferences. The remainder of this



2 Christof Ferreira Torres, Sune S. Nielsen, Grégoire Danoy, Pascal Bouvry

article is organised as follows. First the current state-of-the-art is situated in re-
lated literature in Section 2, then a detailed description of the problem and the
biological background is introduced in Section 3. In Section 4 the contribution
of this work in terms of achieving an adjustable level of fitness and diversity as a
Preference-Based Genetic Algorithm (PBGA) is presented. Section 5 describes
the experiments conducted and the results obtained for the NK benchmark suite.
Finally the contribution, results and perspectives are summarised in Section 6.

2 State-of-the-art

In meta-heuristics, the subject of exploration vs. exploitation characteristics has
been thoroughly studied. In this aim, a number of works have sought to main-
tain and control diversity in population-based meta-heuristics, e.g. crowding
methods by DeJong [2], fitness sharing by Goldberg and Richardson [3], cellular
algorithms by Alba and Dorronsoro [1], diversity preserving selection strategies
based on hamming distance Shimodaira [7] and on altruism by Laredo et al. [4].

Preference-based algorithms have been discussed in literature [5] [8] and refer
to algorithms where user preference is incorporated in the choice of regions in the
solution or objective space. Preference can be incorporated in a number of ways,
e.g., by modifying fitness evaluation or selection schemes. The Indicator Based
Evolutionary Algorithm (IBEA) [9] is an example where an indicator that char-
acterises the population in whole is used to guide the algorithm by eliminating
least desired individuals of the parent and offspring population union. The pro-
posed PBGA in this paper borrows the same principle of iterative elimination,
determining the overall most preferable subset directly rather than achieving it
as a indirect effect of designed mechanisms.

3 Bio-Inspired NK Landscape Benchmark Problem

In the NK benchmark problem as well as in the Inverse Folding Problem (IFP), a
single solution is represented as a sequence A = {aa;} and consists of N residue
positions, where 1 < ¢ < N and aa; € {1,...,20} corresponds to the set of 20
possible amino acids. The overall size and the number of local “hills and valleys”
of the NK landscape model can be adjusted via changes to its two parameters, IV
and K. In this paper we make use of two novel NK benchmark model instances!
proposed by Nielsen et al. [6], which are the combination of two NK models,
FA(z) and FB(x), by a simple multiplication with different K and different
neighbourhood definitions as defined in the table below.

! The NK Landscape Protein IFP Benchmark Suite - http://nk-ifp-bench.gforge.
uni.lu/index.html
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’Model \Setting ‘

NK-IFP-1 [FA(z): a K = 4 semi-adjacent circular neighbourhood is designed as
follows: {2, 1, Tit1, Tita}, omitting the central position z;.
FB(z): a K = 3 neighbourhood of uniform random distribution.
NK-IFP-2 |[FA(z): a K = 4 semi-adjacent circular neighbourhood as NK-IFP-1.
FB(z): a K = 5 neighbourhood of uniform random + 20 positions
wide triangular distribution.

4 A Novel Preference-Based Approach

The main idea of the preference-based approach is to use a Weighted Sum Model
(WSM) in order to constantly maintain a current population best fulfilling the
defined preferences. In an iterative manner, the weakest individuals from the
combination of parent and offspring populations are determined and removed
until the desired population size is achieved.

Algorithm 1 Preference-Based Genetic Algorithm

1: Initialise(Po)

2:t+0

3: while t < tye: do

Q+ + makeNewOffspringPop(P;)

Ry P+ Q¢

while |R;| > |P;| do
I < getWeakestIndividual(Ry)
Ry« R — 1

9: end while

10: Pt < Rt

11: t—t+1

12: end while

The procedure get WeakestIndividual of determining the weakest individual in
Algorithm 1 is defined as follows:

Systematically remove one individual

Compute the weighted sum score according to Equation 1

Add the individual back to the population

Repeat from step 1. until all individuals have been tried once and the worst
individual can be determined.

Ll o

The weighted sum score of a given population P is calculated as follows:

WSMscore(P) - _Wfit . Ffzt(P) + Wdiv . Fdw(P) (1)

Note the negation of Wy in Equation 1 as we want to maximise diversity but
also minimise fitness at the same time.
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The population fitness Fy; is computed by simply taking the average of the
fitness of all M individuals of the current population P:

1M
Fpu(P) = 57 Fl) (2)
i=1

An effective and simple measure of distance between two sequences is the Hamming-
distance. For two sequences A = {aa;} and A’ = {aa}} where 1 < i < N, the
normalised Hamming distance between them is defined as:

3 _ !
0 if aa; = aa;

3)

N
1
diamm(A,A) = =Y d; where d; =
" ( ) N ; {1 if otherwise
The population diversity Fg;, is computed by taking the average Hamming dis-
tance of each M individuals to the remaining M —1 individuals of the population
P:

1 M M
de(P):m;;dHamm(AuAj)’ Vi #j (4)

5 Experimental Results

To study the performance of the proposed algorithm with respect to fitness and
diversity convergence, a number of experiments have been conducted to com-
pare against a number of standard Genetic Algorithms such as the generational
(gGA), the synchronous cellular (scGA) and finally the steady-state (ssGA). The
algorithm was tested with these weight ratio settings:

Wi sit.aiv) = {(1.0,0.0), (0.9,0.1), (0.8,0.2), (0.7,0.3), (0.5,0.5), (0.3,0.7)}.

Table 1 summarises the settings and parameters used to conduct the experi-
ments.

Table 1: Experimental settings.

]Setting [Value [
Standard GAs gGA, scGA and ssGA
Population size 100

Termination condition 30000 function evaluations
Number of independent runs|30

Selection Binary tournament (BT)
Neighbourhood C9 in scGA

Crossover operator SPX, p. =0.9

Mutation operator Uniform, p,, = %

Elitism 2 individuals (for gGA)
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Figure 1a illustrates the convergence of fitness for the best performing PBGA
setting in comparison with the gGA, scGA and the ssGA. The gGA performs
the worst and the PBGA with a weight setting of (0.9, 0.1) surpasses the ssGA
and achieves better final fitness results than all of the other GAs. Figure 1b
illustrates the diversity convergence for the same algorithms. It is noted that the
PBGA achieves a higher diversity than the scGA and ssGA while at the same
time having better fitness results. Similar graphs are obtained for the NK-IFP-2
model and are hence not shown here.
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Fig. 1: NK benchmark model NK-IFP-1 average fitness and diversity conver-
gence.

Table 2 summarises average fitness and diversity for all the algorithms tested
highlighting best and worst algorithm results in light and dark grey respectively.
With a weight setting of (0.9, 0.1) the PBGA achieves the best fitness for both
benchmark models with -0.662 for the best value and -0.660 on average for
model 1 and with -0.632 for the best value and -0.631 on average for model
2. It is interesting to note that the PBGA with a weight setting of (0.5, 0.5)
achieves better results than the gGA in terms of fitness as well as diversity for
both models with -0.574 vs. -0.559 for the best fitness value and -0.511 vs. -0.456
on average for model 1 and with -0.550 vs. -0.545 for the best fitness value and
-0.485 vs. -0.429 on average for model 2.

In order to provide statistical confidence, the Wilcoxon test indicator was
applied with a 5% significance level. With a weight setting of (0.9, 0.1), the
PBGA clearly outperforms the gGA and the scGA with statistical confidence for
the average fitness with values -0.662 vs. -0.559 and -0.662 vs. -0.644 respectively
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for model 1 and with values -0.632 vs. -0.545 and -0.632 vs. -0.621 respectively
for model 2, whereas in comparison with the ssGA the PBGA does not achieve as
quick good results as the ssGA, but surpasses the ssGA in the end and achieves
better average fitness values of -0.662 vs. -0.650 respectively for model 1 and with
values -0.632 vs. -0.628 respectively for model 2. However, as seen in Figure 1a for
model 1, the final slope is steeper than the ssGA, indicating better performance.
The steeper final slope can be explained by the constantly high diversity as
seen in Figure 1b for model 1, which allows for continued exploration while the
standard GAs suffer from premature convergence.

Table 2: Final values in terms of fitness and diversity averaged over 30 indepen-

dent runs for the two NK benchmark models.

Model 1 Model 2
Fitness Diversity Fitness Diversity

Algorithm Best Average ‘ Best ‘ Average Best Average ‘ Best ‘ Average
PBGAq g 0.0(-0.649(-0.648 1 37 _3(0.005(0.002 41 78 _3[-0.628[-0.628 4y o7 _3 0.001 41 56E—3
PBGA(.g 0.1-0.662|-0.660 11 g7p—3|0.041|0.043 4+ gap—3|-0.632(-0.631 4 76E—3 0.038 {3 o5F—3
PBGA( g 0.2(-0.652(-0.627 419 35 _3|0.250|0.337 143 8p_3[-0.621(-0.594 4 13 4p_3 0.406 448 1E—3
PBGA(. 7 0.3|-0.629(-0.582 493 35 _3(0.508({0.612 159 153 -0.557 490 553 0.639 448 7E—3
PBGA(.5 0.5(-0.574]-0.511 437,45 _3|0.774|0.833 137 4p_3 -0.485 433 353 0.846 439 6E—3
PBGAQ.3 0.7 0.909 414 6E-3 0.913 112 4p-3
gGA -0.559(-0.456 451 4p_3|0.145(0.227 440 05_3 0.221 1 41.1p_3
scGA -0.644(-0.641 || 54p_3|0.017/0.010 43 365 _3 0.009 1o 18p_3
ssGA -0.650|-0.645 1 18 _3

-0.545[-0.429 {58 0p_3
-0.621[-0.619 11 90p_3
-0.628|-0.628 | 14p_3

6 Conclusion

In this paper a novel Preference-Based Genetic Algorithm (PBGA) was pre-
sented in combination with a weighted sum model, which allows to shift focus
arbitrarily between diversity and fitness with a direct effect on the population
as a whole without relying on secondary effects from added mechanisms or op-
erators. The PBGA was tested with two NK benchmark models and compared
to other GAs where final results were found comparable or better than the stan-
dard GAs on average, while the diversity of found sequences remains higher at
the same time. The best results were achieved using a weight setting of (0.9,
0.1) where 0.9 represents 90% of fitness and 0.1 represents 10% of diversity.
In addition, the algorithm convergence was observed as being steeper than the
standard GAs, which promises even better solutions, given an evaluation budget
beyond the computational limitations set in this work. Future work will be the
development of a more advanced preference evaluation model using Fuzzy logic
while adding more preferences such as crowding, elitism, etc. and making the
selection of preferences be adaptive.
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