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Abstract. We reveal a correspondence between the homological torsion of the Bianchi groups
and new geometric invariants, which are effectively computable thanks to their
action on hyperbolic space. We use it to explicitly compute their integral group
homology and equivariant K-homology. By the Baum/Connes conjecture, which
holds for the Bianchi groups, we obtain the K-theory of their reduced C*-algebras
in terms of isomorphic images of the computed K-homology.

We further find an application to Chen/Ruan orbifold cohomology.

Homologie et K-théorie des groupes de Bianchi

Résumé. Nous mettons en évidence une correspondance entre la torsion homologique des
groupes de Bianchi et de nouveaux invariants géométriques, calculables grace a
leur action sur ’espace hyperbolique. Nous 'utilisons pour calculer explicitement
leur homologie de groupe a coefficients entiers et leur K-homologie équivariante.
En conséquence de la conjecture de Baum/Connes, qui est vérifiée pour ces
groupes, nous obtenons la K-théorie de leurs C*-algebres réduites en termes
d’images isomorphes de la K-homologie calculée. Nous trouvons d’ailleurs une
application & la cohomologie d’orbi-espace de Chen/Ruan.

1. VERSION FRANGAISE ABREGEE

Nous étudions la géométrie d’une certaine classe de groupes arithmétiques (les groupes
de Bianchi), a travers une action propre sur un espace contractile. Nous accédons a leur
homologie de groupe et leur K-homologie équivariante. En plus de détail, considérons un
corps de nombres quadratique imaginaire Q(1/—m), ot m est un entier positif ne conte-
nant pas de carré. Soit O_,, son anneau d’entiers. Les groupes de Bianchi sont les groupes
SL2(O_,,). Les groupes de Bianchi peuvent étre considérés cruciaux pour 1’étude d’une
classe plus large de groupes, les groupes Kleiniens, qui ont déja été étudiés par Henri
Poincaré [9]. En fait, chaque groupe Kleinien arithmétique non-cocompact est commensu-
rable avec un groupe de Bianchi [8]. Un éventail d’informations sur les groupes de Bianchi
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peut étre trouvé dans les monographies [5,6,8]. Ces groupes agissent d’une maniére natu-
relle sur I’espace hyperbolique a trois dimensions, qui est isomorphe a ’espace symétrique
qui leur est associé. Le noyau de cette action est le centre {£1} des groupes, ce qui rend
utile I’étude du quotient par le centre, PSLy(O_,,), que nous appellerons également un
groupe de Bianchi. En 1892, Luigi Bianchi [2] a calculé des domaines fondamentaux pour
cette action pour quelques uns de ces groupes. Un tel domaine fondamental est de la
forme d’un polyedre hyperbolique (& quelques sommets manquants pres), et nous l’appel-
lerons le polyédre fondamental de Bianchi. Le calcul du polyedre fondamental de Bianchi
a été implémenté sur ordinateur pour tous les groupes de Bianchi [10]. Les images sous
SL2(O_,,) des faces de ce polyedre munissent ’espace hyperbolique d’une structure cellu-
laire. Pour mieux observer la géométrie locale, nous passons au complexe cellulaire raffiné,
que nous obtenons en subdivisant cette structure cellulaire jusqu’a ce que les stabilisa-
teurs dans SLa(O_,,) fixent les cellules point par point. Nous allons exploiter ce complexe
cellulaire de différentes manieres, afin de cerner des aspects différents de la géométrie de
ces groupes.

Homologie de groupes. Un invariant essentiel des groupes est leur homologie (définie
par exemple dans [3]). Nous pouvons la calculer pour les groupes de Bianchi en nous ser-
vant du complexe cellulaire raffiné. A ce fin, nous utilisons la suite spectrale équivariante
de Leray/Serre qui part de I’homologie des stabilisateurs d’un ensemble représentatif de
cellules, et qui converge vers ’homologie du groupe de Bianchi. Nous précisons dans la
proposition 2.1, 'homologie entiere de PSLy(O_,,) dans les cas m = 19, 43, 67 et 163, qui
constituent tous les cas d’anneaux principaux non-Euclidiens. Les cas d’anneaux Eucli-
diens sont déja connus de [13]. Des résultats récents pour des cas de groupe de classe
d’idéaux non-trivial se trouvent dans [12]. Nous remarquons que dans les quatre cas
d’anneaux principaux non-Euclidiens, la torsion dans I’homologie de PSLy(O_,,), est du
méme type d’isomorphisme. Pour comprendre ceci, nous considérons, pour un nombre pre-
mier ¢, le sous-complexe de I'espace d’orbites, composé des cellules ayant des stabilisateurs
qui contiennent des éléments d’ordre £. Nous I'appellerons le sous-complexe de £—torsion.
L’énoncé suivant traite la maniére dans laquelle son type d’homéomorphisme détermine
la suite spectrale équivariante. Il est démontré par la réduction des sous-complexes de
torsion effectuée dans [11]. Cette technique utilise le lemme 2.4 pour cerner le type de sta-
bilisateur d’'un sommet v qui est adjacent a exactement deux arétes dont les stabilisateurs
admettent de la /—torsion. Ensuite, ces deux arétes et v sont remplacés par une seule aréte.
Le théoreme 1.2 et quelques informations homologiques sur les groupes finis en question
sont utilisés pour vérifier que les morphismes induits en homologie produisent les mémes
termes sur la deuxieme page de la suite spectrale équivariante qu’avant le remplacement.

Théoréme 1.1 (cf. theorem 2.2). La partie {—primaire de la deuziéme page de la suite
spectrale équivariante convergeante vers I’homologie des groupes de Bianchi dépend, hors de
sa ligne inférieure, seulement du type d’homéomorphisme du sous-complexe de {—torsion.

Dans tous les cas d’anneaux principaux non-Euclidiens, les sous-complexes de 2—torsion,
respectivement de 3—torsion, sont homéomorphes, ce qui explique les résultats de la propo-
sition 2.1. Derriére le théoréeme ci-dessus, il y a la correspondance suivante entre les sous-
groupes cycliques non-triviaux des stabilisateurs des sommets, et les lignes géodésiques
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autour desquelles ils effectuent une rotation. Il convient d’appeler ces lignes des azes de
rotation.

Théoréme 1.2 (cf. theorem 2.3). Soit v un sommet quelconque dans l’espace hyperbolique.
L’action de son stabilisateur sur [’ensemble des axes de rotation passant par v, induite par
laction du groupe de Bianchi, est équivalente a l’action par conjugaison de ce stabilisateur
sur ses sous-groupes cycliques non-triviau.

Une étude cas par cas [11] pour tous les six types de sous-groupes finis dans les groupes
Bianchi nous permet de déduire du théoreme 1.2, le lemme 2.4 utilisé pour obtenir le
théoreme 1.1. Des exemples pour le théoreme 1.1 sont donnés pour la 3—torsion homolo-
gique de trente-six groupes de Bianchi sur le tableau 1.

K-théorie. Avec l'information sur I'action des groupes de Bianchi, que nous obtenons
en nous servant des énoncés et méthodes décrits ci-dessus, nous pouvons calculer I'ho-
mologie de Bredon de groupes de Bianchi, et en déduire leur K-homologie équivariante.
Des résultats sont présentés dans le théoreme 2.5. En conséquence de la conjecture de
Baum/Connes, qui est vérifiée pour les groupes de Bianchi [7], nous obtenons la K-théorie
des C*-algebres réduites des groupes de Bianchi comme images isomorphes.

2. INTRODUCTION

We study the geometry of a certain class of arithmetic groups (the Bianchi groups) by
means of a proper action on a contractible space. This helps to determine their group
homology and their equivariant K-homology. In more detail, we denote by Q(v/—m), with
m a square-free positive integer, an imaginary quadratic number field, and by O_,, its
ring of integers. The Bianchi groups are the groups SLa(O_,,). The Bianchi groups may
be considered as a key to the study of a larger class of groups, the Kleinian groups, which
dates back to work of Henri Poincaré [9]. In fact, each non-cocompact arithmetic Kleinian
group is commensurable with some Bianchi group [8]. A wealth of information on the
Bianchi groups can be found in the monographs [5,6,8]. These groups act in a natural
way on hyperbolic three-space, which is isomorphic to the symmetric space SLy(C)/SUs
associated to them. The kernel of this action is the centre {£1} of the groups. Thus it is
useful to study the quotient of a Bianchi group by its centre, namely PSLy(O_,,), which
we also call a Bianchi group. In 1892, Luigi Bianchi [2] computed fundamental domains
for this action when m =1, 2, 3, 5, 6, 7, 10, 11, 13, 15 and 19. Such a fundamental domain
has the shape of a hyperbolic polyhedron (up to a missing vertex at certain cusps, which
represent the ideal classes of O_,,), so we will call it the Bianchi fundamental polyhedron.
The computation of the Bianchi fundamental polyhedron has been implemented for all
Bianchi groups [10]. The images under SLo(O_,,) of the facets of this polyhedron equip
hyperbolic three-space with a cell structure. In order to view clearly the local geometry,
we pass to the refined cell complex, which we obtain by subdiving this cell structure until
the cell stabilisers fix the cells pointwise. We will see how to exploit this cell complex in
different ways, in order to see different aspects of the geometry of these groups.

Group homology. An essential invariant of groups is their homology (defined for in-
stance in [3]). We can compute it for the Bianchi groups using the refined cell complex
and the equivariant Leray/Serre spectral sequence which starts from the homology of the
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stabilisers of representatives of the cells, and converges to the group homology of the
Bianchi groups. We will now state the results for simple integer coefficients in the cases
m = 19, 43, 67 and 163, which are the non-Euclidean principal ideal domain cases. In
contrast to these, the Euclidean principal ideal domain cases are already known from [13].
For some results in class number 2, see [12]. The virtual cohomological dimension of the
Bianchi groups is 2. In degrees strictly above 2, we express their homology in terms of the
following Poincaré series at the primes £ = 2 and ¢ = 3:

Zdlm]}re (PSLs(O_n); Z/0Z) t°

These two primes are the only numbers which occur as orders of non-trivial finite elements
of PSLy(O_,,). So it has been shown [11] that the integral homology of these groups is,
in all the mentioned degrees, a direct sum of copies of Z/2Z and Z/3Z.

Proposition 2.1. The integral homology of PSLo(O_,,), for m € {19,43,67,163}, is of

7A@ L/AZ D L2 L)3Z, q=2

isomorphism type Hy(PSLy(O_,,); Z) = 76 SLALSLPLSOL/3L, g 1’
) q - )

m | 19 43 67 163
g1 2 3 7
sum of copies of Z./27 and Z./37Z, with the number of copies specified by the Poincaré series

2 _ —t3(t3—2t242t-3) 3 —t3 (42 —t+2)
P (t) = “rpmny and B (1) = iman

where gives the Betti number By, and is in all higher degrees a direct

We remark that in these four cases, the torsion in the integral homology of PSLs(O_,,)
is of the same isomorphism type. To understand this, we consider, for a prime /¢, the sub-
complex of the orbit space consisting of the cells with elements of order £ in their stabiliser.
We call it the {—torsion subcomplex. The following statement on how its homeomorphism
type determines the equivariant spectral sequence is proven by the reduction of the torsion
subcomplex carried out in [11]. This technique uses lemma 2.4 to determine the possible
type of stabiliser of a vertex v with exactly two adjacent edges which have ¢—torsion in
their stabilisers. Then these two edges, together with v, are replaced by a single edge; and
theorem 2.3 as well as some homological information about the finite groups in question
are used to check that the induced morphisms on homology produce the same terms on
the second page of the equivariant spectral sequence as before the replacement.

Theorem 2.2. The {—primary part of the second page of the equivariant spectral sequence
converging to the integral homology of PSLa(O_,,) depends outside the bottom row only
on the homeomorphism type of the £—torsion subcomplex.

Examples for this theorem are given for the prime ¢ = 3 and thirty-six Bianchi groups
in figure 1 (for £ = 2, see [11]). In all the non-Euclidean principal ideal domain cases, the
2—-torsion, and respectively 3—torsion subcomplexes are homeomorphic, which explains the
results in proposition 2.1. Underlying theorem 2.2, there is the following correspondence
between the non-trivial cyclic subgroups of the vertex stabilisers and the geodesic lines
around which they effect a rotation, and which we shall call rotation azes.
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FIGURE 1. Results for the 3-torsion homology, expressed in P’ (t)

. . . 3-torsion subcomplex, 3
m specifying the Bianchi group homeomorphism type Pp(t)
2,5, 6, 10, 11, 15, 22, 29, 34, 35, O ,
46, 51, 58, 87, 95, 115, 123, 155, i
159, 187, 191, 235, 267
N . —e —t3(t2—t+2)
7,19, 43, 67, 139, 151, 163 T=DE2+1)
—o o—o 32— t12)
13, 37, 91, 403, 427 2 (m)
39 O b =262 | (12—t 42)
t—1 (t—1)(t2+1)

Theorem 2.3 ( [11]). For any vertex v in hyperbolic space, the action of its stabiliser on
the set of rotation axes passing through v, induced by the action of the Bianchi group, is
equivalent to the conjugation action of this stabiliser on its non-trivial cyclic subgroups.

A case by case study [11] for all the six types of finite sub-groups in the Bianchi groups
allows us to deduce from theorem 2.3 the following lemma, which is useful in order to
obtain theorem 2.2.

Lemma 2.4. Let v be a vertex in the refined cell complex. Then the number n of orbits of
edges in the refined cell complex adjacent to v, with stabiliser in PSLa(O_,,) isomorphic
to ZJUZ, is given as follows for £ =2 and ¢ = 3.

Isomorphism type of the vertex stabiliser | {1} Z/2Z Z/37 7/2ZxZ/2Z S A4

nforl =2 0 2 0 3 2 1
nfor/ =3 0 0 2 0 1 2.

Here we have written S3 for the symmetric group on three letters and Ay for the
alternating group on four letters. Note that we obtain the same table for SLo(O_,,) after
replacing the edge and vertex stabiliser types by their pre-images under the projection
SLo(O_y,) — PSL2(O_,,), which are respectively: Z/27Z, Z/AZ, Z/6Z, the 8-elements
quaternion group, the 12-elements binary dihedral group and the binary tetrahedral group.

K-theory. With the above information about the action of the Bianchi groups, we can
further compute the Bredon homology of the Bianchi groups, from which we can deduce
their equivariant K-homology. The results of the computations [11] are the following.
Theorem 2.5. Let 31 be the Betti number specified in proposition 2.1. For O_,, principal,
the equivariant K-homology of T' :== PSLy(O_,,) is isomorphic to

|m=1 m=2 m=3 m=7 m=11 m¢€ {19,43,67,163}

KY(ED) | z° ZPeZ/2Z 7ZPeZ/2Z 7P 7 eZ/27 7P leZleZ/2Z

KNED) | z 73 0 73 73 YAY /S
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The remainder of the equivariant K-homology of I is given by Bott 2-periodicity. By the
Baum/Connes conjecture, which holds for the Bianchi groups [7], we obtain the K-theory
of the reduced C*-algebras of the Bianchi groups as isomorphic images.

Complex orbifolds. The information we have concerning the action of the Bianchi
groups on real hyperbolic three-space provides explicit orbifold structures. These orb-
ifolds serve as models in Cosmology [1].
We can complexify these orbifolds. In [11], the product structure on their Chen/Ruan
orbifold cohomology has been determined for all Bianchi groups; and an algorithm has
been given to compute the underlying vector space structure. This is a step towards
checking Ruan’s cohomological crepant resolution conjecture [4], which is of importance
in Mathematical Physics and is completely open in 3 complex dimensions outside the
global quotient case, hence these orbifolds are interesting test cases.
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