An extension result of CR functions by a general Schwarz Reflection Principle

Hui Chun Yin

We study a general Schwarz Reflection Principle in one complex variable and obtain a holomorphic extension result of continuous CR functions defined on a real analytic, generic, CR submanifold in \mathbb{C}^N .

1 A general Schwarz Reflection Principle

The classical Schwarz Reflection Principle can be stated as follows:

Theorem 1.1. Suppose that Ω is a connected domain, symmetric with respect to the real axis, and that $L = \Omega \cap \mathbb{R}$ is an interval. Let $\Omega^+ = \{z \in \Omega : Im(z) > 0\}$. Suppose that $f \in A(\Omega^+)$, a function holomorphic on Ω^+ and that Im(f) has a continuous extension to $\Omega^+ \cup L$ that vanishes on L. Then there is a $F \in A(\Omega)$ such that F = f in Ω^+ and $F(z) = \overline{f(\overline{z})}$ in $\Omega - \Omega^+$.

Our generalized version replaces the vanishing of Im(f) on L by the real analyticity of Im(f) on L which is a necessary condition for the holomorphic extension. We simplify our version as follows:

Theorem 1.2. Let D = D(0,1) be the open disc centered at the origin with radius 1, $D^+ = \{z \in D : Im(z) > 0\}$, $L = D \cap \mathbb{R}$. Suppose that $f \in A(D^+)$ and Im(f) has a continuous extension to $D^+ \cup L$ such that $v(x,0) = Im(f)|_L$ is real analytic at 0 with radius of convergence r. Denote $D_r = D(0,r)$, then there exists $F \in A(D^+ \cup D_r)$ such that F = f in D^+ and $F(z) = f(\overline{z}) + 2iv(z,0)$ $\forall z \in D_r - D_r^+$ where v(z,0) denotes a holomorphic function on D_r .

Proof: Since $v(x,0) = Im(f)|_L$ is real analytic at 0 with radius of convergence r, we can write $v(x,0) = \sum a_n x^n \ \forall |x| < r$. Thus we get a holomorphic function $v(z,0) = \sum a_n z^n$ on D_r by the complexification of the variable x. Now $Im(f(z) - iv(z,0))|_{(-r,r)} \equiv 0$, by the Schwarz Reflection Principle, the function

$$g(z) := \begin{cases} \frac{f(z) - iv(z, 0)}{f(\overline{z}) - iv(\overline{z}, 0)} & \text{for} \quad z \in D_r^+ \\ & \text{for} \quad z \in D_r - D_r^+ \end{cases}$$

is holomorphic on D_r . Thus the function

$$F(z) := g(z) + iv(z,0) = \left\{ \begin{array}{ll} \displaystyle \frac{f(z)}{f(\overline{z}) - iv(\overline{z},0)} + iv(z,0) & \text{for} \quad z \in D^+ \\ \end{array} \right.$$

is holomorphic on $D^+ \cup D_r$ and is the desire extension. Since a_n are real, $F(z) = \overline{f(\overline{z})} + 2iv(z,0) \ \forall z \in D_r - D_r^+$.

Theorem 1.2 leads to a reflection principle of harmonic functions if we impose some real analyticity condition on the boundary.

Corollary 1.1. Let D, D^+ , L as above. Suppose that v(x,y) is harmonic in D^+ and has a continuous extension to $D^+ \cup L$ such that v(x,0) is real analytic at 0 with radius of convergence r. Denote $D_r = D(0,r)$, then there exists V harmonic in $D^+ \cup D_r$ such that V = v in D^+ and $V(x,y) = 2Re(v(z,0)) - v(x,-y) \ \forall (x,y) \in D_r - D_r^+$ where v(z,0) denotes a holomorphic function on D_r .

Proof: Since we can find u(x,y) in D^+ such that $u+iv \in A(D^+)$, we then apply Theorem 1.2 to get the extension V(x,y) in D_r , $V(x,y) = Im(\overline{f(\overline{z})} + 2iv(z,0)) = 2Re(v(z,0)) - v(x,-y)$.

Proposition 1.3. Every regular real analytic curve S in \mathbb{C} is locally biholomorphic equivalent to the real line, i.e. $\forall p_0 \in S, \exists a \ local \ biholomorphic \ map \ \phi$ from a neighbohoood U of 0 in \mathbb{C} that takes 0 to p_0 and $U \cap \mathbb{R}$ to $\phi(U) \cap S$.

Proof: WLOG, assume $p_0=0$, since S is regular real analytic, then S can be locally parametrized by $(\sum_{n=1}^{\infty}a_nt^n,\sum_{n=1}^{\infty}b_nt^n)$, $t\in(-r,r)$ with $(a_1,b_1)\neq(0,0)$. Then the local biholomorphic mapping $\phi(z)=\sum_{n=1}^{\infty}(a_n+ib_n)z^n$ defined on $U=D(0,\frac{r}{\sqrt{2}})$ maps $U\cap\mathbb{R}$ to $\phi(U)\cap S$ and takes 0 to 0.

By Proposition 1.3, Theorem 1.2 can be generalized as follows: if a function f holomorphic on one side of S, Im(f) has a continuous extension to a neighborhood U of p_0 in S such that the restriction to U is real analytic, then f can be holomorphically extended to a neighborhood of p_0 in \mathbb{C} . A generalized Corollary 1.1 will follow easily.

2 Holomorphic extension of CR functions on real analytic, generic CR submanifold in \mathbb{C}^N

We first introduce the necessary notations and definitions needed in the sequel. We mainly follow [BER]. A smooth (real analytic) real submanifold of \mathbb{C}^N of codimension d is a subset M of \mathbb{C}^N such that $\forall p_0 \in M$, there is a neighborhood U of p_0 and a smooth (real analytic) real vector-valued function $\rho = (\rho_1, ..., \rho_d)$ defined in U such that

$$M \cap U = \{ Z \in U : \rho(Z, \overline{Z}) = 0 \},$$

with differentials $d\rho_1, ..., d\rho_d$ linearly independent in U.

Definition 2.1. A real submanifold $M \subset \mathbb{C}^N$ is CR if the complex rank of the complex differentials $\partial \rho_1, ..., \partial \rho_d$ is constant for $p \in M$. It is generic if $\partial \rho_1, ..., \partial \rho_d$ are \mathbb{C} linearly independent for $p \in M$.

It should be noted that the above definitions are independent of choice of local defining functions ρ . Let $M \subset \mathbb{C}^N$ be a germ of real analytic, generic, CR submanifold of codimension d at p_0 , write N = n + d, $n \geq 1$. After a local holomorphic change of coordinates, we can assume that there exists Ω , a sufficiently small open neighborhood of 0 in \mathbb{C}^{n+d} , such that M is given in Ω by

$$Im(w) = \phi(z, \overline{z}, Re(w)),$$

with $z \in \mathbb{C}^n$, $w \in \mathbb{C}^d$, ϕ a real-valued analytic function (power series) of $z, \overline{z}, Re(w)$ such that $\phi(0,0,0) = 0$ and $d\phi(0,0,0) = 0$. Such a choice of coordinates is called regular coordinates.

Now suppose M is a real analytic, generic submanifold, locally parametrized by the regular coordinates near $0 \in M$. Since the function $\phi(z, \overline{z}, s)$ is real analytic near $0 \in \mathbb{R}^{2n+d}$, the variable s can be complexified. Thus, we extend the parametrization $\Psi(z, \overline{z}, s) = (z, s + i\phi(z, \overline{z}, s) \in \mathbb{C}^{n+d}$ to a local real analytic diffeomorphism $\widetilde{\Psi}(z, \overline{z}, s + it) = (z, s + it + i\phi(z, \overline{z}, s + it)) \in \mathbb{C}^{n+d}$, defined in a neighborhood of $0 \in \mathbb{R}^{2n+2d}$.

By the above notation, we have the following holomorphic extension result, see [BER].

Proposition 2.1. Let M be a real analytic generic submanifold of \mathbb{C}^{n+d} of codimension d in regular coordinates near $0 \in M$. If h be a CR function on M, then h extends holomorphically to a full neighborhood of 0 if and only if there exists $\epsilon > 0$ such that for every $z \in \mathbb{C}^n$, $|z| < \epsilon$, the function $s \longmapsto h \circ \Psi(z, \overline{z}, s)$ extends holomorphically to the open set $\{s+it \in \mathbb{C}^d, |s| < \epsilon, |t| < \epsilon\}$ in such a way that the extension $H := h \circ \Psi(z, \overline{z}, s+it)$ is a bounded, measurable function of all its variables.

The following important corollary is an easy consequence of the above proposition.

Corollary 2.1. Let $M \subset \mathbb{C}^N$ be a real analytic generic submanifold and f a CR function in a neighborhood of $p \in M$. Then f extends as a holomorphic function in a neighborhood of p in \mathbb{C}^N if and only if f is real analytic in a neighborhood of p in M.

We shall describe an open wedge with a generic edge in \mathbb{C}^{n+d} . Let M be a generic submanifold of \mathbb{C}^{n+d} of codimension d and $p_0 \in M$. Let $\rho = (\rho_1, ..., \rho_d)$ be a defining functions of M near p_0 and Ω a small neighborhood of p_0 in \mathbb{C}^{n+d} in which ρ is defined. If Γ is an open convex cone with vertex at the origin in \mathbb{R}^d , we set

$$W(\Omega,\rho,\Gamma):=\{Z\in\Omega:\rho(Z,\overline{Z})\in\Gamma\}.$$

The above set is an open subset of \mathbb{C}^{n+d} whose boundary contains $M \cap \Omega$. Such a set is called a wedge of edge M in the direction Γ centered at p_0 .

The following shows that $W(\Omega, \rho, \Gamma)$ is in a sense independent of the choice of ρ , which will allow us to change defining functions freely. [BER]

Proposition 2.2. Let ρ and ρ' be two defining functions for M near p_0 , where M and p_0 are as above. Then there is a $d \times d$ real invertible matrix B such that for every Ω and Γ as above the following holds. For any open convex cone $\Gamma_1 \subset \mathbb{R}^d$ with $B\Gamma_1 \cap S^{d-1}$ relatively compact in $\Gamma \cap S^{d-1}$ (where S^{d-1} denotes the unit sphere in \mathbb{R}^d), there exists Ω_1 , an open neighborhood of p_0 in \mathbb{C}^{n+d} , $such\ that$

$$W(\Omega_1, \rho', \Gamma_1) \subset W(\Omega, \rho, \Gamma).$$

Below is an Edge-of-the-Wedge Theorem, see [Kr], [Ru]. This theorem together with Proposition 2.1 are essential to the proof of the main theorem.

Theorem 2.3. If $\Gamma \subset \mathbb{R}^d$ is an open convex cone, R > 0, $d \geq 2$. Let V = $\Gamma \cap B(0,R)$. Let $E \subset \mathbb{R}^d$ be a nonempty neighborhood of 0. Define $W^+ \subset \mathbb{C}^d$, $W^- \subset \mathbb{C}^d$ by

$$W^+ = E + iV$$
, $W^- = E - iV$

Then there exists a fixed neighborhood U of $0 \in \mathbb{C}^d$ such that the following property holds: For any continuous function $g: W^+ \cup W^- \cup E \longrightarrow \mathbb{C}$ that is holomorphic on $W^+ \cup W^-$, there is a holomorphic G on U such that $G|_{U \cap (W^+ \cup W^- \cup E)} =$

Proof: Let $s \in E$. We may assume that s = 0. After composition with a linear isomorphism A in \mathbb{C}^d with real coefficients, we may assume that $i\{(t_1,...,t_d) \in \mathbb{R}^d : t_j > 0, \ j = 1,...,d\} \subset A^{-1}(i\Gamma), \text{ there exists } B(0,R') \subset A^{-1}(i\Gamma)$ \mathbb{R}^d with $R'>6\sqrt{d}$ and $E'=\{s\in\mathbb{R}^d:|s_j|<6,\ j=1,...,d\}$ such that $E' + iB(0, R') \subset A^{-1}(E + iB(0, R))$. So we reduce the case to the following.

CLAIM: Let

 $E = \{s \in \mathbb{R}^d : |s_j| < 6, j = 1, ..., d\},\$ $V = \{t \in \mathbb{R}^d : 0 < t_j < 6, j = 1, ..., d\},\$ $W^+ = E + iV, W^- = E - iV.$

Let $U = D^d(0,1)$. If $g: W^+ \cup W^- \cup E \longrightarrow \mathbb{C}$ is continuous and g is holomorphic on $W^+ \cup W^-$, then there is a holomorphic G on U such that $G|_{U\cap(W^+\cup W^-\cup E)}=g.$

Let $c = \sqrt{2} - 1$ and define

$$\varphi: \overline{D}^2(0,1) \longrightarrow \mathbb{C}$$

$$(w,\lambda) \longmapsto \frac{w+\lambda/c}{1+c\lambda w}$$

Then

$$\varphi(w,\lambda) = \frac{w + \lambda/c + |\lambda|^2 \overline{w} + c\overline{\lambda}|w|^2}{|1 + c\lambda w|^2};$$

hence

$$Im\varphi(w,\lambda) = \frac{(1-|\lambda|^2)Im(cw) + (1-|cw|^2)Im(\lambda)}{c|1+c\lambda w|^2}$$

Notice that

- 1. $sgn(Im\varphi) = sgn(Im\lambda)$ if $|\lambda| = 1$;
- 2. $sgn(Im\varphi) = sgn(Im\lambda)$ if $w \in \mathbb{R}$;
- 3. $\varphi(w,0) = w;$
- 4. $|\varphi(w,\lambda)| \leq (1+1/c)(1-c) < 6$. It follows that the function

$$\Phi: D^d(0,1) \times \overline{D} \longrightarrow \mathbb{C}^d (w,\lambda) \longmapsto (\varphi(w_1,\lambda),...,\varphi(w_d,\lambda))$$

satisfies

- 5. $\Phi(w, e^{i\theta}) \in W^+ \text{ if } 0 < \theta < \pi;$
- 6. $\Phi(w, e^{i\theta}) \in W^-$ if $\pi < \theta < 2\pi$;
- 7. $\Phi(w, e^{i\theta}) \in E \text{ if } \theta = 0 \text{ or } \theta = \pi;$

In short, $\Phi(z, e^{i\theta}) \in \text{Dom}(g)$ for all $0 \le \theta < 2\pi$, all $w \in D^d(0, 1)$. So we may define

$$G(w) = \frac{1}{2\pi} \int_0^{2\pi} g(\Phi(w, e^{i\theta})) d\theta, \ w \in D^d(0, 1).$$

We claim that this is what we seek. First, G is holomorphic by an application of Morera's theorem. Next, we note that for fixed $s \in E \cap D^d(0,1)$, the function $g(\Phi(s,\cdot))$ is continuous on \overline{D} and holomorphic on $\{\lambda \in D: Im\lambda > 0 \text{ or } < 0\}$. Again, by Morera, $g(\Phi(s,\cdot))$ is holomorphic on all of D. It follows by Mean Value Property that

$$G(s) = \frac{1}{2\pi} \int_0^{2\pi} g(\Phi(s, e^{i\theta})) d\theta = g(\Phi(s, 0)) = g(s);$$

hence G = g on $E \cap D^d(0,1)$. If $s + it \in \mathbb{C}^d$ is fixed, |s + it| < 1/2, t > 0, then the function

$$\xi \longmapsto G(s + \xi t) - g(s + \xi t)$$

is holomorphic for $\xi \in \mathbb{C}$ small and $\equiv 0$ when ξ is real. If follows that G and g are identical on $W^+ \cup W^-$. If follows that $G \equiv g$ on $W^+ \cup W^- \cup E$.

If we return to our original case, the desire extension of g is

$$G(w) = \frac{1}{2\pi} \int_0^{2\pi} g \circ A(\Phi(A^{-1}(w), e^{i\theta})) d\theta, \ w \in A^{-1}(D^d(0, 1)).$$

since it agrees with our g in some open set. Our desire U is $A^{-1}(D^d(0,1))$

According to Corollary 2.1, a CR function f = u + iv on a real analytic, generic submanifold can be holomorphically extended to a full neighborhood if and only if u, v are real analytic on M. Our main theorem, to some extent, reduces the case to u continuous and v real analytic on M.

Theorem 2.4. Let $M \subset \mathbb{C}^{n+d}$ be a real analytic, generic submanifold. $0 \in M$, in a neighborhood Ω of 0 in \mathbb{C}^{n+d} , M is given by regular coordinates, $\rho := Im(w) - \phi(z, \overline{z}, Re(w)) = 0$, $(z, w) \in \mathbb{C}^n \times \mathbb{C}^d$. Let f = u + iv be a holomorphic function defined in the wedge $W = W(\Omega, \rho, \Gamma)$, where $W(\Omega, \rho, \Gamma)$ is as above defined with Γ an open convex cone in \mathbb{R}^d . If f extends continuously up to the edge $M \cap \Omega$ with v = Im(f) is real analytic on the edge $M \cap \Omega$. Then there exists a holomorphic function F in a neighborhood Ω of 0 in \mathbb{C}^{n+d} such that $F|_{W\cap\widetilde{\Omega}} = f$.

Before proving the theorem, we need a lemma which ensures a wedge with edge as an open subet of \mathbb{R}^{2n+d} contained in $\widetilde{\Psi}^{-1}(\Omega \cap W)$.

Lemma 2.5. There exists an neighborhood U_1 of 0 in \mathbb{R}^{2n+2d} , an neighborhood Q_1 of 0 in \mathbb{R}^{2n+d} , an open convex cone Γ' with vertex at 0 in \mathbb{R}^d such that $\widetilde{\Psi}$ is a real analytic diffeomorphism from U_1 to $\widetilde{\Psi}(U_1) \subset \Omega$ and $\widetilde{\Psi}((Q_1 \times \Gamma') \cap U_1) \subset \Omega \cap W$.

Proof of the lemma: Take an neighborhood U_1 of 0 in \mathbb{R}^{2n+2d} such that $\widetilde{\Psi}$ is a real analytic diffeomorphism from U_1 to $\widetilde{\Psi}(U_1) \subset \Omega$. $\widetilde{\Psi}(z,s+it) = (z,s+it+i\phi(z,\overline{z},s+it)) = (\widetilde{z},\widetilde{w})$, we can write $t=\Theta(\widetilde{z},\overline{\widetilde{z}},\widetilde{w},\overline{\widetilde{w}})$ where Θ is \mathbb{R}^d valued, real analytic in all its variables. Note that $t:=\Theta(\widetilde{z},\overline{\widetilde{z}},\widetilde{w},\overline{\widetilde{w}})$ can be taken as the defining functions for M in $\widetilde{\Psi}(U)$. By Proposition 2.2, there exists a neighborhood of 0 in \mathbb{C}^{n+d} (we may take it as a subset of U_1 and still denote it as U_1), a convex open cone Γ' such that

$$W(U_1, t, \Gamma') \subset W(\Omega, \rho, \Gamma),$$

Take $Q_1 = U_1 \cap \mathbb{R}^{2n+d}$, we then have $\widetilde{\Psi}((Q_1 \times \Gamma') \cap U_1) \subset \Omega \cap W$.

Proof of the theorem: $f|_{M\cap\Omega}$ is a continuous CR function on $M\cap\Omega$. By the lemma, the function $f\circ\widetilde{\Psi}(z,\overline{z},s+it)=f(z,\overline{z},s+it+i\phi(z,\overline{z},s+it))$ is defined on $\{(z,s+it)\in(Q_1\times\Gamma')\cap U_1\}$, note that it is holomorphic in the variables w=s+it. To use Proposition 2.1, it suffices to show that $f\circ\widetilde{\Psi}$ can be continuously extended to a full neighborhood of 0 in \mathbb{R}^{2n+2d} such that the extension is holomorphic in variables w=s+it.

Now, denote the restriction of the function $v \circ \widetilde{\Psi}(z,s+it)$ on Q_1 to be $v(z,\overline{z},s)$. By the real analyticity of v and Ψ , we can treat $v(z,\overline{z},s)$ as a power series expansion at $0 \in \mathbb{R}^{2n+d}$ and complexify the variable s to w. Denote the new function to be $v(z,\overline{z},w)$ defined in a product neighborhood $U_2 = U_3 \times U_4 \subset \mathbb{C}^n \times \mathbb{C}^d$ of 0. Note that $v(z,\overline{z},w)$ is continuous in U_2 and

holomorphic in variables w.

Following the idea of Theorem 1.2, the function

$$g(z,\overline{z},s+it) := \begin{cases} f \circ \widetilde{\Psi}(z,\overline{z},s+it) - iv(z,\overline{z},s+it) & \text{for } (z,s+it) \in (Q_1 \times (\Gamma' \cup \{0\})) \cap U_2 \\ f \circ \widetilde{\Psi}(z,\overline{z},s-it) - iv(z,\overline{z},s-it) & \text{for } (z,s+it) \in (Q_1 \times -\Gamma') \cap U_2 \end{cases}$$

is holomorphic in variables w = s + it for fixed z and continuously up to $Q_1 \cap U_2$.

We shall apply the construction of holomorphic extension in the proof of Theorem 2.3 to $g(z, \overline{z}, s+it)$ for every fixed z. According to the proof, we have a linear isomorphism A in \mathbb{C}^d with real coefficients and $\Phi: D^d(0,1) \times \overline{D} \longrightarrow \mathbb{C}^d$. Now we extend A to a linear isomorphism in \mathbb{C}^{n+d} which maps $(z, w) \in \mathbb{C}^{n+d}$ to (z, A(w)), still denote it as A. We also extend Φ to a mapping which takes $(z, w, \lambda) \in U_3 \times D^d(0, 1) \times \overline{D}$ to $(z, \Phi(w, \lambda)) \in \mathbb{C}^n \times \mathbb{C}^d$, still denote it as Φ . Since the choice of A depends only on U_4 and the cone Γ' , so we have the extension

$$G(z, \overline{z}, w) = \frac{1}{2\pi} \int_0^{2\pi} g \circ A(\Phi(A^{-1}(z, w), e^{i\theta})) d\theta, \ \forall (z, w) \in A^{-1}(U_3 \times D^d(0, 1))$$

by Theorem 2.3 and Lemma 2.5.

From the construction above, the extension $G(z,\overline{z},s+it)$ is continuous on $U_3 \times U_5 = A^{-1}(U_3 \times D^d(0,1))$ and holomorphic in variables w. Thus, the function $F(z,\overline{z},s+it) := G+iv(z,\overline{z},s+it)$ is a continuous extension of $f \circ \widetilde{\Psi}(z,\overline{z},s+it)$ in $U_3 \times U_5$, holomorphic in w=s+it. Thus by Proposition 2.1, f can be holomorphically extended to a full neighborhood $\widetilde{\Omega}$ of 0 in \mathbb{C}^{n+d} .

The following theorem states that minimality is a sufficient condition for holomorphic extension of all CR functions from a generic submanifold M in \mathbb{C}^N into an open wedge. See [BER], [T].

Theorem 2.6. Let M be a generic submanifold of \mathbb{C}^{n+d} of codimension d and $p_0 \in M$. If M is minimal at p_0 , then for every open neighborhood U of p_0 in M there exists a wedge W with edge M centered at p_0 such that every continuous CR function in U extends holomorphically to the wedge W.

Since a real analytic CR submanifold M in \mathbb{C}^N is finite type at $p_0 \in M$ if and only if it is minimal at p_0 . Thus, together Theorem 2.6, we have the following corollary.

Corollary 2.2. Let $M \subset \mathbb{C}^N$ be a real analytic, generic CR submanifold, finite type at $p_0 \in M$. If f = u + iv is a continuous CR function defined in a neighborhood of p_0 in M with v real analytic. Then f can be holomorphically extended to a full neighborhood of p_0 in \mathbb{C}^N . (Or u is also real analytic in a neighborhood of p_0 in M by Corollary 2.1)

Definition 2.2. A CR submanifold of the form

$$M = \{(z, s + it) \in \mathbb{C}^n \times \mathbb{C}^d; t = \phi(z, \overline{z})\}\$$

where $\phi: \mathbb{C}^n \longmapsto \mathbb{R}^d$ is smooth with $\phi(0) = 0$ and $d\phi(0) = 0$ is called rigid.

Corollary 2.3. Let M be a real analytic, generic submanifold, $0 \in M$, given by $\{(z, s+it) \in U \subset \mathbb{C}^n \times \mathbb{C}^d : t = \phi(z, \overline{z}, s)\}$. Let M' be a real analytic, generic, rigid submanifold, $0 \in M'$, given by $\{(z', s'+it') \in U' \subset \mathbb{C}^{n'} \times \mathbb{C}^{d'} : t' = \phi'(z', \overline{z'})\}$. If $H = (f_1, ..., f_{n'}, g_1, ..., g_{d'})$ is a holomorphic mapping defined in the wedge $W = W(U, \rho, \Gamma)$ with Γ an open convex cone. If H extends continuously to the edge $M \cap U$ with H(0) = 0, $H(M) \subset M'$. Then $(f_1, ..., f_{n'})$ can be holomorphically extended near 0 implies H can be holomorphically extended near 0

Proof: Denote $Im(g_i)(z,\overline{z},s):=Im(g_i)\circ \Psi(z,\overline{z},s),\ 1\leq \underline{i}\leq \underline{d'},\ \text{similarily}$ for $f_j(z,\overline{z},s),\ 1\leq j\leq n'.$ Now $Im(g_i)(z,\overline{z},s)=\phi'(f(z,\overline{z},s),\overline{f(z,\overline{z},s)})$ and f_j real analytic. Write $f_j(z,\overline{z},s)=\sum a^j_{\alpha\beta\gamma}z^\alpha\overline{z}^\beta s^\gamma$ for all j in a neighborhood of 0 in \mathbb{R}^{2n+d} , similarily $\overline{f_j}(z,\overline{z},s)=\sum a^j_{\alpha\beta\gamma}\overline{z}^\alpha z^\beta s^\gamma$ for all j in the same neighborhood. We extend $f_j(z,\overline{z},s)$ to $f_j(z,\chi,w)=\sum a^j_{\alpha\beta\gamma}z^\alpha\chi^\beta w^\gamma,\ \overline{f_j}(z,\overline{z},s)$ to $\overline{f_j}(z,\chi,w)=\sum \overline{a^j_{\alpha\beta\gamma}\chi^\alpha z^\beta w^\gamma}$ in a neighborhood of 0 of \mathbb{C}^{2n+d} .

Note that the function $\phi_i'(f_1(z,\chi,w),...,f_{n'}(z,\chi,w),\overline{f_1}(z,\chi,w),...,\overline{f_{n'}}(z,\chi,w))$ is holomorphic in a neighborhood of 0 in \mathbb{C}^{2n+d} by the real analyticity of ϕ' , it is therefore real analytic in that neighborhood. The restriction of such function to the plane $\{(z,\chi,w)\in\mathbb{C}^{2n+d};\ \chi=\overline{z},w\in\mathbb{R}^d\}$ is also real analytic and equals $Im(g_i)(z,\overline{z},s)$, thus $Im(g_i)$ are real analytic for all i, by Theorem 2.4, g_i can be holomorphically extended to a neighborhood, we get the desire result.