SPECIALIZATION OF MONODROMY GROUP AND ℓ -INDEPENDENCE

CHUN YIN HUI

ABSTRACT. Soit E un schéma abélien sur une variété lisse et géométriquement connexe X, définie sur un corps k de type fini sur \mathbb{Q} . Soit η le point générique de X et soit $x \in X$ un point fermé. Si \mathfrak{g}_{ℓ} et $(\mathfrak{g}_{\ell})_x$ sont les algèbres de Lie des représentations ℓ -adiques de Galois des variétés abéliennes E_{η} et E_x , alors $(\mathfrak{g}_{\ell})_x$ est plongée dans \mathfrak{g}_{ℓ} par spécialisation. Nous démontrons que l'ensemble $\{x \in X \text{ point fermé} \mid (\mathfrak{g}_{\ell})_x \subsetneq \mathfrak{g}_{\ell}\}$ est indépendant de ℓ , ce qui confirme la Conjecture 5.5 de [3].

Let E be an abelian scheme over a geometrically connected, smooth variety X defined over k, a finitely generated field over \mathbb{Q} . Let η be the generic point of X and $x \in X$ a closed point. If \mathfrak{g}_{ℓ} and $(\mathfrak{g}_{\ell})_x$ are the Lie algebras of the ℓ -adic Galois representations for abelian varieties E_{η} and E_x , then $(\mathfrak{g}_{\ell})_x$ is embedded in \mathfrak{g}_{ℓ} by specialization. We prove that the set $\{x \in X \text{ closed point } | (\mathfrak{g}_{\ell})_x \subsetneq \mathfrak{g}_{\ell}\}$ is independent of ℓ and confirm Conjecture 5.5 in [3].

§0. Introduction

Let E be an abelian scheme of relative dimension n over a geometrically connected, smooth variety X defined over k, a finitely generated field over \mathbb{Q} . If K is the function field of X and η is the generic point of X, then $A := E_{\eta}$ is an abelian variety of dimension n defined over K. The structure morphism $X \to \operatorname{Spec}(k)$ induces at the level of étale fundamental groups a short exact sequence of profinite groups:

$$(0.1) 1 \to \pi_1(X_{\overline{k}}) \to \pi_1(X) \to \Gamma_k := \operatorname{Gal}(\overline{k}/k) \to 1.$$

Any closed point $x: \operatorname{Spec}(\mathbf{k}(x)) \to X$ induces a splitting $x: \Gamma_{\mathbf{k}(x)} \to \pi_1(X_{\mathbf{k}(x)})$ of exact sequence (0.1) for $\pi_1(X_{\mathbf{k}(x)})$.

Let $\Gamma_K = \operatorname{Gal}(\overline{K}/K)$ the absolute Galois group of K. For each prime number ℓ , we have the Galois representation $\rho_\ell : \Gamma_K \to \operatorname{GL}(T_\ell(A))$ where $T_\ell(A)$ is the ℓ -adic Tate module of A. This representation is unramified over X and factors through $\rho_\ell : \pi_1(X) \to \operatorname{GL}(T_\ell(A))$ (still denote the map by ρ_ℓ for simplicity). The image of ρ_ℓ is a compact ℓ -adic Lie subgroup of $\operatorname{GL}(T_\ell(A)) \cong \operatorname{GL}_{2n}(\mathbb{Z}_\ell)$. Any closed point $x : \operatorname{Spec}(\mathbf{k}(x)) \to X$ induces an ℓ -adic Galois representation of $\Gamma_{\mathbf{k}(x)}$ by restricting ρ_ℓ to $x(\Gamma_{\mathbf{k}(x)})$. This representation is isomorphic to the Galois representation of $\Gamma_{\mathbf{k}(x)}$ on the ℓ -adic Tate module of E_x , the abelian variety over $\mathbf{k}(x)$ that is the specialization of E at x.

For the sake of simplicity, we write $G_{\ell} := \rho_{\ell}(\pi_1(X))$, $\mathfrak{g}_{\ell} := \operatorname{Lie}(G_{\ell})$, $(G_{\ell})_x := \rho_{\ell}(x(\Gamma_{\mathbf{k}(x)}))$ and $(\mathfrak{g}_{\ell})_x := \operatorname{Lie}((G_{\ell})_x)$. We have $(\mathfrak{g}_{\ell})_x \subset \mathfrak{g}_{\ell}$. We set X^{cl} the set of closed points of X and define the exceptional set

$$X_{\rho_{E,\ell}} := \{ x \in X^{cl} | (\mathfrak{g}_{\ell})_x \subsetneq \mathfrak{g}_{\ell} \}.$$

The main result (Theorem 1.5) of this note is that the exceptional set $X_{\rho_{E,\ell}}$ is independent of ℓ . Conjecture 5.5 in [Cadoret & Tamagawa 3] is then a direct application of our theorem.

§1. ℓ -independence of $X_{\rho_{E,\ell}}$

Theorem 1.1. (Serre [6 §1]) Let A be an abelian variety defined over a field K finitely generated over \mathbb{Q} and let $\Gamma_K = \operatorname{Gal}(\overline{K}/K)$. If $\rho_\ell : \Gamma_K \to \operatorname{GL}(T_\ell(A))$ is the ℓ -adic representation of Γ_K , then the Lie algebra \mathfrak{g}_ℓ of $\rho_\ell(\Gamma_K)$ is algebraic and the rank of \mathfrak{g}_ℓ is independent of the prime ℓ .

Remark 1.2. When K is a number field, the algebraicity of the ℓ -adic Lie algebra \mathfrak{g}_{ℓ} was proven by Bogomolov [1]. When K is a global field of finite characteristic > 2, the rank independence on ℓ was proven by Zarhin [7].

Since $V_{\ell} := T_{\ell}(A) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$ is a semisimple Γ_K -module (Faltings [4]), the action on V_{ℓ} of the Zariski closure \mathfrak{G}_{ℓ} of $\rho_{\ell}(\Gamma_K)$ in $\mathrm{GL}_{V_{\ell}}$ is also semisimple. Therefore \mathfrak{G}_{ℓ} is a reductive algebraic group (Borel [2]). By Theorem 1.1, \mathfrak{g}_{ℓ} is algebraic. So the rank of \mathfrak{g}_{ℓ} is just the dimension of maximal tori in \mathfrak{G}_{ℓ} . We need two more theorems, the first one is the Tate conjecture for abelian varieties proved by G. Faltings and the second one is a result of Yu. G. Zarhin on algebraic reductive Lie algebras.

Theorem 1.3. (Faltings [4]) Let A be an abelian variety defined over a field k that is finitely generated over \mathbb{Q} and let $\Gamma_k = \operatorname{Gal}(\overline{k}/k)$. Then the map $\operatorname{End}_k(A) \otimes_{\mathbb{Z}} \mathbb{Q}_\ell \to \operatorname{End}_{\Gamma_k}(V_\ell(A))$ is an isomorphism.

Theorem 1.4. (Zarhin [8 §5]) Let V be a finite dimensional vector space over a field of characteristic 0. Let $\mathfrak{g}_1 \subset \mathfrak{g}_2 \subset \operatorname{End}(V)$ be Lie algebras of reductive subgroups of GL_V . Let us assume that the centralizers of \mathfrak{g}_1 and \mathfrak{g}_2 in $\operatorname{End}(V)$ are equal and that the ranks of \mathfrak{g}_1 and \mathfrak{g}_2 are equal. Then $\mathfrak{g}_1 = \mathfrak{g}_2$.

We are now able to prove our main theorem.

Theorem 1.5. The set $X_{\rho_{E,\ell}}$ is independent of ℓ .

Proof. Suppose $x \in X^{cl} \setminus X_{\rho_{\ell}}$, then $(\mathfrak{g}_{\ell})_x = \mathfrak{g}_{\ell}$. It suffices to show $\mathfrak{g}_{\ell'} = (\mathfrak{g}_{\ell'})_x := \operatorname{Lie}(\rho_{\ell'}(x(\Gamma_{\mathbf{k}(x)})))$ for any prime number ℓ' . Since base change with finite field extension of $\mathbf{k}(x)$ does not change the Lie algebras, $\operatorname{End}_{\overline{k}}(E_x)$ is finitely generated, and we have the exponential map from Lie algebras to Lie groups, we may assume that $\operatorname{End}_{\overline{k}}(E_x) = \operatorname{End}_k(E_x)$ and $\operatorname{End}_{\Gamma_k}(V_{\ell}(E_x)) = \operatorname{End}_{(\mathfrak{g}_{\ell})_x}(V_{\ell}(E_x))$. We do the same for the abelian variety E_{η}/K . We

therefore have

$$\dim_{\mathbb{Q}_{\ell'}}(\operatorname{End}_{\mathfrak{g}_{\ell'}}(V_{\ell'}(E_{\eta}))) \stackrel{1}{=} \dim_{\mathbb{Q}_{\ell'}}(\operatorname{End}_{K}(E_{\eta}) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell'})$$

$$\stackrel{2}{=} \dim_{\mathbb{Q}_{\ell}}(\operatorname{End}_{K}(E_{\eta}) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell}) \stackrel{3}{=} \dim_{\mathbb{Q}_{\ell}}(\operatorname{End}_{\mathfrak{g}_{\ell}}(V_{\ell}(E_{\eta})))$$

$$\stackrel{4}{=} \dim_{\mathbb{Q}_{\ell}}(\operatorname{End}_{(\mathfrak{g}_{\ell})_{x}}(V_{\ell}(E_{x}))) \stackrel{5}{=} \dim_{\mathbb{Q}_{\ell}}(\operatorname{End}_{k}(E_{x}) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell})$$

$$\stackrel{6}{=} \dim_{\mathbb{Q}_{\ell'}}(\operatorname{End}_{k}(E_{x}) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell'}) \stackrel{7}{=} \dim_{\mathbb{Q}_{\ell'}}(\operatorname{End}_{(\mathfrak{g}_{\ell'})_{x}}(V_{\ell'}(E_{x}))).$$

Theorem 1.3 implies the first, third, fifth and seventh equality. The dimensions of \mathbb{Q}_{ℓ} -vector spaces $\operatorname{End}_K(E_{\eta}) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell}$ and $\operatorname{End}_k(E_x) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell}$ do not depend on ℓ ; this implies the second and the sixth equality. Equality $\mathfrak{g}_{\ell} = (\mathfrak{g}_{\ell})_x$ implies the fourth equality.

We have $\operatorname{End}_{\mathfrak{g}_{\ell'}}(V_{\ell'}(E_{\eta})) = \operatorname{End}_{(\mathfrak{g}_{\ell'})_x}(V_{\ell'}(E_x))$ because the left one is contained in the right one. In other words, the centralizer of $(\mathfrak{g}_{\ell'})_x$ is equal to the centralizer of $\mathfrak{g}_{\ell'}$. We know that $(\mathfrak{g}_{\ell'})_x \subset \mathfrak{g}_{\ell'}$ are both reductive, thanks to the semisimplicity of the corresponding Galois representations (Faltings [4]). By Theorem 1.1 on ℓ -independence of reductive ranks and equality $\mathfrak{g}_{\ell} = (\mathfrak{g}_{\ell})_x$,

$$\operatorname{rank}(\mathfrak{g}_{\ell'}) = \operatorname{rank}(\mathfrak{g}_{\ell}) = \operatorname{rank}(\mathfrak{g}_{\ell})_x = \operatorname{rank}(\mathfrak{g}_{\ell'})_x.$$

Therefore, by Theorem 1.4 we conclude that $(\mathfrak{g}_{\ell'})_x = \mathfrak{g}_{\ell'}$ and thus prove the theorem. \square

Corollary 1.6 (Conjecture 5.5 of [3]). Let k be a field that is finitely generated over \mathbb{Q} , X a smooth, separated, geometrically connected curve over k with the field of rational function K. Let η be the generic point of X and E an abelian scheme over X. Let $\rho_{\ell}: \pi_1(X) \to \mathrm{GL}(T_{\ell}(E_{\eta}))$ be the corresponding ℓ -adic representation. Then there exists a finite subset $X_E \subset X(k)$ such that for any prime ℓ , $X_{\rho_{E,\ell}} = X_E$, where $X_{\rho_{E,\ell}}$ is the set of all $x \in X(k)$ such that $(G_{\ell})_x$ is not open in $G_{\ell} := \rho_{\ell}(\pi_1(X))$.

Proof. The uniform open image theorem for GLP (geometrically Lie perfect) representations [3 Thm. 1.1] implies the finiteness of $X_{\rho_{E,\ell}}$. Theorem 1.5 implies ℓ -independence. \square

Corollary 1.7. Let A be an abelian variety of dimension $n \geq 1$ defined over a field K that is finitely generated over \mathbb{Q} . Let $\Gamma_K = \operatorname{Gal}(\overline{K}/K)$ denote the absolute Galois group of K. For each prime number ℓ , we have the Galois representation $\rho_{\ell} : \Gamma_K \to \operatorname{GL}(T_{\ell}(A))$ where $T_{\ell}(A)$ is the ℓ -adic Tate module of A. If the Mumford-Tate conjecture for abelian varieties over number fields is true, then there is an algebraic subgroup H of GL_{2n} defined over \mathbb{Q} such that the identity component of the Zariski closure of $\rho_{\ell}(\Gamma_K)$ in $\operatorname{GL}_{2n}(V_{\ell}(A))$ is equal to $H \times_{\mathbb{Q}} \mathbb{Q}_{\ell}$ for all ℓ .

Proof. There exists an abelian scheme E over a variety X defined over a number field k such that the function field of X is K and $E_{\eta} = A$ where η is the generic point of X (see, e.g., Milne [5 §20]). By [6 §1], there exists a closed point $x \in X$ such that $(\mathfrak{g}_{\ell})_x = \mathfrak{g}_{\ell}$. Therefore, we have $(\mathfrak{g}_{\ell})_x = \mathfrak{g}_{\ell}$ for any prime ℓ by Theorem 1.5. Since all Lie algebras are

algebraic (Theorem 1.1), if we take H as the Mumford-Tate group of E_x , then the identity component of the Zariski closure of $\rho_{\ell}(\Gamma_K)$ in $\mathrm{GL}_{2n}(V_{\ell}(A))$ is equal to $H \times_{\mathbb{Q}} \mathbb{Q}_{\ell}$ for all ℓ . \square

Question. Is the algebraic group H in Corollary 1.7 isomorphic to the Mumford-Tate group of the abelian variety A?

Acknowledgement. This work grew out of an attempt to prove Conjecture 5.5 in [3] suggested by my advisor, Professor Michael Larsen. I am grateful to him for the suggestion, guidance and encouragement. I would also like to thank Professor Anna Cadoret for her useful comments on an earlier version of this note. Remark 1.2 was suggested to us by the referee.

References

- 1. F. A. Bogomolov, Sur l'algébricité des représentations l-adiques, C.R.A.S. 290 (1980), 701-703.
- 2. A. Borel, Linear Algebraic Groups, Graduate Texts in Mathematics, 126 (2nd ed.), Springer-Verlag 1991.
- 3. A. Cadoret and A. Tamagawa, A uniform open image theorem for \(\ell \)-adic representations I, preprint.
- 4. G. Faltings, Complements to Mordell. Chapter 6 in: G. Faltings and G. Wüstholz, *Rational Points*, Seminar Bonn/Wuppertal 1983-1984, Vieweg 1984.
- 5. J. S. Milne, "Jacobian Varieties". Arithmetic Geometry. New York: Springer-Verlag 1986.
- 6. J.-P. Serre, Letter to K. A. Ribet, Jan. 1, 1981, reproduced in Coll. Papers, vol. IV, no 133.
- 7. Yu. G. Zarhin, Abelian varieties, ℓ -adic representations and Lie algebras. Rank independence on ℓ , Invent. Math. **55** (1979), 165-176.
- 8. Yu. G. Zarhin, Abelian varieties having a reduction of K3 type, Duke Math. J. 65 (1992), 511-527.

Department of Mathematics, Indiana University, Bloomington, IN 47405, USA E-mail address: chhui@indiana.edu