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1. INTRODUCTION TO GALOIS REPRESENTATIONS



Introduction to `-adic Galois representations

Let G be a profinite group and let k be a topological field. We will study
`-adic Galois representations, which are defined as follows:

• a representation of G (of dimension n) is a continuous
homomorphism of groups

ρ : G→ GLn(k),

• ρ is a Galois representation when G = GK = absolute Galois group
of a field K ,

• is an `-adic representation when k ⊆ Q`,
• and ` is just some prime number.
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Introduction to `-adic Galois representations

Let A denote some abelian group and A[`n] its `n-torsion. One may
construct an inverse system A[`n+1] � A[`n]. Its inverse limit

T`(A) := lim←−
n

A[`n],

is known as the Tate module of A at `.
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Introduction to `-adic Galois representations

Example (The `-adic cyclotomic character)

Let K be a field of characteristic p and K its separable closure. Let ` 6= p
be a prime. By choosing a compatible system of roots of unity µ`n , we
have an inverse system µ`n(K ) � µ`n−1 (K ) given by x 7→ x`, and we can

define the `-adic Tate module of K
×

,

T`(K
×

) = lim←−
n

µ`n(K ) ∼= lim←−
n

(Z/`nZ) ∼= Z`.

GK acts compatibly on µ`n(K ) for all n. We have a Galois representation:

χ` : GK → Aut(T`(K
×

)) ∼= Z×` = GL1(Z`) ↪→ GL1(Q`).
σ 7→ x 7→ σ(x)

It is called the `-adic cyclotomic character (over K ).
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Introduction to `-adic Galois representations

Example (Galois representations and elliptic curves)

Let E be an elliptic curve over K and ` 6= p. Consider the inverse system
E[`n] � E[`n−1] given by P 7→ ` · P and the corresponding `-Tate
module of E, T`(E) = lim←−E[`n] ∼= Z2

` . For each n, the field Q(E[`n]) is
a Galois number field, giving a restriction map and an injection

GK � Gal(Q(E[`n])/Q) ↪→ Aut(E[`n]).
σ 7→ σ|Q(E[`n])

These maps are compatible for each n.

Choosing basis of E[`n] for each n in a compatible way one can determine
isomorphisms Aut(E[`n]) ∼= GL2(Z/`nZ), and these combine to give
Aut(T`(E))

∼−→ GL2(Z`). Since GK acts on T`(E), we obtain a Galois
representation

ρE,` : GK −→ GL2(Z`) ⊂ GL2(Q`),

the 2-dimensional `-adic Galois representation associated to E.
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Introduction to `-adic Galois representations

Example (Galois representations and abelian varieties)

Let A be an abelian variety of dimension g over K and ` 6= p. Consider
the inverse system A[`n] � A[`n−1] given by P 7→ ` · P and define the
`-adic Tate module of A, T`(A) = lim←−A[`n]. One can compatibly

identify A[`n] with (Z/`nZ)2g , yielding an isomorphism T`(A) ∼= (Z`)2g .

Consider V`(A) := T`(A)⊗Z` Q` ∼= Q2g
` . The Galois group GK acts on

T`(A) and on V`(A). This yields to the `-adic Galois representation
associated to A,

ρA,` : GK → AutQ`(V`(K )) ∼= GL2g (Q`).
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Introduction to `-adic Galois representations

Example (Cohomology representations)

Let X be an algebraic variety over K and ` 6= p. Attach to X the étale
cohomology groups Hi (Xet ,Z/`nZ), i ∈ Z. Then, one defines

Hi (X,Z`) := lim←−Hi (Xet ,Z/`nZ), and Hi
`(X,Q`) := Hi (X,Z`)⊗Z` Q`.

The group Hi
`(X,Q`) is a Q`-vector space on which GK acts. It is finite

dimensional, at least if char(K ) = 0 or if X is proper.

One thus gets an `-adic representation of GK associated to Hi
`(X,Q`),

the i-th `-adic Galois representation associated to X, for
0 ≤ i ≤ 2 dim(X).
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Introduction to `-adic Galois representations

Let K be a number field. Then one may find not one, but a family of
representations {ρ`}` attached to K, one for each `,

ρ` : Gal(K/Q)→ GL(Q`).

Since they come from the same object, they might be expected to be
compatible in some sense.
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Introduction to `-adic Galois representations

Consider an arbitrary Galois extension L/K/Q and P/p/p prime ideals in
these fields. Recall the decomposition group of P

DP := {σ ∈ GK | Pσ = P} ∼= Gal(LP/Kp)

and the inertia group of P,

IP := {σ ∈ DP | xσ ≡ x (mod P), ∀x ∈ OL}.

There is an isomorphism

DP/IP ∼= Gal(F(P)/F(p)) = 〈Frobp〉,

and any representative in DP mapping to the Frobenius automorphism
Frobp is called a Frobenius element of Gal(L/K ), denoted by Frobp.

Definition

An `-adic Galois representation ρ` : GK → Aut(V ) is called unramified
at a prime p of K if IP ⊂ kerρ for any place P of K extending p.
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Introduction to `-adic Galois representations

Let p be an unramified prime with respect to some representation ρ`.
One defines the characteristic polynomial of Frobenius of ρ` at p as

Pp,ρ`(T ) := det(1− Tρ`(Frobp)) ∈ Q`[T ].

The representation ρ` is called rational (resp. integral) if

• it is unramified at all primes except for a finite set S , and

• Pp,ρ`(T ) ∈ Q[T ] (resp. Z[T ]).

We will consider from now on rational `-adic representations, so we will
be able to compare different rational representations (even over different
completions) just by comparing those polynomials.
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Introduction to `-adic Galois representations

Examples

The `-adic Galois representations χ`, ρE,` and ρA,` of GK are integral
representations.

In the first case one can take as S the set S` of places in K that lie over
`. In the second and third cases, one can take as S the union of S` and
the set of primes of bad reduction of E (resp. A).

The fact that the corresponding Frobenius has an integral characteristic
polynomial (which is independent of `) is a consequence of Weil’s results
on endomorphisms of abelian varieties.

Cohomology representations of GK are known to be integral if K = Fq

(Weil conjectures), and it is a well known open question in general.
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Introduction to `-adic Galois representations

Let `′ be a prime, and consider an `′-adic Galois representation ρ′ of GK .
Assume that ρ and ρ′ are rational. Then, ρ and ρ′ are compatible if

• there exists a finite subset of primes S such that ρ and ρ′ are
unramified outside S and

• Pp,ρ(T ) = Pp,ρ′(T ), for all primes outside S .

Given a rational `-adic Galois representation ρ : GK → Aut(V ) it is
always possible to find a compatible representation with ρ which is
semisimple. It is unique (up to isomorphism) and is called the
semisimplification of ρ.
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Introduction to `-adic Galois representations

For each prime `, let ρ` be a rational `-adic representation of GK . The
system {ρ`}` is called a compatible system if any two ρ` and ρ`′ are
compatible for any primes `, `′.

Let S` = {primes over `} ⊂ OK . The system {ρ`}` is said to be strictly
compatible if there exists a finite subset S ⊂ OK of primes such that

• for every p /∈ S ∪ S`, ρ` is unramified at p and Pp,ρ`(T ) ∈ Q(T ).

• Pp,ρ`(T ) = Pp,ρ′`
(T ), for p /∈ S ∪ S` ∪ S`′ .

There is a smallest finite set S having these properties. We call it the
exceptional set of the compatible system.

Examples

The systems of `-adic representations {χ`}`, {ρE,`} and {ρA,`} are
strictly compatible. The exceptional set of the first one is empty. The
exceptional sets of {ρE,`} and {ρA,`} are the set of places where the
elliptic curve (resp. abelian variety) has bad reduction.
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Introduction to `-adic Galois representations

Theorem

Let ` be a prime and let E be an elliptic curve over Q with conductor N.
The Galois representation

ρE,` : GQ → GL2(Q`)

is unramified at every prime p - `N. For any such p, let p ⊆ Z be any
maximal ideal over p. Then the characteristic equation of ρE,`(Frobp) is

x2 − ap(E)x + p = 0, where ap = p + 1−#Ẽ(Fp).

The Galois representation is irreducible.
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Introduction to `-adic Galois representations

Unramified: Let p - `N and let p lie over p. There is a commutative
diagram

Dp
//

��

Aut(E[`n])

∼
��

GFp
// Aut(Ẽ[`n])

The inertia group Ip is contained in the kernel of ↓→. Since p - `N, E has
good reduction at p and the reduction preserves the `n-torsion structure.
Thus Ip is contained in the kernel of →↓ and

Ip ⊂ ker(Dp → Aut(E[`n])) = ker(Dp → GL2(Z/`nZ))

⇒ Ip ⊂ ker(Dp → GL2(Z`)) ⊂ kerρE,`.
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Introduction to `-adic Galois representations

Characteristic polynomial: Let p - `N.

• detρE,`(Frobp): Let ρn : GQ → GL2(Z/`nZ) be the nth entry of ρE,`

for n ∈ Z+. Using that, for all σ ∈ GQ, detρn(σ) = χ`,n(σ), we
obtain that detρE,`(σ) = χ`(σ) in Z∗` . In particular,
detρE,`(Frobp) = p.

• trρE,`(Frobp): the characteristic equation of ρE ,`(Frobp) =: A is
A2 − tr A + p = 0, so tr A = A + pA−1. Using that

ap(E ) = Frobp + p(Frob−1
p ) ∈ End(Pic0(Ẽ)),

and that Frobp acts on Ẽ[`n] as Frobp acts on E[`n], we have that

ap(E) = Frobp + pFrob−1
p ≡ Frobp + pFrob−1

p (mod `n), ∀n.

⇔ ap(E) ≡ A + pA−1 (mod `n), ∀n.

⇔ tr A = ap(E)⇔ tr ρE,`(Frobp) = ap(E).
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2. INTRODUCTION TO MODULAR FORMS



Introduction to modular forms

Recall the modular group SL2(Z) and its congruence subgroups for
N ∈ Z>0:

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡ ( ∗ ∗0 ∗ ) (mod N)

}
,

∪
Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡ ( 1 ∗

0 1 ) (mod N)
}
,

∪
Γ(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡ ( 1 0

0 1 ) (mod N)
}
.

They act on the upper half plane h = {τ ∈ C : Im(τ) ≥ 0}.

Notation:

For any matrix γ =
(
a b
c d

)
∈ SL2(Z) define the factor of automorphy

j(γ, τ) ∈ C for τ ∈ h to be j(γ, τ) = cτ + d , and for any integer k,
define the weight-k operator [γ]k on functions f : h→ C by

(f [γ]k)(τ) = j(γ, τ)−k f (γ(τ)), τ ∈ h.
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Introduction to modular forms

Definition

Let Γ be a congruence subgroup of SL2(Z) and let k be an integer. A
function f : h→ C is a modular of weight k with respect to Γ if

• f is holomorphic,

• f is weight-k invariant under Γ, i.e., f [γ]k = f , ∀γ ∈ Γ,

• f [α]k is holomorphic at ∞ for all α ∈ SL2(Z).

If in addition,

• a0 = 0 in the Fourier expansion of f [α]k for all α ∈ SL2(Z),

then f is a cusp form of weight k with respect to Γ.

The set of modular forms of weight k with respect to Γ is denoted by
Mk(Γ), the cusp forms Sk(Γ).
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Introduction to modular forms

Let’s recall the modular interpretation for the congruence subgroups
Γ0(N) and Γ1(N).

Theorem (Modular interpretation)

Let N be a positive integer. Then there are isomorphisms

Γ0(N)/h
∼−→ Y0(N)(C)

Γ0(N)τ 7−→ [C/Λτ , 〈[ 1
N ]Λτ 〉]

and
Γ1(N)/h

∼−→ Y1(N)(C)
Γ1(N)τ 7−→ [C/Λτ , [

1
N ]Λτ ].
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Introduction to modular forms

A nonzero modular form f ∈Mk(Γ1(N)) that is an eigenform for the
Hecke operators Tn and 〈n〉 for all n ∈ Z+ is a Hecke eigenform or
simply eigenform. The eigenform f (τ) =

∑
n=0 an(f )qn is normalised

when a1(f ) = 1. A newform is a normalised eigenform in Sk(Γ1(N))new.

The set of newforms in Sk(Γ1(N))new is an orthogonal basis of this space.
Each such newform lies in an eigenspace Sk(N, χ) and satisfies

Tnf = an(f )f , for all n ∈ Z+,

i.e., its Fourier coefficients are its Tn-eigenvalues.

Let f ∈ S2(Γ1(N)) be a normalised eigenform for the Hecke operators
Tp. Then the eigenvalues an(f ) are algebraic integers.

The Hecke algebra over Z is the algebra of endomorphisms of
S2(Γ1(N))

TZ := Z[{Tn, 〈n〉 : n ∈ Z+}].
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Let f ∈ S2(Γ1(N)) be a normalised eigenform for the Hecke operators
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3. SHIMURA’S CONSTRUCTION FOR WEIGHT k = 2



Shimura’s construction

We will see that one may associate a 2-dimensional Galois representation
of GQ to each normalised cuspidal eigenform. The following theorem is
due to Shimura for k = 2 and due to Deligne for k ≥ 2.

Theorem

Let f ∈ Sk(N, χ) be a normalised eigenform with number field Kf. Let `
be prime. For each maximal ideal λ of OKf lying over ` there is an
irreducible 2-dimensional Galois representation

ρf,λ : GQ → GL2(Kf,λ).

This representation is unramified at all primes p - `N. For any p ⊂ Z
lying over such p, the characteristic equation of ρf ,λ(Frobp) is

x2 − ap(f )x + χ(p)pk−1 = 0.
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Shimura’s construction
We will sketch the construction of ρf ,λ for a modular form f of weight 2.
Let N be a positive integer and ` be a prime. Consider the modular curve
X1(N) and let g denote its genus. The curve X1(N)C can also be viewed
as a compact Riemann surface, and its Jacobian is a g -dimensional
complex torus

J1(N) = Jac(X1(N)C)
def
= S2(Γ1(N))∧/H1(X1(N)C,Z) ∼= Cg/Λg .

The Picard group of X1(N) is the abelian group of divisor classes on the
points of X1(N),

Pic0(X1(N)) = Div0(X1(N))/DivP(X1(N)).

We can think of Pic0(X1(N)) as a subgroup of Pic0(X1(N)C), and using
Abel’s theorem we have a natural isomorphism

Pic0(X1(N)C) ∼= Jac(X1(N)C).

Thus, there is an inclusion of `n-torsion,

ιn : Pic0(X1(N))[`n] ↪→ Pic0(X1(N)C)[`n] ∼= (Z/`nZ)2g .
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Shimura’s construction

Denote by X̃1(N) the reduction of X1(N) at p. By Igusa’s theorem we
know that X1(N) has good reduction at primes p - N, so there is a

natural surjective map Pic0(X1(N)) � Pic0(X̃1(N)) restricting to

πn : Pic0(X1(N))[`n] � Pic0(X̃1(N))[`n].

It turns out that both ιn and πn are isomorphisms. Consider the `-adic
Tate module of X1(N), T`(Pic0(X1(N))) := lim←−n

{Pic0(X1(N))[`n]}.
Choosing bases of Pic0(X1(N)) compatibly for all n shows that

T`(Pic0(X1(N))) ∼= Z2g
` .

Any automorphism σ ∈ GQ defines an automorphism of Div0(X1(N)),
(
∑

nP(P))σ =
∑

nP(Pσ). Since div(f )σ = div(f σ) for any
f ∈ Q(X1(N)), the automorphism descends to Pic0(X1(N)).
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Shimura’s construction

For each n, there is a commutative diagram

GQ

ww ''
Aut(Pic0(X1(N))[`n]) Aut(Pic0(X1(N))[`n+1])oo

This leads to a continuous homomorphism

ρX1(N),` : GQ → GL2g (Z`) ⊂ GL2g (Q`).

This is the 2g-dimensional representation associated to X1(N).

The representation ρX1(N),` is unramified at every prime p - `N. For any

such p, let p ⊂ Z be any maximal ideal over p. Then ρX1(N),`(Frobp)
satisfies the polynomial equation

x2 − Tpx + 〈p〉p = 0.

(To be proved later)
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Shimura’s construction

To continue, we consider a normalised eigenform f ∈ S2(N, χ) and denote
by Af the abelian variety associated to f. There is an isomorphism

TZ/If
∼−→ Of = Z[{an(f) : n ∈ Z+}].

Under this isomorphism, each Fourier coefficient ap(f) acts on Af as
Tp + If. The ring Of generates the number field of f, denoted by Kf.
The extension degree d = [Kf : Q] is also the dimension of Af as a
complex torus. Consider the `-adic Tate module of Af

T`(Af) = lim←−
n

{Af [`n]} ∼= Z2d
` .

The action of Of on Af is defined on `-power torsion and thus extends to
an action on T`(Af). Using that the map

Pic0(X1(N))[`n] � Af[`
n]

is a surjection, one can deduce that GQ acts on Af[`
n] and therefore on

T`(Af) as well.
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Shimura’s construction
The action of GQ commutes with the action of Of since the GQ-action
and the TZ-action commute on T`(Pic0(X1(N))). Choosing coordinates
appropriately it gives a Galois representation

ρAf,` : GQ → GL2d(Q`).

The representation ρAf,` has the following properties:

• It is continuous because ρX1(N),` is continuous and

ρ−1
X1(N),`(U(n, g)) ⊂ ρ−1

Af,`
(U(n, d)),

where U(n, g) = ker(GL2g (Z`)→ GL2g (Z/`nZ)).

• It is unramified at all primes p - `N since

kerρX1(N),` ⊆ kerρA`,`.

• For any unramified prime p, let p ⊂ Z be any maximal ideal over p.
At the level of Abelian varieties, since Tp acts as ap(f) and 〈p〉 acts
as χ(p), ρAf ,`(Frobp) satisfies the polynomial equation

x2 − ap(f)x + χ(Frobp)p = 0.
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Shimura’s construction

The Tate module T`(Af) has rank 2d over Z`. Since it is an Of-module,
the tensor product V`(Af) = T`(Af)⊗Q is a module over
Of ⊗Q` = Kf ⊗Q Q`. It turns out that GQ acts Kf ⊗Q Q`-linearly on
V`(Af), and V`(Af) ∼= (Kf ⊗Q Q`)2. Choose a basis of V`(Af) to get a
homomorphism GQ → GL2(Kf ⊗Q Q`). We have that

Kf ⊗Q Q` ∼=
∏
λ|`

Kf,λ,

so for each λ we can compose the homomorphism with a projection to
get a continuous Galois representation

ρf,λ : GQ → GL2(Kf,λ).

We have proved the following.
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Shimura’s construction

Theorem

Let f ∈ S2(N, χ) be a normalised eigenform with number field Kf. Let `
be a prime. For each maximal ideal λ of OKf lying over ` there is a
2-dimensional Galois representation

ρf,λ : GQ → GL2(Kf,λ).

This representation is unramified at every prime p - `N. For any such p
let p ⊂ Z be any maximal ideal lying over p. Then ρf,λ(Frobp) satisfies
the polynomial equation

x2 − ap(f)x + χ(p)p = 0.

In particular, if f ∈ S2(Γ0(N)), the relation is x2 − ap(f)x + p = 0.
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Shimura’s construction

Lemma

The characteristic equation of ρX1(N),`(Frobp) is

x2 − Tpx + 〈p〉p = 0.

In order to do this, we need a description of the Hecke operator Tp at the
level of Picard groups of reduced modular curves,

T̃p : Pic0(X̃1(N))→ Pic0(X̃1(N)).

Suppose this reduction exists, i.e., that there is a commutative diagram

Pic0(X1(N))
Tp //

��

Pic0(X1(N))

��
Pic0(X̃1(N))

T̃p // Pic0(X̃1(N)).

The resulting description of T̃p is called the Eichler-Shimura Relation.
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Shimura’s construction

The way to compute the reduction T̃p on Pic0(X̃1(N)) is to compute it
first in the moduli space environment.

Tp : Div(Y1(N)) → Div(Y1(N))
[E,Q] 7→ Tp[E,Q] =

∑
C [E/C , Q + C ],

where the sum is taken over all p subgroups C ⊂ E such that
C ∩ 〈Q〉 = {0}.

If E has good reduction at p, then so do all the curves E/C . We will
describe the right-hand side over Fp rather than over Q.

Let C0 denote the kernel of the reduction map E[p]→ Ẽ[p], an order p
subgroup of E. Then, for any order p subgroup C of E,

[Ẽ/C , Q̃ + C ] =

[Ẽ
Frobp

, Q̃Frobp ] if C = C0

[Ẽ
Frob−1

p
, [p]Q̃Frob−1

p ] if C 6= C0
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Shimura’s construction

Define the moduli space diamond operator in characteristic p to be

〈̃d〉 : Ỹ1(N) → Ỹ1(N)
[E,Q] 7→ [E, [d ]Q], (d ,N) = 1.

There are p + 1 order p subgroups C of E, one of which is C0.

Summing the previous formula over all order p subgroups C ⊂ E gives for
a curve E with ordinary reduction at p,

∑
C [Ẽ/C , Q̃ + C ] = [Ẽ

Frobp

, Q̃Frobp ] +
∑

C [Ẽ
Frob−1

p
, [p]Q̃Frob−1

p ]

= [Ẽ
Frobp

, Q̃Frobp ] + p〈̃p〉 [Ẽ
Frob−1

p
, Q̃Frob−1

p ]

= Frobp[Ẽ, Q̃] + p〈̃p〉Frob−1
p [Ẽ, Q̃]

= (Frobp + p〈̃p〉Frob−1
p )[Ẽ, Q̃]
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Shimura’s construction
This can be extended to curves with good reduction at p, and one
obtains a commutative diagram (where the primes mean to avoid finitely
many points):

Y1(N)′gd

Tp //

��

Div(Y1(N)′gd)

��
Ỹ1(N)′gd

Frobp+p〈̃p〉Frob−1
p// Div(Ỹ1(N)′gd).

This extends to degree-0 divisors, and to Picard groups:

Div0(Y1(N)′gd)
Tp //

��

Div0(Y1(N)′gd)

��
Div(Ỹ1(N)′gd)

��

Frobp+p〈̃p〉Frob−1
p // Div0(Ỹ1(N)′gd)

��
Pic0(X̃1(N))

Frobp,∗+〈̃p〉∗Frob∗p // Pic0(X̃1(N)).
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Shimura’s construction

Theorem (Eichler-Shimura Relation)

Let p - N. The following diagrams commute

Pic0(X1(N))
Tp //

��

Pic0(X1(N))

��
Pic0(X̃1(N))

Frobp,∗+〈̃p〉Frob∗p// Pic0(X̃1(N)).

Pic0(X0(N))
Tp //

��

Pic0(X0(N))

��
Pic0(X̃0(N))

Frobp,∗+Frob∗p // Pic0(X̃0(N)).
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Shimura’s construction

The Eichler-Shimura relation restricts to `n-torsion, and we obtain

Tp = Frobp + 〈p〉pFrob−1
p ⇔ Frob2

p − TpFrobp + 〈p〉p = 0

on Pic0(X1(N))[`n]. This holds for all n, so the equality extends to

T`(Pic0(X̃1(N))).
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3. DELIGNE’S CONSTRUCTION FOR WEIGHT k ≥ 2



Deligne’s construction

For k ≥ 2,

k = 2 k > 2

J1(N) Kuga-Sato variety W1(N)

Af Mf = Scholl motiv associated to f

Tp(J1(N)) étale cohomology of W1(N)
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Gràcies!


