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1. INTRODUCTION TO GALOIS REPRESENTATIONS



Introduction to /-adic Galois representations

Let G be a profinite group and let k be a topological field. We will study
{-adic Galois representations, which are defined as follows:

e a representation of G (of dimension n) is a continuous
homomorphism of groups

p: G — GLy(k),

e p is a Galois representation when G = Gk = absolute Galois group
of a field K,
e is an /-adic representation when k C Q,,

e and / is just some prime number.
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Introduction to /-adic Galois representations

Let A denote some abelian group and A[£"] its ¢"-torsion. One may
construct an inverse system A[("1] — A[¢"]. Its inverse limit

Ty(A) := lim A["],

n

is known as the Tate module of A at /.
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Introduction to /-adic Galois representations

Example (The ¢-adic cyclotomic character)

Let K be a field of characteristic p and K its separable closure. Let £ # p
be a prime. By choosing a compatible system of roots of unity ju¢n, we
have an inverse system i (K) — p-1(K) given by x — x*, and we can

define the (-adic Tate module of K,

To(K™) = lim pn (K) = lim(Z/£"Z) = Zy.

n
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Introduction to /-adic Galois representations

Example (The ¢-adic cyclotomic character)

Let K be a field of characteristic p and K its separable closure. Let £ # p
be a prime. By choosing a compatible system of roots of unity ju¢n, we
have an inverse system i (K) — p-1(K) given by x — x*, and we can

define the (-adic Tate module of K,

To(K™) = lim pn (K) = lim(Z/£"Z) = Zy.

n

Gy acts compatibly on i4(K) for all n. We have a Galois representation:

Xe - Gk — AUt(Tg(?X)) & ZZ = GLl(Zg) — GLl(Qz)
o = xo(x)

It is called the ¢-adic cyclotomic character (over K).
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Introduction to /-adic Galois representations

Example (Galois representations and elliptic curves)

Let E be an elliptic curve over K and ¢ # p. Consider the inverse system
E[¢"] — E[¢"~] given by P+ £- P and the corresponding /-Tate
module of E, T,(E) = lim E[¢"] =2 Z2. For each n, the field Q(E[("]) is
a Galois number field, giving a restriction map and an injection

Gk — Gal(Q(E[("])/Q) < Aut(E[¢"]).
A )

These maps are compatible for each n.
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Introduction to /-adic Galois representations

Example (Galois representations and elliptic curves)

Let E be an elliptic curve over K and ¢ # p. Consider the inverse system
E[¢"] — E[¢"~] given by P+ £- P and the corresponding /-Tate
module of E, T,(E) = lim E[¢"] =2 Z2. For each n, the field Q(E[("]) is
a Galois number field, giving a restriction map and an injection

Gk — Gal(Q(E[¢"])/Q) < Aut(E[¢"]).
o = olgEe)
These maps are compatible for each n.

Choosing basis of E[¢"] for each n in a compatible way one can determine
isomorphisms Aut(E[¢"]) = GLy(Z/¢"Z), and these combine to give
Aut(T¢(E)) — GLy(Z¢). Since Gk acts on T(E), we obtain a Galois
representation

pe,e : Gk — GLa(Z¢) C GL2(Qy),

the 2-dimensional /-adic Galois representation associated to E.
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Introduction to /-adic Galois representations

Example (Galois representations and abelian varieties)

Let A be an abelian variety of dimension g over K and £ # p. Consider
the inverse system A[("] — A[¢"~1] given by P+ £ - P and define the
¢-adic Tate module of A, T,(A) = lim A[("]. One can compatibly

identify A[¢"] with (Z/¢"Z)%, yielding an isomorphism T,(A) = (Z)%.
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Introduction to /-adic Galois representations

Example (Galois representations and abelian varieties)

Let A be an abelian variety of dimension g over K and ¢ # p. Consider
the inverse system A[("] — A[¢"~1] given by P+ £ - P and define the
¢-adic Tate module of A, T,(A) = lim A[("]. One can compatibly
identify A[¢"] with (Z/¢"Z)%, yielding an isomorphism T,(A) = (Z)%.

Consider Vi (A) := T/(A) ®z, Q; = Q?g. The Galois group Gk acts on
T¢(A) and on V,(A). This yields to the ¢-adic Galois representation
associated to A,

PAY - Gy — AUtQZ(Vg(K)) = GL2g(Q[).
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Introduction to /-adic Galois representations

Example (Cohomology representations)

Let X be an algebraic variety over K and ¢ # p. Attach to X the étale
cohomology groups H' (X, Z/€"7), i € Z. Then, one defines

H'(X, Z¢) == limH'(Xet, Z/£"Z),  and  Hy(X, Qe) = H'(X, Z¢) @z, Qe
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Introduction to /-adic Galois representations

Example (Cohomology representations)

Let X be an algebraic variety over K and ¢ # p. Attach to X the étale
cohomology groups H' (X, Z/€"7), i € Z. Then, one defines

H'(X, Z¢) == limH'(Xet, Z/£"Z),  and  Hy(X, Qe) = H'(X, Z¢) @z, Qe

The group H}‘Z(X,QZ) is a Qg-vector space on which Gk acts. It is finite
dimensional, at least if char(K) = 0 or if X is proper.

One thus gets an f-adic representation of Gk associated to HQ(X, Qo).
the i-th /-adic Galois representation associated to X, for
0 < i <2dim(X).
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Introduction to /-adic Galois representations

Let K be a number field. Then one may find not one, but a family of
representations {p,}, attached to K, one for each ¢,

po : Gal(K/Q) = GL(Q,).

Since they come from the same object, they might be expected to be
compatible in some sense.
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Introduction to ¢-adic Galois representations

Consider an arbitrary Galois extension L/K/Q and B/p/p prime ideals in
these fields. Recall the decomposition group of 3

Dy = {0 € Gk | B7 =B} = Gal(Ly/Kj)
and the inertia group of 3,

lp := {0 € Dy | x7 = x (mod P), Vx € O }.
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Introduction to ¢-adic Galois representations

Consider an arbitrary Galois extension L/K/Q and B/p/p prime ideals in
these fields. Recall the decomposition group of 3

Dy := {0 € Gx | 7 = P} = Gal(Ly /K;)
and the inertia group of 3,
lp := {0 € Dy | x7 = x (mod P), Vx € O }.
There is an isomorphism
Dy /by = Gal(F(P)/F(p)) = (Frobp),

and any representative in Dsz mapping to the Frobenius automorphism
Frob,, is called a Frobenius element of Gal(L/K), denoted by Frob,,.
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Introduction to ¢-adic Galois representations

Consider an arbitrary Galois extension L/K/Q and B/p/p prime ideals in
these fields. Recall the decomposition group of 3

Dy := {0 € Gx | 7 = P} = Gal(Ly /K;)
and the inertia group of 3,
lp := {0 € Dy | x7 = x (mod P), Vx € O }.
There is an isomorphism
Dy /by = Gal(F(P)/F(p)) = (Frobp),

and any representative in Dsz mapping to the Frobenius automorphism
Frob,, is called a Frobenius element of Gal(L/K), denoted by Frob,,.

Definition

An (-adic Galois representation p, : Gk — Aut(V) is called unramified
at a prime p of K if Iz C kerp for any place B of K extending p.
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Introduction to /-adic Galois representations

Let p be an unramified prime with respect to some representation py.
One defines the characteristic polynomial of Frobenius of p, at p as

Py 5, (T) :=det(1 — T pe(Froby,)) € Q[ T].
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Introduction to /-adic Galois representations

Let p be an unramified prime with respect to some representation py.
One defines the characteristic polynomial of Frobenius of p, at p as

Py 5, (T) :=det(1 — T pe(Froby,)) € Q[ T].

The representation py is called rational (resp. integral) if

e it is unramified at all primes except for a finite set S, and
e Py, (T)e€Q[T] (resp. Z[T]).
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Introduction to /-adic Galois representations

Let p be an unramified prime with respect to some representation py.
One defines the characteristic polynomial of Frobenius of p, at p as

Py 5, (T) :=det(1 — T pe(Froby,)) € Q[ T].

The representation py is called rational (resp. integral) if

e it is unramified at all primes except for a finite set S, and
e Py, (T)e€Q[T] (resp. Z[T]).

We will consider from now on rational ¢-adic representations, so we will
be able to compare different rational representations (even over different
completions) just by comparing those polynomials.
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Introduction to /-adic Galois representations

Examples

The {-adic Galois representations X, pg,¢ and pa ¢ of Gk are integral
representations.
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Introduction to /-adic Galois representations

Examples
The {-adic Galois representations X, pg,¢ and pa ¢ of Gk are integral
representations.

In the first case one can take as S the set S, of places in K that lie over
£. In the second and third cases, one can take as S the union of Sy and
the set of primes of bad reduction of E (resp. A).
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Introduction to /-adic Galois representations

Examples

The /-adic Galois representations Xy, pe.¢ and pa ¢ of Gy are integral
representations.

In the first case one can take as S the set S, of places in K that lie over
£. In the second and third cases, one can take as S the union of Sy and
the set of primes of bad reduction of E (resp. A).

The fact that the corresponding Frobenius has an integral characteristic
polynomial (which is independent of ¢) is a consequence of Weil's results
on endomorphisms of abelian varieties.
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Introduction to /-adic Galois representations

Examples

The /-adic Galois representations Xy, pe.¢ and pa ¢ of Gy are integral
representations.

In the first case one can take as S the set S, of places in K that lie over
£. In the second and third cases, one can take as S the union of Sy and
the set of primes of bad reduction of E (resp. A).

The fact that the corresponding Frobenius has an integral characteristic
polynomial (which is independent of ¢) is a consequence of Weil's results
on endomorphisms of abelian varieties.

Cohomology representations of Gk are known to be integral if K = F,
(Weil conjectures), and it is a well known open question in general.
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Introduction to /-adic Galois representations

Let ¢ be a prime, and consider an ¢’-adic Galois representation p’ of Gg.
Assume that p and p’ are rational. Then, p and p’ are compatible if

e there exists a finite subset of primes S such that p and p’ are
unramified outside S and

o Pp,(T)= Py (T), forall primes outside S.
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Introduction to /-adic Galois representations

Let ¢ be a prime, and consider an ¢’-adic Galois representation p’ of Gg.
Assume that p and p’ are rational. Then, p and p’ are compatible if

e there exists a finite subset of primes S such that p and p’ are
unramified outside S and

o Pp,(T)= Py (T), forall primes outside S.

Given a rational (-adic Galois representation p : Gx — Aut(V) it is
always possible to find a compatible representation with p which is
semisimple. It is unique (up to isomorphism) and is called the
semisimplification of p.
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Introduction to /-adic Galois representations
For each prime ¢, let p; be a rational ¢-adic representation of Gk. The

system {pg}¢ is called a compatible system if any two py and py are
compatible for any primes £, ¢'.
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Introduction to /-adic Galois representations

For each prime ¢, let p; be a rational ¢-adic representation of Gk. The
system {pg}¢ is called a compatible system if any two py and py are
compatible for any primes £, ¢'.

Let S; = {primes over £} C Ok. The system {p;}, is said to be strictly
compatible if there exists a finite subset S C Ok of primes such that

e for every p ¢ SU Sy, p¢ is unramified at p and P, ,,(T) € Q(T).
® Py (T)=Pyp(T), forpg SUS,USy.

There is a smallest finite set S having these properties. We call it the
exceptional set of the compatible system.
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Introduction to /-adic Galois representations

For each prime ¢, let p; be a rational ¢-adic representation of Gk. The
system {pg}¢ is called a compatible system if any two py and py are

compatible for any primes £, ¢'.

Let S; = {primes over £} C Ok. The system {p;}, is said to be strictly

compatible if there exists a finite subset S C Ok of primes such that

e for every p ¢ SU Sy, p¢ is unramified at p and P, ,,(T) € Q(T).
® Py (T)=Pyp(T), forpg SUS,USy.

There is a smallest finite set S having these properties. We call it the
exceptional set of the compatible system.

Examples

The systems of /-adic representations {x/}¢, {pe¢} and {pa ¢} are
strictly compatible. The exceptional set of the first one is empty. The
exceptional sets of {pg ¢} and {pa ¢} are the set of places where the
elliptic curve (resp. abelian variety) has bad reduction.
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Introduction to /-adic Galois representations

Theorem

Let ¢ be a prime and let E be an elliptic curve over Q with conductor N.
The Galois representation

PE,¢ : GQ — GLQ(Q@)

is unramified at every prime p { {N. For any such p, let p C Z be any
maximal ideal over p. Then the characteristic equation of pg ¢(Frob,) is

x> —ap(E)x+p=0, wherea,=p+1-— #E(]Fp).

The Galois representation is irreducible.
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Introduction to /-adic Galois representations
Unramified: Let p{ ¢N and let p lie over p. There is a commutative

diagram
D, —— Aut(E[¢("])

|

Gr, — Aut(E[¢"])

14 /35



Introduction to /-adic Galois representations

Unramified: Let p{ ¢N and let p lie over p. There is a commutative
diagram
D, —— Aut(E[¢("])

|

Gr, — Aut(E[¢"])

The inertia group |, is contained in the kernel of |_,. Since pt ¢N, E has
good reduction at p and the reduction preserves the £"-torsion structure.
Thus 1, is contained in the kernel of — and

I, C ker(D, — Aut(E[("])) = ker(D, — GLo(Z/("Z))

=1, C ker(Dy, — GL2(Zy)) C kerpg ;.
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Introduction to /-adic Galois representations

Characteristic polynomial: Let pt¢N.

o detpg ¢(Froby): Let p, : Gg — GLy(Z/¢"Z) be the nth entry of pg
for n € Z*. Using that, for all o € Gg, detp,(c) = x¢,n(0), we
obtain that detpg ¢(0) = xe(o) in Zj. In particular,
detpg ¢(Frob,) = p.
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Introduction to /-adic Galois representations

Characteristic polynomial: Let pt¢N.

o detpg ¢(Froby): Let p, : Gg — GLy(Z/¢"Z) be the nth entry of pg
for n € Z*. Using that, for all o € Gg, detp,(c) = x¢,n(0), we
obtain that detpg ¢(0) = xe(o) in Zj. In particular,
detpg ¢(Frob,) = p.

e trpg ¢(Frob,): the characteristic equation of pg ¢(Frob,) =: A is
A2 —trA+p=0,sotrA= A+ pA~l. Using that

ap(E) = Frob, + p(Frob;I) € End(P’icO(E))7
and that Frob,, acts on E[¢"] as Frob, acts on E[¢"], we have that
ap(E) = Frob,, + pFrob,* = Frob, + pFrob, " (mod £"), Vn.
& a,(E) = A+ pA~! (mod £7), Vn.

& trA = a,(E) < trpg¢(Frob,) = a,(E).
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2. INTRODUCTION TO MODULAR FORMS



Introduction to modular forms

Recall the modular group SL,(Z) and its congruence subgroups for
N S Z>O:

Fo(N) = {(25) €SLa(Z): (25) = (5 %) (mod N)},
U

M(N)={(25) €SLa(Z): (25) = (§1) (mod N)},
F(N) ={(25) €SLa(Z) : (2§) = (59) (mod N)}.

U
They act on the upper half plane h = {7 € C : Im(7) > 0}.

Notation:

For any matrix v = (g 3) € SLy(Z) define the factor of automorphy
Jj(v,7) € C for 7 € h to be j(,7) = ¢ + d, and for any integer k,
define the weight-k operator [y] on functions f : h — C by

(FR1(r) = j(v, ) “F(x(7)), 7 €.
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Introduction to modular forms

Definition

Let I be a congruence subgroup of SLy(Z) and let k be an integer. A
function f : h — C is a modular of weight k with respect to I if

e f is holomorphic,
e f is weight-k invariant under T, i.e., f[y]x = f, Vy €T,
e f[a]k is holomorphic at oo for all a € SLy(Z).

If in addition,
e a9 = 0 in the Fourier expansion of f[a]x for all a € SLy(Z),

then f is a cusp form of weight k with respect to I'.

The set of modular forms of weight k with respect to I is denoted by
M (), the cusp forms Sk(I).
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Introduction to modular forms

Let’s recall the modular interpretation for the congruence subgroups
ro(N) and Fl(N)

Theorem (Modular interpretation)

Let N be a positive integer. Then there are isomorphisms

Mo(N)/h — Yo(N)(C)

Fo(M)T  —  [C/A- ([£1a)]
and

r(Ny/e = Yi(N)(C)

F(N)T  —  [C/A:, [%]A ]
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Introduction to modular forms

A nonzero modular form f € M (I1(N)) that is an eigenform for the
Hecke operators T, and (n) for all n € Z* is a Hecke eigenform or
simply eigenform. The eigenform f(7) =", _,an(f)q" is normalised
when a;(f) = 1. A newform is a normalised eigenform in Sy (1 (N))"".
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i.e., its Fourier coefficients are its T,-eigenvalues.
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Introduction to modular forms

A nonzero modular form f € M (I1(N)) that is an eigenform for the
Hecke operators T, and (n) for all n € Z* is a Hecke eigenform or
simply eigenform. The eigenform f(7) =", _,an(f)q" is normalised
when a;(f) = 1. A newform is a normalised eigenform in Sy (1 (N))"".

The set of newforms in Si(I'1(/N))"" is an orthogonal basis of this space.
Each such newform lies in an eigenspace Sx(N, x) and satisfies

T.f = a,(f)f, forallneZ",

i.e., its Fourier coefficients are its T,-eigenvalues.

Let f € So(T'1(N)) be a normalised eigenform for the Hecke operators
Tp. Then the eigenvalues a,(f) are algebraic integers.

The Hecke algebra over Z is the algebra of endomorphisms of
Sa2(M1(N))
Tz :=Z[{T, (n) : n € Z"}].
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3. SHIMURA’S CONSTRUCTION FOR WEIGHT k = 2



Shimura’s construction

We will see that one may associate a 2-dimensional Galois representation
of Gg to each normalised cuspidal eigenform. The following theorem is
due to Shimura for k = 2 and due to Deligne for k > 2.
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Shimura’s construction

We will see that one may associate a 2-dimensional Galois representation
of Gg to each normalised cuspidal eigenform. The following theorem is
due to Shimura for k = 2 and due to Deligne for k > 2.

Theorem

Let f € Sk(N, x) be a normalised eigenform with number field Ks. Let ¢
be prime. For each maximal ideal \ of Ok, lying over ¢ there is an
irreducible 2-dimensional Galois representation

PN - GQ = GLQ(Kﬂ)\).

This representation is unramified at all primes p{ {N. For any p C Z
lying over such p, the characteristic equation of pr x(Froby) is

X2~ ap(F)x+ x(p)pE = 0.
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Shimura’s construction

We will sketch the construction of pf ) for a modular form f of weight 2.
Let N be a positive integer and ¢ be a prime. Consider the modular curve
X;(N) and let g denote its genus. The curve X;(N)c can also be viewed
as a compact Riemann surface, and its Jacobian is a g-dimensional
complex torus

J1(N) = Jac(X1(N)e) & So(M1(N)/Hi(X1(N)c, Z) 2= C2 /A,

The Picard group of X;(/N) is the abelian group of divisor classes on the
points of X;(N),

Pic’(X1(N)) = Div(X1(N))/DivP(X1(N)).

We can think of Pic®(X1(N)) as a subgroup of Pic’(X1(N)c), and using
Abel's theorem we have a natural isomorphism

Pic®(X1(N)c) 2 Jac(X1(N)c).
Thus, there is an inclusion of ¢"-torsion,
tn 2 PIA(X1(N))[£"] < Pic®(Xy(N)c)[¢"] = (Z./£"Z)€.
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Shimura’s construction

Denote by X;(N) the reduction of X;(N) at p. By lgusa’s theorem we
know that X;(N) has good reduction at primes p{ N, so there is a

natural surjective map Pic%(X;(N)) — Pic®(X1(N)) restricting to
T ¢ PIc® (X1 (N))[€"] — Pic®(Xy(N))[¢")].

It turns out that both ¢, and 7, are isomorphisms. Consider the /-adic
Tate module of Xi(N), T¢(Pic’(X1(N))) := lim_{Pic®(X1(N))[¢"]}.
Choosing bases of Pic’(X1(N)) compatibly for all n shows that

To(Pic®(X1(N))) = Z3.
Any automorphism ¢ € Gy defines an automorphism of Div®(X;(N)),

(3> np(P))” =" np(P7). Since div(f)? = div(f?) for any
f € Q(X1(N)), the automorphism descends to Pic’(X;(N)).
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Shimura’s construction

For each n, there is a commutative diagram

/\

Aut(Pic® (X1 (N))[£"]) =<———  Aut(Pic® (X1 (N))[¢"+1])

This leads to a continuous homomorphism

Pxi(n).0 - Go = Glog(Ze) C Glog(Qr).
This is the 2g-dimensional representation associated to X;(N).

The representation px, (), is unramified at every prime p{ ¢N. For any
such p, let p C Z be any maximal ideal over p. Then px,(n),¢(Froby)
satisfies the polynomial equation

x* — Tpx+ (p)p = 0.

(To be proved later)
23/35



Shimura’s construction

To continue, we consider a normalised eigenform f € Sy(N, x) and denote
by As the abelian variety associated to f. There is an isomorphism

Tz//f AR Of = Z[{an(f) ne Z+}]

Under this isomorphism, each Fourier coefficient a,(f) acts on Ay as
T, + k. The ring Of generates the number field of f, denoted by K.
The extension degree d = [Ks : Q] is also the dimension of Af as a
complex torus. Consider the /-adic Tate module of Af

To(Ar) = lim{Ac[¢"]} = Z°.
The action of Of on Ay is defined on ¢-power torsion and thus extends to
an action on T;(A¢). Using that the map
Pic®(X1(N))[€"] — A¢[¢"]

is a surjection, one can deduce that Gg acts on A¢[¢"] and therefore on
Ti(Ag) as well.
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Shimura’s construction

The action of Gg commutes with the action of O since the Gg-action
and the Tz-action commute on T,(Pic®(X;(N))). Choosing coordinates
appropriately it gives a Galois representation

PAs0 - GQ — GLgd(Qg).
The representation pa, ¢ has the following properties:

e It is continuous because px, ()¢ is continuous and

o o(U(n,2)) € Pk, (Ul ),
where U(n, g) = ker(GLog(Z¢) — Glog(Z/0"Z)).
e It is unramified at all primes p t ¢N since
kerpx, (vy,e € kerpa, e

e For any unramified prime p, let p C Z be any maximal ideal over p.
At the level of Abelian varieties, since T, acts as ap(f) and (p) acts
as x(p), pa,,¢(Frob,) satisfies the polynomial equation
x? — ap(f)x + x(Frob,)p = 0.
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Shimura’s construction

The Tate module T;(A¢) has rank 2d over Z,. Since it is an Op-module,
the tensor product Vy(Af) = To(Af) ® Q is a module over

O ® Qp = Kf ®g Qq. It turns out that Gg acts Kr ®@g Qg-linearly on
Vi(As), and Vi(Af) = (Kf ®g Qr)?. Choose a basis of V,(As) to get a
homomorphism Gg — GLa2(Kf ®g Q¢). We have that

Kr ®g Q¢ = H Kk,
NI

so for each \ we can compose the homomorphism with a projection to
get a continuous Galois representation

PEX : GQ — GLQ(Kf,,\).

We have proved the following.
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Shimura’s construction

Theorem

Let f € So(N, x) be a normalised eigenform with number field K. Let £
be a prime. For each maximal ideal \ of Oy, lying over ¢ there is a
2-dimensional Galois representation

PN GQ — GLQ(KL)\).

This representation is unramified at every prime p { ¢{N. For any such p
let p C Z be any maximal ideal lying over p. Then pg x(Froby) satisfies
the polynomial equation

x* — ap(F)x + x(p)p = 0.

In particular, if f € Sy(To(N)), the relation is x> — ap(f)x + p = 0.
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Shimura’s construction
Lemma

The characteristic equation of px, (ny,¢(Froby) is

x> — Tyx + (p)p = 0.

In order to do this, we need a description of the Hecke operator T, at the
level of Picard groups of reduced modular curves,

T_p : Pico()N(l(N)) — Pico(f(l(N))'

Suppose this reduction exists, i.e., that there is a commutative diagram
T,
Pic®(X1(N)) —2> Pic®(X1(N))
~ T Ni
Pic®(X1(N)) —2= Pic® (X1 (N)).

The resulting description of 7',, is called the Eichler-Shimura Relation.
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Shimura’s construction

The way to compute the reduction T, on Pic’(X1(N)) is to compute it
first in the moduli space environment.

Tp: Div(Y1(N)) — Div(Y1(N))
[Ea Q] = TP[Ea Q] = Zc[E/Ca Q + C]v
where the sum is taken over all p subgroups C C E such that
N{(Q) = {0}.

If E has good reduction at p, then so do all the curves E/C. We will
describe the right-hand side over F,, rather than over Q.

Let Cp denote the kernel of the reduction map E[p] — E[p] an order p
subgroup of E. Then, for any order p subgroup C of E,

[EFrObP 6Frobp] fC=C
[E/C.Q+Cl={ r- o
[ [ ]QFrob ] if C 7& CO
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Shimura’s construction

Define the moduli space diamond operator in characteristic p to be

@: ?I(N) — ?1(/\/)
[E,Q] ~— [E[d]Q], (d,N)=1.

There are p + 1 order p subgroups C of E, one of which is Cp.

Summing the previous formula over all order p subgroups C C E gives for
a curve E with ordinary reduction at p,

~Frob,

S [E/C.Q 4 C] QR 1 B [P0

[E

~Frob,

_ [ QFrob]+p< >[ FrOb; ’éFrob;I]

Frobp[E7 (3] + p(ﬂvp>Frob;1[E7 (N?]

—  (Frob, + p(p)Frob, })[E, Q]
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Shimura’s construction

This can be extended to curves with good reduction at p, and one

obtains a commutative diagram (where the primes mean to avoid finitely

many points):

Frobp+p<’;) Frob;1 L~
Dlv(Yl(N)’gd).

This extends to degree-0 divisors, and to Picard groups:

Yi(N)L

DIV(Y1(N),) —— > Div(Y1(N),)

b e

~ Frob,+p(p)Frob>*
Div(Y1(N)j) — %

L

Frob,, .+ (p), Frob;

Pic®(Xy(N)) ——— 2 Pic%(Xy(N)).

DivO(Y1(N)Lg)
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Shimura’s construction
Theorem (Eichler-Shimura Relation)

Let pt N. The following diagrams commute

Pid(Xy(N)) —— 2~ Pid®(X.(N))

l |

Frob,, .+ ( ) Froby

Pic®(Xy(N)) P picd (X (N)).

Pic(Xo(N)) ——— = Pic®(Xo(N))
l Frob, +Frob i

Pic®(Xo(N)) ————2 Pic®(Xo(N)).
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Shimura’s construction

The Eichler-Shimura relation restricts to £"-torsion, and we obtain
T, = Frob,, + (p)pFrob, " < Frob; — T,Frob, + (p)p =0

on Pic®(X1(N))[€"]. This holds for all n, so the equality extends to
Te(Pic”(Xa(N)))-
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3. DELIGNE’'S CONSTRUCTION FOR WEIGHT k > 2



Deligne’s construction

For k > 2,

k=2 k>?2

J1(N) Kuga-Sato variety Wy (N)

A Mg = Scholl motiv associated to f

To(J1(N)) | étale cohomology of W1(N)
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Gracies!



