

Galois representations associated to classical modular forms of weight at least 2: Deligne's theorem

Laia Amorós i Carafí
Universitat de Barcelona, University of Luxembourg

January 2015

- 1. Introduction to Galois representations**
- 2. Introduction to modular forms**
- 3. Shimura's construction for weight $k = 2$**
- 4. Deligne's construction for weight $k \geq 2$**

1. INTRODUCTION TO GALOIS REPRESENTATIONS

Introduction to ℓ -adic Galois representations

Let \mathbf{G} be a profinite group and let k be a topological field. We will study **ℓ -adic Galois representations**, which are defined as follows:

- a **representation** of \mathbf{G} (of dimension n) is a continuous homomorphism of groups

$$\rho : \mathbf{G} \rightarrow \mathrm{GL}_n(k),$$

- ρ is a **Galois** representation when $\mathbf{G} = \mathbf{G}_K =$ absolute Galois group of a field K ,
- is an **ℓ -adic** representation when $k \subseteq \overline{\mathbb{Q}}_\ell$,
- and ℓ is just some prime number.

Introduction to ℓ -adic Galois representations

Let \mathbf{A} denote some abelian group and $\mathbf{A}[\ell^n]$ its ℓ^n -torsion. One may construct an inverse system $\mathbf{A}[\ell^{n+1}] \twoheadrightarrow \mathbf{A}[\ell^n]$. Its inverse limit

$$T_\ell(\mathbf{A}) := \varprojlim_n \mathbf{A}[\ell^n],$$

is known as the **Tate module of \mathbf{A} at ℓ** .

Introduction to ℓ -adic Galois representations

Example (The ℓ -adic cyclotomic character)

Let K be a field of characteristic p and \overline{K} its separable closure. Let $\ell \neq p$ be a prime. By choosing a compatible system of roots of unity μ_{ℓ^n} , we have an inverse system $\mu_{\ell^n}(\overline{K}) \rightarrow \mu_{\ell^{n-1}}(\overline{K})$ given by $x \mapsto x^\ell$, and we can define the **ℓ -adic Tate module of \overline{K}^\times** ,

$$T_\ell(\overline{K}^\times) = \varprojlim_n \mu_{\ell^n}(\overline{K}) \cong \varprojlim_n (\mathbb{Z}/\ell^n \mathbb{Z}) \cong \mathbb{Z}_\ell.$$

Introduction to ℓ -adic Galois representations

Example (The ℓ -adic cyclotomic character)

Let K be a field of characteristic p and \overline{K} its separable closure. Let $\ell \neq p$ be a prime. By choosing a compatible system of roots of unity μ_{ℓ^n} , we have an inverse system $\mu_{\ell^n}(\overline{K}) \rightarrow \mu_{\ell^{n-1}}(\overline{K})$ given by $x \mapsto x^\ell$, and we can define the **ℓ -adic Tate module of \overline{K}^\times** ,

$$T_\ell(\overline{K}^\times) = \varprojlim_n \mu_{\ell^n}(\overline{K}) \cong \varprojlim_n (\mathbb{Z}/\ell^n \mathbb{Z})^\times \cong \mathbb{Z}_\ell.$$

\mathbf{G}_K acts compatibly on $\mu_{\ell^n}(\overline{K})$ for all n . We have a Galois representation:

$$\begin{aligned} \chi_\ell : \mathbf{G}_K &\rightarrow \text{Aut}(T_\ell(\overline{K}^\times)) \cong \mathbb{Z}_\ell^\times = \text{GL}_1(\mathbb{Z}_\ell) \hookrightarrow \text{GL}_1(\mathbb{Q}_\ell). \\ \sigma &\mapsto x \mapsto \sigma(x) \end{aligned}$$

It is called the **ℓ -adic cyclotomic character** (over \overline{K}).

Introduction to ℓ -adic Galois representations

Example (Galois representations and elliptic curves)

Let \mathbf{E} be an elliptic curve over K and $\ell \neq p$. Consider the inverse system $\mathbf{E}[\ell^n] \rightarrow \mathbf{E}[\ell^{n-1}]$ given by $P \mapsto \ell \cdot P$ and the corresponding ℓ -Tate module of \mathbf{E} , $T_\ell(\mathbf{E}) = \varprojlim \mathbf{E}[\ell^n] \cong \mathbb{Z}_\ell^2$. For each n , the field $\mathbb{Q}(\mathbf{E}[\ell^n])$ is a Galois number field, giving a restriction map and an injection

$$\begin{aligned} \mathbf{G}_K &\twoheadrightarrow \mathrm{Gal}(\mathbb{Q}(\mathbf{E}[\ell^n])/\mathbb{Q}) \hookrightarrow \mathrm{Aut}(\mathbf{E}[\ell^n]). \\ \sigma &\mapsto \sigma|_{\mathbb{Q}(\mathbf{E}[\ell^n])} \end{aligned}$$

These maps are compatible for each n .

Introduction to ℓ -adic Galois representations

Example (Galois representations and elliptic curves)

Let \mathbf{E} be an elliptic curve over K and $\ell \neq p$. Consider the inverse system $\mathbf{E}[\ell^n] \rightarrow \mathbf{E}[\ell^{n-1}]$ given by $P \mapsto \ell \cdot P$ and the corresponding ℓ -Tate module of \mathbf{E} , $T_\ell(\mathbf{E}) = \varprojlim \mathbf{E}[\ell^n] \cong \mathbb{Z}_\ell^2$. For each n , the field $\mathbb{Q}(\mathbf{E}[\ell^n])$ is a Galois number field, giving a restriction map and an injection

$$\begin{aligned} \mathbf{G}_K &\rightarrow \text{Gal}(\mathbb{Q}(\mathbf{E}[\ell^n])/\mathbb{Q}) \hookrightarrow \text{Aut}(\mathbf{E}[\ell^n]). \\ \sigma &\mapsto \sigma|_{\mathbb{Q}(\mathbf{E}[\ell^n])} \end{aligned}$$

These maps are compatible for each n .

Choosing basis of $\mathbf{E}[\ell^n]$ for each n in a compatible way one can determine isomorphisms $\text{Aut}(\mathbf{E}[\ell^n]) \cong \text{GL}_2(\mathbb{Z}/\ell^n\mathbb{Z})$, and these combine to give $\text{Aut}(T_\ell(\mathbf{E})) \xrightarrow{\sim} \text{GL}_2(\mathbb{Z}_\ell)$. Since \mathbf{G}_K acts on $T_\ell(\mathbf{E})$, we obtain a Galois representation

$$\rho_{\mathbf{E}, \ell} : \mathbf{G}_K \longrightarrow \text{GL}_2(\mathbb{Z}_\ell) \subset \text{GL}_2(\mathbb{Q}_\ell),$$

the **2-dimensional ℓ -adic Galois representation associated to \mathbf{E}** .

Introduction to ℓ -adic Galois representations

Example (Galois representations and abelian varieties)

Let \mathbf{A} be an abelian variety of dimension g over K and $\ell \neq p$. Consider the inverse system $\mathbf{A}[\ell^n] \rightarrow \mathbf{A}[\ell^{n-1}]$ given by $P \mapsto \ell \cdot P$ and define the **ℓ -adic Tate module of \mathbf{A}** , $T_\ell(\mathbf{A}) = \varprojlim \mathbf{A}[\ell^n]$. One can compatibly identify $\mathbf{A}[\ell^n]$ with $(\mathbb{Z}/\ell^n\mathbb{Z})^{2g}$, yielding an isomorphism $T_\ell(\mathbf{A}) \cong (\mathbb{Z}_\ell)^{2g}$.

Introduction to ℓ -adic Galois representations

Example (Galois representations and abelian varieties)

Let \mathbf{A} be an abelian variety of dimension g over K and $\ell \neq p$. Consider the inverse system $\mathbf{A}[\ell^n] \rightarrow \mathbf{A}[\ell^{n-1}]$ given by $P \mapsto \ell \cdot P$ and define the **ℓ -adic Tate module of \mathbf{A}** , $T_\ell(\mathbf{A}) = \varprojlim \mathbf{A}[\ell^n]$. One can compatibly identify $\mathbf{A}[\ell^n]$ with $(\mathbb{Z}/\ell^n\mathbb{Z})^{2g}$, yielding an isomorphism $T_\ell(\mathbf{A}) \cong (\mathbb{Z}_\ell)^{2g}$.

Consider $V_\ell(\mathbf{A}) := T_\ell(\mathbf{A}) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell \cong \mathbb{Q}_\ell^{2g}$. The Galois group \mathbf{G}_K acts on $T_\ell(\mathbf{A})$ and on $V_\ell(\mathbf{A})$. This yields to the **ℓ -adic Galois representation associated to \mathbf{A}** ,

$$\rho_{\mathbf{A}, \ell} : \mathbf{G}_K \rightarrow \mathrm{Aut}_{\mathbb{Q}_\ell}(V_\ell(\overline{K})) \cong \mathrm{GL}_{2g}(\mathbb{Q}_\ell).$$

Introduction to ℓ -adic Galois representations

Example (Cohomology representations)

Let \mathbf{X} be an algebraic variety over \overline{K} and $\ell \neq p$. Attach to \mathbf{X} the étale cohomology groups $H^i(\mathbf{X}_{\text{et}}, \mathbb{Z}/\ell^n\mathbb{Z})$, $i \in \mathbb{Z}$. Then, one defines

$$H^i(\mathbf{X}, \mathbb{Z}_\ell) := \varprojlim H^i(\mathbf{X}_{\text{et}}, \mathbb{Z}/\ell^n\mathbb{Z}), \quad \text{and} \quad H_\ell^i(\mathbf{X}, \mathbb{Q}_\ell) := H^i(\mathbf{X}, \mathbb{Z}_\ell) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell.$$

Introduction to ℓ -adic Galois representations

Example (Cohomology representations)

Let \mathbf{X} be an algebraic variety over \overline{K} and $\ell \neq p$. Attach to \mathbf{X} the étale cohomology groups $H^i(\mathbf{X}_{\text{et}}, \mathbb{Z}/\ell^n\mathbb{Z})$, $i \in \mathbb{Z}$. Then, one defines

$$H^i(\mathbf{X}, \mathbb{Z}_\ell) := \varprojlim H^i(\mathbf{X}_{\text{et}}, \mathbb{Z}/\ell^n\mathbb{Z}), \quad \text{and} \quad H_\ell^i(\mathbf{X}, \mathbb{Q}_\ell) := H^i(\mathbf{X}, \mathbb{Z}_\ell) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell.$$

The group $H_\ell^i(\mathbf{X}, \mathbb{Q}_\ell)$ is a \mathbb{Q}_ℓ -vector space on which \mathbf{G}_K acts. It is finite dimensional, at least if $\text{char}(K) = 0$ or if \mathbf{X} is proper.

One thus gets an ℓ -adic representation of \mathbf{G}_K associated to $H_\ell^i(\mathbf{X}, \mathbb{Q}_\ell)$, the **i -th ℓ -adic Galois representation associated to \mathbf{X}** , for $0 \leq i \leq 2 \dim(\mathbf{X})$.

Introduction to ℓ -adic Galois representations

Let \mathbf{K} be a number field. Then one may find not one, but a family of representations $\{\rho_\ell\}_\ell$ attached to \mathbf{K} , one for each ℓ ,

$$\rho_\ell : \text{Gal}(\mathbf{K}/\mathbb{Q}) \rightarrow \text{GL}(\overline{\mathbb{Q}}_\ell).$$

Since they come from the same object, they might be expected to be *compatible* in some sense.

Introduction to ℓ -adic Galois representations

Consider an arbitrary Galois extension $L/K/\mathbb{Q}$ and $\mathfrak{P}/\mathfrak{p}/p$ prime ideals in these fields. Recall the **decomposition group** of \mathfrak{P}

$$\mathbf{D}_{\mathfrak{P}} := \{\sigma \in \mathbf{G}_K \mid \mathfrak{P}^{\sigma} = \mathfrak{P}\} \cong \text{Gal}(\mathbf{L}_{\mathfrak{P}}/\mathbf{K}_{\mathfrak{p}})$$

and the **inertia group** of \mathfrak{P} ,

$$\mathbf{I}_{\mathfrak{P}} := \{\sigma \in \mathbf{D}_{\mathfrak{P}} \mid x^{\sigma} \equiv x \pmod{\mathfrak{P}}, \forall x \in \mathcal{O}_L\}.$$

Introduction to ℓ -adic Galois representations

Consider an arbitrary Galois extension $L/K/\mathbb{Q}$ and $\mathfrak{P}/\mathfrak{p}/p$ prime ideals in these fields. Recall the **decomposition group** of \mathfrak{P}

$$\mathbf{D}_{\mathfrak{P}} := \{\sigma \in \mathbf{G}_K \mid \mathfrak{P}^{\sigma} = \mathfrak{P}\} \cong \text{Gal}(\mathbf{L}_{\mathfrak{P}}/\mathbf{K}_{\mathfrak{p}})$$

and the **inertia group** of \mathfrak{P} ,

$$\mathbf{I}_{\mathfrak{P}} := \{\sigma \in \mathbf{D}_{\mathfrak{P}} \mid x^{\sigma} \equiv x \pmod{\mathfrak{P}}, \forall x \in \mathcal{O}_L\}.$$

There is an isomorphism

$$\mathbf{D}_{\mathfrak{P}}/\mathbf{I}_{\mathfrak{P}} \cong \text{Gal}(\mathbb{F}(\mathfrak{P})/\mathbb{F}(\mathfrak{p})) = \langle \text{Frob}_p \rangle,$$

and any representative in $\mathbf{D}_{\mathfrak{P}}$ mapping to the Frobenius automorphism Frob_p is called a **Frobenius element** of $\text{Gal}(L/K)$, denoted by $\mathbf{Frob}_{\mathfrak{p}}$.

Introduction to ℓ -adic Galois representations

Consider an arbitrary Galois extension $L/K/\mathbb{Q}$ and $\mathfrak{P}/\mathfrak{p}/p$ prime ideals in these fields. Recall the **decomposition group** of \mathfrak{P}

$$\mathbf{D}_{\mathfrak{P}} := \{\sigma \in \mathbf{G}_K \mid \mathfrak{P}^{\sigma} = \mathfrak{P}\} \cong \text{Gal}(\mathbf{L}_{\mathfrak{P}}/\mathbf{K}_{\mathfrak{p}})$$

and the **inertia group** of \mathfrak{P} ,

$$\mathbf{I}_{\mathfrak{P}} := \{\sigma \in \mathbf{D}_{\mathfrak{P}} \mid x^{\sigma} \equiv x \pmod{\mathfrak{P}}, \forall x \in \mathcal{O}_L\}.$$

There is an isomorphism

$$\mathbf{D}_{\mathfrak{P}}/\mathbf{I}_{\mathfrak{P}} \cong \text{Gal}(\mathbb{F}(\mathfrak{P})/\mathbb{F}(\mathfrak{p})) = \langle \text{Frob}_{\mathfrak{p}} \rangle,$$

and any representative in $\mathbf{D}_{\mathfrak{P}}$ mapping to the Frobenius automorphism $\text{Frob}_{\mathfrak{p}}$ is called a **Frobenius element** of $\text{Gal}(L/K)$, denoted by $\text{Frob}_{\mathfrak{p}}$.

Definition

An ℓ -adic Galois representation $\rho_{\ell} : \mathbf{G}_K \rightarrow \text{Aut}(V)$ is called **unramified** at a prime \mathfrak{p} of K if $\mathbf{I}_{\mathfrak{P}} \subset \ker \rho$ for any place \mathfrak{P} of \overline{K} extending \mathfrak{p} .

Introduction to ℓ -adic Galois representations

Let \mathfrak{p} be an unramified prime with respect to some representation ρ_ℓ .

One defines the **characteristic polynomial of Frobenius of ρ_ℓ at \mathfrak{p} as**

$$P_{\mathfrak{p}, \rho_\ell}(T) := \det(1 - T \rho_\ell(\mathbf{Frob}_{\mathfrak{p}})) \in \mathbb{Q}_\ell[T].$$

Introduction to ℓ -adic Galois representations

Let \mathfrak{p} be an unramified prime with respect to some representation ρ_ℓ .

One defines the **characteristic polynomial of Frobenius of ρ_ℓ at \mathfrak{p}** as

$$P_{\mathfrak{p}, \rho_\ell}(T) := \det(1 - T \rho_\ell(\mathbf{Frob}_{\mathfrak{p}})) \in \mathbb{Q}_\ell[T].$$

The representation ρ_ℓ is called **rational** (resp. **integral**) if

- it is unramified at all primes except for a finite set S , and
- $P_{\mathfrak{p}, \rho_\ell}(T) \in \mathbb{Q}[T]$ (resp. $\mathbb{Z}[T]$).

Introduction to ℓ -adic Galois representations

Let \mathfrak{p} be an unramified prime with respect to some representation ρ_ℓ .

One defines the **characteristic polynomial of Frobenius of ρ_ℓ at \mathfrak{p} as**

$$P_{\mathfrak{p}, \rho_\ell}(T) := \det(1 - T \rho_\ell(\mathbf{Frob}_{\mathfrak{p}})) \in \mathbb{Q}_\ell[T].$$

The representation ρ_ℓ is called **rational** (resp. **integral**) if

- it is unramified at all primes except for a finite set S , and
- $P_{\mathfrak{p}, \rho_\ell}(T) \in \mathbb{Q}[T]$ (resp. $\mathbb{Z}[T]$).

We will consider from now on *rational* ℓ -adic representations, so we will be able to compare different rational representations (even over different completions) just by comparing those polynomials.

Introduction to ℓ -adic Galois representations

Examples

The ℓ -adic Galois representations χ_ℓ , $\rho_{\mathbf{E},\ell}$ and $\rho_{\mathbf{A},\ell}$ of \mathbf{G}_K are integral representations.

Introduction to ℓ -adic Galois representations

Examples

The ℓ -adic Galois representations χ_ℓ , $\rho_{\mathbf{E},\ell}$ and $\rho_{\mathbf{A},\ell}$ of \mathbf{G}_K are integral representations.

In the first case one can take as S the set S_ℓ of places in K that lie over ℓ . In the second and third cases, one can take as S the union of S_ℓ and the set of primes of bad reduction of \mathbf{E} (resp. \mathbf{A}).

Introduction to ℓ -adic Galois representations

Examples

The ℓ -adic Galois representations $\chi_\ell, \rho_{\mathbf{E}, \ell}$ and $\rho_{\mathbf{A}, \ell}$ of \mathbf{G}_K are integral representations.

In the first case one can take as S the set S_ℓ of places in K that lie over ℓ . In the second and third cases, one can take as S the union of S_ℓ and the set of primes of bad reduction of \mathbf{E} (resp. \mathbf{A}).

The fact that the corresponding Frobenius has an integral characteristic polynomial (which is independent of ℓ) is a consequence of Weil's results on endomorphisms of abelian varieties.

Introduction to ℓ -adic Galois representations

Examples

The ℓ -adic Galois representations $\chi_\ell, \rho_{\mathbf{E}, \ell}$ and $\rho_{\mathbf{A}, \ell}$ of \mathbf{G}_K are integral representations.

In the first case one can take as S the set S_ℓ of places in K that lie over ℓ . In the second and third cases, one can take as S the union of S_ℓ and the set of primes of bad reduction of \mathbf{E} (resp. \mathbf{A}).

The fact that the corresponding Frobenius has an integral characteristic polynomial (which is independent of ℓ) is a consequence of Weil's results on endomorphisms of abelian varieties.

Cohomology representations of \mathbf{G}_K are known to be integral if $K = \overline{\mathbb{F}}_q$ (Weil conjectures), and it is a well known open question in general.

Introduction to ℓ -adic Galois representations

Let ℓ' be a prime, and consider an ℓ' -adic Galois representation ρ' of \mathbf{G}_K . Assume that ρ and ρ' are rational. Then, ρ and ρ' are **compatible** if

- there exists a finite subset of primes S such that ρ and ρ' are unramified outside S and
- $P_{\mathfrak{p}, \rho}(T) = P_{\mathfrak{p}, \rho'}(T)$, for all primes outside S .

Introduction to ℓ -adic Galois representations

Let ℓ' be a prime, and consider an ℓ' -adic Galois representation ρ' of \mathbf{G}_K . Assume that ρ and ρ' are rational. Then, ρ and ρ' are **compatible** if

- there exists a finite subset of primes S such that ρ and ρ' are unramified outside S and
- $P_{\mathfrak{p}, \rho}(T) = P_{\mathfrak{p}, \rho'}(T)$, for all primes outside S .

Given a rational ℓ -adic Galois representation $\rho : \mathbf{G}_K \rightarrow \text{Aut}(V)$ it is always possible to find a compatible representation with ρ which is semisimple. It is unique (up to isomorphism) and is called the **semisimplification** of ρ .

Introduction to ℓ -adic Galois representations

For each prime ℓ , let ρ_ℓ be a rational ℓ -adic representation of G_K . The system $\{\rho_\ell\}_\ell$ is called a **compatible system** if any two ρ_ℓ and $\rho_{\ell'}$ are compatible for any primes ℓ, ℓ' .

Introduction to ℓ -adic Galois representations

For each prime ℓ , let ρ_ℓ be a rational ℓ -adic representation of G_K . The system $\{\rho_\ell\}_\ell$ is called a **compatible system** if any two ρ_ℓ and $\rho_{\ell'}$ are compatible for any primes ℓ, ℓ' .

Let $S_\ell = \{\text{primes over } \ell\} \subset \mathcal{O}_K$. The system $\{\rho_\ell\}_\ell$ is said to be **strictly compatible** if there exists a finite subset $S \subset \mathcal{O}_K$ of primes such that

- for every $\mathfrak{p} \notin S \cup S_\ell$, ρ_ℓ is unramified at \mathfrak{p} and $P_{\mathfrak{p}, \rho_\ell}(T) \in \mathbb{Q}(T)$.
- $P_{\mathfrak{p}, \rho_\ell}(T) = P_{\mathfrak{p}, \rho'_{\ell'}}(T)$, for $\mathfrak{p} \notin S \cup S_\ell \cup S_{\ell'}$.

There is a smallest finite set S having these properties. We call it the **exceptional set** of the compatible system.

Introduction to ℓ -adic Galois representations

For each prime ℓ , let ρ_ℓ be a rational ℓ -adic representation of G_K . The system $\{\rho_\ell\}_\ell$ is called a **compatible system** if any two ρ_ℓ and $\rho_{\ell'}$ are compatible for any primes ℓ, ℓ' .

Let $S_\ell = \{\text{primes over } \ell\} \subset \mathcal{O}_K$. The system $\{\rho_\ell\}_\ell$ is said to be **strictly compatible** if there exists a finite subset $S \subset \mathcal{O}_K$ of primes such that

- for every $\mathfrak{p} \notin S \cup S_\ell$, ρ_ℓ is unramified at \mathfrak{p} and $P_{\mathfrak{p}, \rho_\ell}(T) \in \mathbb{Q}(T)$.
- $P_{\mathfrak{p}, \rho_\ell}(T) = P_{\mathfrak{p}, \rho'_{\ell'}}(T)$, for $\mathfrak{p} \notin S \cup S_\ell \cup S_{\ell'}$.

There is a smallest finite set S having these properties. We call it the **exceptional set** of the compatible system.

Examples

The systems of ℓ -adic representations $\{\chi_\ell\}_\ell$, $\{\rho_{\mathbf{E}, \ell}\}$ and $\{\rho_{\mathbf{A}, \ell}\}$ are strictly compatible. The exceptional set of the first one is empty. The exceptional sets of $\{\rho_{\mathbf{E}, \ell}\}$ and $\{\rho_{\mathbf{A}, \ell}\}$ are the set of places where the elliptic curve (resp. abelian variety) has bad reduction.

Introduction to ℓ -adic Galois representations

Theorem

Let ℓ be a prime and let \mathbf{E} be an elliptic curve over \mathbb{Q} with conductor N . The Galois representation

$$\rho_{\mathbf{E},\ell} : \mathbf{G}_{\mathbb{Q}} \rightarrow GL_2(\mathbb{Q}_{\ell})$$

is unramified at every prime $p \nmid \ell N$. For any such p , let $\mathfrak{p} \subseteq \overline{\mathbb{Z}}$ be any maximal ideal over p . Then the characteristic equation of $\rho_{\mathbf{E},\ell}(\mathbf{Frob}_{\mathfrak{p}})$ is

$$x^2 - a_p(\mathbf{E})x + p = 0, \quad \text{where } a_p = p + 1 - \#\tilde{\mathbf{E}}(\mathbb{F}_p).$$

The Galois representation is irreducible.

Introduction to ℓ -adic Galois representations

Unramified: Let $p \nmid \ell N$ and let \mathfrak{p} lie over p . There is a commutative diagram

$$\begin{array}{ccc} \mathbf{D}_{\mathfrak{p}} & \longrightarrow & \mathrm{Aut}(\mathbf{E}[\ell^n]) \\ \downarrow & & \downarrow \sim \\ \mathbf{G}_{\mathbb{F}_p} & \longrightarrow & \mathrm{Aut}(\tilde{\mathbf{E}}[\ell^n]) \end{array}$$

Introduction to ℓ -adic Galois representations

Unramified: Let $p \nmid \ell N$ and let \mathfrak{p} lie over p . There is a commutative diagram

$$\begin{array}{ccc} \mathbf{D}_{\mathfrak{p}} & \longrightarrow & \mathrm{Aut}(\mathbf{E}[\ell^n]) \\ \downarrow & & \downarrow \sim \\ \mathbf{G}_{\mathbb{F}_p} & \longrightarrow & \mathrm{Aut}(\widetilde{\mathbf{E}}[\ell^n]) \end{array}$$

The inertia group $\mathbf{I}_{\mathfrak{p}}$ is contained in the kernel of $\downarrow \rightarrow$. Since $p \nmid \ell N$, \mathbf{E} has good reduction at p and the reduction preserves the ℓ^n -torsion structure. Thus $\mathbf{I}_{\mathfrak{p}}$ is contained in the kernel of $\rightarrow \downarrow$ and

$$\mathbf{I}_{\mathfrak{p}} \subset \ker(\mathbf{D}_{\mathfrak{p}} \rightarrow \mathrm{Aut}(\mathbf{E}[\ell^n])) = \ker(\mathbf{D}_{\mathfrak{p}} \rightarrow \mathrm{GL}_2(\mathbb{Z}/\ell^n\mathbb{Z}))$$

$$\Rightarrow \mathbf{I}_{\mathfrak{p}} \subset \ker(\mathbf{D}_{\mathfrak{p}} \rightarrow \mathrm{GL}_2(\mathbb{Z}_{\ell})) \subset \ker \rho_{\mathbf{E}, \ell}.$$

Introduction to ℓ -adic Galois representations

Characteristic polynomial: Let $p \nmid \ell N$.

- $\det \rho_{\mathbf{E}, \ell}(\text{Frob}_p)$: Let $\rho_n : G_{\mathbb{Q}} \rightarrow \text{GL}_2(\mathbb{Z}/\ell^n \mathbb{Z})$ be the n th entry of $\rho_{\mathbf{E}, \ell}$ for $n \in \mathbb{Z}^+$. Using that, for all $\sigma \in G_{\mathbb{Q}}$, $\det \rho_n(\sigma) = \chi_{\ell, n}(\sigma)$, we obtain that $\det \rho_{\mathbf{E}, \ell}(\sigma) = \chi_{\ell}(\sigma)$ in \mathbb{Z}_{ℓ}^* . In particular,
 $\det \rho_{\mathbf{E}, \ell}(\text{Frob}_p) = p$.

Introduction to ℓ -adic Galois representations

Characteristic polynomial: Let $p \nmid \ell N$.

- $\det \rho_{\mathbf{E}, \ell}(\mathbf{Frob}_p)$: Let $\rho_n : G_{\mathbb{Q}} \rightarrow \mathrm{GL}_2(\mathbb{Z}/\ell^n \mathbb{Z})$ be the n th entry of $\rho_{\mathbf{E}, \ell}$ for $n \in \mathbb{Z}^+$. Using that, for all $\sigma \in G_{\mathbb{Q}}$, $\det \rho_n(\sigma) = \chi_{\ell, n}(\sigma)$, we obtain that $\det \rho_{\mathbf{E}, \ell}(\sigma) = \chi_{\ell}(\sigma)$ in \mathbb{Z}_{ℓ}^* . In particular, $\det \rho_{\mathbf{E}, \ell}(\mathbf{Frob}_p) = p$.
- $\mathrm{tr} \rho_{\mathbf{E}, \ell}(\mathbf{Frob}_p)$: the characteristic equation of $\rho_{\mathbf{E}, \ell}(\mathbf{Frob}_p) =: A$ is $A^2 - \mathrm{tr} A + p = 0$, so $\mathrm{tr} A = A + pA^{-1}$. Using that

$$a_p(\mathbf{E}) = \mathrm{Frob}_p + p(\mathrm{Frob}_p^{-1}) \in \mathrm{End}(\mathrm{Pic}^0(\widetilde{\mathbf{E}})),$$

and that Frob_p acts on $\widetilde{\mathbf{E}}[\ell^n]$ as \mathbf{Frob}_p acts on $\mathbf{E}[\ell^n]$, we have that

$$a_p(\mathbf{E}) = \mathrm{Frob}_p + p\mathrm{Frob}_p^{-1} \equiv \mathbf{Frob}_p + p\mathbf{Frob}_p^{-1} \pmod{\ell^n}, \quad \forall n.$$

$$\Leftrightarrow a_p(\mathbf{E}) \equiv A + pA^{-1} \pmod{\ell^n}, \quad \forall n.$$

$$\Leftrightarrow \mathrm{tr} A = a_p(\mathbf{E}) \Leftrightarrow \mathrm{tr} \rho_{\mathbf{E}, \ell}(\mathbf{Frob}_p) = a_p(\mathbf{E}).$$

2. INTRODUCTION TO MODULAR FORMS

Introduction to modular forms

Recall the **modular group** $\mathrm{SL}_2(\mathbb{Z})$ and its congruence subgroups for $N \in \mathbb{Z}_{>0}$:

$$\begin{aligned}\Gamma_0(N) &= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \pmod{N} \right\}, \\ &\cup \\ \Gamma_1(N) &= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}, \\ &\cup \\ \Gamma(N) &= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}.\end{aligned}$$

They act on the **upper half plane** $\mathfrak{h} = \{\tau \in \mathbb{C} : \mathrm{Im}(\tau) \geq 0\}$.

Notation:

For any matrix $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$ define the **factor of automorphy** $j(\gamma, \tau) \in \mathbb{C}$ for $\tau \in \mathfrak{h}$ to be $j(\gamma, \tau) = c\tau + d$, and for any integer k , define the **weight- k operator** $[\gamma]_k$ on functions $f : \mathfrak{h} \rightarrow \mathbb{C}$ by

$$(f[\gamma]_k)(\tau) = j(\gamma, \tau)^{-k} f(\gamma(\tau)), \quad \tau \in \mathfrak{h}.$$

Introduction to modular forms

Definition

Let Γ be a congruence subgroup of $SL_2(\mathbb{Z})$ and let k be an integer. A function $f : \mathfrak{h} \rightarrow \mathbb{C}$ is a **modular of weight k with respect to Γ** if

- f is holomorphic,
- f is weight- k invariant under Γ , i.e., $f[\gamma]_k = f$, $\forall \gamma \in \Gamma$,
- $f[\alpha]_k$ is holomorphic at ∞ for all $\alpha \in SL_2(\mathbb{Z})$.

If in addition,

- $a_0 = 0$ in the Fourier expansion of $f[\alpha]_k$ for all $\alpha \in SL_2(\mathbb{Z})$,

then f is a **cusp form** of weight k with respect to Γ .

The set of modular forms of weight k with respect to Γ is denoted by $\mathcal{M}_k(\Gamma)$, the cusp forms $\mathcal{S}_k(\Gamma)$.

Introduction to modular forms

Let's recall the modular interpretation for the congruence subgroups $\Gamma_0(N)$ and $\Gamma_1(N)$.

Theorem (Modular interpretation)

Let N be a positive integer. Then there are isomorphisms

$$\begin{aligned}\Gamma_0(N)/\mathfrak{h} &\xrightarrow{\sim} Y_0(N)(\mathbb{C}) \\ \Gamma_0(N)\tau &\mapsto [\mathbb{C}/\Lambda_\tau, \langle [\frac{1}{N}]_{\Lambda_\tau} \rangle]\end{aligned}$$

and

$$\begin{aligned}\Gamma_1(N)/\mathfrak{h} &\xrightarrow{\sim} Y_1(N)(\mathbb{C}) \\ \Gamma_1(N)\tau &\mapsto [\mathbb{C}/\Lambda_\tau, [\frac{1}{N}]_{\Lambda_\tau}].\end{aligned}$$

Introduction to modular forms

A nonzero modular form $f \in \mathcal{M}_k(\Gamma_1(N))$ that is an eigenform for the Hecke operators T_n and $\langle n \rangle$ for all $n \in \mathbb{Z}^+$ is a **Hecke eigenform** or simply **eigenform**. The eigenform $f(\tau) = \sum_{n=0} a_n(f)q^n$ is **normalised** when $a_1(f) = 1$. A **newform** is a normalised eigenform in $\mathcal{S}_k(\Gamma_1(N))^{\text{new}}$.

Introduction to modular forms

A nonzero modular form $f \in \mathcal{M}_k(\Gamma_1(N))$ that is an eigenform for the Hecke operators T_n and $\langle n \rangle$ for all $n \in \mathbb{Z}^+$ is a **Hecke eigenform** or simply **eigenform**. The eigenform $f(\tau) = \sum_{n=0} a_n(f)q^n$ is **normalised** when $a_1(f) = 1$. A **newform** is a normalised eigenform in $\mathcal{S}_k(\Gamma_1(N))^{\text{new}}$.

The set of newforms in $\mathcal{S}_k(\Gamma_1(N))^{\text{new}}$ is an orthogonal basis of this space. Each such newform lies in an eigenspace $\mathcal{S}_k(N, \chi)$ and satisfies

$$T_n f = a_n(f) f, \quad \text{for all } n \in \mathbb{Z}^+,$$

i.e., its Fourier coefficients are its T_n -eigenvalues.

Introduction to modular forms

A nonzero modular form $f \in \mathcal{M}_k(\Gamma_1(N))$ that is an eigenform for the Hecke operators T_n and $\langle n \rangle$ for all $n \in \mathbb{Z}^+$ is a **Hecke eigenform** or simply **eigenform**. The eigenform $f(\tau) = \sum_{n=0} a_n(f)q^n$ is **normalised** when $a_1(f) = 1$. A **newform** is a normalised eigenform in $\mathcal{S}_k(\Gamma_1(N))^{\text{new}}$.

The set of newforms in $\mathcal{S}_k(\Gamma_1(N))^{\text{new}}$ is an orthogonal basis of this space. Each such newform lies in an eigenspace $\mathcal{S}_k(N, \chi)$ and satisfies

$$T_n f = a_n(f) f, \quad \text{for all } n \in \mathbb{Z}^+,$$

i.e., its Fourier coefficients are its T_n -eigenvalues.

Let $f \in \mathcal{S}_2(\Gamma_1(N))$ be a normalised eigenform for the Hecke operators T_p . Then the eigenvalues $a_n(f)$ are algebraic integers.

The **Hecke algebra over \mathbb{Z}** is the algebra of endomorphisms of $\mathcal{S}_2(\Gamma_1(N))$

$$\mathbb{T}_{\mathbb{Z}} := \mathbb{Z}[\{T_n, \langle n \rangle : n \in \mathbb{Z}^+\}].$$

3. SHIMURA'S CONSTRUCTION FOR WEIGHT $k = 2$

Shimura's construction

We will see that one may associate a 2-dimensional Galois representation of $\mathbf{G}_{\mathbb{Q}}$ to each normalised cuspidal eigenform. The following theorem is due to Shimura for $k = 2$ and due to Deligne for $k \geq 2$.

Shimura's construction

We will see that one may associate a 2-dimensional Galois representation of $\mathbf{G}_{\mathbb{Q}}$ to each normalised cuspidal eigenform. The following theorem is due to Shimura for $k = 2$ and due to Deligne for $k \geq 2$.

Theorem

Let $\mathbf{f} \in S_k(N, \chi)$ be a normalised eigenform with number field $K_{\mathbf{f}}$. Let ℓ be prime. For each maximal ideal λ of $\mathcal{O}_{K_{\mathbf{f}}}$ lying over ℓ there is an irreducible 2-dimensional Galois representation

$$\rho_{\mathbf{f}, \lambda} : G_{\mathbb{Q}} \rightarrow GL_2(\mathbf{K}_{\mathbf{f}, \lambda}).$$

This representation is unramified at all primes $p \nmid \ell N$. For any $\mathfrak{p} \subset \overline{\mathbb{Z}}$ lying over such p , the characteristic equation of $\rho_{\mathbf{f}, \lambda}(\mathbf{Frob}_{\mathfrak{p}})$ is

$$x^2 - a_p(f)x + \chi(p)p^{k-1} = 0.$$

Shimura's construction

We will sketch the construction of $\rho_{f,\lambda}$ for a modular form f of weight 2. Let N be a positive integer and ℓ be a prime. Consider the modular curve $\mathbf{X}_1(N)$ and let g denote its genus. The curve $\mathbf{X}_1(N)_{\mathbb{C}}$ can also be viewed as a compact Riemann surface, and its Jacobian is a g -dimensional complex torus

$$\mathbf{J}_1(N) = \text{Jac}(\mathbf{X}_1(N)_{\mathbb{C}}) \stackrel{\text{def}}{=} \mathcal{S}_2(\Gamma_1(N))^{\wedge} / H_1(\mathbf{X}_1(N)_{\mathbb{C}}, \mathbb{Z}) \cong \mathbb{C}^g / \Lambda_g.$$

The **Picard group** of $\mathbf{X}_1(N)$ is the abelian group of divisor classes on the points of $\mathbf{X}_1(N)$,

$$\text{Pic}^0(\mathbf{X}_1(N)) = \text{Div}^0(\mathbf{X}_1(N)) / \text{DivP}(\mathbf{X}_1(N)).$$

We can think of $\text{Pic}^0(\mathbf{X}_1(N))$ as a subgroup of $\text{Pic}^0(\mathbf{X}_1(N)_{\mathbb{C}})$, and using *Abel's theorem* we have a natural isomorphism

$$\text{Pic}^0(\mathbf{X}_1(N)_{\mathbb{C}}) \cong \text{Jac}(\mathbf{X}_1(N)_{\mathbb{C}}).$$

Thus, there is an inclusion of ℓ^n -torsion,

$$\iota_n : \text{Pic}^0(\mathbf{X}_1(N))[\ell^n] \hookrightarrow \text{Pic}^0(\mathbf{X}_1(N)_{\mathbb{C}})[\ell^n] \cong (\mathbb{Z}/\ell^n \mathbb{Z})^{2g}.$$

Shimura's construction

Denote by $\tilde{\mathbf{X}}_1(N)$ the reduction of $\mathbf{X}_1(N)$ at p . By *Igusa's theorem* we know that $\mathbf{X}_1(N)$ has good reduction at primes $p \nmid N$, so there is a natural surjective map $\text{Pic}^0(\mathbf{X}_1(N)) \twoheadrightarrow \text{Pic}^0(\tilde{\mathbf{X}}_1(N))$ restricting to

$$\pi_n : \text{Pic}^0(\mathbf{X}_1(N))[\ell^n] \twoheadrightarrow \text{Pic}^0(\tilde{\mathbf{X}}_1(N))[\ell^n].$$

It turns out that both ι_n and π_n are isomorphisms. Consider the **ℓ -adic Tate module of $\mathbf{X}_1(N)$** , $T_\ell(\text{Pic}^0(\mathbf{X}_1(N))) := \varprojlim_n \{\text{Pic}^0(\mathbf{X}_1(N))[\ell^n]\}$. Choosing bases of $\text{Pic}^0(\mathbf{X}_1(N))$ compatibly for all n shows that

$$T_\ell(\text{Pic}^0(\mathbf{X}_1(N))) \cong \mathbb{Z}_\ell^{2g}.$$

Any automorphism $\sigma \in G_{\mathbb{Q}}$ defines an automorphism of $\text{Div}^0(\mathbf{X}_1(N))$, $(\sum n_P(P))^\sigma = \sum n_P(P^\sigma)$. Since $\text{div}(f)^\sigma = \text{div}(f^\sigma)$ for any $f \in \overline{\mathbb{Q}}(\mathbf{X}_1(N))$, the automorphism descends to $\text{Pic}^0(\mathbf{X}_1(N))$.

Shimura's construction

For each n , there is a commutative diagram

$$\begin{array}{ccc} & \mathbf{G}_{\mathbb{Q}} & \\ & \searrow & \swarrow \\ \text{Aut}(\text{Pic}^0(\mathbf{X}_1(N))[\ell^n]) & \leftarrow & \text{Aut}(\text{Pic}^0(\mathbf{X}_1(N))[\ell^{n+1}]) \end{array}$$

This leads to a continuous homomorphism

$$\rho_{\mathbf{X}_1(N), \ell} : \mathbf{G}_{\mathbb{Q}} \rightarrow \text{GL}_{2g}(\mathbb{Z}_{\ell}) \subset \text{GL}_{2g}(\mathbb{Q}_{\ell}).$$

This is the **$2g$ -dimensional representation associated to $\mathbf{X}_1(N)$** .

The representation $\rho_{\mathbf{X}_1(N), \ell}$ is unramified at every prime $p \nmid \ell N$. For any such p , let $\mathfrak{p} \subset \overline{\mathbb{Z}}$ be any maximal ideal over p . Then $\rho_{\mathbf{X}_1(N), \ell}(\mathbf{Frob}_{\mathfrak{p}})$ satisfies the polynomial equation

$$x^2 - T_p x + \langle p \rangle p = 0.$$

(To be proved later)

Shimura's construction

To continue, we consider a normalised eigenform $\mathbf{f} \in \mathcal{S}_2(N, \chi)$ and denote by \mathbf{A}_f the abelian variety associated to \mathbf{f} . There is an isomorphism

$$\mathbb{T}_{\mathbb{Z}}/I_f \xrightarrow{\sim} \mathcal{O}_f = \mathbb{Z}[\{a_n(\mathbf{f}) : n \in \mathbb{Z}^+\}].$$

Under this isomorphism, each Fourier coefficient $a_p(\mathbf{f})$ acts on \mathbf{A}_f as $T_p + I_f$. The ring \mathcal{O}_f generates the **number field of \mathbf{f}** , denoted by K_f . The extension degree $d = [K_f : \mathbb{Q}]$ is also the dimension of \mathbf{A}_f as a complex torus. Consider the ℓ -adic Tate module of \mathbf{A}_f

$$T_{\ell}(\mathbf{A}_f) = \varprojlim_n \{\mathbf{A}_f[\ell^n]\} \cong \mathbb{Z}_{\ell}^{2d}.$$

The action of \mathcal{O}_f on \mathbf{A}_f is defined on ℓ -power torsion and thus extends to an action on $T_{\ell}(\mathbf{A}_f)$. Using that the map

$$\mathrm{Pic}^0(\mathbf{X}_1(N))[\ell^n] \twoheadrightarrow \mathbf{A}_f[\ell^n]$$

is a surjection, one can deduce that $\mathbf{G}_{\mathbb{Q}}$ acts on $\mathbf{A}_f[\ell^n]$ and therefore on $T_{\ell}(\mathbf{A}_f)$ as well.

Shimura's construction

The action of $\mathbf{G}_{\mathbb{Q}}$ commutes with the action of $\mathcal{O}_{\mathbf{f}}$ since the $\mathbf{G}_{\mathbb{Q}}$ -action and the $\mathbb{T}_{\mathbb{Z}}$ -action commute on $T_{\ell}(\text{Pic}^0(\mathbf{X}_1(N)))$. Choosing coordinates appropriately it gives a Galois representation

$$\rho_{\mathbf{A}_{\mathbf{f}}, \ell} : G_{\mathbb{Q}} \rightarrow \text{GL}_{2d}(\mathbb{Q}_{\ell}).$$

The representation $\rho_{\mathbf{A}_{\mathbf{f}}, \ell}$ has the following properties:

- It is continuous because $\rho_{\mathbf{X}_1(N), \ell}$ is continuous and

$$\rho_{\mathbf{X}_1(N), \ell}^{-1}(U(n, g)) \subset \rho_{\mathbf{A}_{\mathbf{f}}, \ell}^{-1}(U(n, d)),$$

where $U(n, g) = \ker(\text{GL}_{2g}(\mathbb{Z}_{\ell}) \rightarrow \text{GL}_{2g}(\mathbb{Z}/\ell^n \mathbb{Z}))$.

- It is unramified at all primes $p \nmid \ell N$ since

$$\ker \rho_{\mathbf{X}_1(N), \ell} \subseteq \ker \rho_{\mathbf{A}_{\mathbf{f}}, \ell}.$$

- For any unramified prime p , let $\mathfrak{p} \subset \overline{\mathbb{Z}}$ be any maximal ideal over p . At the level of Abelian varieties, since T_p acts as $a_p(\mathbf{f})$ and $\langle p \rangle$ acts as $\chi(p)$, $\rho_{\mathbf{A}_{\mathbf{f}}, \ell}(\mathbf{Frob}_{\mathfrak{p}})$ satisfies the polynomial equation

$$x^2 - a_p(\mathbf{f})x + \chi(\mathbf{Frob}_p)p = 0.$$

Shimura's construction

The Tate module $T_\ell(\mathbf{A}_f)$ has rank $2d$ over \mathbb{Z}_ℓ . Since it is an \mathcal{O}_f -module, the tensor product $V_\ell(\mathbf{A}_f) = T_\ell(\mathbf{A}_f) \otimes \mathbb{Q}$ is a module over $\mathcal{O}_f \otimes \mathbb{Q}_\ell = K_f \otimes_{\mathbb{Q}} \mathbb{Q}_\ell$. It turns out that $G_{\mathbb{Q}}$ acts $K_f \otimes_{\mathbb{Q}} \mathbb{Q}_\ell$ -linearly on $V_\ell(\mathbf{A}_f)$, and $V_\ell(\mathbf{A}_f) \cong (K_f \otimes_{\mathbb{Q}} \mathbb{Q}_\ell)^2$. Choose a basis of $V_\ell(\mathbf{A}_f)$ to get a homomorphism $G_{\mathbb{Q}} \rightarrow \mathrm{GL}_2(K_f \otimes_{\mathbb{Q}} \mathbb{Q}_\ell)$. We have that

$$K_f \otimes_{\mathbb{Q}} \mathbb{Q}_\ell \cong \prod_{\lambda \mid \ell} K_{f,\lambda},$$

so for each λ we can compose the homomorphism with a projection to get a continuous Galois representation

$$\rho_{f,\lambda} : G_{\mathbb{Q}} \rightarrow \mathrm{GL}_2(K_{f,\lambda}).$$

We have proved the following.

Shimura's construction

Theorem

Let $\mathbf{f} \in \mathcal{S}_2(N, \chi)$ be a normalised eigenform with number field $K_{\mathbf{f}}$. Let ℓ be a prime. For each maximal ideal λ of $\mathcal{O}_{K_{\mathbf{f}}}$ lying over ℓ there is a 2-dimensional Galois representation

$$\rho_{\mathbf{f}, \lambda} : \mathbf{G}_{\mathbb{Q}} \rightarrow GL_2(K_{\mathbf{f}, \lambda}).$$

This representation is unramified at every prime $p \nmid \ell N$. For any such p let $\mathfrak{p} \subset \mathbb{Z}$ be any maximal ideal lying over p . Then $\rho_{\mathbf{f}, \lambda}(\mathbf{Frob}_{\mathfrak{p}})$ satisfies the polynomial equation

$$x^2 - a_p(\mathbf{f})x + \chi(p)p = 0.$$

In particular, if $\mathbf{f} \in \mathcal{S}_2(\Gamma_0(N))$, the relation is $x^2 - a_p(\mathbf{f})x + p = 0$.

Shimura's construction

Lemma

The characteristic equation of $\rho_{\mathbf{X}_1(N), \ell}(\mathbf{Frob}_p)$ is

$$x^2 - T_p x + \langle p \rangle p = 0.$$

In order to do this, we need a description of the Hecke operator T_p at the level of Picard groups of reduced modular curves,

$$\tilde{T}_p : \text{Pic}^0(\tilde{\mathbf{X}}_1(N)) \rightarrow \text{Pic}^0(\tilde{\mathbf{X}}_1(N)).$$

Suppose this reduction exists, i.e., that there is a commutative diagram

$$\begin{array}{ccc} \text{Pic}^0(\mathbf{X}_1(N)) & \xrightarrow{T_p} & \text{Pic}^0(\mathbf{X}_1(N)) \\ \downarrow & & \downarrow \\ \text{Pic}^0(\tilde{\mathbf{X}}_1(N)) & \xrightarrow{\tilde{T}_p} & \text{Pic}^0(\tilde{\mathbf{X}}_1(N)). \end{array}$$

The resulting description of \tilde{T}_p is called the **Eichler-Shimura Relation**.

Shimura's construction

The way to compute the reduction \widetilde{T}_p on $\text{Pic}^0(\widetilde{\mathbf{X}}_1(N))$ is to compute it first in the moduli space environment.

$$\begin{aligned} T_p : \text{Div}(\mathbf{Y}_1(N)) &\rightarrow \text{Div}(\mathbf{Y}_1(N)) \\ [\mathbf{E}, Q] &\mapsto T_p[\mathbf{E}, Q] = \sum_C [\mathbf{E}/C, Q + C], \end{aligned}$$

where the sum is taken over all p subgroups $C \subset \mathbf{E}$ such that $C \cap \langle Q \rangle = \{0\}$.

If \mathbf{E} has good reduction at \mathfrak{p} , then so do all the curves \mathbf{E}/C . We will describe the right-hand side over $\overline{\mathbb{F}}_p$ rather than over $\overline{\mathbb{Q}}$.

Let C_0 denote the kernel of the reduction map $\mathbf{E}[p] \rightarrow \widetilde{\mathbf{E}}[p]$, an order p subgroup of \mathbf{E} . Then, for any order p subgroup C of \mathbf{E} ,

$$[\widetilde{\mathbf{E}/C}, \widetilde{Q + C}] = \begin{cases} [\widetilde{\mathbf{E}}^{\text{Frob}_p}, \widetilde{Q}^{\text{Frob}_p}] & \text{if } C = C_0 \\ [\widetilde{\mathbf{E}}^{\text{Frob}_p^{-1}}, [p]\widetilde{Q}^{\text{Frob}_p^{-1}}] & \text{if } C \neq C_0 \end{cases}$$

Shimura's construction

Define the moduli space diamond operator in characteristic p to be

$$\begin{aligned}\widetilde{\langle d \rangle} : \quad \widetilde{\mathbf{Y}}_1(N) &\rightarrow \widetilde{\mathbf{Y}}_1(N) \\ [\mathbf{E}, Q] &\mapsto [\mathbf{E}, [d]Q], \quad (d, N) = 1.\end{aligned}$$

There are $p + 1$ order p subgroups C of \mathbf{E} , one of which is C_0 .

Summing the previous formula over all order p subgroups $C \subset \mathbf{E}$ gives for a curve \mathbf{E} with ordinary reduction at \mathfrak{p} ,

$$\begin{aligned}\sum_C [\widetilde{\mathbf{E}/C}, \widetilde{Q + C}] &= [\widetilde{\mathbf{E}}^{\text{Frob}_p}, \widetilde{Q}^{\text{Frob}_p}] + \sum_C [\widetilde{\mathbf{E}}^{\text{Frob}_p^{-1}}, [p]\widetilde{Q}^{\text{Frob}_p^{-1}}] \\ &= [\widetilde{\mathbf{E}}^{\text{Frob}_p}, \widetilde{Q}^{\text{Frob}_p}] + p\widetilde{\langle p \rangle} [\widetilde{\mathbf{E}}^{\text{Frob}_p^{-1}}, \widetilde{Q}^{\text{Frob}_p^{-1}}] \\ &= \text{Frob}_p[\widetilde{\mathbf{E}}, \widetilde{Q}] + p\widetilde{\langle p \rangle} \text{Frob}_p^{-1}[\widetilde{\mathbf{E}}, \widetilde{Q}] \\ &= (\text{Frob}_p + p\widetilde{\langle p \rangle} \text{Frob}_p^{-1})[\widetilde{\mathbf{E}}, \widetilde{Q}]\end{aligned}$$

Shimura's construction

This can be extended to curves with good reduction at \mathfrak{p} , and one obtains a commutative diagram (where the primes mean to avoid finitely many points):

$$\begin{array}{ccc} \mathbf{Y}_1(N)'_{\text{gd}} & \xrightarrow{T_p} & \text{Div}(\mathbf{Y}_1(N)'_{\text{gd}}) \\ \downarrow & & \downarrow \\ \widetilde{\mathbf{Y}}_1(N)'_{\text{gd}} & \xrightarrow{\text{Frob}_p + p\widetilde{\langle p \rangle} \text{Frob}_p^{-1}} & \text{Div}(\widetilde{\mathbf{Y}}_1(N)'_{\text{gd}}). \end{array}$$

This extends to degree-0 divisors, and to Picard groups:

$$\begin{array}{ccc} \text{Div}^0(\mathbf{Y}_1(N)'_{\text{gd}}) & \xrightarrow{T_p} & \text{Div}^0(\mathbf{Y}_1(N)'_{\text{gd}}) \\ \downarrow & & \downarrow \\ \text{Div}(\widetilde{\mathbf{Y}}_1(N)'_{\text{gd}}) & \xrightarrow{\text{Frob}_p + p\widetilde{\langle p \rangle} \text{Frob}_p^{-1}} & \text{Div}^0(\widetilde{\mathbf{Y}}_1(N)'_{\text{gd}}) \\ \downarrow & & \downarrow \\ \text{Pic}^0(\widetilde{\mathbf{X}}_1(N)) & \xrightarrow{\text{Frob}_{p,*} + \widetilde{\langle p \rangle}_* \text{Frob}_p^*} & \text{Pic}^0(\widetilde{\mathbf{X}}_1(N)). \end{array}$$

Shimura's construction

Theorem (Eichler-Shimura Relation)

Let $p \nmid N$. The following diagrams commute

$$\begin{array}{ccc} \text{Pic}^0(\mathbf{X}_1(N)) & \xrightarrow{T_p} & \text{Pic}^0(\mathbf{X}_1(N)) \\ \downarrow & & \downarrow \\ \text{Pic}^0(\widetilde{\mathbf{X}}_1(N)) & \xrightarrow{\text{Frob}_{p,*} + \widetilde{\langle p \rangle} \text{Frob}_p^*} & \text{Pic}^0(\widetilde{\mathbf{X}}_1(N)). \end{array}$$

$$\begin{array}{ccc} \text{Pic}^0(\mathbf{X}_0(N)) & \xrightarrow{T_p} & \text{Pic}^0(\mathbf{X}_0(N)) \\ \downarrow & & \downarrow \\ \text{Pic}^0(\widetilde{\mathbf{X}}_0(N)) & \xrightarrow{\text{Frob}_{p,*} + \text{Frob}_p^*} & \text{Pic}^0(\widetilde{\mathbf{X}}_0(N)). \end{array}$$

Shimura's construction

The Eichler-Shimura relation restricts to ℓ^n -torsion, and we obtain

$$T_p = \text{Frob}_{\mathfrak{p}} + \langle p \rangle p \text{Frob}_{\mathfrak{p}}^{-1} \Leftrightarrow \text{Frob}_{\mathfrak{p}}^2 - T_p \text{Frob}_{\mathfrak{p}} + \langle p \rangle p = 0$$

on $\text{Pic}^0(\mathbf{X}_1(N))[\ell^n]$. This holds for all n , so the equality extends to $\text{T}_\ell(\text{Pic}^0(\widetilde{\mathbf{X}}_1(N)))$.

3. DELIGNE'S CONSTRUCTION FOR WEIGHT $k \geq 2$

Deligne's construction

For $k \geq 2$,

$k = 2$	$k > 2$
$\mathbf{J}_1(N)$	Kuga-Sato variety $\mathbf{W}_1(N)$
\mathbf{A}_f	\mathbf{M}_f = Scholl motiv associated to f
$T_p(\mathbf{J}_1(N))$	étale cohomology of $\mathbf{W}_1(N)$

Gràcies!