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SOME PREREQUISITES FOR THE WHOLE LECTURE COURSE.

The following is assumed known.

1

) Holomorphic functions in one variable.

2) Basics on topology: topological spaces, continuous maps.
)
)

3) Basics on topological manifolds: definition.

4) Definition of a complex manifold.

1. LECTURE 1

1.1. Definition of a Riemann surface. Since this course is called “Riemann surfaces”, the
first and main definition of the course is the one of a Riemann surface.

Definition 1.1. A Riemann surface is a connected 1-dimensional complex manifold.
Convention. We will usually write RS for Riemann surface.

Let us now clarify the meaning of Definition [I.1}
1.2. Reminder: details of the definition of Riemann surfaces. Let X be a 2-dimensional
real topological manifold.

Definition 1.2. Let U C X be an open subset. Let V' C C be an open subset of the set
of complex numbers (equipped with the standard Euclidean topology). Let ¢ : U — V be a
homeomorphism. Then ¢ : U — V is called a complex chart on X.

e

Definition 1.3. Two complex charts o, : U} — Vj and @5 : Uy — V5 are called holomorphically

compatible if
@2 001 o rnty) : 1(U1 NUs) = @2(Ur N Uy)

is a holomorphic map. By abuse of notation we will often denote it by s 0 o]


http://en.wikipedia.org/wiki/Bernhard_Riemann
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Exercise. ;0 ;' is then automatically biholomorphic.

Definition 1.4. A system of holomorphically compatible complex charts on X
A={p;:U; = V,,iel}
such that | J,.,; U; = X is called a complex atlas on X.

el 7

Definition 1.5. Two atlases 2; and 2, on X are called holomorphically compatible if every

chart from 2(; is holomorphically compatible with every chart from 2s.
Exercise. Holomorphic equivalence is an equivalence relation.
Definition 1.6. A complex structure on X is an equivalence class of complex atlases.

Remark 1.7. In order to define a complex structure on X it is enough to give a complex
atlas on X. Then two complex structures are equal if and only if the corresponding atlases are

equivalent.

Definition 1.8. Let 2 be a complex atlas on X. Put
Anaz = {complex charts on X holomorphically compatible with the charts from 2}.

Then 2A,,,. is the maximal atlas holomorphically compatible with 2.
Therefore, two atlases 2 and B are equivalent if and only if 2,00 = Bnae-

Definition 1.9. A RS is a pair (X, X)), where X is a connected 2-dimensional real topological
manifold and ¥ is a complex structure on X.
Equivalently: a RS is a pair (X,2), where X is a connected 2-dimensional real topological

manifold and 2( is a complex atlas on X.

For those who remember the definition of a complex manifold it is clear now that the last

definition is just the definition of a 1-dimensional complex manifold.

Convention. If (X,X) is a RS, then “a chart on X” means a chart in the maximal atlas on
X corresponding to X.
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1.3. Examples of Riemann surfaces.

Example 1.10 (The simplest example). X = C, A = {C SN C}.
In order to define the same complex structure one can also take the complex atlas given by
%’:{UngUn|n€N},whereUn:{zEC||z|<n}.

Example 1.11 (Subdomains of Riemann surfaces). Any domain in U C C (open connected
subset of C) , A = {U SN U}. More generally, let X be a RS and let U C X be a domain.
Then U is a RS as well. As an atlas one can take the restrictions to U of the complex charts

on X.

Example 1.12 (Complex projective line). Consider
P, =Py(C) = {(a:b) ] (a,0) € C*\ {(0,0)}},
where (a : b) denotes the line in C? through (0,0) and (a,b). Define
U={(a:b)|a#0}={(1:0)|beC}, U ={(a:b)|b#0}={(a:1)]aeC}.

Define

wo:Uy—C, (1:0)—0,
and

01: U, = C, (a:1)—a.
Then A = {Uj 2 cUp 2 C} is a complex atlas on P;. The transition function ¢ o
0" lgowonun) 18

1
po(UpNUp) =C" = C =1 (UpNh), ars —.

a

Example 1.13 (Riemann sphere C). As a set C = C Ll {co}, where oo is just a symbol. The
topology is defined as follows. U C Cis open if and only if either co ¢ U and U C C is open
or oo € U and C\ U is compact in C. This defines a compact Hausdorff space homeomorphic
to the two-dimensional sphere S2. Put Uy = C and U; = C\ {0} = V* U {oo}. Define
wo: Uy — C=id:C — C and define ¢, : Uy — C by

3z 00

p1(z) = ,
0, otherwise.

Exercise. The complex charts ¢y and ¢; are holomorphically compatible and constitute a
complex atlas on C.

Indeed, it is enough to notice that the transition function ¢ o ¢, 1\¢0(U00U1) is given by
* * 1
QOQ(U()QU1>:C —C 2901(UoﬂU1), CLHE.
Remark. Notice that this is the same transition function as in the previous example.

Example 1.14 (Complex tori). Consider C as a 2-dimensional vector space over R. Let
{w1, ws} beits basis over R. Let I' = Z-wy+Z-wy = {nw;+mwy | m,n € Z} be the corresponding
lattice. It is a subgroup in the abelian group C. Consider the quotient homomorphism C = C/T
and introduce on C/T" the quotient topology, i. e., U C C/T is open if and only if #=1(U) is
open in C.


https://en.wikipedia.org/wiki/Felix_Hausdorff
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a + wo a+ wi 4+ wo

For every a € C consider the open subset V, = {a + tjwy + tows | t1,t5 € (0,1)} in C, i. e., the
interior of the parallelogram with vertices at a, a+wy, a+ws, a+w;+wq. V, are called standard
parallelograms with respect to the lattice I'. Put U, := «(V,). Note that x|y, : V, — U, is
bijective and moreover a homeomorphism. Put ¢, := (7|y, )" : U, — V,. This gives a complex
atlas on C/T.

Exercise. Check the details of the definition of a complex torus.
Example 1.15. 1-dimensional complex submanifolds in a complex manifold.
1.4. Exercises.

Exercise 1. 1) Check that the complex charts on C introduced in the lecture are holomorphi-
cally compatible and constitute a complex atlas on C.

2) Prove that Cis homeomorphic to the complex projective line P; = P;(C).

Exercise 2. Let I' = Zw; + Zw> be a lattice in C.

1) Fill in the gaps in the definition of the complex structure on C/I". How do the transition
functions ¢ o ;! look like?

2) Let S' denote the real 1-sphere. Show that C/T" is homeomorphic to S' x S*.

Hint: Let py, ps be the R-basis of Hom(C,R) dual to wy, wy. Consider the map C/T' —
St x S [2] = (exp(2mip1(2)), exp(27ipa(2))). Here [z] denotes the equivalence class of a
complex number z in C/T.

Exercise 3. In this exercise all subsets of complex manifolds are equipped with the induced
topology.

1) Show that the following subspaces of C? or C* are complex submanifolds, hence they are
Riemann surfaces. Describe the complex structures on each of them.

X1 ={(z1,2) €C?| 521 + T2, =0}, Xy ={(21,22) € C* |3z — 1423 = 0},
Xz ={(21,2) € C* | 2120 =1 =10}, Xy={(20,21,2) €C’ | 21 — 25 = 0,2 — 2, = 0}.
2) Are the following subsets of C? complex submanifolds?
Xs={(21,2) €C?| 27 — 25 =0}, X¢={(21,22) € C*| 2125 = 0}.

Can you equip these topological subspaces of C? with a structure of a Riemann surface?
Hint: Have a look at the map C — C?, t — (t3,t?). Study the connected components of

X6 \ {<O’O>}
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2. LECTURE 2
2.1. Holomorphic functions on a Riemann surface. Structure sheaf.

Definition 2.1 (Holomorphic functions). Let X be a RS. Let Y C X be an open subset.
Then a function Y % C is called holomorphic on Y if for every chart ¢ : U — V on X the
composition fo @™ : p(UNY) — C is a holomorphic function.

Let Ox(Y) denote the set of all holomorphic functions on Y.

Exercise. Ox(Y) is a C-algebra.

Remark 2.2. For every open subset U C X we obtain a C-algebra Ox(U) of holomorphic
functions on U. For every two open subsets U and W in X such that U C W, the restriction
map Ox (W) — Ox(U), f +— f|v is a homomorphism of C-algebras. The collection of all these
data is denoted Ox and is called the structure sheaf on X.

Example 2.3. Consider a holomorphic function f on C. Since C is compact, f is bounded.
Thus, the restriction of f to C, which is an open subset of C, is bounded as well. It is known
that the only bounded holomorphic functions on C are constants. Therefore, f must be a

A

constant function. This shoves that Ox(C) = C.
2.2. Riemann removable singularities theorem for Riemann surfaces.

Theorem 2.4 (Riemann removable singularities theorem). Let X be a RS. Let U C X be an
open subset. Leta € U, let f € Ox(U\{a}) be bounded. Then there exists a unique f € Ox(U)

such that flongay = [-

Proof. Let ¢ : U' — V' be a chart around a. Then fop~! is a holomorphic bounded function on
o(U'NU)\ {p(a)} C C. Therefore, there exists a unique holomorphic function F' on p(U'NU)
such that

Flownonge@y = fo @™
Therefore, there is a unique holomorphic function g on UNU’ such that glurun (e} = flununfa)-
Hence 4! f € Ox(U) with ]?‘U\{a} = f. ]

Example 2.5. Let U = {z € C | |z < 1]} C C. Consider the holomorphic function

sin z

f:U\{0} =C, 2z~

Since f is bounded on U\ {0}, there exists a unique holomorphic function f on U that coincides

with f on U \ {0}.
Exercise. Compute the Taylor expansion of f from Example at point 0.

2.3. Holomorphic maps between Riemann surfaces. Up to now we defined

e Riemann surfaces;

e for a RS X the sheaf Ox of holomorphic functions on X (sheaf of C-algebras).
In other words, we defined the objects we are going to study.

In order to be able to “compare” the objects, one usually needs morphisms (maps) between
them.
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Definition 2.6. 1) Let X and Y be RS. Then a map f : X — Y is called holomorphic if
for every charts ¢ : U — V on X and ¢ : U’ — V' on Y with f(U) C U’ the composition
Yo flyopt:V — V'is a holomorphic map.

2) Equivalently, the map f is holomorphic if for every open U C Y and for every h € Oy (U)
the function f*h:=ho f: f~1(U) — C belongs to Ox(f~'U).

Exercise. Prove the equivalence of the statements of Definition [2.6]

Convention. Holomorphic maps of RS and morphisms of RS are just different names for the
same notion.

Remark 2.7. It follows that the composition of morphisms is a morphism as well. Therefore,
Riemann surfaces constitute a full subcategory in the category of complex manifolds.

2.4. Examples of holomorphic maps between Riemann surfaces.

Example 2.8 (Examples of morphisms of RS). 1) The quotient map C — C/I", where I is a
lattice in C, is a holomorphic map.

2) Let I" and I be two lattices in C. Let o € C* and assume that o - I' C I". Then the map
C/T = C/T’, [2] — |az],

is a well-defined holomorphic map. Moreover, it is an isomorphism if and only if o - I' = I".
3) The map C — C, given by

22 ¢ {0,00},

z2+= 90,2 =00,

00,z =10
is a holomorphic map from C to C.
4) Consider two submanifolds in C?

X ={(z21,2) | 2122 =1} and Y ={(z1,2) |2z =2}

The map
X =Y, (z21,22) (23,22)
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is a morphism of RS.
2.5. Identity theorem.

Theorem 2.9 (Identity theorem). Let X, Y be RS, let fi, fo : X — Y be two morphisms.Let
A C X be a subset such that A contains a limit point a of itself. If fi|a = fala, then fi = fo.

Proof. Let S C X be the set of points z € X that have an open neighbourhood U > x such
that fi|y = f2|y. Then S is open by the construction. Note that S # (). Indeed, by the identity
theorem for C, a € S. Our idea is to show that S is closed. Then by the connectedness of X
either S = X or S =0, hence S = X and f; = f.

So, let b be a limit point of S. Then by the continuity of f; and f; we conclude that f;(b) =
f2(b). By the identity theorem for C we conclude that f; and f, equal in a neighbourhood of
b, hence b € S, which demonstrates that .S is closed. O

Example 2.10 (A typical application). Let X 7. ¥ be a non-constant holomorphic map, let
y € Y. Then the preimage f~'(y) of y consists of isolated points because otherwise f must be
constant by Theorem If X is compact, then f~!(y) consists of finitely many points.

2.6. Meromorphic functions. Notice that by Definition [2.I]and Definition [2.6] a holomorphic
function on a Riemann surface X is the same as a holomorphic map X — C.
We are going to introduce the notion of a meromorphic function. A meromorphic function

on a Riemann surface X will be practically the same as a holomorphic map X — C.

Definition 2.11 (Meromorphic functions). 1) Let X be a RS. Let Y C X be an open subset.
A meromorphic function on Y is by definition a holomorphic function on Y\ P, where P C Y

is a subset of isolated points and and for every p € P the limit lim | f(x)| exists and equals co.
T—p

2) The points of P are called the poles of f.

3) Mx(Y) denotes the set of meromorphic functions on Y C X.

Exercise. Let X be a Riemann surface and let Y be an open subset in X. Check that the set
Mx(Y') of meromorphic functions on Y has a natural structure of a C-algebra and Ox(Y) is
naturally included in Mx(Y) as a C-subalgebra. This also defines a structure of an Ox(Y)-
module on Mx(Y).

Example 2.12. 1) Consider Y = C = C\ {oo} as an open subset of C and let f be the
identity function of C — C, z + z. Then f is a holomorphic function on Y. Since lim |f(z)| =
Z—00

~

lim |z| = oo, we conclude that id¢ can be seen as an element of M (C).
Z—00

2) Let f € C|z] be a polynomial in one variable. One can consider it as a function on C. This
function is holomorphic. Using arguments similar to the previous ones, one concludes that

A

every polynomial in one variable f(z) € C[z] can be seen as an element of Mg (C).
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2.7. Exercises.

Exercise 4. Let I" be a lattice in C. Can you describe all holomorphic functions on the torus
C/T using a similar reasoning as in Example [2.3| where we showed that Ox(C) = C.

Exercise 5 (Examples of morphisms of Riemann surfaces). Check using the definition of a
holomorphic map that the following maps between Riemann surfaces are holomorphic.

1) The quotient map C — C/I", where I is a lattice in C, is a holomorphic map.
2) Let I and I" be two lattices in C. Let o € C* and assume that o-I' C I'. Then the map
C/T' = C/T, [z] = [az],
is a well-defined holomorphic map. Moreover, it is an isomorphism if and only if o - ' = T".
3) The map C — C, given by
22 €1{0,00},
z2—= 40,2 =00,
00,z =10
is a holomorphic map from C to C.
4) Consider two submanifolds X3 and X, of C? from Exercise .
Xo={(21,22) € C* | 32y — 1425 = 0}, X3={(21,22) € C*| 212 — 1 = 0},
The map
X3 = Xo, (21,20) = (%zg,z@)
is a morphism of RS.

Exercise 6. Consider the 2-dimensional projective space

Py = {{(20, 21, 22) | (20, 21, 22) € C*\ {0}}.

Here (2o, 21, 22) denotes the line trough (2, 21, 22). Consider the following algebraic curves in
Ps:

X ={(20,21,2) €EPy | 20+ 21 + 22 =0}, Y = {{20,21,22) EPy | 2] = 22 }.
Notice that X and Y are complex submanifolds of Py, hence Riemann surfaces. Check whether
X and Y are isomorphic to each other, i. e., whether there exist holomorphic maps of Riemann
surfaces X 5 Y and Y % X that are inverse to each other.
Hint: Compare X and Y with the Riemann sphere C.

Exercise 7. Show that the set of meromorphic functions on C coincides with the set of rational

M z| (polynomials in z
{LE} | .9 & ] (potynomiats n 2),9 2 0.

Hint: One could follow the following steps. Let F, F' # 0, be a meromorphic function on C.

functions

e Note that F' has only finitely many zeros and poles.
e There are two possibilities: oo is either a pole of F' or not.
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e If oo is not a pole of F, consider the poles ay,...,a, of F. Consider the principal parts

h, of F at a,, v =1,...,n, and observe that F'— »_ h,, is a holomorphic function on C.
v=1
So it must be constant and hence F' is a rational function.

e If co is a pole of F, consider the function % and show as above that it is rational.
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3. LECTURE 3

3.1. Meromorphic functions as holomorphic maps to the Riemann sphere.
Theorem 3.1. Let X be a RS. There is a 1 :1 correspondence
Mx(X) «— {morphisms X — C not identically oo}.

Proof. “=7. Let f € Mx(X). Let P be the set of poles of f. Define f: X = Chy

f(z) _ f(z),2¢ P

o0, otherwise.

~

Then f is a continuous map (notice that it is enough to check it at poles). So by Riemann
removable singularity theorem f is holomorphic.

“~". Consider g : X — C. If the set g !(c0) contains a limit point, by identity theorem
g(z) = oo for all x € X, therefore g~'(c0) does not contain limit points and hence it is a subset
of isolated points. Denote f = g|x\4-1(o0) : X \ g '(c0) — C. This is a holomorphic function
on X \ g~'(c0). For every p € g7*(c0) one checks ll_rg |f(2)] = co. This means f € Mx(X).

One sees that the constructed maps are inverse to each other. U

Corollary 3.2. Non-trivial (non-zero) meromorphic functions may have only isolated zeroes
and poles.

Proof. Note that the poles of meromorphic function are isolated by definition.
Assume a is a non-isolated zero of f € My (X), i. e., there exists a sequence a; with lim a; = a
71— 00
such that f(a;) = 0, f(a) = 0. Then by the identity theorem f = 0 as a morphism X — C.
Therefore, f = 0. U

Claim. Let X be a Riemann surface, then Mx(X) is a field.

1
Proof. If f € Mx(X) such that f # 0, then 7 € Mx(X) as well since the zeroes of f become

1
the poles of ? O

Example 3.3. As mentioned in Example [2.12] polynomials in one variable can be seen as
meromorphic functions on C. By the Claim above we conclude that every rational function in

one variable %, f,g € Clz], g # 0, can be seen as a meromorphic function on C as well. So
the field of the rational functions in one variable
_ [ 1) o
C(z) := ﬁ | f, g € C[z] (polynomials in z),g # 0
g(z

is a subfield in Mg(C).

Exercise. Show that every meromorphic function on C is rational, i. e., M@(@) coincides with

C(z).
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3.2. Local behaviour of holomorphic maps of Riemann surfaces. Let us study the local

behaviour of holomorphic maps of Riemann surfaces.

Theorem 3.4 (Local behaviour of holomorphic maps). Let X, Y be RS. Let f : X — Y be a
non-constant holomorphic map. Let a € X, b:= f(a) € Y. Then there exists an integer k > 1

such that locally around a the morphism f looks as

2> 2F

i. e., there exist a chart U 5V, a € U, p(a) = 0, and a chart U’ v, V', be U, () =0,
such that f(U) C U and v o fly oo t(z) = 2*.

/ | | /
Proof. There exists a chart ¢ : U’ — V' around b such that 1(b) = 0. Then f~!(U’) is open

and contains a.

There exists a chart around @ mapping a to 0. Intersecting with f~1(U’) we obtain a chart
U 2 V such that f(U) c U and @(a) = 0.

Consider F' := 1 fg™L : V — V'. Since F(0) = 0, one can write F as F(z) = 2* - G(2),
G (z) # 0 in a neighbourhood W of 0. Since G (0) # 0, shrinking W if necessary we may assume
that there exists a holomorphic function H on W such that H*(z) = G(z). Indeed, shrinking
W if necessary we may assume that there exists a branch of the complex logarithmic function
defined around G(W). Then H(z) := exp( In G(z)) has the required property.

We obtain F(z) = zF - H¥(2) = (zH(2))F. Consider € : W — V', z — zH(z). It is a
biholomorphic map between W (possibly after shrinking W) and some neighbourhood of 0
in V’. Consider ¢ : g~ 1 (W) 2w & V' Then Ve Hz) = fE e z) = F(E(2) =
(EH()H(E (=) = (EE71(2)F = 2~ 0
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Definition 3.5. The number k from the previous theorem is uniquely determined for a given
holomorphic map f and a given point a € X. It is called the multiplicity of f at the point a
and will be denoted by mult, f.

Exercise. Prove that mult, f is well defined.

Remark 3.6 (Computation of mult, f). Note that in order to compute the multiplicity of
a holomorphic map at a point it is enough just to go through the first part of the proof of
Theorem [3.4] and to find the decomposition F(z) = z*¥G(z), G(0) # 0.

Remark 3.7 (Geometrical meaning of mult, f). In every neighbourhood Uy of a there exist a
neighbourhood U 3 a and a neighbourhood W 3 b such that for every y € W \ {b}

#f W y)NU =k,

i. e., U contains exactly k£ preimages of .

Example 3.8. 1) Let f be the identity map C — C. Then mult, f =1foreverya € C because
f is bijective. Analogously, since C%C, g(z) = %, is bijective, we conclude that mult, f = 1
for every a € C.

2) Let C L Che given by f(z) = z% Then multy f = 3 and mult; f = 1.
Exercise. Let f(z) € C[z] be a polynomial of degree k. This gives the holomorphic map

Fene foy=lf® 2EC

00, Z = 00.

Show that f has multiplicity k£ at co. What is the multiplicity of f at 07
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3.3. Exercises.

Exercise 8. Let I" be a lattice in C. Then a meromorphic function f € Mc(C) is called doubly
periodic (or elliptic) with respect to I' if f(z) = f(z + ) for all z € C and for all v € I

1) Show that there is a one-to-one correspondence between elliptic functions on C with respect
to I' and meromorphic functions on C/I.

2) Show that there are only constant holomorphic doubly periodic functions.

Exercise 9. Let X %5 Y be a non-constant holomorphic map of Riemann surfaces and let
a € X. Show that the multiplicity of f at a is uniquely determined, i. e., does not depend on
the choice of local charts.

Hint: Notice that k = mult, f can be thought of as the smallest k such that the k-th derivative
of F =1 o fopt does not vanish at 0, where ¢ is a chart around a and 1) is a chart around

b= f(a).

Exercise 10. Let f(z) € C[z] be a polynomial of degree k. This gives a holomorphic map
f:C— C, f(o00) = 00. Show that f has multiplicity k at oo. What is the multiplicity at 07

Exercise 11. 1) Consider the holomorphic map f : C — C, f(z) = 2*, where k is a positive
integer. Compute mult, f for an arbitrary a € C.

2) Consider the holomorphic map f : C — C, f(z) = (2 — 1)3(z — 2)". Compute mult, f for an
arbitrary a € C.
Exercise 12. Let C % € be a holomorphic map given by

- (2 —3)3
1@ =32

Compute mults f, mult_; f, mult, f, mult; f.
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4. LECTURE 4
4.1. Some corollaries (of the local behaviour of morphisms of Riemann surfaces).
Corollary 4.1. Every non-constant holomorphic map of RS f: X — Y 1is open.
Proof. f is locally z + z¥, which is open. Since being open is a local property, f is open. [

Corollary 4.2. Let f : X — Y be an injective morphism of RS. Then f : X — f(X) is
btholomorphic.

Proof. Injectivity implies that f is locally z — 2. Then the inverse of f is locally z — 2z and
hence it is holomorphic. O

Corollary 4.3 (Maximum principle). Let f € Ox(X) be non-constant. Then |f| does not have

maximum on X .

Proof. Suppose that | f| has maximum on X. Then there exists a € X such that
|f(a)| = sup | f(z)| =: M.
zeX

Consider K := {z € C | |z2| < M} ¢ C. K is compact. Then f(X) C K, in particular
f(a) € K. Therefore, f(a) € K (boundary of K). Since f(X) is open, f(a) must be contained
in K with some neighbourhood. This is a contradiction. Hence our assumption was false and

| f| does not have maximum on X. O

Theorem 4.4. Let X 5 Y be a non-constant morphism of RS. Let X be compact. Then f is
surjective and Y is compact as well.

Proof. Since f(X) is open and compact it is open and closed. Therefore, f(X) =Y since Y is
connected. 0

Exercise. Let ' be a lattice in C. Show that every non-constant elliptic function with respect

to I attains every value b € C.
Corollary 4.5. Let X be a compact RS. Then Ox(X) = C.

Proof. Let f € Ox(X) and consider it as a holomorphic map X ENN o i f is non-constant,
then C must be compact, which is wrong. So f is a constant function. O

Remark 4.6. As we saw in Exercise [7| this implies that every meromorphic function on C is
rational.

Definition 4.7 (Elliptic functionsﬂ). Let I' be a lattice in C. Then a meromorphic function
f € Mc(C) is called doubly periodic (or elliptic) with respect to T if f(z) = f(z + ) for all
z€ Cand forall y € I'.

Claim. There is a one-to-one correspondence between elliptic functions on C with respect to
I' and meromorphic functions on C/T. In particular there are only constant doubly periodic

holomorphic functions on C.

Lef, Exercise
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Proof. Every elliptic function f : C — C uniquely factorizes through the canonical projection
C 5 C/T and hence defines a holomorphic map C/T’ — C.

(C—>(C

N,

Every holomorphic map f : C /T — C defines f = for.
This gives the required one-to-one correspondence. U

Exercise. Try to invent a non-trivial elliptic function with respect to a given lattice.
4.2. Fundamental group.

Definition 4.8. Let X be a topological space. Then a path in X is a continuous map 7 :
[0,1] = X. The point (0) is called the initial point of -y, the point (1) is called the end point
of .

If v(0) = (1), then v is called a closed path.

Definition 4.9. A topological space X is called path-connected if every two points a,b € X
can be connected by a path.

Reminder 4.10. Path connectedness implies connectedness.

Exercise. Riemann surfaces are path connected.
Hint: For a point xy of a Riemann surface X consider the set S of all points that can be

connected with xo by a path. Show that S is non-empty, closed and open.

Definition 4.11. Two paths v, ¢ from a to b are called homotopic if there exists a continuous
map
H:[0,1] x[0,1] = X
such that
H(t,0) =~(t), H(t,1)=4(t) forallte]l0,1]
H(0,s)=a, H(1l,s)=0b forallse]|0,1].

One writes v ~ ¢ if v and § are homotopic.
Claim. Homotopy is an equivalence relation on the set of all paths from a to b.

Definition 4.12 (Composition). Let X be a topological space. Let v be a path from a to b.
Let 0 be a path from b to c¢. Define

~(2t), telo,
o2t —1), te]

]
1.

N[ =

(v-0)(t) =

N =

Definition 4.13 (Inverse curve). Let X be a topological space. Let v be a path from a to b.
Define

V) =(1—1), telo1].
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Claim. The composition of paths and the inverse path are compatible with the homotopy equiv-
alence, i. e., if y ~~', § ~ 0, and if v- 3§, v - & are well-defined, then

yeb~Ay 8, and T~

Definition-Theorem 4.14 (Fundamental group). Let zy € X. Let (X, x¢) denote the set
of the homotopy classes of of closed paths from zy to xy. Let [y] denote the homotopy class of
. Let [x0] denote the homotopy class of the constant path

0,1] = X, t~— x.
Then 7 (X, x) is a group with respect to the multiplication
] - [0] := v - 6],

the constant class [x¢] is the identity element with respect to this multiplication, for a class [7]

L= [y!
=[]
m1(X, xo) is called the fundamental group of X with respect to the base point xy.

its inverse is given by [y]™

Proof. Exercise. O
Claim. If a,b € X are connected by a path 6 : [0,1] — X, then the map
m(X,a) = m(X,b), [ [0y
is an isomorphism of groups.
Proof. Exercise. O

Remark 4.15. Note that the isomorphism above depends on . It does not depend on ¢ if and
only if m1(X, a) is an abelian group.

Definition 4.16. A path-connected topological space X is called simply-connected if 71 (X, a)
is trivial for some(equivalently: for every) a € X. By abuse of notation we write m(X,a) =0
to say that m (X, a) is trivial.

Remark 4.17. 1) The fundamental group is functorial. Namely, every continuous map f :
X — Y induces a homomorphism of groups

feoim(X o) = m(Y, f(zo0)), ] = full¥]) = [f 0]
such that for two continuous maps
XLy sz
it holds
(9o f)s=gso fu
2) In particular this implies that homeomorphic path-connected topological spaces have iso-

morphic fundamental groups. Therefore, m1(X,a) (to be more precise, its isomorphism class)

is a topological invariant.
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4.3. Classification of compact Riemann surfaces up to a homeomorphism.
Claim. Two non-homeomorphic compact RS have different fundamental groups.

Ezplanation. Compact RS are orientable compact 2-dimensional real manifolds, i. e, surfaces.
The latter are completely classified up to a homeomorphism.

Namely, for every non-negative integer p there is exactly one homeomorphism class.

For p =0, X = C = S?, the corresponding fundamental group m (X) is trivial.

For p > 1, the fundamental group of X can be described as

7T1(X) & <CL17 .. ,CLp,bl, .. .,bp | Haibiaglbi*l = 1>

We will discuss it in more details in the next lecture. O
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4.4. Exercises.
Exercise 13. Consider the following algebraic curve in Ps.
C = {{z, 21, 22) € Py | moz5 — 2% + 23 = 0}.
0) Notice that C' is a complex submanifold in P, and hence a Riemann surface.

1) Consider the open subset C(x¢) = {(x,x1,22) € C | 29 # 0} in C' and two holomorphic
functions X = 7 and Y = 32 on C'(z¢). Show that X and Y are meromorphic functions on C.

Find their zeroes and poles.

2) Consider X and Y as holomorphic maps to C and compute their multiplicities at their zeroes

and poles.

Exercise 14. 1) Let a and b be two points in a topological space X. Check that the homotopy
is an equivalence relation on the set of all curves from a to b.

2) Fill in the gaps and check the technical details in the definition of the fundamental group
from the lecture. You may consult the Algebraic topology book of Allen Hatcher [8].

Exercise 15. 0) Let X be an open disc in C of radius 1 with centre at zero. Show that
™1 (X, O) =0.
1) Show that the fundamental group of C is trivial. Consult the Algebraic topology book of

Allen Hatcher [8] for some technical details.

2) Compute the fundamental group of of a complex torus C/T". Use that m(S!) = Z and the
fact that the fundamental group of the product of two path-connected topological spaces X

and Y is naturally isomorphic to the product of the corresponding fundamental groups:
(X xY)=Zm((X) xm(Y).
Exercise 16. The so called uniformization theorem states that up to an isomorphism there

are only 3 simply-connected Riemann surfaces, namely C, C, and the open disc in C.

Let H= {z € C | Imz > 0} be the upper half plane with the induced complex structure. Show
that H is simply-connected and find out to which isomorphism class it belongs.

Hint: It may help looking at the meromorphic function i‘:il on C.
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5. LECTURE 5

5.1. Compact Riemann surfaces as gluings of regular polygons. Last time we claimed
that for every non-negative integer p there is exactly one homeomorphism class of 2-dimensional
real oriented compact connected manifolds.

Ezplanation. For p =0, X = C~ S?, the corresponding fundamental group 71 (X) is trivial.
For p > 1, X is obtained as a result of gluing of a regular 4p-gon along its sides as shown in

the following picture.

Qp

Each edge can be seen as a path on a plane. The initial and the end points are indicated by
arrows. For every ¢ one glues together inverting the orientations the edges «; with the edges
a; ' and the edges 3; with the edges 3; .

This means that the initial point of the edge labeled by «; or §; is glued together with the
end point of the edge labeled o Lor B; ! respectively.

Analogously, the end point of the edge labeled by «; or ; is glued together with the initial
point of the edge labeled ;' or ;! respectively.

The images of aq,...,qp,B1,...,0, in X are denoted by abuse of notations by the same
symbols. Then the path o l'is indeed the inverse path to «; and the path B ! is indeed the
inverse path to ;. Notice that each of these paths becomes a closed path at the same point
(the one obtained by gluing all the vertices of the 4p-gon).

The fundamental group of X is generated by

{[061], T [ap]7 [51]7 R [ﬁp]}
with the only relation

[TledlBilea) 3] =1,

%
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7T1(X) & <CL1, .. ,ap,bl, .. .,bp | Haibiai_lbi_l = ]_>

In this case X is homeomorphic to a pretzel with p holes

or equivalently to a sphere with p handles.

The relation between the generators mentioned above can be understood in the following
way. Let P denote the regular 4p-gon on a plane mentioned above. Consider the closed path

Y=o Breart B e Beragt Bty Byt B
Then it is contractible (in P), i. e., homotopic to a constant path.

Let X be the topological space obtained as a gluing of the edges of P as explained above.
Consider the corresponding quotient map P — X, which is continuous by the definition of
quotient topology. By composing the homotopy contracting v to a constant path with the
quotient map P — X we conclude that the image of 7 in X is contractible as well, which gives
[ L[] [B][a] 71 [Bi] = 1. O
Exercise. Compute 7;(C), 7 (C/T'), where I' C C is a lattice.

Definition 5.1. Let f : X — Y be a non-constant holomorphic map. Then x € X is called a
ramification point of f if there is no neighborhood U of x such that f|y is injective.

One says that f is unramified if it has no ramification points.

Remark 5.2. Ramification points are those with multiplicities mult, f > 1. This follows
immediately from Theorem (3.4}

Corollary 5.3. A non-constant holomorphic map of RS f : X — Y is unramified if and only
if it is a local homeomorphism.

Example 5.4. 1) C — C, z + z*. Here 0 is the only ramification point.

2) C 22 C* is unramified.
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3) The standard projection C — C/I" is unramified for every lattice I' C C.
5.2. Degree of a holomorphic map.

Theorem 5.5. Let f: X — Y be a non-constant holomorphic map of compact RS. Then for
every y € Y its preimage f~(y) is a finite set and the number

dy(f) ==Y mult, f

zef~y)

does not depend on y.

Corollary 5.6. If Y = C, then f: X — C is a meromorphic function and the number of

zeroes of f is equal to the number of poles of f (counted with multiplicities).

Definition 5.7. In the notations of Theorem the number d(f) := d,(f) (for some/every
y € X) is called the degree of f: X — Y.

Example 5.8. Consider the meromorphic function f(z) = ( (z=2) on C. Let us compute

2—3)2(2-T)
the number of zeroes of this function with multiplicities and thus the degree of the corresponding
holomorphic map cLc.

Note that f~1(0) = {2, c0}. Since

1
= (z—2
f(Z) (Z ) (2_3)2<2_7)3
1
and since ( e 78 does not vanish at z = 2, one concludes
z— z—
multy f =1
Since
1\* 4z —2
6= (1) e
z (z—=3)2(z—T7)3
and (2_3;1)(22—(;2_)7)3 does not vanish at co, we get

mult, f =4.

Therefore, do(f) = multy f + multe, f = 1 +4 = 5 and hence d(f) = 5.
Notice that the set of poles of f is {3,7}. Since mults(f) = 2 and mult;(f) = 3, we get

mults(f) + multy(f) =243 =5 =1+ 4 = multy(f) + multe (f),
which illustrates the statement of Corollary

Corollary 5.9. Let f € M(C/T") be a non-constant meromorphic function on a torus. Then
f has at least 2 poles (counted with multiplicities).

Proof. Suppose f has less than 2 poles.

1) If f does not have poles at all, then f is a holomorphic function and hence by Corollary
f is constant, which is a contradiction.
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2) If f has only one pole, then for the corresponding holomorphic map X Iy € the point
o0 € C has only one preimage. Therefore, for an arbitrary point p € C

#I7 p) = #/H(o0) = 1,
which means that f X > Cisa bijection. Hence f is an isomorphism of RS (cf. Corol-
lary and Theorem . In particular X and C must be homeomorphic as topological

spaces, which is not true, since, for example, they have non-isomorphic fundamental
groups.

0

Remark 5.10. In fact, we showed even more. Namely, on every compact RS non-isomorphic
to @, non-constant meromorphic functions must have at least 2 poles.
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5.3. Exercises.

Exercise 17. Compute the degrees d( f ), d(g) of the holomorphic maps C — C corresponding
to the following meromorphic functions on C:

0=

(z - 1)°

9=

Exercise 18. As we already know every meromorphic function f on C is rational, i. e.,

_M z z z z

Show that the degree of the corresponding holomorphic map f . C—C equals
max{deg P,deg Q}.

Exercise 19. Find all ramification points of the morphism ¢ from Exercise [I7]

Exercise 20. 1) Let a be a complex number. Let f be a meromorphic function on C with the

only pole of multiplicity 1 at a. Show that

A
fle)=p+—

for some non-zero complex number A and some y € C.

2) Consider the meromorphic function f(z) = %(z) on C. Find all zeroes and poles of f and the

corresponding multiplicities. Compare your results with the statements from the last lecture.
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6. LECTURE 6

6.1. Degree of a holomorphic map: details.

Proof of Theorem[5.5. First of all notice that f~!(y) must be a discrete set because of the
Identity theorem (Theorem . Since X is compact, it must be finite (again by the Identity
theorem). Consider now the function

Y = Z, yw—dy(f).

We shall show that this function is locally constant. Since Y is connected, it would imply that
d,(f) is a constant function.

Let y € Y. Let f~'(y) = {z1,...,2,}. Put m; = mult,, f. For every i = 1,...,n, let U; be
an open neighbourhood of z; such that f|y, : U; — f(U;) is of the form z — 2™ (in appropriate
charts). Shrinking U;, we can assume that U; N U; = 0 for i # j.

Since X is compact, f is a closed map, i. e., the image of a closed set is closed. Therefore,

n
F(X\ ] U;) is closed. Since y lies in its complement, which is open, there exists an open set
i=1

U,y € U,such that U Y \ f(X\ [[ U;). This implies that f~*(U) C [] U;.
i=1 i=1

Put W; = f~Y(U) N U;, then f~1(U) = [ W;.
i=1
For every p € U\ {y}, and for every x € f~!(p) the multiplicity mult, f equals 1. Therefore,

n

d(f)= ¥ mult, f= z #( ) NW) = S me

zef~1(p)

On the other hand d,(f) = >_ m; as well.
i=1
This shows that d,(f) is constant on U, so it is locally constant and hence constant, which

concludes the proof. O

6.2. Divisors. Let X be a compact RS.

Definition 6.1. Let Div(X) be the free abelian group generated by the points of X. It is
called the divisor group of X.
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Elements of Div(X) are linear combinations

Z Ng -, ng € 7, finitely many n, # 0.

For a divisor
D= 5 Ng T

let D(z) := n,. This way, one can identify divisors with the functions X — Z with finite
support.

Let deg D = )" .y n, be the degree of D.

Notice that

deg : DivX — Z, D~ degD

is a group homomorphism. Its kernel consists of all divisors of degree zero and is denoted by
Div?(X).

Let f € Mx(X) be a non-zero meromorphic function. Identify f with the corresponding
holomorphic map X — C and for p € X define

mult, f,  if f(p) =0
ord, f:= ¢ —mult, f, if f(p) =00
0, otherwise.

Notice that this definition implies mult, A = 0 for a non-zero constant function A € C*. It is
useful to put ord, 0 = oo.

The number ord, f is called the order of p with respect to f. So the points with positive
order are zeros of f, the points with negative order are poles of f, and the points with zero

order are neither zeroes nor poles of f.

Definition 6.2. For a meromorphic non-zero function f € Mx(X) put
(f) = Z(ordw f) -z € Div X.
reX

Divisors of this form are called principal divisors.

Remark 6.3. Notice that (f) keeps all the information about the zeroes and the poles of f.

Observation. (f - g) = (f) + (9), (1/f) = —(f).

Therefore, the set of the principal divisors is a subgroup in Div X, it is denoted by PDiv X.
Since by Theorem do(f) = doo(f), we conclude that deg(f) = 0 for every meromorphic
function f on X. Therefore, PDiv X is a subgroup of Div’(X) and we have an inclusion of
groups

PDivX C Div’ X C Div X.
The quotient group
Pic(X) := Div X/ PDiv X
is called the Picard group of X. Its elements are called divisor classes.

The group
Pic’(X) := Div’ X/ PDiv X,
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which is a subgroup of Pic X, is called the restricted Picard group.

6.3. Linear equivalence of divisors. We say that two divisors D and D’ are linearly equiv-
alent and write D ~ D" if D and D’ represent the same element in Pic X, i. e., if D — D' = (f)
for some meromorphic function f.
Since PDiv X lies in the kernel of the degree homomorphism, we get a factorization homo-
morphism
PicX — Z, [D]w~ degD,

which is denoted (by abuse of notation) by deg as well.

Div X —>Z

N

Pic X
Let D, D' € Div X. Then we say D > D' or D' < D if

D(z) = D'(x) for all z € X.
Let D € Div X, let U C X be open. Put
Op(U) :=0x(D)(U) :={f e Mx(U) |ord, f = —D(x) for all z € U}.

This defines a sheaf on X, denoted by Ox (D). This is a sheaf of Ox-modules, in particular
this means that Ox(D)(U) is an Ox(U) module for every open U C X.

Indeed, for f € Ox(D)(U) and v € Ox(U), it holds ord,(uf) = ord, u + ord, f. Since
ord, u > 0, one concludes that ord,(uf) > ord, f > —D(z), i. e., u- f € Ox(D)(U).

If V. C U are two open sets, then there is a restriction homomorphism (of abelian groups)

Ox(D)(U) = Ox(D)(V), [ flv

compatible with the module structure, i. e.,

(w- v =uly - flv, weOx(U), feOx(D){U).
Remark 6.4. Ox(0) = Oy, i. e., Ox(0)(U) = Ox(U) for all open subsets U C X.
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6.4. Exercises.

Exercise 21. Compute the principal divisors (f), (g) of the following meromorphic functions

on C (cf. Exercise [17):

(z —17)?
213+ 2

(z—1)
22 +11

f(z) = o 9(2) =

Exercise 22. In Exercise [13| we considered two meromorphic functions X = i—; and Y = i—i on

the Riemann surface
C = {{(x0, 71, 72) € Py | 2075 — 2 + 23 = 0}.
Compute the corresponding principal divisors (X) and (V).
Exercise 23. Show that Pic’C = 0, i. e., PDiv X = Div’ X. Conclude that PicC ~ Z.

Definition. Let D € Div X. Then
L(D) :=0x(D)(X)={f e Mx(X)|ord, f > —D(x) for all x € X'}
is called the Riemann-Roch| space of D. It is a vector space over C.
Exercise 24. Consider the complex torus X = C/I', I' = Z + Z - 3i. Compute L(D) for
D=p, p=[4+5]e€X;

D=p—gq, p=I[8,q=[2i]


http://en.wikipedia.org/wiki/Bernhard_Riemann
http://en.wikipedia.org/wiki/Gustav_Roch
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7. LECTURE 7

7.1. Divisors and invertible sheaves of Ox-modules.

Proposition 7.1. Let D,D’ € DivX. Assume D ~ D', then the sheaves of Ox-modules
Ox (D) and Ox(D') are isomorphic.

Remark 7.2. Ox(D) = Ox (D) means that for every open U C X there exists an isomorphism
of Ox(U)-modules

U
Ox(D)(U) ™ Ox(D)(V)
compatible with the restriction maps, i. e., for an inclusion of open sets W C U C X
nU)(s)lw =n(W)(slw) for every s € Ox(D)(U),
or, equivalently, there is the commutative diagram

0x (D)) L 0 (D))

lPUW lPUW
n(W)

Ox(D)(W) —— Ox(D')(W),
where pyy denotes the restriction map s +— sy .

Proof of Proposition[7.1. D ~ D" means D — D’ = (s) for some s € Mx(X). Then for every
open U C X and f € Ox(D)(U) (i. e. ord, f > —D(z) for all € X) we conclude that

ord,(s|y - f) = ord,(s) +ord, f > ord, s — D(z) = ord, s — (D' + (s))(z) = —D'(z)

and hence the map

Ox (D)) X% 0 (DYU), frsly- f

is well defined. One sees that it is an homomorphism of Ox (U)-modules and it possesses the
inverse map given by g +— s !|;7-g. Therefore, n(U) is an isomorphism. The compatibility with
the restrictions follows as well. U

Remark 7.3. Even more is true. Let D, D" € Div X. Then the sheaves of Ox-modules Ox (D)
and Ox(D') are isomorphic if and only if D ~ D'.

Exercise. Try to prove this. You could follow the following steps.

1) Notice that for small enough U C X the Ox(U)-module Ox(D)(U) is isomorphic to
Ox(U). This means that Ox (D) is a so called invertible sheaf (line bundle).

2) Let R be an arbitrary C-algebra. Notice that defining a homomorphism of R-modules
R — R is equivalent to choosing € R (the image of 1 € R).

3) Using the previous observations show that every isomorphism n(U) : Ox(D)(U) —
Ox(D')(U) is of the form f+ s f, s € Mx(U), for small enough U.

4) Analyze the situation and obtain the required statement.

Proposition 7.4. Let D € Div X be a divisor on a compact Riemann surface X. Then Ox (D)
is an invertible sheaf, i. e., for every point x € X there exists an open neighbourhood U of x
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such that Ox(D)|y = Ox|u. In particular this means that for every open subset V.C U there

exists an isomorphism of Ox(V')-modules
n(V): Ox(D)(V) = Ox(V)
compatible with the restriction maps.

Proof. Tt is enough to find locally around every point 2 a meromorphic function G € Mx(U)
with ord, f = —D(y) for y € U. Then the maps

Ox(D)(V) = Ox(V), fe=G'-f
are the required isomorphisms. [l

7.2. Riemann-Roch space.

Definition 7.5. Let D € Div X. Then
L(D) = Ox(D)(X) ={f € Mx(X) [ord, f > —D(x)}
is called the Riemann-Roch|space of D. It is a vector space over C.

Example 7.6. 1) Let D = a for some a € X. Then

f has at most 1 pole of multiplicity 1
and this pole can only be at a '

(D) = {f & M (X)

2) Let D = n - a for some a € X and a positive integer n. Then

has at most 1 pole of multiplicity at
E(D):{fEMX(X)f Y }

most n and this pole can only be at a

3) Let D = —n - a for some a € X and a positive integer n. Then

f does not have any poles and must
L(D) =< f € Mx(X)|have a zero of multiplicity at least n at

a

It turns out that the Riemann-Roch spaces are finite dimensional.
Theorem 7.7. dim £(D) < oo for all D € Div X.
Notation. {(D) := dim¢ L(D).

Idea of the proof. We are going to follow the following steps.
1) (D) =0 for D with deg D < 0, 1(0) = 1.
2) For D" = D + a for some a € X there is an inclusion of vector spaces L(D) C L(D') and
dim £(D")/L(D) < 1.
3) Hence, by induction, dim £(D) < oo for every divisor D.

Example 7.8. 1) Let p,g € X, p #q.
(a) If D = p, then [(D) < 2 because D = 0+ p and [(0) = 1.
(b) If D = —p, then I(D) = 0.
(¢) If D =p—q, then [(D) <1 because D = (—q) + p and I[(—¢q) = 0.


http://en.wikipedia.org/wiki/Bernhard_Riemann
http://en.wikipedia.org/wiki/Gustav_Roch
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2) Let X = C/T be a complex torus. Then I(p) = 1 for every p € X.
3) Let X = C. Then l(p) = 2 for every p € X.

37



38 OLEKSANDR IENA

Exercises.

Exercise 25. Let D and D’ be two divisors on a compact Riemann surface X. Assume that
the sheaves of Ox-modules Ox (D) and Ox(D') are isomorphic via an isomorphism

n: Ox(D) — Ox(D/)

Prove that this implies that D and D’ are linear equivalent.
You could follow the following steps.

1) Let R be an arbitrary C-algebra. Notice that defining a homomorphism of R-modules
R — R is equivalent to choosing € R (the image of 1 € R).

2) Using the previous observation and the fact that both Ox (D) and Ox(D') are invertible
sheaves, show that every isomorphism n(U) : Ox(D)(U) — Ox(D')(U) is of the form
frs-f, s€ Mx(U), for small enough U.

3) Analyze the situation and conclude that 7 is globally of the form f + s- f for a mero-
morphic function s € Mx(X). Using this obtain the required statement.

Exercise 26. Let X = C.
1) Compute the Riemann-Roch space La(D) for

D=n-p, p=0€X, neclZ
2) Notice that Exercise [23|says that two divisors on C are linearly equivalent if and only if they
have the same degree, in particular for every divisor D on C and every p € C
D ~degD - p.

In the lecture we mentioned that two linearly equivalent divisors have isomorphic Riemann-
Roch spaces. If D — D" = (s) for some s € Mx(X), then the isomorphism is given by

L(D)— L(D", frs-f

Using this and your computations from part 1) of this exercise compute the Riemann-Roch
spaces L(D) for the following divisors.

D =p, p=5+2i;
D=p—q, p=3,q=4—1;
D=2p+3¢q—18r, p=6—2i,q=471,7 = 356 — 31;

D:2'$1+8'$2—6'$3—3'[E4, Ilzlli, 1'2:(2—2), ZL‘3:44, Tr4q4 = OQ.

3) Check which of the following divisors on C are linearly equivalent and describe the isomor-
phisms of the corresponding Riemann-Roch spaces for the pairs of linearly equivalent divisors.

D;=3-(5+8)+27-(1—i)—6-(8i), Dy=5-(i), D3y=7-(2843i)—1-(i)—1-(48),

Dy=4-(18)+20-(33i), Ds=3-(16+ 11i).
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Exercise 27. 1) Let D be a divisor on a compact Riemann surface. Let £(D) be its Riemann-
Roch space. In the lecture we saw that L£(D) is a finite dimensional vector space over C.
Assume that deg D > 0 and using our proof obtain the following estimation for the dimension
[(D) of L(D):

[(D) < deg D + 1.
2) Let X = C and let D € Div C be a divisor with non-negative degree. Show that the previous

inequality becomes an equality, i. e.,

I(D)=degD +1.
Hint: [t is enough to find deg D + 1 linear independent meromorphic functions from L(D).
Have a look at Exercise[26.

Exercise 28. Define X = {(z9,71,72) € Py | 23 — z9z2 = 0}. Then X is a 1-dimensional
complex submanifold of Py. Let p = (0,0,1) € X, let D = p. Compute I(D) = dim¢ L(D).
Hint: Study the map Py — X, (s,t) — (s?, st, t?).
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8. LECTURE 8

8.1. Riemann-Roch spaces are finitely dimensional. Last time we gave a sketch of the
proof of Theorem [7.7] Let us give the details.

Proof of Theorem|[7.77, 1) Let deg D < 0. Assume (D) # 0, then £(D) # 0. Take some
non-zero f € L(D) C Mx(X). Then (f) > —D and in particular deg f > deg(—D) =
—deg D > 0. This is a contradiction.

Since L£(0) = Ox(X) = C, one gets {(0) = 1.

This gives a basis of the induction.

2) Let D € DivX,let a € X, let D' =D+ a. Then D' > D and hence —D(x) > —D'(x)
and L(D) C L(D').

Choose a chart ¢ : U — V around a such that ¢(a) = 0. For every f € L(D’) put
fo = fluoy™". Then f, is a meromorphic function on V. Consider its Laurent expansion
at 0. Since f € L(D'), f, may have at 0 a pole of order at most D'(a) = 1+ D(a) = 1+d,
where d = D(a). So

fol#) = acan(f) -2 tag 2= Y a(f) 2 alf)eC

around 0.

Now consider the map L£(D’) iN C, f = a_q-1(f). It is a linear map. Its ker-
nel coincides with £(D). So L(D")/L(D) = L(D")/ker( = Im¢& C C and hence
dime £(D")/L(D) < 1.

3) Notice that every divisor D’ can be written as D’ = D+a for some a € X and D € Div X.
Moreover deg D < deg D’. This provides the step of the induction.
U

This concludes the proof.

8.2. Stalks of the structure sheaf. Let a € X. Consider the set of pairs
{(U,f)|UC X open,a e U, f € Ox(U)}.
One defines the relation

(U, f) N(V,g)<d——f>5|openWCUﬂV, a € W such that flw = g|w.

@ b
'~

Claim. 1 an equivalence relation.

Proof. Exercise. 0

Definition 8.1. The set of the equivalence classes is denoted by Oy, and is called the stalk
of the structure sheaf O at the point a.

We write [(U, f)] of [U, f] for the equivalence class of (U, f). By abuse of notation one
also writes f,, which means the equivalence class of a holomorphic function f defined in some
neighbourhood of a. This equivalence class is called the germ of (U, f) (or simply the germ of

f) at a.
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Claim. Ox, is a C-algebra with operations defined by
fot 9a=(f+ 9o fo 9a=(f9ar A fo=(Af)a
Proof. Exercise. O
Claim (Model example). Oc¢, = C{z — a} = C{z} (convergent power series).
Proof. Define
Oco— C{z —a}, [U,f]+— Taylor expansion of f at a: f(z) = Z ci(z — a)".

i>0

This gives the required isomorphism. 0

Since every RS is locally isomorphic to C, we conclude that Ox, = C{z} for every a € X.
Indeed, fix a chart ¢ : U — V around a € X. Then

OX,a — O(C,gp(a)a fa = (f © cp_l)w(a)

gives an isomorphism of C-algebras Ox o = Oc ,(q) = C{z}.

Consider the evaluation homomorphism
ev:Oxq,—C, for fla).
Its kernel is an ideal myx , C Ox, given by
mxq = {[U, f] € Ox. | f(a) =0}
Since Ox ,/mx, = C and C is a field we conclude that my, is a maximal ideal of Ox ,.

Claim. my, is the only mazimal ideal of Ox,. One says that Ox,, is the local algebra (or the
local ring) of X at a.

Remark 8.2. Recall that a ring with only one maximal ideal is called local.

Under the isomorphism Oy, = C{z} the ideal mx , corresponds to the ideal in C{z} consist-
ing of all convergent power series with trivial free term, i. e., the principal ideal (z) generated
by z.

Remark 8.3. Notice that C{z} is a principal domain, i. e., all ideals are principal, i. e.,
generated by a single element. Moreover, every ideal of C{z} is of the form (2™) for some
m = 0.

Proof. Exercise. O

8.3. Cotangent space. Let m%a be the ideal generated by the products s - s2, 51,52 € My ,.
It corresponds to the principal ideal (2%). Clearly m?xﬂ C my,. Consider the quotient Ox ,-
module and the corresponding quotient C{z}-module (z)/(z?). Then

mxo/m, = (2)/(z") = C- [2],

where [z] denotes the class of z in (2)/(z?).
We see that though mx , and mgf’a are infinite dimensional vector spaces over C, their quotient
My q/m% , is a l-one dimensional vector space over C.
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Definition 8.4. The vector space mx , /mg(’a is called the cotangent space of X at a and will

be denoted in this lecture by CT, X.

Its dual space
(mx,/m% )" = Home(my o /m%,, C)

is called the tangent space of X at a and is denoted by T, X.

8.4. Differentials of (holomorphic) functions.

Definition 8.5. Let [U, f] € Ox,. Put d,f :=[f — f(a)] € CT, X. This defines the map
df :U— | |CT. X, aw daf,

acU

called the differential of f.
Definition 8.6. Let ¢ : U — V be a chart of a Riemann surface X. Let a € U. We call ¢ a

local coordinate at a if ¢(a) = 0.
We will often denote local coordinates by Latin letters, say z : U — V C C.

Let 2z : U — V C C be a local coordinate at a« € U. Then d,z is a non-zero element in
CT, X. Therefore, it can be taken as a basis of CT, X.

In particular one should be able to write df (x) = g(z) - dz(z) for some function g : U — C.

Let us study this in more details.
Consider the composition F' = f o z71. It is a holomorphic function in a neighbourhood V'

of 0 € C. For b € U, take the Taylor expansion of F' at z(b) € V.

F(t) =) alt—z(b)"

120

Then
f(@) = fozox(z) = F(x(x) = 3 (2(x) = 2(b))’
and hence .
dof =[f — f(b)] = [; ci(z = 2(0))'] = [er(z — 2(0)) + (2 — 2(b))* ; ci(z — 2(b))i7Y] =
. [c1(z = 2(b))] = & [zl/— 2(b)] = F'(2(b)) - dyz.

Definition 8.7. Let z : U — V be a local coordinate at a € U. Let f € Ox(U). Put as above

F = foz ! and define
of .. _OF
06y = P/(0) = 2 (o))
In these notations d, f = %(b) - dpz and finally
of
df = 5, dz,

(1)

a formula which looks familiar.
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8.5. Sheaf of holomorphic differential forms. Let U C X be an open subset of a RS X.
We have just seen that every f € Ox(U) gives us a map
df :U— | |CT.X, awrdaf.
acU
Moreover, we computed that for a local coordinate z : W — C, W C U it holds df|w = g—ﬁ dz.
Let now w : U — | |,c; CTa X be an arbitrary map such that w(a) € CT,X. Then, as
above, for a local coordinate z : W — C, W C U, we conclude that

ol =g ds
for some function g : W — C.

Definition 8.8. Let w be as above. If g is a holomorphic function for every local coordinate
z: W — C, then w is called a holomorphic differential form on U.

Equivalently, w is a holomorphic differential form if U can be covered by open sets U; with
local coordinates z; : U; — C such that after representing the restrictions of w as w|y, = fi - dz;,
the functions f; : U; — C are holomorphic.

The set of all holomorphic differential forms on U is denoted by Qx(U). It is naturally
an Ox(U)-module. This defines a sheaf of Ox-modules. The sheaf Q2x is called the sheaf of
differential forms on X.

Remark 8.9. Notice that from the definition of Q2 it follows that {2y is an invertible sheaf of
Ox-modules.

Exercise. Demonstrate that €2y is an invertible sheaf. Compare your proof with the proof
of Proposition [7.4]

Example 8.10. As we saw above, df is a holomorphic differential form on U for every f €
Ox(U).

Remark 8.11. For every open set U C X the map
Ox(U) = Qx(U), frdf

is a linear map of C-vector spaces, which gives a morphism of sheaves of C-vector spaces
@ X — Q X-

~ ~

Example 8.12. Let us compute Q¢(C). Let w € Qa(C). Let 2y : Uy — C and 2 : Uy — C be
the standard charts of C. Then w|y, = fodzo and wly, = fidz for some holomorphic functions
fo and f; on Uy and Uj respectively. It should also hold fodzo|vyny, = fidzi|v,nu,- Since
20 =1/z on UyNU; = C*, using (1)) one gets dzg = (—1/2%)dz, hence fo(1/z1) - (—1/23)dz =
f1(21)dz1, and therefore fo(1/21) = —2% f1(21). Comparing the Laurent expansions of these two

holomorphic functions on C*, one immediately concludes that fo = 0, f; = 0, which means

A

Q:(C) = 0.
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Exercises.

Exercise 29. (0) Let a be a point of a Riemann surface X. Show that the stalk Oy, is a
C-algebra with the operations defined in the lecture:

fa + ga = (f +g>au fa “Ja ‘= (fg>a7 A fa = (/\f)aa faaga S OX,aa)\ e C.

In particular check that the definitions given in the lecture are well-defined, i. e., do not depend

on the choice of representatives.

(1) Consider the evaluation homomorphism of C-algebras
Oxa C, [U,f]~ f(a)

Show that its kernel is the only maximal ideal of Ox ,.

Exercise 30. Consider the following holomorphic functions on C.

fi(2) = (z =3)(z +5)° + 11, fo(2) = exp(z), f3(z) = sin(z?).

For a = 0,3, —51, find a generator of the cotangent space CT, C and express d,f;, 1 = 1,2, 3,
in terms of this generator.

Exercise 31. Consider the Riemann sphere C and let zo = o and z; = @1 be its standard
charts. Consider the meromorphic function

o 2(2+1) 2
f(Z) - (Z . 1)(2 . 2)3 < M(C((C)
as a holomorphic function on C \ {1,2}.
Compute
Of (., O of of Of 3y 91

0 -1 -1 3 3).
820 ( ’ 821 (OO)’ 82’0 ( >7 821 ( )’ 820 ( )’ 821 ( )
For a = 0,00, —1, 3 express if possible d, f in terms of d,zo and d, 2.

Exercise 32. 1) Show that there are no non-trivial holomorphic differential forms on @, i. e.,

A

Q:(C) = 0.

2) Let X = C/T" be a complex torus. Find a non-trivial holomorphic differential form wy on X.
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9. LECTURE 9

9.1. Sheaf of meromorphic differential forms.

Definition 9.1. Let U be an open subset of a Riemann surface X. A meromorphic differential
form on U is an element w € Qx(U \ 5) for some discrete set S such that for every chart

U' 5 V' with U’ C U the local expressions w|yns = fdz are given by meromorphic functions
f e M X(U ’).

Let Kx(U) denote the set of all meromorphic differential forms on U.
Remark 9.2. Kx(U) is naturally an M x(U)-module: for f € Mx(U) and for w € Kx(U)
(f-w)(z) = f(z) - w(x).

Moreover, Ky is a sheaf of M x-modules. In particular, Ky is a sheaf of Ox-modules.

Analogously to the case of holomorphic differential forms, there is the homomorphism of
sheaves of vector spaces over C (note that it is not a homomorphism of Ox-modules!)

Mx S Kx.
Namely, for every open U C X there is the linear map of vector spaces
Mx(U) = Kx(U), [+ df

and the commutative diagram

Ox(U)—— Mx(U) f

Qx(U)(—> ]C)((U), dfl

9.2. Meromorphic differential forms and divisors.

Definition 9.3. Let w € Kx(U) for some open U C X. Let a € U, let z : U’ — V' be a local
coordinate at a. Write w|y» = fdz for some f € Mx(U’). Define now the order of w at a by

ord, w := ord, f.
Claim. ord,w does not depend on the choice of z.
Proof. Exercise. 0

Definition 9.4. Let X be a compact RS. Let w € Kx(X). Define the divisor associated to w
by
(w) == Z ord, w - x € Div X.
zeX

Example 9.5. Let X = C. We know already (cf. Example that there are no non-trivial
holomorphic differential forms on C.

Let us mimic the reasoning from Example in order to find a non-trivial meromorphic
differential form on C.

Let w € Ka(C). Let 2 : Uy — C and 2, : Uy — C be the standard charts of C. Then
wly, = fodzo and w|y, = fidz for some meromorphic functions fo and f; on Uy and U



48 OLEKSANDR IENA

respectively. It should also hold fodzo|u,nv, = fidz1|vynw,- Since zo = 1/2; on Uy N U; = C*,
using one gets dzy = (—1/2%)dzy, hence fo(1/21) - (—=1/2?)dz; = fi1(21)dz1, and therefore
fo(1/2z1) = —22f1(21). Take fo(z0) = 1. Then 1 = —22fi(z1), i. e., fi(z1) = —1/22. Thus we
have just found a non-trivial meromorphic differential form w on C. This form coincides with
dzp on Uy and equals —Z%dzl on Uj.

Let us compute the dilvisor corresponding to w. Since ord,w = ord, 1 = 0 for a € C and

orde w = ordeo(—z) = —2, we conclude that

(W) =—2"00.
In particular deg(w) = —2.

Exercise. Find a non-trivial meromorphic differential form w’ on C different from the one
presented in Example Compute the corresponding divisor (w') € DivC and its degree
deg(w’).

9.3. Meromorphic differential forms and meromorphic functions.

Proposition 9.6. Let wy € Kx(X), wo Z0. Then Kx(X) ={f -wo | f € Mx(X)}, i. e.,
Mx(X) = Kx(X), frf-wo

s an isomorphism of C-vector spaces.

Proof. Let w € Kx(X) be an arbitrary meromorphic differential form on X. Let | JU; = X be
a covering of X by charts z; : U; — V; such that wy|y, is given by fidz; and w|y, is given by
g;dz; for some meromorphic functions f; and g; on Us.

Note that f; # 0 for every i. Otherwise, by an argument similar to the one from the proof
of Theorem [2.9] (identity theorem), wy = 0. Consider h; = g;/f; € Mx(U;).
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Using we get
_ aZj
aZZ'

de dZZ

So on U; N U; we obtain

0z
UnU; = fjdzj = fj : 8_;dzi = fidz;, w

Z.
wo unu; = 954z = g; - a—;idzi = gidz;.
Therefore,
(9zj 8zj
fz_f]'azi7 gz_gj'azia
and finally
g; - 0z
J 0z
hilvinu, = gi/ fi = o = fi/9; = hjluinu;-
J oz

This means that there exists h € Mx(X) such that h|y, = h;.
We conclude that g; = h; f; = hf; for every i. This means w = h - wy.
This concludes the proof. O

9.4. Canonical divisor and twisted sheaves of meromorphic differential forms.

Definition 9.7. Let wy € Kx(X), wg # 0. Then the divisor K = (wp) is called the canonical
divisor on X.

Remark 9.8. On a compact Riemann surface there always exists a non-zero meromorphic
differential form.
Note however that this fact is not at all trivial!

Remark 9.9. Note that K is not uniquely determined, it depends on wy. However, its divisor
class

[K] € Pic X = Div X/ PDiv X
does not depend on the choice of wy.
Definition 9.10. Let D € Div X. Let U C X be an open subset. Define
Qx(D)(U) :=={w e Kx(U) | ordyw > —D(a) for all a € U}.
Then Qx(D)(U) is an Ox (U)-module, in particular
Qx(D)(X) = {w € Kx(X) | (w) = =D} U {0}

is a C-vector space.
Moreover, Qx (D) is a sheaf of Ox-modules.

Proposition 9.11. Let X be a compact Riemann surface. Let K = (wg). For every divisor
D € Div(X) there is an isomorphism of Ox-modules Ox(D) — Qx(D — K) defined for every
open U C X by

Ox(D)U) = Qx(D - K)(U), [ f-wo.
FEquivalently: Ox(K + D) = Qx (D),
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Corollary 9.12. Qx(D)(X) =2 Ox(K + D)(X) = L(K + D), in particular
dime Qx (D) (X) < o0

for every divisor D € Div X.

9.5. Genus of a compact Riemann surface, Riemann-Roch theorem, Riemann-Hurwitz

formula.

Definition 9.13. The dimension of L(K) = Qx(0)(X) = Qx(X) is called the genus of X and
is denoted by
g = gx = dim¢ Qx (X).

Example 9.14. 1) Since by Example Q@(@) = 0, one concludes that gz = 0.
2) By Exercise 4] gc/r = 1 for every complex torus C/T.

Theorem 9.15 (Riemann-Roch).
I(D)—l(K —D)=degD+1—g.
Equivalently,
[(D) —dimQx(—D)(X)=degD+1—g.
Proof. No proof. O

Example 9.16. 1) Let D = 0. Then Theorem reads as [(0) — [(K) = deg0+ 1 — g, hence
g =Il(K), i. e., we get back the definition of the genus.

2) Let D = K. Then I(K) — {(0) = deg K + 1 — g and therefore
deg K = 2g — 2.

3) If deg D > 2g—1, then deg(K — D) = deg K —deg D = 2g—2—deg D < 0, thus [(K—D) =0
and finally
(D) =degD +1—g.

One can summarize this as follows.

I(D) =0, if deg D < 0;

(D) >degD+1—g, if0<degD <2g—1;

I[(D)=degD+1—g, ifdegD >2g—1.
Theorem 9.17 (Riemann-Hurwitz formula). Let f : X — Y be a non-constant holomorphic
map of compact RS. Then

29x —2=d(f)(29y —2) + > _(mult, f — 1)

zeX

Equivalently deg Kx = d(f)deg Ky + deg Ry, where Kx and Ky are canonical divisors on X
and Y respectively and Ry =) _(mult, f — 1) - x is the so called ramification divisor of f.

Remark 9.18. Note that mult, f > 1 only for finitely many points of X (ramification points,

cf. Definition .


http://en.wikipedia.org/wiki/Bernhard_Riemann
http://en.wikipedia.org/wiki/Adolf_Hurwitz
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Exercises.

Exercise 33. Find two linear independent non-trivial meromorphic differential forms w; and
wy on C. Compute the corresponding divisors (wy), (w2) € DivC and their degrees deg(w;) and
deg(ws).

Exercise 34. Let X = C/I" be a complex torus.

1) Find a non-trivial holomorphic differential form wy on X. Compute the corresponding divisor

(wo)-

2) Let w be an arbitrary holomorphic differential form on X. Then w = fwy for some mero-
morphic function f. Conclude that f must be holomorphic.

3) Conclude that Qx(X) = C - wy, i. e., vector space generated by wy.
4) Conclude that the genus of X equals 1.

5) Compute the genus of X using another method: compute the degree of the canonical divisor

and use the the Riemann-Roch formula.

Exercise 35. 1) Let X be a compact Riemann surface of genus g. Let p € X and let D =
(g+1)p. Apply the Riemann-Roch formula to D and conclude that (D) > 2. The latter means
that there exists a non-constant meromorphic function f € £(D).

2) Estimate the degree of the corresponding holomorphic map X ENVo}

3) Conclude that every compact Riemann surface of genus 0 is isomorphic to C.

Exercise 36. 1) Let X C P, be the subspace
Xy ={(20,21,2) €Py | 224 22 + 22 = 0}.

Show that X5 is a submanifold of Py, i. e., a Riemann surface. Consider the map
X EN C, (20,21, %) — i,
22
where § is assumed to be oco. Show that this is a holomorphic map of RS. Apply the Riemann-
Hurwitz formula and compute the genus of X,. Conclude that X5 is isomorphic to the Riemann
sphere.
Hint: Compute the number of preimages of f~(p) for every p € C. Using that there can

be only finitely many ramification points, find the ramification points and obtain the value of
d(f).
2) Generalize the computations to the case of
Xg={{z0,21,20) €Py | 2§ + 2%+ 2§ =0}, deN.
What is the genus of X7
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10. LECTURE 10

10.1. First corollaries from the Riemann-Roch theorem. Let us consider some corollaries
from the Riemann-Roch theorem.

Corollary 10.1. On every compact RS X there exists a non-constant meromorphic function

f e Mx(X).

Proof. Let p € X be an arbitrary point, take D = (9+ 1) -p. Then (D) 2 g+ 1+1—g=2.
This means that the dimension of the Riemann-Roch space L£(D) is at least 2. Therefore, this

space must contain a non-constant meromorphic function. O

Observation. Take f € L(D) as above. The only point that could be a pole of this meromor-
phic function is p. Its multiplicity is at most g + 1, therefore the degree of the corresponding

holomorphic non-constant map X Iy € is at most g+ 1.

Corollary 10.2. Every compact RS of genus 0 is isomorphic to C

Proof. As above one gets a holomorphic map X Iy Cof degree 1, which must be an isomorphism

(cf. Theorem [4.4] and Corollary [1.2). O

10.2. Some facts about coverings.

Definition 10.3. A continuous map of topological spaces X Iy Vis called a covering if for every
y € Y there exists an open neighbourhood U of y such that f~(U) = ||, V; and f|y;, : Vi = U

is a homeomorphism.

Observation. IfY is a RS and X L yisa covering, then there is a unique complex structure
on X such that f is a holomorphic map.

Proof. Exercise. O
So every covering of a RS is then a locally biholomorphic map.

Remark 10.4. Not every local biholomorphism is a covering. For example, take X = B(0,1) =
{z € C||z| <1}, Y =C. Then the natural inclusion X C Y is locally biholomorphic but not

a covering.
Claim. FEwvery locally biholomorphjic map of compact RS is a covering.
Proof. Use an argument similar to the one from the proof of Theorem [5.5] O

Definition 10.5. Let X 5 X be a covering of RS. Then it is called a universal covering if X

is simply connected, i. e., if 7 (X) = 0.
Proposition 10.6. 1) A universal covering exists for every RS.

2)(Universal propery): X L X is a universal covering if and only if for every coveringY <> X
and every choice of points xo € X, yo € g (x0), To € f (o) there exists a unique holomorphic
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map X &y with h(To) = yo such that goh = f.

Proof. Topology. O

Example 10.7. For a lattice I' C C the projection map C = C/T, z + [z], is a universal
covering of the complex torus C/T".

10.3. Morphisms of complex tori. Let X = C/I" and Y = C/I" be two complex tori. Our
aim is to describe all holomorphic maps X — Y.

Reminder 10.8. Remind (cf. Example that for a € C* such that al' C I one obtains a
holomorphic map
X =Y, [f]a-z].

Let X & Y be an arbitrary non-constant holomorphic map. Then by Riemann-Hurwitz
formula (Theorem , one concludes that f has no ramification points. So it must be a
covering.

Note that the canonical maps C = C/TI', z + [2], and C i C/T", z — |z] are coverings and
even universal coverings. Then by the universal property of universal coverings there exists a
holomorphic map F': C — C such that 7' o F = fo.

(2) l l

Consider now for a fixed v € I' the function ®.,(z) = F(2+7) — F'(z). From the commutativity
of diagram we get that ®,(z) € I' for every z € C. Since ®, is continuous, there exists
7" € I'" such that ®,(2) = 7' for all z € C. Hence @/ (z) = 0 and thus F'(2+v)—F'(2) = 0. This
means that F” is a doubly periodic (elliptic) holomorphic function on C, therefore it must be
constant, i. e., there exists a € C such that F'(z) = a for all z € C. This implies F(z) = az+b
for some a,b € C. Therefore, f([z]) = [az]+ [b]. This can only be well-defined if for every v € I’
it holds f([z +~]) = f([z]), which implies aI' C I".
On the other hand one sees that for every choice of a,b € C such that aI’ C I the map

X =Y, [z]— [az]+ [D]

is holomorphic. It can be represented as a composition of
X =Y, [z]—[az]

with the automorphism of Y = C/I”

Y =Y, [z]—[z] +[b].

We obtained the following.
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Proposition 10.9. Every holomorphic map of complex tori C/T' — C/I" can be represented

as a composition of a holomorphic map
C/T =-C/T", [z]—az], a€C, ol CT,
and an isomorphism
C/T" = C/T', [z]—[z]+[b]), beC.
10.4. Isomorphism classes of complex tori. Let [' = Zw; + Zws be a lattice in C. Let
I":Z—kZ-‘u"f. Then w IV =T and
C/T" = C/T, [z] — |wiZ]

is an isomorphisms of complex tori.

So, while studying the isomorphism classes of complex tori, it is enough to consider only the
lattices

Z+7Z-1, ImTt#0.

Moreover, if Im7 < 0, then Im 77 > 0 and 7(Z+Z7 ") = (Z+Z7), i. e., the lattices Z + Z7

and Z + Z7 define isomorphic tori. Therefore, it is enough to consider only lattices

L+ 7 -1, ImTt>0.

Notation. Let H denote the upper half-plane H := {7 € C | Im 7 > 0}.
For 7 € H denote I'(17) :=Z + Z - .

Let now I'y =I'(n) =Z+7Z -1, Ty =T'(2) = Z + 7Z - 5. Assume they define isomorphic
tori C/T'; = C/T'y. Then the isomorphism is given by [z] — [az] + [b]. Since the translation
[z] = [2] + [b] is an isomorphism, the map [z] — [az] must be an isomorphism as well. So it
must hold al'y = I'y (cf. Example [2.§).

In particular it means that a - 7y and a - 1 belong to I's. Write

amm =an+ 06, a=vm+90, «,B,0,v € Z.

71 a T2
a - = . .
1 v oo 1
Analogously, since the equality al'; = 'y is equivalent to a~'I'y = I';, one concludes that
_1 T2 o 5/ T1
a . == .
1 ~ Y 1

. . (d P
for some integer matrix C s
Y

In other words

One has

(1) 7o ()= oo () =0 2) () (6 22
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Ci1 Ci2 ) o f a p
Ca1 (22 B v v 0 '
Therefore, from the equalities 79 = ¢1175 + c12 and 1 = 9179 + co9 We get

Ci1 Ci2} 10
Co1 C22 0 1 7

/ /
which means that (a ?) and (a g ) are invertible to each other integer matrices. There-
Y Y

where

/ 6/
fore, their determinants equal either 1 or —1.
ar, ary+

Since 11 = — = , we obtain
a YTo + 0
ary + 3 (a2 + B8) (772 + 9) ay|nel® + B + admy + T
7’ = = =
! VT2 + 0 |y + 62 |y + 62
Hence
1
3 Imm = —— - (ad — Im
(3) o IE ( By) Im 7
. a B
Since Im7; > 0 and Im7, > 0, one concludes that ad — vy = det ( 5) > 0 and hence
Y

det (: f) = 1. We have shown that (;” §) € SLy(Z).
ary + 3
VT2 + 0

So, if I'y and I'y define isomorphic tori, then 7 =

for (:g) € SLy(Z).

OéTQ+,8

On the other hand, it =
VT2 + 0

for (: g) € SLy(Z), then al'y =T’y for a = vy + 6. We

obtained the following result.

Theorem 10.10. Two lattices I'(11) and (1), 171,72 € H, define isomorphic complex tori if
and only if
aTe + ﬁ
T =
YT2 + )

for (25) € SLy(Z).
In other words, if one defines an action of SLa(Z) on H by

N at+ [
(’Y?).T: 77__'_67

the set of its orbits H/ SLa(Z) can be seen as the set of all isomorphism classes of complex tori.
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Exercises.

Exercise 37. Let ' =Z + 7Z -7, 7 € C, be a lattice in C. Let n be a natural number and let
I'"=Z+Z-(nt). Put X =C/I" and X’ = C/I'" and consider the map

X = X', [zl — [nz].
We know that this is a holomorphic map of Riemann surfaces. Prove that it is a covering.
What is the number of points in the fibres?

Exercise 38. Let X 25 X be a universal covering of a Riemann surface X.

1) Demonstrate that the following statement is wrong:

For every covering Y % X there exists a holomorphic map X & v with foh=g.

h
el
vy % o x .

Hint: As g consider the identity map X — X on a compact Riemann surface X with non-

compact universal covering.

2) Find two non-isomorphic compact Riemann surfaces with non-isomorphic universal coverings.

Exercise 39. In the lecture we realized the group SLs(Z) as the group of transformations of
the upper half-plane H of the form
at +b

T —,
ct+d

(25) € SLa(Z).
(1) Show that this group is generated by the transformations

1
7T—=7+1 and 7T~ ——.
T

(2) Let R={2€C||z| > 1,|Rez| < 5}.

|
—_

|
N |
o
—_
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What is the image of R under the generators of SLy(Z) from the first part of this exercise?

Exercise 40. Let I" be a lattice in C and let C/I" be the corresponding complex torus. In the
lecture we showed that the automorphisms of X must be of the form

[z] = [az] + b, a,beC, a-TI'=T.

Let Autg(C/I') denote the subgroup in the group of all automorphisms of C/I" consisting of the
automorphisms C/T" ER C/T" such that f([0]) = [0], i. e.,

Auty(C/T) ={C/T = C/T,[z] = [az] |a € C,a-T =T}.
0) Show that a - I' =T" implies |a| = 1.
1) Compute Auty(C/I'(i)) = Z/AZ, where I'(i) = Z + Z - i.

5 L

(0)
(1)
(2) Compute Auto(C/T(p)) = Z/6Z, where D(p) =Z +Z - p, p = e3™ = -5+ VEY
(3) Compute Auto(C/T(7)) = Z/2Z, where I'(1) = Z+ Z - 7, for 7 = 2i and 7 = § +i.
(4)

4) Try to compute Auto(C/T'(7)), for an arbitrary 7 € F.
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11. LECTURE 11

11.1. The (moduli) space of isomorphism classes complex tori. In the last lecture we
obtained a description of the isomorphism classes of complex tori.
Consider now the quotient map

H 5 H/SLy(Z), 7+ orbit of 7.

Introduce on H/ SLy(Z) the quotient topology, i. e., call the set U C H/SLy(Z) open if and
only if 771U C H is open.

Exercise. 7 is a local homeomorphism outside of the orbits of the points 7,p € H, p =

exp(¥ i) = —1 + \/751 This allows us to introduce a structure of a Riemann surface on

(HL/ SLy(Z)) \ {7 (2), 7(p)},

i. e., on the quotient space without the two points 7 (i) and m(p).

Remark 11.1. Notice that the restriction of 7 to every neighbourhood of a point from the
orbits of ¢ and p is never injective. This shows that m can not be a local homeomorphism
around these points.

Let us visualize the space H/ SLy(Z). Let
1
R={ze€C||z| >1,|Rez| <§}

and take

—_

1
F:RU{Z|Rez:—§,|z|>1}U{z|\z|:1,—§<Rez<O}.

1 —

NI
N |+

Exercise. Then the restriction of 7 to F' is a bijection, i. e., F' can be seen as the set of all
isomorphism classes of complex tori.

Proof of the surjectivity. Let 7 € H. Let us show that there exists A € SLy(Z) such that
A -1 € F. More details can be found in [5].
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First of all notice that

at +0b 1
Im = - Im @ b) e SLy(Z).
(c¢+d) ler + d|? m (ed) €5ha(2)

This assures for a fixed 7 the existence of

Im(A - 7)Y,
Aélslﬁ’éz){ m(A-7)}

Therefore, there exists Ay € SLy(Z) such that for 7o = Ag - 7
Im7y > A-7, forevery A € SLy(Z).

Since Im(1p +n) = Im 7 for every n € Z, we may assume, possibly taking (%) - Ag instead of
Ao, that |Rero| < 1.

Since Im 75 > Im A7 for every A € SLy(A), let us apply this to the matrix (% §) - Ay. We
get

Im 7

Im 7y > Tm(( % §)Ag-7) =TIm(( 2 5) - 70) = Im(=1/7) = Tl

which implies || > 1.

If 79 does not belong to I, then either Rery = % or |[7o] =1 and 0 < Rery < % One can

easily correct this. Namely, if Rerg = 3, then (§ ') Ag-7 =7 —1 € F; if |[n| = 1 and

0<Rerp< i, then (% §)Ay-7=—1/m € F. O
[a— T ———\\\ .f_'___\___"‘»\..__\‘__ __,-—'"_'__
/ <l /
e\ ks ——
Gl el el

FIGURE 1. The interior of every triangular region (with one of the vertices lying
possibly “at infinity”) is the image of R under the action of some element from
SLo(Z).

By Fropuff (from en wikipedia) [GFDL (www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0

(http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons,

11.2. Automorphism of complex tori. Let us study the automorphism of complex tori. By
Proposition |10.9| it is enough to study the automorphisms C/I" EN C/TI" such that f([0]) = 0.
So let Aut(C/I") denote the subgroup in the group of all automorphisms of C/I" consisting of
the automorphisms C/T" ENJo /T such that f([0]) = [0]. Then, as already mentioned,

Auto(C/T) ={C/T - C/T',[z] = [az] |a € C,a-T =T}.



www.gnu.org/copyleft/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://commons.wikimedia.org/wiki/File:ModularGroup-FundamentalDomain-01.png
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An automorphism from Auty(C/T'(7)), 7 € H, is given by a matrix (%) € SLy(Z) such that

Y
at+p
yT+6 °

T = Namely, the automorphism is given by the rule

(2] = [az], a=~T+0.

Notice that (3)) implies in this case |a| = 1.

If v = 0, then this provides two different automorphisms of C/T'(7): the identity [z] — [z]
and [z] — —[z].

Analyzing the case of v # 0 one can obtain the following statement.

Claim. Let T € F. If T # i and T # p, then
Auto(C/F(T)) = {ﬂ:id@/p(T)} = Z/QZ.

It holds also
Auto(C/T(i)) = {exp(k - g) Sidesry |k =0,1,2,3} = Z,/4Z,

Auto(C/T(p)) = {exp(k - g) Sidery | k= 0,1,2,3,4,5} = Z/6Z.
Proof. Exercise. O

Remark 11.2. 1) Notice that the automorphism group of the Riemann sphere Aut(C) coincides
with the group of the transformations

ar +b
cr+d’
which is isomorphic to the quotient of the general linear group GL3(C) by the subgroup of the
matrices {(3 %) | A € C*}. This quotient is denoted by PGLy(C). Notice that PGLy(C) is an

A

C—=C, z+ (28) e GLy(C).

infinite group. The subgroup Auty(C) of the automorphisms preserving 0 € C consists of the

transformations
ax

C>C, 2z ,
cx +d

(¢9) € GLy(C).
This group is infinite as well.

2) Notice that though Auty(C/I") is finite for every lattice I', the whole automorphism group
Aut(C/T") is infinite.

3) The Hurwitz’s automorphisms theorem says that for a compact Riemann surface X of genus

g = 2 the automorphism group Aut(X) is finite and
| Aut(X)| < 84(g9 — 1).

11.3. Weierstrafl p-function: an example of a non-constant meromorphic function
on a complex torus. Consider the Riemann-Roch formula from Theorem for a complex
torus X = C/T". We know that g = gx = 1, hence 2g — 1 = 1 and thus for every divisor D on
X with deg D > 0 it holds deg D > 2g — 1 and we obtain

(D) =degD+1—g=degD.

In particular for D = n - [0] we obtain

(4) (D) =
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This gives [(2 - [0]) = 2, 1. e., there exists a non-constant meromorphic function on X with the
only pole at [0] or multiplicity 2.

Reminder 11.3. Recall that meromorphic functions on C/I" are in one-to-one correspondence
with doubly periodic (elliptic) meromorphic functions on C with respect to I' (Theorem [3.1)).

So there must exist an elliptic function on C with respect to I" with poles of order 2 at the
points of I'.

A nalve attempt to construct such a function could be to consider the sum
Z 1
S =7
but this sum is infinite and is not convergent in any reasonable sense. However one can slightly
modify this idea in order to get the required function. Put

1 1 1
o(2) 22 * o;;r((z — )2 72)'

This infinite sum is summable (one can read about this (in German) in [I1]) and defines an
elliptic function on C with respect to I' with poles of order 2 at the points of I'. Of course, this
function depends on a given I' = Zw, + Zws or I' = Z + Zt, so to indicate this dependence one
uses the notations

P(2) = p(5 1) = p(z;w1,w2) = (2 7).
Definition 11.4. p is called the Weierstral} p-function.

The derivative of the Weierstrafl p-function

vyel

has clearly poles of order 3 at the points of I', so it defines a meromorphic function on C/T"
with the only pole of multiplicity 3 at [0]. Note that @(z) and ¢'(2) are linearly independent.
Therefore, (4]) implies

L(0)=C-1, L2-[0))=C-14+C-p(2), LEB-[0)=C-1+C-p(2)+C-¢(2),

where we use the same notations for elliptic functions and the corresponding meromorphic
functions on C/T".

Combining p(z) and @'(z) with each other one easily produces examples of meromorphic
functions from L(n - [0]) for every n € N. For example p?(z) € L(4-[0]), p(2)¢'(z) € L(5 - [0]).
Of course, one can also take higher derivatives, then o”(z) € £(4 - [0]), etc.

Combining p(z) and '(z) and using (4)) one easily computes £(4 - [0]) and L£(5 - [0]).

Exercise. L(4-[0))=C-1+C-p(2)+C @' (2) +C-p*(2), L(5-[0]) =C-1+C-p(z) + C-
¢'(2) + C- 0*(2) + C- p(2)¢' ().

Let now n = 6. Then {(6 - [0]) = 6. However the functions

L, o, ¢, ¢, e, ¢, (¥)


http://en.wikipedia.org/wiki/Karl_Weierstrass
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all belong to £(6-[0]). Therefore they must be linearly dependent. This means that there must
exist a polynomial in two variables f(z,y) € Clz,y], with monomials 1, x,y, %, zy, 23,y such
that

flp, ') =0.
Let us find this polynomial.

11.4. Algebraic relation between o and ¢'.

Claim. The Weierstraf§ o-function can be given as

1 < n
o(z) = = + Z(2n + 1)Gopniy - 277,

n=1
where the coefficients
Gn = Z A~ m > 3.

0#~el
are called the Eisenstein series.

Proof. Exercise. O

One computes

1
p(z) = — +3G422 +5Gezt + ...,
z

2
¢ (2) = ——= +6G4z + 20G62° + . . .,
2

4 1
(@/(2))2 = ; — 24G4; — 80G6 + ...,

1 1
3 _
p(z)—E+9G4?+15G6+....

Therefore,

(¢/(2))? — 4pP(2) = —600% 140G + ...

(¢'(2))* — 49 (2) + 60G4p0(2) = —140Gg + .. .,
which means that (p/(2))? — 49*(z) + 60G4p(2) is holomorphic, thus it must be constant, i. e.,

(¢/(2))? — 49> (2) + 60G4p(2) = —140G.
We obtained the following statement.
Proposition 11.5. Let go = 60Gy, g3 = 140Gs. Put
fla,y) =y* — 42 + gow + gs.

Then f(p, ") = 0.


http://en.wikipedia.org/wiki/Gotthold_Eisenstein
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Exercises.

Exercise 41. 1) Show that the Weierstra§ p-function corresponding to a lattice I' C C can be

expressed as

1 oo
p(2) == Z(Zn + 1)Gani) - 277,
n=1

~2

where the coefficients are given by
G,, = Z M m = 3.
0#vel

Show that G,,, = 0 for odd m.
2) Show that (p/(2))? = 49°(2) — 60G4p(z) — 140Gs.

3) Let X = C/T be the complex torus defined by I'. Notice that by the Riemann-Roch theorem
I[(4-1]0]) = 4. On the other hand the functions 1, p, ¢', p?, " belong to L£(4 - [0]) (we identify
the doubly periodic functions on C with the functions on X). Conclude that 1, p, ¢', p?, 9" are
linear dependent and find a linear relation between them. You could do it directly or using the

relation
(¢)? = 40> — g2p — g3, g2 = 60G4, g3 = 140Gs.

Exercise 42. Let 7 : H — H/ SLy(Z) be the projection map. Show that for every 7 € H from
the orbit of ¢ or p every open neighourhood of 7 contains different points with the same image
under 7.

Hint: For small € consider in the case T =i the pair of numbers /319 and e'5=9; for T = p
consider the pair ¢/5+9 and —1 + €59,

Exercise 43. Consider for a lattice I' C C the Eisenstein series G4 = G4(T') = > cp v
Ge = G6(I') = D tyer v 8. Let I'(7) = Z + Z - 7. As in the lecture, denote p = % . Compute

Gu(D(p)) =0, Go(T'(3)) = 0.

Hint: Notice that one can exchange the order of the summands in the Fisenstein series.
For T' = T(p) define the subset ' C T byI" ={y €T |y =r-€e¥ with0 < ¢ < 5}. Observe

that T’ can be seen as the disjoint union of the rotations of I, namely of the sets s I,
Tk

k=0,1,...,5. Notice that 3 ,_,e 4% =0,
ForT'=T(i) defineI" = {y € T |y =€ with 0 < ¢ < 5}. Observe that I" is the disjoint
union of I, il"", —I"", and —il"". Use that 22:0 e~6i% = 0.

Exercise 44. Let " be a lattice in C and let p be the corresponding Weierstrafl function.

(1) Notice that ©/(z) considered as a meromorphic function on C/T" has its only pole at [0] of
multiplicity 3. How many zeroes could ¢'(z) have? Using that g’ is elliptic and odd, show that

the points [4}], [42], [“452] are zeroes of @/(z). Are there any other zeroes of ¢/(2)?

(2) Show that p(z) = p(w) if and only if either z =w mod I' or 2 = —w mod I.
Hint: For a fized w consider h(z) = p(z) — p(w) and study its set of zeroes using that ©(z) is
an even function. How many zeroes can h(z) have? When can h(z) have a multiple zero?
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12. LECTURE 12

12.1. Fields of meromorphic functions on complex tori. Our next aim is to determine
the field M x(X) of meromorphic functions on a complex torus X.

Identify M x(X) with the field of elliptic functions on C with respect to I

Let f(z) be an elliptic function, then

1

£(2) = 3G + F(=2) + 5(F(2) = F(=2).

Put g(2) = 3(f(2) +f(=2)) and h(z) = 3(f(2) = f(=2)), then f(2) = g(2) +h(2), g(—2) = g(2)
= —h(z), i. e., g is even and h is odd. This proves the following.

Claim. Fwvery elliptic function on C can be represented as a sum of an even elliptic function
f with an odd elliptic function h.

12.1.1. Ewven elliptic functions. Our first observation is that p(z) is even.

Theorem 12.1. Let f(z) be an even elliptic function. Then there exists a rational function in
one variable ®(t) € C(t) such that f = ®(p). Moreover, if the poles of f are contained in T,
then ® can be taken polynomial.

Proof. Assume that the poles of f are contained in I'. Consider the Laurent expansion of f at

f= Z agi2”.

Hence the poles of f must have an even order. Consider the principal part of f at 0:

0. Since f is even, we get

Aonz 2" 4 a_127 2

Note that the Laurent expansion of p(z) at zero is
1 2 4
—2+bQZ +b4Z + ...
2

Its principal part is i One concludes that the principal part of g!(z) is of the form

1 1
— + linear combination of — with v < [.
z ald

Then f — a_2,9"(2) has poles of smaller multiplicity that f. So, by induction one gets that
for some coefficients \; € C the function f — Z;l Aig" is holomorphic, hence constant, say \g.
Then
F=) gt =®(p), ()= At
i>0 i>0
Let now f be an arbitrary even elliptic function. Modulo I' it can have only finitely many poles
outside I'. Let pq,...,p, be the corresponding representatives of all poles not belonging to I.

Then o(z) — p(p;) has a zero at p;. Let v; be the multiplicity of the pole p; of f. Then

h(z)=f- H(p(Z') — o(p;)"
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does not have any poles outside of I' and therefore there exists a polynomial ¥(¢) € CJt] such
that W(p) = h(z). Then

=66 — o)~ T — o)™

i.e, f=®(p) for
vy
[Tz (¢ = p(pi)

This concludes the proof. O

12.1.2. Odd elliptic functions. Notice that ©'(z) is odd. Let f be an arbitrary odd elliptic

function. Then é is an even elliptic function, hence there exists ®(t) € C(¢) such that f =

¢ - ®(p). Finally we get
Theorem 12.2. Let X = C/T" be a complex torus. Let p(z) = p(2;T") be the corresponding
Weierstraf$ o-function. Then Mc;r(C/I') = C(p) + ¢'(2)C(p)

Remark 12.3. Notice that the proof of Theorem [12.2|is constructive

Corollary 12.4. Mc;r(C/T) = C(z)[y]/(y* — 42® + gox + g3), where go = 603, p 7%1,
93 =140 cr 55

Proof. Define a surjective homomorphism
Cl@)ly] = Mcyr(C/T), = p(2), = ¢'(2).

Then by Proposition y? — 423 + gox + g3 lies in the kernel and we obtain a surjection
C(2)[y]/(y* — 42° + gox + g3) = Meyr(C/T).

Since f is irreducible polynomial over C(z), we conclude that C(x)[y|(y? — 42> + gox + g3) is
a field. Since non-zero field homomorphisms are injective, we conclude that Mc,pr(C/I") =
C(z)[y]/(y* — 42 + gax + g3). This concludes the proof. 0

12.2. Complex tori as smooth projective algebraic plane curves. Recall that the pro-
jective plane

Py = {<$0,$1,$2> ’ (xova:l»x?) eC’ \ {O}}>

has a natural structure of a complex manifold.

Definition 12.5. A plane projective curve C' is the set of zeroes of a homogeneous polynomial
f € Clzo, 21, 2]
C = Z(f) = {<I07$17'r2 € IPQ | f<x07x17x2) = 0>}

C' is called smooth is it is a complex submanifold of Py (in this case it is a Riemann surface).
Claim. C' = Z(f) C Py is smooth if and only if

of of of o o
Z(a_z()’ 6_21’ 8_22 azz (JZ(),CL’l,:EQ) = 072 = O, 1,2}

18 empty, 1. e., the partial derivatives of f do not have common zeroes in Py.

) = {(®0, 21, 72) € Py |

Proof. Exercise. 0
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Theorem 12.6. Every complex torus C/I is isomorphic to a smooth projective plane cubic
curve. More precisely, C/T" = Z(f), where

1
f =202 —42] + gazo21 + G325, g2 = 60 Z —» g3 =140 Z
0#~el 075761"

The isomorphism is given by the map

(1,0(2), ¢/ (2)), 2] # [0;

C/TSP, |z
/r= S (0,0,1), [2] = [0].

Proof(Sketch). Let C' = Z(f). From the discussion above it is clear that o(C/T") C C
L. Bijectivity of ¢ : C/T' — C.
[.1. Injectivity.

Lemma 12.7. 1) p(z) = p(w) if and only if z=w mod I" or z= —w mod I'.

2) ¢'(z) =0 if and only if 2z € T, i. e., there are three different mod I' zeroes <

W9 W1 + Wo

So if z,w ¢ T" such that ¢(z) = ¢(w), then p(z) = p(w), ¢'(z) = ¢'(w). So either w = z
mod I' (and hence [z] = [w]) or z = —w mod I" and ¢'(2) = ¢'(—w) = —¢'(w) = —p'(2). In
the second case 2¢/(z) = 0, thus @'(z) = 0. Then by Lemma [12.72z € I" and finally z = w
mod I'. Since ¢([z]) # (0,0, 1) for all [z] # [0], we conclude that ¢ is injective.

Remark 12.8. In particular p takes different values at 4%, £2 @132 (j e at zeroes of ¢). Put

h(z) = 42° = gz — gs. Then since ¢/(2)* = h(p(2)), we conclude that p(%), p(%), p(“522)

are 3 different zeroes of h, thus

= 4(e-o () (-0 (3)- (-0 (252)).

1.2 Surjectivity. It is clear that (0,0,1) € o(C/T).

Take an arbitrary (1,a,b) € C. Since p takes all values,there exists z € C with p(z) = a.
Since b = ¢/(2)? = h(p(z)) = h(a) we conclude ¢'(z) = +b. If ' (2) = b, then p([2]) = (1, a,b).

If ¢ (2) = =b, then p([—2]) = (1, p(=2), '(=2)) = (1, 0(2), =9/ (2)) = (1, a,b).
II. C' is a smooth curve in P, (i. e., submanifold). Indeed. Suppose the contrary. Then
there exists s = (s, $1, s2) € Py such that

of o\ _0f of
aZO 6_,21 § 822( ) 0

One computes that this implies that
A = g5 —27g35 = 0.
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On the other hand one notes that A is the discriminant of h(z) = 423 — gox — g3. Since the
latter has 3 zeroes, we get A # 0 and thus a contradiction. Therefore C' is smooth.

ITI. From the definition of ¢ it follows that it is continuous. Clearly ¢ is holomorphic on
C/T"'\ {[0]}. By Theorem [2.4] ¢ is a holomorphic map to Py. Its image C' is a submanifold, so
¢ : C/T' — C'is a holomorphic map of Riemann surfaces. Since it is bijective, we conclude that

© is an isomorphism, which concludes the proof. 0

Definition 12.9. Smooth projective plane cubic curves are called elliptic curves. So complex
tori are elliptic curves.

12.3. j-invariant. We defined for 7 € H go = ¢2(7), 93 = g3(7). Thus one can consider go
and g3 as functions on H. These functions are holomorphic on H. One can show that for

(21) € SL(C)
w(TE0) =t ), o (Tg) = (el

ct +d ct+d

One says in this situation that go is a modular form of weight 4 and g5 is a modular form of
weight 6.
Then A = g5 — 27¢2 has the property

A <“T * b) — (cr + )2 A(r)

ct+d

and one says that A is a modular form of weight 12. We showed above that A = g3 —27g3 # 0,
so one obtains the following holomorphic function on H:

L g3(7)
.](T) - A(T)

far+b T
J ct +d — AT

so j is invariant under the action of SLy(Z) on H.

Then

Definition 12.10. The holomorphic function j : H — C is called j-invariant.

Therefore, there exists a unique factorization through H - H/ SLy(Z), which by abuse of

\/

H/ SLy(Z

notation is denoted by j as well.

Theorem 12.11. The map

H/SLy(Z) 5 C,  [r] = j(7)
is a bigection, i. e., two complex tori C/T'(T) and C/I'(7") are isomorphic if and only if j(1) =
J(T).

Proof. No proof. A proof can be found for example in [5]. O
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Exercises.

Exercise 45. Let I'" be a lattice in C and let p be the corresponding Weierstrafl function.
Notice that the elliptic functions ©"’(2) and '(2) - ¢”'(2) are even with poles in I'. Represent
them as polynomials in g.

Exercise 46. Let I" be a lattice in C and let p be the corresponding Weierstrafl function.
Notice that the elliptic functions " (z) and p®(z) are odd. Represent them as g - ¥(gp) for
some ¥(t) € C(t).

Exercise 47. In the lecture we showed that
Mcr(C/T) = C(x)[y]/(y* — 42® + gox + g3).

Find the inverse of y* in C(z)[y]/(y* — 42® + g2x + g3). Use it to express (1/¢/(z))? as a
polynomial in ¢" with coefficients in C(p).

Exercise 48. In the lecture we defined j-invariant

i) =220, A = g3i) - 2163(0)

Compute the following values of j-invariant:

I

0, j(i)=1.

In other words show that
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13. LECTURE 13

13.1. Integration of differential forms. Let U C X be an open subset of a Riemann surface
X. Let w € Qx(U).

Let 7 : [a,b] — U be a smooth (i. e., piece-wise differentiable) path. This means that for every
chart ¢; : U; — V;, U; C U, the functions ¢; o v : v~ 1(U;) — V; are piece-wise differentiable.

I. Assume there exists a chart ¢ : W — V|, W C U such that y(|a,b]) € W. Write
wlw = f - dp for f € Ox (W) and define

/ . / FOH(1)) - (o (8))dt

Claim. This definition does not depend on the choice of .
Proof. Exercise. 0
IT. One can always choose a partition of the interval [a, b], i. e.,
a=aqy<a; < --<a,u=>

such that for v; := Y|ja, 1.0 : [@i-1,a] — X there exists a chart ¢; : U; — V; of X with

vi([a;—1,a;]) C U;. Define now
[o=3 [w
v =1 Yi

Claim. This definition does not depend on the choice of the partition.
Proof. Exercise. 0

So, for every open subset U C X, for every w € Qx(U), and for every smooth path ~ :

[a,b] — U, we get
/wE(C.

v

Remark 13.1. Analogously, for an open set U C X, for w € Kx(U), and and for a smooth
path 7 : [a,b] — U such that v([a, b]) does not contain poles of w, one gets [w as well. Indeed,

v
just replace U by U’ = U \ {poles of w}. Then w € Qx(U’) and 7([a,b]) C U".

Properties. I. Reparameterisation invariance. Let [a’, ] = [a,b] be a smooth map such

that a(a’) = a, a(b’) = b. Let 7 : [a,b] — X be a smooth path. Then vy o« : [d/, ] is a smooth

path as well and
/ w= / o
v Yoa

II. Linearity. [(Awi + pws2) = A [ w1 + p [ wo for differential forms wy, wy around + and for
v i v
A\ pe C
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III. Let v : [a,b] — X be a smooth path, let U be a neighbourhood of v([a, b)), let f € Ox(U).
Then

[ = 5600 - 210
N
IV. Let {v;}} be a partition of a smooth path ~, i. e, v = %172 ...7,. Then

[e=>[w
i=1
¥ i
V. Let v~ ! be the inverse path to a smooth path v. Then

It

Remark 13.2. Every continuous path can be approximated by smooth paths. This allows to
define integrals of differential forms over arbitrary continuous paths.

Theorem 13.3. Let X be a Riemann surface. Let w € Qx(X). Let v ~ § be two homotopic

paths. Then
/ o= / .
0 é

Proof (hint). This is a consequence of the Stokes’ theorem. O

Corollary 13.4. Let X be a RS, let xy € X. Consider the fundamental group m (X, xo). Let
w € Qx(X), then

m (X, z0) — C, [7]»—>/w

18 a well-defined group homomorphism.

Proof. The map is well-defined by the previous theorem. Let v, § be two closed paths at xg.
By property (IV) of integrals it holds

L]

Thus the map [y] — [ w is a group homomorphism for every w € Qx(X). O
ol

Definition 13.5. The number f w is called period of v with respect to w. The homomorphism
Y

/w:m(X,:co)—HC, [W]H/w,

is called the period homomorphism.

Exercise. Compute the periods of the generators of m;(C/I') with respect to some generator
w of Qc/F<C/F>


http://en.wikipedia.org/wiki/Stokes'_theorem
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13.2. Residues of differential forms.

Definition 13.6. Let w € Kx(U) for some open subset U of a RS X. Let a € U. Let
z: U — V be a local coordinate at a. Let w|y» = fdz for some f € Mx(U’). Define

res, w = res, g (f o 271,
this number is called the residue of w at a.

Reminder 13.7. Let U C C be open, let b € U, f € Ox(U \ {b}), and let
F(2) =Y ci(z—b)

i

be its Laurent power series at b. Then
res, [ = c_1.

Equivalently
1
resy f = —,ffdz.
271
b

Remark 13.8. It makes no sense to define residues of meromorphic functions on RS because
it would depend on the choice of local coordinates.

Claim. res, w defined as in Definition[15.0 does not depend on the choice of a local coordinate.
13.3. The residue theorem.

Theorem 13.9 (Residue theorem). Let X be a compact RS, let w € Kx(X). Then

Zresggw = 0.

reX
Proof (hint). Follows from the Stokes’ theorem. O
Example 13.10. Let f € Mx(X). Put w = %. The residue theorem reads then as
d
Z res, @ =0.
pEX f

For every p € X choose a local coordinate z at p and write f locally around p as f = zkf,
where f is a holomorphic function around p such that f(p) # 0 and k = ord, f. Then

df = (k"' f + zkg—ﬁ)dz

and therefore

a

This means res, 7= k = ord, f, so the residue theorem reads as

Zordpf =0,

peX

which we already know.


http://en.wikipedia.org/wiki/Pierre_Alphonse_Laurent
http://en.wikipedia.org/wiki/Stokes'_theorem
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13.4. Existence of differential forms with prescribed principal parts.

Theorem 13.11. Let S C X be a finite set. For a € S let U, be an open neighbourhood such
that U, NU, =0 for a #b. Let w, € Kx(Uy,) such that w, € Qx (U, \ {a}). Let > res,w, = 0.

a€s
Then there ezists w € Kx(X) such that S is its set of poles and w|y, — w, € Nx(Uy).

Proof. Without. O

Remark 13.12. This means that the the condition ) .y res, w = 0 from the residue theorem
is the only restriction for the existence of meromorphic differential forms.

Corollary 13.13. On every compact Riemann surface X there exists a non-constant mero-
morphic function f € Mx(X).

Proof. For every two different points py,ps € X there exist differential forms wy,wy € Kx(X)
such that p; is the only pole of w; with ord,, w; = —2, p, is the only pole of ws, ord,, ws = —2.
Then wy = f - wsy for some f € Mx(X). One sees that f should be non-constant. O
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Exercises.

Exercise 49. Consider the lattice ' =Z -5+ Z- (2+ 3i). Let X = C/T" be the corresponding
complex torus. Consider the path v : [0,1] = X, ~(¢t) = [(12 + 97) - ¢]. Let w be the standard
generator of Qx(X), i. e, for every chart ¢ : U — V' it holds w|y = dy. Compute

!w.

Exercise 50. Let I' = Z~; +Z, be a lattice in C. Let X = C/I" be the corresponding complex
torus.

Define 6y : [0,1] = X by 6:(t) = [t - 1] and 02 : [0,1] — X by da(¢) = [t - 7). Notice that d;
and 09 are smooth closed paths at the point [0] € X. Moreover, they generate the fundamental
group of X.

Let w be the standard generator of Qx(X), i. e., for every chart ¢ : U — V it holds w|y = de.

Jo ma [o

61 62

Compute the integrals

Exercise 51. Consider the Riemann sphere C. Let z = wo:Uyg— Cand w=p;:U; — C be

the standard charts. Consider the meromorphic function f = Zjil on C and define w € IC@(C)

by the condition w|y, = fdz. Compute res; w and res_; w. Use the Residue theorem to obtain

the value of res, w.

Exercise 52. Let D = Y a; - x; be a principal divisor on a complex torus X = C/T, i. e.,
i=1
D = (f) for some meromorphic function f € Mx(X). Show that

r

Zazxzzo

i=1
as an element of X = C/T".

Hint: Let 7 : C — X be the canonical projection. Consider F(z) = f o m(z). Choose a
fundamental parallelogram V' in C such that there are no poles or zeros of F' on its boundary

0dV. Consider the integral
)
[ F(z)

oV
and apply the standard residue theorem.

Theorem. For a meromorphic function g on an open set V. C C which possesses a continuous
extension to the closure of V' and does not have any poles on the boundary OV one has

1
— [ g(2)dz = Zresa g.

21
v a€eV
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14. LECTURE 14
14.1. The lattice of periods and the Jacobian of a Riemann surface.

Definition 14.1. Let X be a compact RS, let

Oéla"'aa;mﬁlw"aﬂp

be some representatives of generators of the fundamental group m;(X) of X (cf. Lecture 4).
Let w € Qx(X), define A;(w) = [w, B;(w) = [ w. We obtain the linear maps

7

Qx(X) 5 € wi (Ai(w), A2(w), -, Apw)),
Qx(X) 5 CP, wes (Bi(w), Bo(w), ..., By(w)).
Theorem 14.2. A and B are isomorphisms of vector spaces.
Proof. No proof. A proof can be deduced from the theory of harmonic functions. O
Corollary 14.3. Let w € Qx(X). Then
w=0 < Aw =0Vi < Bj(w) =0V

Definition 14.4. Fix a basis of Qx(X), say {wi,...,w,} (assume g > 1). Then for every
closed curve oo in X at xy € X the vector

([oros [w) e

is called a period of X with respect to {w,...,wy}.
Denote by L = L(ws,...,wy) C CY the set of all periods of X with respect to {wy,...,w,}.

Since
/ w + / w = / W,
a B aB
we see that L is subgroup of CY.

Consider an arbitrary period ([ wi,..., [ wy). Since [a1], ..., [ag], [B1], ..., [B,] generate the
fundamental group, [a] can be expressed as a product of their powers. Then

(/wl,...,/wg)
o «
is a linear combination of

(/wl,...,/wg), i=1,...,9, and (/wl,...,/wg), ji=1,...,9,

Bj Bj

with integer coefficients. In other words,

Jono [



78 OLEKSANDR IENA

is a linear combination with integer coefficients of the rows of the period matrix

Aj(wy) oo Ar(wy)
Ag(wr) Ay(wy)
Bi(w) Bi(wy)
Bg(.wl) e Bg(.wg)

So the rows of the period matrix generate L as an abelian group.

One sees that the rank (over C) of the period matrix is g. Moreover, one can show that its
rows are linearly independent over R. This means that L is a free abelian subgroup of CY of
rank 2g, i. e., a lattice in C9.

Definition 14.5. Define the Jacobian of X by
Jac(X) :=CY/L.

One introduces a complex structure on Jac(X) as for one-dimensional complex tori (page|1.14)).
Then Jac(X) is a complex manifold of dimension g.

Exercise. Jac(C/T") = C/I.

14.2. Abel-Jacobi map, relation between divisors and Jacobians. Fix a point ¢ € X
of a compact Riemann surface X. For a point x € X take some path 7, from ¢ from x and

x x xT
/w17/w27“'7/w9 = /Wl,---,/(ﬂg
q q q Yz Ve

It is an element in C9. Of course it depends on the choice of v,. However if §, is another path

consider

connecting ¢ and x, for every w € Qx(X)

Jofomfer fom ] =

where o, =7, - 0, ' is a closed path at ¢g. Therefore,

/wl,...,/wg — /wl,...,/wg = /wl,...,/wg e L.

Qg

Thus the map
A X = Jac(X)=CI/L, x| /wl,...,/wg
q q

is well-defined.
Moreover, it is holomorphic.

Exercise. Show that ), is holomorphic.
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Exercise. Show that for two points ¢, ¢’ € X, the difference of the maps A\, — Ay is a constant
map X — Jac(X).

Definition 14.6. A map ), is called the Abel-Jacobi map corresponding to the point ¢ € X.

Since Jac(X) has a natural structure of an abelian group, one can extend A, by linearity to
a homomorphism
A, :DivX — Jac X, Zam T Zam - Ag(2).

zeX rzeX

Remark 14.7. A, depends on the choice of ¢ € X.
Consider its restriction to the subgroup Div® X C Div X

Claim.
Aylpio x : Div X — Jac X
does not depend on the choice of q.

Proof. Since every D € Div" X is a sum of divisors of the form a — b, a,b € X, a # b, it is
enough to check the statement for D = a — b, a # b. Then

Aq<D>—[(/:wl,...,/qawgn—[</qbw1,...,/qbwg>]—
[(/qawl—/qbwl,...,/qawg—/qbwgn—[</baw1,...,/bawgn,

i. e., does not depend on gq. O
Definition 14.8. Define A := A |p;,0 x for some (every) ¢ € X.

We obtained a homomorphism A : Div® X — Jac X. Recall that for f € Mx(X), (f) €
Div’ X. Notice that (f) = (g) for f,g € Mx(X) implies that g € Ox(X) = C. Hence, to
know the divisor of f € Mx(X) is the same as to know f up to a multiplication by a scalar.
So, to describe My (X) is the same as to describe PDiv X C Div® X.

14.3. The Abel-Jacobi theorem.

Theorem 14.9. I. (Abel) PDivX = Ker A, i. e., a divisor D € Div’ X is a divisor of some
meromorphic function f € Mx(X) (D = (f)) if and only if A(X) = 0. In particular Pic’ X =
Div’ X/ PDiv X can be seen as a subgroup of Jac X by means of the induced embedding

Pic’ X — Jac X, [D]+~ A(D).
II. (Jacobi) A is surjective, in particular
Pic’ X — Jac X, [D]~ A(D).
18 an isomorphism of abelian groups.
Proof. No proof. O

Corollary 14.10. )\, : X — Jac X is injective for every g € X


http://en.wikipedia.org/wiki/Niels_Henrik_Abel
http://en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
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Proof. Suppose that A, is not injective. Then there exist a,b € X, a # b, with A\,(a) = A\, (D).
Then for D = a — b, A(D) = N\(a) — A\y(b) = 0, hence there exists f € Mx(X) such that

D = (f). Then f has degree 1 as a map of Riemann surfaces X Iy €. Therefore X = C, which

is a contradiction because we assumed gy > 1. OJ
14.4. The Abel-Jacobi theorem and one-dimensional complex tori.

Corollary 14.11. If gx =1, then A\, : X — JacX = C/L is an isomorphism, i. e., complex

tori are the only compact Riemann surfaces of genus 1.

Proof. A, is a holomorphic injective map of Riemann surfaces X — C/L, hence surjective, and
hence an isomorphism. O

Corollary 14.12 (Abel-Jacobi theorem for complex tori). Let X = C/I" be a complex torus.
(0) Then Jac X can be identified with X itself.

(1) Let D = > a; - [x;] € DivX be a divisor on X, a; € Z, x; € C. Let D¢ = ) a;x; € C.
Then under the identification Jac X = X, the map A : Div® X — Jac X = X is given by
Dw— [Dc]=Dc+T € X =C/T.

Hence
Pic’ X — X, [D]+~ [D¢l,

1 an isomorphism of abelian groups.

(2) In other words, for D € Div® X there exists f € Mx(X) with D = (f) if and only if
D¢ eT.

Proof. Exercise. O

14.5. Some final remarks. Let X be a compact Riemann surface of genus gx > 1. Then
Jac X can be embedded into PP, for some n. Then the chain of the embeddings

X ClacX CP,

gives an embedding of X into P, as a submanifold.

Remark 14.13. Note that not every higher dimensional torus can be embedded into P,.
However this is the case for the tori defined by period lattices.

Definition 14.14. A projective variety is a zero set of homogeneous polynomials f,..., f,, €
C[l’o, N ,ZL‘n]

Z(fr, s fm) = {{xo, ..., xn) € Py | filwo,...yx,) =0 Vi=1,...,m}.
Theorem 14.15 (Chow). Compact complex submanifolds of P,, are projective varieties.

Corollary 14.16. Fvery compact Riemann surface can be realized as a projective variety, i. e.,
a projective algebraic curve.


http://en.wikipedia.org/wiki/W._L._Chow
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Remark 14.17. Let C = Z(f) C P, be a smooth plane algebraic curve, deg f = d. Then its

genus is
(d—1)(d-2)
go=-—5—
In particular, goc =0 ford=1and d =2, g0 =1 ford =3, go =3 for d =4, gc = 6 for d = 5,
so one sees that not all compact Riemann surfaces can be realized as plane algebraic curves

(for example Riemann surfaces of genus 2).

Remark 14.18. More examples of Riemann surfaces of different genera are given in Appen-

dix [Al

Dimension of the moduli space. In our course we showed that the space of isomorphism
classes (so called moduli space) of compact Riemann surfaces of genus
e g = 0 consists of one point;
e g = 1 has dimension 1 and can be identified with C (using j-invariant).
One can show that for g > 2, the space M, of the isomorphism classes of compact Riemann
surfaces of genus ¢ has dimension 3g — 3.
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Exercises.

Exercise 53. (1) Let I' be a lattice in C and let X = C/I" be the corresponding complex
torus. Fix some generators o; and f3; of the fundamental group of X, fix a basis of Qx(X), and
compute the corresponding period matrix. You could use some of your results from Exercise [50]

(2) Let I" be a lattice in C and let X = C/I" be the corresponding complex torus. Show that
Jac(X) = X.

Exercise 54. Let X be a compact Riemann surface of genus ¢ > 1. Let {wi,...,w,} be a
basis of Qx(X). Let L C CY be the corresponding lattice of periods. For a fixed point ¢ € X
we constructed the map

At X = Jac(X)=C/L, zw— [(/xwl,...,/mwg)].

Prove that )\, is a holomorphic map.

Hint: Notice that it is enough to understand the following.
(1) Let w be a point in C. Let f be a holomorphic function in some open neighbourhood W of
w. Then in every open ball U around w, U C W, for every point x € U, and for every path -,

Z fdz

x

depends only on z and not on the choice of 7., hence the notation [ fdz := [ fdz makes sense.
w Yx

(2) Moreover, there exists an open ball U around w Where f has a primitive function, i. e.; a

holomorphic function F such that F’(z) = f(z). Then f fdz = fF’ Jdz = F(x) — F(w) and

that connects w and z, the integral

hence the function N
Usxw— / fdz

is holomorphic.

Exercise 55. Show that for two points ¢,q¢' € X, the difference of the maps A\, — A\, is a
constant map X — Jac(X).

Exercise 56. Let X = C/I" be a complex torus, I' = Z - wy + Z - wy. Let Dy = [%} + [%} =
i3], D = [3] + [] -2+ [442], D = [3] + [3] -2 3]

Check whether D¢, Dy, D3 are principal divisors.
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APPENDIX A. EXAMPLES OF COMPACT RIEMANN SURFACES WITH DIFFERENT GENERA.

For an arbitrary genus g € Z>(, we are going to present an example of a compact Riemann
surface of genus g.

A.1. Genus 0. We know that up to an isomorphism there is only one Riemann compact surface
of genus 0. This is the Riemann sphere C or the projective line [P;.

A.2. Genus 1. We know that the only compact Riemann surfaces of genus 1 are complex tori.

These can be seen as plane projective cubic curves given by the equation

2 = 4o — gonz? — g32°.

In other words, complex tori are just closures in Py of the affine curves C' C C2,

C = {(z,y) | y* = 42° — gz — g3},
where C? is embedded into Py by
(z,y) = (2,9,1).

So, we can see elliptic curves as the closures in Py of the affine curves of the form

C={(z,y) | y* = h(2)},

where h is a cubic polynomial with 3 different roots.

Reminder A.1. Notice that for a polynomial f € C[xz,y] of degree d the closure of the affine

zero set
Z(f) =A{(z,y) | f(x,y) =0} c C°

is a zero set of the homogenized polynomial F' € Clz,y, 2] defined by F(z,y,z) = 2% f(%£,Y).
Namely,

Z(f) = Z(F) = {{z,y,2) | F(z,y,2) =0}
A.3. Generalizing elliptic curves. One could try to generalize the construction of elliptic
curves in order to get examples of Riemann surfaces of higher genera.

A.3.1. Trying a straightforward approach. One easily notes that for a polynomial h € Clz] the
curve
C={(z,y)|y*=h(z)} cC

is smooth (is a submanifold of C2) if and only if all roots of h are different. Let h = ¢-[[¢(z—ay),
d > 3, with a; # a; for i # j.

Embed C? into P, as above by the map (z,y) — (x,y, 1) and consider the closure C of C' in
P,. Then C is defined by the equation

d

Y22 =c. H(x — a;2).

1

One sees that (0, 1,0) is a singular point of C' if d > 3, so taking the closure in P, of a smooth
curve in C? C P, does not always produce a submanifold of P, i. e., C'is not always a Riemann
surface.
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A.3.2. Another approach. Let us look at C? as at the product C x C keeping in mind that C
can be seen as an open subset of C = P,. This suggests to realize C? as an open subset of a
line bundle over C & P;.

Reminder A.2. A line bundle over C is a 2-dimensional complex manifold £ and a holomorphic
map E 5 C such that over the standard open charts Uy and U; of C the restrictions E lvy =
7 Y(Up) and E|y, = 7~ *(U;) are isomorphic to Uy X C and Uy X C via isomorphisms ¢y and ¢,
respectively such that 7|1y, = pri o ¢o and 7|1,y = pri o ¢; and the transition map

(Uo N U)X C 2905 (Uy U)X T, (2,0) > (x, gro(2) (v)

is given in the fibre over x € Uy N U; by a linear map gio(x) : C — C, i. e., g1o can be seen as
a holomorphic map ¢, : Uy N U; — C*.

Notice that it is enough to know ¢, in order to reconstruct £ up to an isomorphism.

It is known that up to an isomorphism F is defined by a gluing map ¢y of the form gy0(¢) = ¢"
for some n € 7Z. To understand this it is enough to see that every line bundle over C is

A

isomorphic to Og(D) for some divisor D € Div(C) and its isomorphism class depends only on
the divisor class [D] € Pic(C) by Proposition , Remark [7.3] and Exercise .

Let E be given by the cocycle gi19(t) = t". Then E can be glued together from two pieces
Uy x C and U; x C, each of which is identified with C?, the gluing is given by the map

-1
C*xC=(UyNUi) x C 22 (UynU) xC = C xC, (2,y) — (1/z,yz").
Then the point (z,y) is mapped to (£,n) = (1/z,yz™). Since y* = h(z) and z = 1/, one
obtains y = n/z" = n¢™ and therefore

d

1
e =01/ = e ][ - ai).
1
Notice that the polynomial g(¢) = ¢ - [J¢(1 — a;€) does not vanish at 0 and has different roots.
If d =2n+d > 0, then

The curve in C? given by

Cr={(&n) [ €’ = g(&) =0}
is smooth. So the union of Cy = C' and (] is a Riemann surface in E. However, since C does
not contain any points of the form (0,7), C} is contained in Cy. So this construction does not

add any points to Cy and hence does not provide a compact Riemann surface.
If 0 =2n+d <0, then for e = —0

The curve in C? given by
Ci={(&n) | n* —€9(§) =0}

is smooth if only if the polynomial {¢g(€) does not have multiple roots, i. e., since g has only
simple roots different from zero, if and only if ¢ = 0 or ¢ = 1. Let X be the union of Cy = C
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and C7. Then X is a Riemann surface in £. Moreover, X is compact as a union of two compact
sets

{(z,9) | ¥* = h(z),]z] < 1}U{(En) | n* = E9(€)}.

The Riemann surfaces of this type are called hyperelliptic curves.

A.3.3. Genus of X. Since X is constructed as a submanifold of a line bundle E over C, one

obtains a natural holomorphic map
x5

which is given over Uy and U; by (z,y) — « and (£,n) — & respectively.

First of all, let us compute the degree of X = C. Notice that for every x € Uy C C such that
h(zx) # 0, there are exactly 2 points in the preimage 7 (). Since there can be only finitely
many ramification points, one concludes that d(7) = 2.

The set of the ramification points coincides with the preimages of the points x € C such that
either h(z) = 0if x € Uy or £g(§) = 0 if x = 1/¢ € U;. There are d such points lying over
Uy and 1 more point over oo € C in the case € = 1, i. e., if d is odd. The multiplicity of each
ramification point is 2, therefore

Z(multwﬂ —1)=d+e

zeX

Let g denote the genus of X. Let us apply the Riemann-Hurwitz formula to this map. It
reads

29 —2=2(-2)+d+e

Therefore, g = % — 1, so one can obtain this way a compact Riemann surface of an arbitrary
genus g € N.

Remark A.3. We have shown that a hyperelliptic curve X of genus g comes together with a
holomorphic map 7 : X — C of degree 2.

One can also show that the converse is true: every compact Riemann surface of genus g with
a holomorphic map 7 : X — C of degree 2 is isomorphic to a hyperelliptic curve.

Remark A.4. A hyperelliptic curve of genus g and the corresponding holomorphic map X — C
define 2(g + 1) points on C (images of the ramification points). Acting by an automorphism
el (a%) € GLy(C), we can always assume that 3

of the points are, for example, 0,1,00. Then the remaining 29 — 1 points parameterize the

of @, i. e., by the transformations x

isomorphism classes of hyperelliptic curves of genus g. Moreover, different (2g — 1)-tuples of
points in C provide different isomorphism classes of hyperelliptic curves.

The latter means that the subspace of the hyperelliptic curves in the moduli space M,
(cf. page has dimension 2¢g — 1. Since dim My = 3g — 3 for g > 2, one concludes that the
codimension of the hyperelliptic locus in M, equals g — 2.

So, for g > 3 there are compact Riemann surfaces that are not hyperelliptic.
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A.4. Genus 2. In order to obtain a hyperelliptic Riemann surface of genus 2, it should hold
d + € = 6, so one can take d =5 or d = 6.

Remark A.5. It can be shown that every compact Riemann surface of genus 2 is a hyperelliptic
curve. By Remark it is enough to show the existence of a holomorphic map X — C of
degree 2, or, equivalently, it is enough to find a meromorphic function on X with two poles.

A.5. Higher genera. As mentioned above, there must exist a non-hyperelliptic Riemann sur-
face of genus g > 3.

Example A.6. Let Y be a plane projective curve smooth curve of degree 4, for example
Y = {{z,y,2) €Py | 2* +y* + 2* = 0}.
As we know, the genus of Y is 3. However, Y is not hyperelliptic.
More generally, a hyperelliptic curve can not be realized as a submanifold of Ps.

Remark A.7. Notice that X is obtained from C = Cj by adding one point if d is odd. In
this case our construction is just a one-point compactification and therefore there is a natural
homeomorphism of X and C'.

If d is even, X is obtained from C' = Cj by adding two points.

Remark A.8. Notice that the closure of C' = () in P, is also a one-point compactification.
However, as we noticed above, C' is a submanifold of P, only for d = 3. In the case d = 3 the
genus of X is 1 and our one-point compactification construction of X is isomorphic to C.

For d > 3, C' is singular. So, though X and C' are homeomorphic as topological spaces, the
complex structure on X is not induced by the complex structure of Ps.
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