Reflecting Diffusion Semigroup on Manifolds carrying Geometric Flow

Li-Juan Cheng,* Kun Zhang *

Abstract. Let L, := A, + Z, for a C"!-vector field Z on a differentiable manifold M with bound-
ary dM, where A, is the Laplacian operator, induced by a time dependent metric g, differentiable
int € [0,7T.). We first establish the derivative formula for the associated reflecting diffusion
semigroup generated by L;; then construct the couplings for the reflecting L,-diffusion process-
es by parallel displacement and reflection, which are applied to gradient estimates and Harnack
inequalities of the associated heat semigroup; and finally, by using the derivative formula, we
present a number of equivalent inequalities for a new curvature lower bound and the convex-
ity of the boundary, including the gradient estimates, Harnack inequalities, transportation-cost
inequalities and other functional inequalities for diffusion semigroups.

1 Introduction and main results

It is well known that, functional inequalities, for instance, gradient inequalities and dimension-
free Harnack inequalities, are useful tools on stochastic analysis to investigate the behavior of the
underlying processes on Riemannian manifolds, see, for example, [9, 10, 14, 18, 36]. Among all
those work, one usually make the assumption that the metric is fixed. However, when it comes to the
case that metric is time-varying, a question arises naturally: how about functional inequalities on these
manifolds? In recent year, M. Arnaudon, K. Coulibaly and A. Thalmaier [1] constructed g;-Brownian
motions (i.e., the diffusion process generated by L, = %At) on manifolds without boundary carrying a
geometric flow, and established the Bismut formula under the Ricci flow, which in particular implies
the gradient estimates of the associated heat semigroup. In [12], the first author studied functional
inequalities, including on manifolds carrying geometric flow for the diffusion semigroup. Motivated
by the aforementioned results, this article aim to extends these results in [1, 12] to the case with
boundary.

The setting for our work is a differentiable manifold with boundary equipped with a geometric
flow. More precisely, let M be a d-dimensional differentiable manifold with boundary dM, which
carries a one-parameter C'*-family of complete Riemannian metrics {&t}iep0,1,)» where T, is the
time when the curvature may blow up. Consider the elliptic operator L, := A; + Z;, where A, is
the Laplacian operator associated with the metric g, and (Z;),¢(o,7,) is a C le_family of vector fields.
Let (X;) be a reflecting diffusion process generated by L, (called the reflecting L,-diffusion process),
which is assumed to be non-explosive. This assumption immediately implies that this process then
corresponds in a natural way to a strongly continuous semigroup Py, i.e.,

P f(x) =E(f(X)|X, =x), 0<s<t<T,.
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In this article, we fix on extending the former discussions to our content for the semigroup F; ;. Com-
pared with F.-Y. Wang’s work on functional inequalities over Riemannian manifolds with boundary
(see for example [31, 32, 33, 34, 35, 36] and the reference therein), we need make some necessary
modifications to our inhomogeneous context, since e.g. geometric quantities are time-dependent and
the underlying process is time-inhomogeneous.

Before moving on, let us briefly recall some known results in the time-inhomogeneous Rieman-
nian setting without boundary. K. Coulibaly [2] investigated the optimal transportation inequality by
constructing horizontal diffusion processes. Then, K. Kuwada and R. Philipowski [22] studied the
non-explosion of g,-Brownian motions under the super Ricci flow, and K. Kuwada [23] developed the
coupling method to estimate the gradient of the semigroup. Very recently, the author [12] has consid-
ered the construction of coupling processes and some important functional inequalities on manifolds
without boundary carrying a geometric flow. All those works lay solid foundation for our study.

Let V' be the Levi-Civita connection associated with the metric g,. For simplicity, we introduce
the notation: for X,Y € TM,

. 1
R (X,Y) :=Ric,(X,Y)— (VXZ.Y), — 598X, Y),

where Ric; is the Ricci curvature tensor with respect to the metric g;, and (-,-), := g;(-,-). Define the
second fundamental form of the boundary with respect to g; by

I,(X,Y) = —(VyN,,Y), , X,Y €ToM,

where N, is the inward unit normal vector field of the boundary associated with the metric g;. If
I, > 0 for all t € [0,T), then the geometric flow {g; },c[0.7,) is called to be convex. In fixed metric
case, functional inequalities are always deduced under the Bakry-Emery curvature condition. In this
paper, we begin our discussion by using the following curvature constraints:

FF>K(t,-) and 11, > o(t,-) (1.1)

for some continuous functions K, o € C([0,7,.) x M). Here and in what follows, for any two-tensor
T, and any function f, we write T, > fif T,(X,X) > f(X,X),, forX € TM andt € [0,7.). Compared
with the usual Bakry-Emery curvature condition, the time derivative about the metric will become a
new important term involved in the curvature condition.

Let p; be the Riemannian distance and |- |, be the norm associated with the metric g;. When the
geometric flow is convex, we have the first main result of this paper.

Theorem 1.1. For any K € C([0,T;)), the following statements are equivalent to each other.

(i) The following curvature condition holds,

RE > K(t) and 11, > 0 (M # @) forall t € [0,T,). (1.2)

(ii) The gradient inequality

1

VP, fly < e hEKOp \Vif, 0<s<t<T, (1.3)

holds for f € C'(M) such that f is constant outside a compact set of M.
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(iif) Foranyp>10<s<t<T.and f € B, (M),

. —1
(Peaf)?(x) < Prf? (y) exp [4” ( / e”f’“””“dr) pf(x,y>]- (1.4)
(p—1)\Js

We intend to use the coupling method to prove that (1.2) implies (1.3) and (1.4). It is well known
that coupling method is a useful tool in stochastic analysis. It is remarkable that M.-F. Chen and
F.-Y. Wang [9, 10, 11] gave subtle estimates about the first eigenvalue on Riemannian manifolds by
constructing suitable coupling processes. Note that K. Kuwada [23] first constructed the coupling
processes for L;-diffusion processes on manifolds without boundary via discrete approximation. In
our recent work [12], we gave a direct construction for general coupling processes on manifolds
without boundary. Here, we modify this proof to our setting.

On the other hand, to prove that each of (1.3) and (1.4) implies the curvature condition (1.2),
we need to use the derivative formula to characterize %7 and 11, first. In the following section, we
construct a series of Hsu’s multiplicative functionals to establish the derivative formula (see Theorem
2.3 below). When the metric is independent of ¢, our construction is due to [36, Theorem 3.2.1] for
the constant metric case.

In fact, it is more difficult for us to deal with the case carrying the non-convex flow, since it is
hard to control the effect from the boundary by using the coupling method. A direct thought is to
make a conformal change of the metrics such that the new flow becomes convex. When the metric
is independent of ¢, this method is successfully applied to the non-convex manifold, see [30, 33, 35].
First, let us introduce an important set:

7 ={9 €C"([0,T.) x M) : inf¢, = 1, 1T, > —N; log ¢;}. (1.5)

Then, by [30, Lemma 2.1], for ¢ € 2, the new flow g, := ¢, 2g; is convex. Moreover, we are required
to having the following assumption on ¢, RicZ, and d;g; to continue our discussion.

(H1) Letd > 2. There exist functions K1, K, € C([0,7.)) such that
RicZ :=Ric, —V'Z, > K((t),  dig <Kx(t), (1.6)

and ¢ € Z such that ||V ¢|c < oo,

Or]|co < o0 and

) 1
Ko 1(t):= 1Af}1f{¢z2K1 (t) + ELl¢t2 - W’¢’z2’t |Zi] — (d_2)|vt¢t|z2} > —oo,

Kpo(t):= S;P{Zat log ¢, } + K (t) < oo,

where [V flle := supyep [V £1: (x).

If this assumption holds, then by constructing suitable coupling processes, we have the second main
result of this paper.

Theorem 1.2. Suppose that (H1) holds and

1
Ko (1) = Ko 1 (1) + 5 Ko 2 (1) + 21191Z +(d = 2)V' 91 oo + [V 91 []o] |V 91 [ < 0.

Then the following conclusions hold.
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(i) Forany f € C'(M) such that f is constant outside a compact set,

VP fls < | 9rlloll V' fllweh R0 0 <s <1 < T

(ii) ForO<s<t<T,let §;=1— SUP,¢ s ] llo,]1=" Ase = 0f (o) clsxm o~ and

As
@f:mm{sw,i%¢ﬁ—n}.

Then for p > (1 —1—%)2, X,y € M and f € Cp(M), it holds

) ., \/ﬁ(f—l)Ps(x y)
(Pt f(9)? < Porf (x)exp{g(sp[( )y — 8] [T e 2 Kol +|V”¢u|2)d”dr}

As an important application of the induced conclusions above for general geometric flow, we
consider the Ricci flow with umblic boundary as follows: for A > 0,

9g(x,-)(t) = 2Ric(x,r),  (x,r) € M x[0,T];
(1.7)
I(x,t) = Ag(x,1), x€IM.

Shen [27] proved the short time existence of the solution to the above equation. We also refer the
reader to [3] for more geometric explanation for this Ricci flow. To our knowledge, there are few
references about gradient estimate and Harnack inequalities for the solution to the heat equation
under the Ricci flow carrying non-convex umbilic boundary. In Section 3.3, we will apply Theorems
1.1 and 1.2 to establish these inequalities for this system; see Theorems 3.6 and 3.8 below.

The rest parts of the paper are organized as follows. In Section 2, we construct the reflecting
L,-diffusion processes, prove the Kolmogorov equations and then establish the derivative formula for
the associated semigroup. In Sections 3, we turn to prove Theorems 1.1 and 1.2 by constructing
the coupling processes, which are applied to the Ricci flow with umbilic boundary. In Section 4,
some important inequalities including transportation-cost inequality, Harnack inequalities and other
functional inequalities are proved to be equivalent to the lower bound of %7 and the convexity of the
boundary.

We end this section by making some conventions on the notations. Let %),(M) be the set of all
measurable functions and Cg (M) the set of all CP-smooth real functions with compact supports on
M. For any function f and ¢ respectively defined on [0,7;) x M and [0,T,.) x M x M, we simply write
fi(x) := f(t,x) and @ (x,y) := @(t,x,y),t € [0,T;),x,y € M. In addition, || f;||e := sup,e,, f(z,x) and
[[fllee = SUp( yyefo,.)xp (2, X). For any time-depending vector field V;, we write [|Vi[e := [|[Vi¢|eo
for snnphcny

2 Preliminaries

In Subsection 2.1, we briefly introduce the construction of reflecting L,-diffusion processes. In
Subsection 2.2, the forward and backward Kolmogorov equations are established for Neumann dif-
fusion semigroup. In Subsection 2.3, a derivative formula is established, which is further applied to
characterizing %7 and 11,.
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2.1 Reflecting L;-diffusion processes

Let .% (M) be the frame bundle over M and &, (M) the orthonormal frame bundle over M with
respect to the metric g,. Set p : .Z (M) — M be the projection from . (M) onto M. Let {e;}4,
be the canonical orthonormal basis of R?. For any u € ¢,(M), let H:(u) be the V'-horizontal lift
of X € Ty,M and H}(u) = H,, (u),i = 1,2,---,d. For any u € 7 (M), let {V, g(u) be the
canonical basis of vertical fields over .7 (M).

d
a,p=1

Let B; := (B!,B?,--- ,BY) be a R?valued Brownian motion on a complete filtered probability
space (Q,{.% }i>0,P) with the natural filtration {.% },>0. As in the time-homogeneous case, to con-
struct the reflecting L,-diffusion process, we first construct the corresponding horizontal diffusion
process by solving the Stratonovich stochastic diffusion equation (SDE):

d
: 1
du, = \/EZH;(MZ‘) OdB; +Hét (M;)dt — 5 Z&tg,(ute,‘,u,ej)Vi.j(u;)dt —l—H,tVt(u;)dl;,

i=1 ij

Up € ﬁO(M)a pup=x €M,

where /; is an increasing process supported on {t € [0,{) : X; := pu; € dM}, where § := lim {, and
n—soo

G :=inf{r € [0,T;) : p;(puo,pus) > n}, n> 1, inf& =T,.

Similarly as explained in [1], the last term is essential to ensure u;, € €;(M). Then, it is easy to see
that X, := pu; solves the equation

dXt = \/Eut o) dBt +Zt(Xt)dt +Nt (Xt)dlt, X() =X
up to the life time {. By the Itd formula, for any f € Cé’z([O, T.) x M) with N, f; := N, f;|gsr = O,

t
0

10X = F00) = [ @+ X5 = V2 [ 19105, (X,),0By),

is a martingale up to the life time {. So, we call X; the reflecting diffusion process generated by L.

Throughout this paper, we only consider the case where the reflecting L,-diffusion process is non-
explosive before 7. In this case,

P f(x) = E(f(X)|X, = x), x€M, 0< s <1 < T, f € By(M)

gives rise to a Markov semigroup {Ps; }o<s<;<7, On %B,(M), which is called the Neumann semigroup
generated by L,. Here and in what follows, [E and PP (resp. E* and P*) stand for the expectation and
probability taken for the underlying process (resp. the underlying process starting from x € M).

2.2 Kolmogorov equations

Let
ev(L) ={f €C"([0,T.) x M),N, filoy =0,(Li + 0) f € Bp(M),1 €[0,T,)}.

In this subsection, we now introduce the Kolmogorov equations for P, as follows.
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Theorem 2.1. For f € 6y(L), the following forward Kolmogorov equation holds,

aatPst(t,x) =P (Lif+ 0 f)(t,x), 0<s<t<T. 2.1

Moreover, for f € By(M), there hold
(i) forany 0 <t < T, P,f € C'*([0,t] x M) and the backward Kolmogorov equation

d

%PS’J =—-LP,f, 0<s<i<T, (2.2)

moreover,
NP f =0, 0<s<t<T,;

(ii) if |V'P.,f|. is bounded on [r,t] x M and t € (0,T;], then

d
a rsll/( stf rs(l//” stf |V Pstf| ) [}"l‘],

where W € C?(R) with compact support in [inf f,sup f].

Proof. By using the Itd formula, the equality (2.1) follows directly. Moreover, (ii) can be calculated
by combining (2.1) and (2.2). Thus it suffices for us to prove (i).

We first show that there exists a solution « to the following equation: for 0 <s <t < T,

Su(-,x)(s) = —Lu(s, ) (x), x € M;
Nsu(s,-)(x) =0, x € OM; (2.3)
( X): (X xXeM.

First, it is easy for us to see from [17] that by replacing the Laplacian operator A; with A; +Z;, and
repeating the same argument as in the proof of [17, Theorem 2.1], there exists a fundamental solution
p(s,x;t,y) to the following equation

{i.p(-,x;r,y)(s) = Lyp(s,1t,y)(x);
limllsp(sv)C;tv ) = Bx()

Then, by a similar discussion as in the proof of [16, Theorem 2 in Section 3], there exists a solution
u to the Neumann problem with the form:

us) == [ [ plrast s w3 po (@)dr— [ ploxit) () (e),

where y € C} ([s,] x M) and 1, , is the area of dM induced by 1. Thus by the Feymann-Kac formula,
we have

Paf () = u(sx) = [ plsct 3)f(0)m(d).

We then complete the proof. O
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Remark 2.2. For fixed T € (0,T;), from Theorem 2.1, we see that P, 7 f is a solution to the following
heat equation with Neumann boundary condition,

Au(-,x)(t) = —Lu(t,)(x), (t,x) €[0,T]xM,
u(T,x) = f(x ) XeEM, 2.4)
Nou(t, ) (x) = (x,1) € IM x (0,T].

Then let (X, ),6[0 7] be the reflecting Ly _,)-diffusion process with semigroup {Py,}o<s<i<7. It is
obvious that Pr_, 7 f, t € [0,T] solves the Neumann problem

du(-,x)(t) = Lu(t,)(x), (t,x)€[0,T|xM,
u(0,x) = f(x), XEM, (2.5)
Neu(t,-)(x) =0, x€dM, te(0,T].

Actually, the theory, presented in this paper, is meant to be applied to the solution of (2.5).

2.3 Derivative formula and applications to characterizing % and I,

This subsection is devoted to the derivative formula for the Neumann semigroup, which is further
applied to characterizing #7 and 1I,.

Before moving on, let us introduce some basic notations first. For u € &,(M), the lift operators
FZ(u), 11, (u) € R? @R are defined by

RE(u)(a,b) = (B (u)a,b) = BF(ua,ub), 1,(u)(a,b) =11,(p,ua,p,ub), a,bec R,

where for x € dM, p/, : T.M — T, 0M is the project operator on (M,g;). We now introduce the
derivative formula for the Neumann semigroup first.

Theorem 2.3. Let 0 < s <t < T. and x € M be fixed. Let K € C([0,T.) x M) and o € C([0,T;) x IM)
be such that %’IZ > K; and 11, > o;. Assume that

sup E (exp{ / K( rX)dr—/ G(r,X,)dl,} X
UE|st] s

Then there exists a progressively measurable process { Qg » }s<,<; on R? @ R? such that

_ x> <o 2.6)

r r
Oss =1, ||Os,|l <exp [—/ K(u,Xu)du—/ G(u,Xu)dlu], r € [s,1].
N s

Moreover, for any f € CH(M) with |V'P.,f|. being bounded on [s,t] x M, and h € C'([s,t]) satisfying
h(s) =0,h(t) = 1, it holds

(us) "' VP f(x E{Q” CIVUR(X) X = x)

_ EE {f(Xz) [ Hez,a,

To prove this theorem, we need the following two properties to investigate the short time behavior
of the diffusion process first.

X, = x} . 2.7
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Proposition 2.4. Let X, be a reflecting L,-diffusion process with Xo = x € M, Then,

(a) ifx € M°, then for ty € [0,T,), there exist constants ro > 0 and ¢; > 0 such that By,(x,ro) € M°
and ,
P¥(o, <t) <cre "' re(0,rg), t €[0,1AT,]

holds, where o, := inf{s : p;,(Xs,x) >r, s € [0,T.)};
(D) there exist constants ro > 0 and ¢y > 0 such that
P*(6, <1) < cze_rz/m’, re0,r], 1 €[0,1 AT
holds, where &, :=inf{s : ps(X;,x) >r, s € [0,T.) }.

Proof. First, we prove (a). Write p; (X;) := py, (x,X;) for simplicity. By taking smaller ry, we may
and do assume that By, (x,ry) € M° and p;, € C*(M). By the Itd formula, we obtain

dp2 (X,) < 2V2p,(X,)db, +Crdt, t < o,

for some constant C; > 0, where b, is a one-dimensional Brownian motion. Thus, for fixed ¢t > 0 and
0>0,

Zs := exp (fpto( ) — —Cls— / Pr (X, 2du> 0<s<o;

is a supermartingale. Therefore,

o <) =P { max p;, (Xsne,) = ”} <P { max Zng, > is /I5C1452r2/t}
s€[0,7] 5€[0,1]

1
<exp [CIB — ;(31’2 — 452#)} . (2.8)
The proof of (a) is completed by taking 6 := 1/8.
Next, we show (b). Let ¢ € C'([0, 1] x M) be constant outside B = {(z,y) € [0,1] x M : p;(x,y) <
ro} such that ¢ > 1 in B, and the boundary dM in B;(x, ro) is convex under g, := ¢, >g; (see [30] for

the existence of ¢). Let A, and V' be respectively the Laplacian and the gradient operators induced
by the metric g,. Then, we have

0L =A+(d— 1)V + 07 Z = A+ Z,,
and X; solves the SDE:
A X, = V20, 'u,dB, + ¢, 2Z,(X,)dr + N, (X, )dly, (2.9)

where N, is the inward unit normal vector field of the boundary associated with the metric g; and d;
denotes the It6 differential' on M. Let p, be the Riemannian distance under the metric g,. By taking

n local coordinates, the Itd differential for a continuous semi-martingale X; on M is given by (see e.g. [13])
() = axk 4 & Z T (e X,)d<Xi,Xj> ,1<k<d,
t

where F{-‘j(t,x) are the Christoffel symbols with respect to the metric g;.
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smaller rp, we may and do assume that p> € C'*(B). Then, we have that there exists a constant
C> > 0 such that

(9 + L) 7 (x,-)(9) = 24 (x,Y)Lufor (%, ) (9) + 2 (x,7) i (x,3) + 2| V' |7 < G
holds on B. By the Itd formula, we further obtain
dp2(x,X;) < 2v2¢,' p,(x,X,)db, + Codt, 0<t < G,
The remainder of the proof is similar to the proof of (a). 0

Proposition 2.5. Let x € M and 6, be the same as in Proposition 2.4 for a fixed constant r > 0.
Then,

(a) E*eMiror < oo for any A > 0;
(b) Eline, = 24 + O(%/?) holds for small t > 0.

Proof. Due to Proposition 2.4 (b), the proof is similar to that of [31, Theorem 2.1] for constant man-
ifolds, we omit it here. O

Proof of Theorem 2.3. Without loss of generality, we assume s = 0, and simply denote Q; by O;.
Following the idea of [18, Theorem 4.2], we need to construct the multiplicative functional Q;
first. For any n > 1, let QE") solve the equation

dQl" = —27% () Q1" ds — 11, (u,) 01"l
— (20 (5, X) ) (@) N @ (7N,
Qo=1.
It is easy to see that for any a € RY,
dllo"al* =2 (a0 a,0\"a)
= —2<%’SZ(uSQ§")a, usQE")a)ds — ZIIS(pfgungn)a, pf;ungn)a)dls
—[n+20(s,X;)"] <uSQ§")a,NS>j dl

™ 2 B (n) 2
< =2[|Qs"al|” [K(s,X;)ds + o (s, X;)dls]) —n{ usQs 'a,Ns ) dly,

where || - || is the operator norm on R? and (-,-) denotes the inner product on R?. Therefore,

A S
1071 < exp |2 [ Kirxor -2 [ 0(rx)at | <o (210
0 0
and for any m > 1,

: X e (m)\x, —1 2
lim 1(Q5™) us N5 ~diy
0

n—yoo

. I 1. 1A\Gm )2
< lim 7+7E/ 2110 |2 1K (s, X,)ds + | o] (s, X,)dls] | =0, @.11)
0

n—yoo n n
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where the second equality follows from Proposition 2.4 (b), (2.10) and the boundedness of K and ¢
on {(s,y) : ps(x,y) <m, 0 <s <r}. Combining this with (2.10) and (2.6), we see that

t
E* [ sup ol |ds+E*sup|| 0" < .
0 n>1 n>1

Thus, there exists a subsequence {Q(”k)} and a progressively measurable process Q such that for any
bounded measurable process (‘Ps)se[m] on R? and any R¢-valued random variable 1, it holds

t
lim {E /0 (0™ — 0,) s +E* (0™ — Q»n} —0.

k—s00
Next, we turn to prove the first equality in (2.7). By observing dP;, f(X;) as a vector
(use (Ps,tf)v”s@(Ps,tf)a e a”sed(Ps,tf))a
and using the Itd6 formula, we have

d(dP . f)(Xs) =Viap, (AP ) (Xs) +Ric? (-, VP f) (X;)ds
+ Vi, (AP, ) (X;)dls, (2.12)

where d is the exterior differential 2 and
RicZ(X,Y) := Rics(X,Y) — (V¥Z.,Y),, X,Y €TM.
Now for any a € R¢,
du; 0" a = — RicZ (u,0\"a, -)ds — 1 (pSu, 0" a, - )dl
205, X)) (N w0 (N, )l

N

By this and (2.12), we have
d <VSPS7,f(XS) , usQAgn)a>s :Hessk,f(usQE")a, usdBy) + Hess‘k‘[f(ungn)a,Ns)dls
— I(pyus 0, VP £ (X)) dis. (2.13)
Moreover, since for any v € T,0M, y € dM, we have
0=v(Ne, V'Pe [ (v) = (ViNs, V'Py ) (v) + Hessp | (v, Ns),

which implies
Hessf;slff(v7 Ny) =1L(v, VP, f) ().

Combining this with (2.13), we arrive at

d (VP f (%) 0" a)

N

2For 0-form f, its exterior differential df is defined by

df(X):=X(f)=(V'f,X),, forX eTM.
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:H%@hﬂmQ@amﬂBQ+H%§LAN5NQ<%Q@%JW>dg (2.14)

It follows from (2.14), (2.11) and the boundedness of |V'P.; f|. on [0,7] x M that

(VPR f,u0a), = Tim Tim B (VPSP 0 f(Xing, ), ting, O “>,A .

m—o0 k—yoo

= 1im lim E* {1cq,) (V' (%), 0a) }

mM—>o0 k—soco

=E <th(Xt)athta>t .

This implies the first equality.

Finally, it only leaves us to show the second equality. Since by the Itd formula, we obtain
dPs,tf(Xs) = \6<st(Xs), usst>s'

Therefore, we have

F(X,) = Pos f(x) + V2 /0 (VB f(X,) usdBy).

So, for any a € RY and m > 1, it follows from (2.10), (2.11) and the boundedness of {IV Pssfls }sepon
that

E {f(Xt) [re <Qsa,st>} — { [#6) v, <xs>ds}
— lim B { /O W(s) (10" a, VP, f>s (Xs)ds}

k—ro0

1 . ! ! X (nk) SAGn
= lim lim [ A'(s)E Usn g, Qe @V " Popg, o f

(Xsng,) } ds

SAGn
= /Ot K (s) (uoa, VOPo, f), (x)ds
= (VP £ (x),u0a),

We complete the proof. O

By localizing the process on a fixed domain, we obtain the following local version of the derivative
formula directly.

Corollary 2.6. Assume %% > K, and 11, > o, for some K € C([0,T.) x M) and 6 € C([0,T.) x OM).
Let 0 <s <t <T.,x€M andD be a compact domain of M such that x € D°, the inner set of D. Let X;
be a reflecting L,-diffusion process starting from x at time s and tp = inf{t € [s,T,.), X, € D, X; = x}.
Then for all 0 < s < r <t, there exists a progressively measurable process {Qw}re[s,t} on R4 @R?
such that

rATp rA\Tp
0sy =1, Qs ]| < exp {— / K (4, X,)du — / G(M,Xu)dlu].
S S

In addition, for any R -valued process h satisfying h(s) =0, h(r) =1 for r >t AN tp and

E (/t h’(r)zdr> " e
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for some a. > 1/2, it holds
1
V2

By using the derivative formula established above, we have the following formulae to characterize
Z#? and 11,, respectively. When the metric is fixed, the formulae for Ric were established in [5] and
[4, Propositions 2.1 and 2.6], and the formulae for second fundamental form were proved by E.-Y.
Wang [32]. There formulae are always applied to proving that some functional inequalities imply
corresponding curvature conditions.

0 VRS ) = B ) [ 1010508,

X :X}, fe %b(M)

Theorem 2.7. For each s € [0,T.), let x € M° (the inner set of M) and X € T,M with |X|; = 1. Let
[ € C3(M) such that f = 0 around the boundary, Hess}(x) =0 and V°f = X. Set f, = f +n for
n> 1. Then,

(i) for any p > 0,

Ps,t‘vtﬂf(x) - \VSPSJf]f(x) . (2.15)

HZ(X,X) =i
¢ (X,X) im =)

(ii) for any p > 1,

2
Z%(X,X) = lim lim PPty = (Puufi )]

_ VSP 2
n—oo tls t —§ 4(p— 1)(t —S) | S>tfn|s (x)

2
1 P 2_ P P\p
= lim lim —— P”\V’f|t2—m sufi = (Bufit )]
n—eo tls t —§ ? 4(p—1)(t—s)

(%);
(iii) %#%(X,X) is equal to each of the following limits:

1
Jg‘;ltﬂl W {(Pblfn) [Py (fulog fu) — (Pys fn)log Py fu] — (t — s)‘VsPs,tf‘?} (x);

Jim, ltigl%ls)z {4 = )PV 17+ (Puafi)10g Prsfif = Pusfi log £ } ()
Proof. Without loss of generality, we only consider s = 0. Let r > 0 and #, € (0,7,) be such that
By(x,r) CM°, t €0,19] and |V’ f|, > J on {(t,x) : t € [0,%],x € B;(x,r) C M°}. Due to Proposition
2.4 (a), the proof of [12, Theorem 4.1] works for the present setting by replacing s with s A 6,, where
6, :=inf{s : X, ¢ Bs(x,r), Xo =x, s € [0,%0]} and set fp = inf & by convention, so that the boundary
condition needs not to be considered.

. To EVOid redundancy, we only prove (i) to explain the idea. By Proposition 2.4 (a) and Hessg)c (x) =
, we have

Pos [V £17 = BV I (Ko, )} + ()
P - 4 -
= [VOrIG+ |5 IV16 Lol VOS5 = SIV16 dhseli=o(VOS.VOF) 1 4+0(0),  (2.16)

where the second equality comes from the following formula,

%Ith\f = —atg,(V’f, th)'
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Moreover, since f € Ci (M) and f = 0 around the boundary, by the Kolmogorov equation,

& By f o = pIVO I (VPLof, V7).
we have
VORo £l = IVOF16 + PIVOSIG 2 (VOLof VO )yt +olt).
Combining this with (2.16) yields (2.15) for s = 0. [

Theorem 2.8. For each s € [0,T;), let x € IM and X € T:M with |X|; = 1. Then for any constant
p>0and f € C3 (M) such that V* f(x) = X, it holds

) T
I(X,X) = ltlfvlﬁ {Ps,t‘vtf‘f - |st|f} (x)
T
=lim ———— {P,|V' I\ — |V*P,, f|" . 2.17
i RV VR @1

If moreover f > 0, then for any p € [1,2],

5,1 2/ — Lt 2
(X, X) = _ltiElZ\/Z{st’%* p[(lj(,;‘_”l))”(t _PS’)f . } (x)

B . 3 T s 2 p[(PY,tfz/p>p_Ps,tf2]
__ltlﬁlS\/H{’VPy’tf’S+ dp—1)i—s) [

(P fYP)P =Py, f

where when p = 1, we set as the following limit

p—1
(P, f¥Py —p f2
1;?11 ( S,tf p)_ 1 S,tf _ (Ps,tfz) long’th _ Ps,t (f2 10gf2)

Proof. Due to Propositions 2.4 and 2.5, the proof is straightforward. For readers’ convenience, we
include the proof of the first equality in (2.17).

Let r > 0 and to € (0,T;) such that |V’ f|, > I holds on {(x,?) : x € B,(x,r),t € [0,0]}. Let &, :=
inf{r € [0,%0] : X; ¢ B,(x,r)} and t := inf@. As N,|V*f|? = 2lI;(V*f,V*f) holds on dM. So, by
using the [t6 formula and Propositions 2.4 and 2.5,

Pos |V fI7 (x) =B |V fI (Xino, ) +0(2)
tAG;
=V S [ (L4 0|V (s
+p{IV AT IV, VO )} (X )dls + o (7)
2p\/t
JT
holds for small # > 0. This proves the first equality in (2.17).

Note that the additional terms, derived from the time derivative of the metric, have the order o(t).
Here, from the discussion above, we find that it does not need to take care of these terms larger than
order o(+/7). Thus, the calculation is similar to that in the fixed metric case. For the rest of the proof,
we refer the reader to [32, Theorem 1.2] and [36, Theorem 3.2.4] for details.

=|VOrlf () + (X, X) +o(V1)

O
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3 Proof of main results

In Subsection 3.1, we construct the coupling processes under convex flows by parallel displace-
ment and reflection first, then using coupling method, we give the proof of Theorem 1.1. In Sub-
section 3.2, we complete the proof of Theorem 1.2 by conformal change of the metrics and also the
coupling method. In Section 3.3, we applied Theorems 1.1 and 1.2 to the forward Ricci flow with
umbilic boundary.

3.1 Proof of Theorem 1.1 (Convex flow)

We first introduce the coupling method for the reflecting L,-diffusion processes. Let Cut;(x) be
the set of the g, cut-locus of x on M. Then, the g, cut-locus Cut, and the space time cut-locus Cutgt
are respectively defined by

Cut, = {(x,y) e M xM | y € Cut;(x)};
CutST = {(t7x7y) € [OvTc) XM xM ’ (.X,y) € Cutf}‘

Set D(M) = {(x,x)|x € M}. For (x,y) ¢ Cut,, let {J!}¢— be Jacobi fields along the minimal geodesic
y from x to y with respect to the metric g; such that at points x and y, {J/,7: 1 <i<d—1} is an
orthonormal basis. Let

d—1
xn) =X [ (V1 90),  (RULDEID)) (1) 5 [ A (3(0). ()

+tht('7y)<x>+tht(x7')(y)7 (3.1

where R; is the Ricci tensor with respect to the metric g;. Moreover, let P;’y : M — T,M be the
g:-parallel transform along the geodesic ¥, and let

My, TM — T,M; v Py —2(v,7), (x)7(y)

be the mirror reflection associated with the metric g,. Then P;,y and Mi.y are smooth outside Cut; U

D(M). For convenience, set Py, and M; , be the identity for x € M.

Lemma 3.1. Let x #y and 0 < T < T, be fixed. Let U : [0,T) x M x M — TM be C'-smooth in
(CutstU[0,T] x D(M))¢ such that U(t,x1,x2) € T, M for (t,x1,x2) € [0,T] x M x M.

(a) There exist two Brownian motions B; and B, on the probability space (Q,{.F};>0,P) such that
Ly(x, % o 9B = Ly, g gcu B Py, 5, 10By

holds, where X; with lift u; and local time I,, and X; with lift ii; and and local time I, solve the

equation
dXt - \/iut OdBt +Zt(Xt)dt+Nt(Xt)dl[’ X() =X,
L 3.2)
dXt - \/iﬁt OdBt + {ZI(XI) + U(t7Xt7Xt)1{X,7£X[}}dt +Nt(Xt)dl[, X() =)
Moreover, for any J € C([0,T] x M x M) such that J > I on (Cutst U [0,T] x D(M))¢,
dp; (X, X;) < {J(I,X,,X,) +<U(t,Xt,Xt)7vfpt(Xt,.)(Xt)>t1{xﬁégt}}dt (3.3)

holds up to the coupling time Ty := inf{t € [0,T] : X, = X,}, info =T.
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(b) The first assertion in (a) holds with M X ¢ inplace of P, .. Inthis case, for any J € C([0,T] x
M X M) such that J > I on (Cutst U [O T]|xD(M))S,

dp: (X;,X,) < 2v2db, + {J(t,Xt,Xt) HUX. %),V (%, ) (X)), 1{Xﬂr}}dz (3.4)

holds up to the coupling time Ty, where b, is a one-dimensional Brownian motion.

Proof. We follow the argument in the proof of [12, Theorem 3.4], but construct the coupling pro-
cesses (X;,Y;"®) with reflecting boundary. Then we should add more argument for one more term
caused by the local time on the boundary. More precisely, when applying the Itd formula to the radial
process p;(X;,Y;"®), we have the additional term

Lasemnycu, (X6 Y7 ) (N: (X)) + N (V) e (X3, )

where I,"¢ is an increasing process which increasing only when (X;,Y"*) € (M x M)\ Cut,. Thus
to pass through the proof for the present case, we only need to show that N,p;(x,-)(y) < 0 for any
yeEIM,xeM,(x,y) € (MxM)\Cut, and? € [0,T;). This is ensured by the convexity of the geometic
flow. Therefore, the proof of [12, Theorem 3.4] also works for the reflecting L;-diffusion case. L]

By using the parallel coupling process, we complete the proof of Theorem 1.1.

Proof of Theorem 1.1. First, by Theorem 2.7 (i)(ii) and Theorem 2.8 (i.e. the characterizations for
%,Z and II,), each of (1.3) and (1.4) implies (1.2) directly.

Now, suppose the curvature condition (1.2) holds. We prove (1.3). We first observe from the index
lemma that

(%) (X))
) <5 [ ds e [ R 11 ()
p;(x.,y)
= [ @)

S_K(I)pt(xay)7 (35)

where 7 : [0, p;(x,y)] — M is the minimal geodesic from x and y associated with g,. Now let U =0
and (X;,X;) be the coupling by parallel displacement for Xy = x, Xy = y. By Lemma 3.1 for U = 0,
(3.5) and N;p;(x,-)(y) <0 fory € dM and x € M, we obtain

dp; (X;, X:) < —K(1)p: (X, X;)dr.

Thus, p, (X,,)?,) <e~ LK (”)d“ps (XS,X’S), which together with the dominated convergence theorem, we
have

VAR (1) <imsup 1 0 ‘(X )= )
Yo y)
Se—jj{x(u)dulimsupE<|f if |’ )>
y—x

Se*ffK(u)duP” |th|t (x)
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Finally, we prove the Harnack inequality. Let f € Ci’(M) be such that f > 1 and f is constant
outside a compact set. Given x # y and ¢ > 0, let 7 : [0,#] — M be the go-geodesic from x to y with
length po(x,y). Let vy = %. Then we have |Vs|o = po(x,y)/t. Let

tf(f erbrK(u)dudr
- f(; e2Jo Kwdugq,

h(s)
Then 2(0) = 0 and h(z) = 1. Set ys = ¥j(,) and
(p(s) = IOgPO,s(Ps,tf)p(ys)v s€ [O,t].
To get the derivative of ¢, by using the It6 formula, we first have

AP f)P(Xy) = dMs + p(p — 1) (P /)P (X)) VPP f 2 (X )ds, 0 <s< &y,

where M, is a local martingale. As explained above, |V*Py, f]|; < e~ [ K(r)ar Py;|V' f|; and (P, f)r—2
is bounded, it is easy to deduce that

Po(Puaf V') = (Pouf) () = pp = 1) [ B[P 2V B B

That is
dPO,s (Ps.,tf)p(x)

ds =plp— 1)P07s[(Ps,tf)pizwsps,tf‘?](x)7

which implies that for any s € [0, 7],

do(s) 1 ) /
o T {Pos (P(p = DB £)7 IV Tog P f 241 (5) (VOPs (P f)7 V), |
p A
pro,s{(f’s,zf)p((p— 1)|V¥logP,, f|?

B Po(;c,y)h/(s)e—fSK(u)duVslogPs,tf|s)}

> —ppg (x, )’)h/(s)zefzﬁ)slf(u)du
N 4(p—1)r :

I8 2K (u)du
: / __ _ted
Slnce h (S) - ft e"‘(;z'((“)d“dr
0

, We arrive at
do(s) _  —ppo(x,y)’el K

7 ) € 10,¢|.
ds — 4(p—1)(féezf0K(“)d”dr)2 $ [ ]

By integrating over s from O and ¢, we complete the proof of (1.4) for s = 0. O

Remark 3.2. We point out that by letting ¢ = 1 in the proof of Theorem 1.2 (ii), the Harnack in-
equality can be deduced by using coupling method directly.
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3.2 Proof of Theorem 1.2 (Non-convex flow)

The proof of Theorem 1.2 is divided into two parts. First, we prove that the curvature condition
(H1) implies the gradient inequality.

Proof of Theorem 1.2. (Gradient inequality) We also use coupling method to prove the gradient in-
equality. To this end, we need make a conformal change of the geometric flow g; first. Let ¢ € 2.
As announced, the new flow g, := ¢, %g, is convex flow. Let A, and V’ be the Laplacian and gradient
operator associated with the metric g;. According to [28, (2.2)],

P d—2
Li=¢, Z(At +7;) and 7= §Z + TV[(Pt (3.6)

To simplify the discussion, we consider the process generated by L = @ (A, +Z,) on the manifold
carrying convex flow {g; },c(o.7) first, where ¢ € C'*([0,T;) x M) and 0 < @ < 1. Moreover, suppose

RicZ > ki(t) and g < ky(t)
for some functions k;,k, € C([0,T;)). Let X; solve
d[Xt == \/E(Pt(xt)utdBt + (PIZ(X[)ZI(Xt)dt +Nt(Xt)dl[, XO = X. (37)
Let Y; solve
Y, = V2, (%) Py, y,udB; + @7 (X)) Z,(Y;)dt + N, (Y)dl;, Yo =y. (3.8)
As the boundary (dM, g;) is convex for all 7 € [0,7.), by the It formula, we have
n
dp: (X, Y1) S\/E((pto(t) @ (Y;))db; + {Z Ut P (X:, Y2) 4 0, pr (X, Y7)
i=1
O (.Y P )0, + (0206 p (1)), fa
where b; is a one-dimensional Brownian motion, {U ! ' | are vector fields on M x M such that

VIU! (X;,Y;) =0 and
Ul (X, Y1) = o(X)Vi + (V) Py, y, Vi, 1<i<n

for {V/}"_, a g;-orthonormal basis of Ty, M. Let p; = p;(X;,Y;). Define

h) — S .
Ji(s) = <ptq’t(Yt)+ t t ‘Pt(Xt)> P;'(O)-,Y(s)vit’ I<i<n,

where J}(0) = ¢:(X;)V/ and J{(p;) = ¢:(Y:)P, y,V/. Note that P}t/(o) }/(S)Vil are parallel vector fields
along ¥,

(Uit)zpt(XtaYt)

-

I
—_

d o
gzﬁ{wwh<&%ﬁfw}mmm
i=1
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%
<dIValie— /0 {501 (Y0) + (pr — 5)@1(X) Y Ric (7(s), 7(5))ds. (3.9)
On the other hand,

(PzZ(Xt) <Zt(Xt)a tht('vyt)(xt)>t + (Ptz(Yt) <ZI(YI)7thl(Xla )(Yt)>t

{(s@ (%) + (pr = 5)91(X:))* (Z4(¥(5)), 7(5)) s

d
ps / ds )
1 Pt
< pz/o (591 (Y,) + (e — ) (X))* ((ViZi) 0 1, 7), (7(5))ds + 2/|Z |||V @[l opr- - (3.10)

Moreover,

3 [ i 9),706))ds < Shat0)p
0

Combining this with (3.9) and (3.10), we have

alpl(Xh Yl) -

401X, 1) <V (01(X) — 4(17)) b, — h(r){pﬂ /Op’[“pt(m+(pt_s>¢,<x,>]2ds}dt

t

1
{d\Vf«szwpt+2\|zt|| I9/1-p. + a()p o
(%)~ (1))dbs + Ko1)o (5, 1), a1

where

_ 1
Ko (1) == d||V' 04|12+ 20| Ze ||| V' @el|oo + Ky (1) + Fha(t). (3.12)

Now we return to the diffusion processes generated by L, = ¢, (At +7;) (see (3.6)). Let ¢, = ¢, !
and Rlc, be the new Ricci curvature tensor with respect to the metric g,. By [6, Theorem 1.129] and
[15, (3.2)], for any X € TM such that g,(X,X) = 1, i.e. |X|, = ¢, we have

Ric, (X, X) = Ric,(X,X) + (d —2)¢, 'Hess!, (X,X) + - V’qbt (d—2)|V' ¢, |2,

and

& (VZ,X) = <V§(ZtaX>, +2<Vt 10g¢17X>, (Z1,X),
+(d— 2)¢,*1Hessipt (X,X)+(d—2) <X,V’ 10g¢,>12
~0(Z. V'), — (d=2)|V' o}

Therefore, noting that |X|, = ¢, we have
7 . -~
Ric, (X,X) := Ric,(X,X) — &/(VZ,,X)
. 1 2
= RlCtZ(X,X) + 5L1¢t2 - 2<thog¢)“X>t <ZI7X>1 - (d—2) <X7vt 10g¢f>t

1
> Ky (1) + 5L,¢,2 — V'O |1Ze]i — (d—2)|V' 7
> K¢71(t)’
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and

&(X,X) = az[q)zizgt(XvX)] = (at¢t72)¢t2 + (});za,gt(X,X)
< —28[ 10g¢; —f—Kz(Z‘) < K¢72(l‘).

Moreover, let | - |} be the norm with respect to the metric g;. Then,

. ) d—2
V'¢, 1|;§Wt¢t|t and |Z]; < ‘PtZH‘TVt‘PIZ )

t

which, together with (3.11), yields
dpi (X, %) < V2(, 1 (X0) — ¢ () dby + Ky (1) B (X3, Ys)db
where

_ 1
Ky(t) ==Ky, (1) + §K¢,2(f) +200:Z + (d = 2) V' y|oo | V' O[]0 + || V' 4|2,

In addition, ¢, > 1, we therefore have p, < p; < ||¢||ps, which implies

Pr(X,Y,) < (161l KoV (. y) < |16yl Ko (2 ), s <1 < T,

Then,
|VsPs,tf|(x) = lim PS,zf(X) _Ps,tf(y) ‘ - ‘E(x,y) |:f(Xt> —-f(x) p,(X,’YZ)] ‘
Yo ps(x,) (X, Y)  ps(x,y)
< IV e o
which leads to complete the proof directly. .

The following result is derived from Theorem 1.2 (i) and Theorem 2.3.

Corollary 3.3. Assume (H1) holds. If there exists ¢ € I such that Ky(t) < oo for all 0 <t < T, then
for p € [1,0) and f € C' (M) such that f is constant outside a compact set,

_ _ _ t e Mdr
(VP 1y S 119 le (P |V £17/ )= Dpem KT g <5 <y <

holds for Kép) (r) ;= inf{9, '(L, + 9,) 0, — (p+ 1)|V"log ¢,|?}. Moreover, for f € By,(M),

1 4 1 (2) -1
VP, fI2 < 3 [/ 9u]|2> 5 K gy | P2 0<s<t<T. (3.13)
S

Proof. The proof is due to [36, Corollary 3.2.8]. We include it in Appendix for readers’ convenience.
O

We apply the coupling method to the proof of the Harnack inequality (See Theorem 1.2 (ii)). In
[35], F.-Y.Wang constructed a proper coupling process to get the Harnack inequalities on manifolds
with fixed metric. Here, we should modify the idea to our setting, where the main difficulty is to
construct the coupling process such that it does not miss the information from the Ricci curvature.
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Proof of Theorem 1.2. (Part I: Harnack inequality) Without loss of generality, we assume s = 0 and
t=T. Now, let x,y € M and T € (0,T;) be fixed. To simplify the discussion, we also consider the
process generated by L/ = ¢?(A; +Z;) on a manifold carrying convex flow and suppose

RicZ > ki(t) and dig <ko(t)

for some ky,k> € C([0,T)).
Let X; solve (3.7) with Xy = x. For some strictly positive function & € C(]0,T)), let ¥; solve

@(Y)pi(Xe, i)

4, = V20,(Y,) P, v u;dB; + ©>Z,(Y,)dt —
24 (Pt( f) Xy, U Ay + @ ( t) (Pz(Xt)gl

V' i (X:, ) (Y;)dt + N, (Y;)dl,,
Yo =y, (3.14)

where [, is the local time of ¥; on dM. In the spirit of Lemma 3.1, we may assume that the cut-locus
of M is empty such that the parallel displacement is smooth. Let

p: (X:,Y;)
V2& (X))

By a similar calculation as in (3.11), we have

dB; = dB, + ——"_y~'V'p,(-,¥,)(X,)dr, 0<t<T. (3.15)

dps (X, Y:) <V2(u (%) — @1 (1)) (Vi (-, Y)(X,),uedBy ), + Ko (1) ps (X, Yr)dr

—pt()g’mdt, 0<t<T, (3.16)
which implies
(X, %) _2 )
a ét QHp %[Pz(xz,n)(%(Xt)—<pt(Yz))<V’pt(~,z)(x,),utd3,>t
pt()?m (& — IV @12 +2Ke (1) & +2] dr, 3.17)
t

where Ky, is defined as in (3.12). Therefore, by letting

T " ;
& = (2—9)/ e 2 i Ko (F IV erll=)drgs 1+ e 0,T), 6 € (0,2),

t

we know that &1 € [0, T) solves the following equation,
— 2V @ |2 +2Kp(1))E+E =6
Combining this with (3.17), we obtain

dpt(XhYt) 2v/2 pi(X:,Y)?
& -G &

Then, the following discussion is similar to that of [35, Theorem 1.1], we omit it here. OJ

0 (X0, Y) (@1 (Xe) — 0, (X)) (V' pi (-, Y) (X, ), u,dBy ), — 6dr.  (3.18)
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3.3 Application to Ricci flow

Now, we turn to consider the Ricci flow (1.7). Assume that {g; },cjo0,7], T € (0,) is a complete
solution to the equation (1.7). Let {P;;}o<s<;<7 be the Neumann diffusion semigroup generated by
A;. Then, it is obvious to see that Py 7 f is a solution to the following heat equation

Qu(x,)(t) = —Au(,1)(x), (x,) €M x[0,T];
(3.19)
Nou(-,t)(x) =0, x€dM,te€[0,T).

When A > 0, the corresponding gradient estimate and Harnack inequality can be derived from Theo-
rem 1.1 directly.

Theorem 3.4. Suppose {g:},c(0,1) is a complete solution to (1.7) with A > 0. Then for f € Cc'(M)
such that f is constant outside a compact set, P 7 f, s € [0,T] is a solution to (3.19) and

\V'Pirfls < Por|VIflr, 0<s<T. (3.20)

Moreover, for f € %,(M) and s € [0,T)|,

(Porf)P(x) < PorfP(y)exp P P70 (3.21)

4(p—1)(T —s
Remark 3.5. It is easy to see that these results above are similar to that for the Ricci flat manifold.
Indeed, (3.20) and (3.21) also can be derived when {g,} is a convex Ricci flow. We would like to
indicate that Pulemotov [25] gave the proof of the short time existence of the convex Ricci flow.

When A < 0, we need more curvature information around the boundary to deal with this case. Let
Sect; be the section curvature of M and pta (x) be the distance between x and dM associated with the
metric g;. The required assumption is presented as follows.

(H2) There exist positive constants k,ro,k; such that |Ric;| < k and on the set /M := {x € M :
p? (x) < ro}, pf is smooth and Sect, < k;.

_n_

If this assumption holds for ry < 5 N
in Theorem 1.2 can be estimated. Thus, we have the gradient estimates for the solution to (3.19) by
using Theorem 1.2 (i) as follows.

then by constructing explicit ¢, the constants in terms of ¢

Theorem 3.6. Suppose that {g:},c(0,r] is @ complete solution to (1.7) with A < 0. Assume that the

assumption (H2) holds for 0 < ro < ﬁ Then, for f € C'(M) such that f is constant outside a

compact set, Ps 7 f is a solution to (3.19) and

VP fl, < (1 _ 7”;") IV Fllexp {(T ) [—7;‘1 + <4d— 121> PN —/ldrok+2k] } .
0
(3.22)

Proof. From the assumption (H2), we deduce that Ric, < —k and d,g, = 2Ric, < 2k, which leads to
the following estimate

Ko(1) < inf{¢/A¢} ™ +inf{d;log ¢}~ + 2k + (4d —6)||V' 2, < oo.
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We now turn to construct an explicit ¢ € C'2([0,T] x M). Let
h(s) =cos(\/k; s), forall s>0. (3.23)

Then 0 < h(s) < 1 for s € [0, 77=]. Moreover, let

%

s = A(1=nh(ry))"!
0= 0lro k) = T o)) s

(3.24)

Consider
¢ :=@op’, forall rel0,T],

where
ro

.
0(r) =143 [ (h(s) ~h(r0))' s [ (h(w) ~ h(r))~du
0 SArQ
By an approximation argument, we may regard ¢ as C*([0,7] x M)-smooth. Obviously, ¢ > 1 and
Nslog ¢y = —A = —Il, forall s € [0,T]. So, ¢ € 2.
Next, we need to estimate inf{ @A, ¢}, inf{d,log¢,}~,
and k. As h is decreasing on [0, o], we conclude that

V'¢||2 and ||¢|. in terms of A,d, ro

8(h(p? Aro) —h(ro)' =[5 (h(u) —h(ro))"" du

ta/\ro

¢

or
|9k log ¢¢| = atpta = ?Owﬂ)ta‘, pta < rp.
z

Moreover, using the following formula,

PR N A P
op? =35 [ 4 (36).76))ds, p7 <ro
where 7 is the minimal curvature from x to dM, we obtain
10, log o] < 873k, p? < ry. (3.25)

Similarly, it holds
V' < 6213 (3.26)

In addition,

o o o }"2
[ 65) =m0 [ ) o)< [ a5 =2,

which implies
0 1-d 0 d—1 8rj
|y¢,||m=1+5/0 (h(s) = h(ro)) ds/ (h(w) (o))" "du < 1+ 22, (327

Moreover, since II, = A < 0 and Sect; < k; on 850 (M), according to the Laplacian comparison theorem
for psa (see [20, 21]), we have

. 1
Ay > <W+<p”> (p?) = ~8,0<p? <ro (S */'?”) L 1e[0,7).
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Combining this with (3.27) implies

) 2
it} > 0180 > - (14528 ) o7 (.29

Concluding from (3.25), (3.26), (3.27) and (3.28), it suffices for us to estimate 8. Since —h' is
increasing and / is decreasing, by the FKG inequality, we have

o —10 70 (h(s) — h(ro))?~ "W (s)ds  r
[ ) )y as =~ (h(_)fgofl,((f))is e Ll

By this and (3.24), we obtain 6 < —Ad/ry. Concluding all these estimates above, we have

Kpi(t)” <k-— 7;;1 + (d — ;) A2d%; Kyo(t) < —2Adkrg +2k. (3.29)

Then,
Ky(1) <2k — ’15 + <4d — 121> A%d* — Adrok, (3.30)
which leads to complete the proof. O

In addition,

K (r) = inf{6," (Ad,) +drlog ¢, — (p+ 1)V log ¢,|2}
> -0 — 6rok — 52r%(p—|— 1)
Ad

> 25 4 Adrok— AR (p+1). (3.31)
ro

Using this estimate and Corollary 3.3, we have the following result directly.

Corollary 3.7. Under the some conditions of Theorem 3.6, we have that for f € C' (M) such that f
is constant outside a compact set and 0 < s < T,

Arod s 1)\ (p—
VP 1 fls < <1 20 >e(T ‘)K”(Ps,z|VTf|I;/(p 1))(17 D/p
where

Moreover, we have

A,rod
2

2
K
’VSRY,Tf’? S <1 ) 1 _621(22(3‘—7") PS,Tf27 RS [O7T)7 f € ‘@b(M)

Now, we turn to consider system (1.7)-(3.19). By Theorem 1.2, we have
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Theorem 3.8. Under same condition of Theorem 3.6, for p > (%)2 and 0 < s < T, the Harnack
inequality

(Prf()? < Pirf?(x)exp { VP(/P—1)Kps(x,y) }

88,12(\/p—1)/(2— Arod) — 8,)(1 — 2K(-T))

S —Arod VPl
holds for 8, := max { T amd 2dred | 414

5 Ad 9
K="= <4d— 2> A2d? 4 2k — Adkry.
0

Proof. It is easy to see from (3.27) that

—Arod 2
S — 71—'f —1y 0% Ar = inf 71>7.
T t:[l(lg)ﬂ(sup [0} infg, ) < 2 Arod’ T [O}I}IXM¢ — 2—Arod

Combining this with the estimates obtained in the proof of Theorem 1.2, we complete the proof.
O

4 Equivalent functional inequalities for curvature conditions

In this section, we present the gradient estimates for the curvature conditions (1.1), which is an
extension of [12, Theorem 4.3] for the time-inhomogeneous manifold without boundary. This part is
mainly based on [32, Theorem 1.1] for the case when the metric is independent of time.

Theorem 4.1. Let p € [1,0) and p = p AN2. Then for any [s,t] C [0,T.), K € Cy([s,t] x M) and
o € Cp([s,t] x IM), the following statements are equivalent to each other.

(i) %% > K, and 11, > o, hold for any 0 <t < T..

(i) VP, f(x)[f <E{V'fIF (X;)exp[—p [l K(r,X,)dr — p [l 0(r,X,)dL,]|X; = x} holds for x € M,
0<s<t<T,andfcC"(M)suchthat f is constant outside a compact set.

(iii) Forany0<s<t<T, x €M and positive f € C' (M) such that f is constant outside a compact

set,
X5 = X} )

: 2 1/p\5
P[Ps,tf4<;(fvit)f /P)P] < E{’th‘IZ(Xt)/te—ZjZl((r,X,)dr—Zj;G(r,X,)dl,du

where when p = 1, the inequality is understood as its limit as p | 1:

Py(f*log ) (x) = (Poy f*log Py ) (x)
Xs = x} .

<A4E { IV f1 (%) / | 2K X )2 o0 gy
N

(iv) Forany0<s <t < T, x €M and positive function f € C' (M) such that f is constant outside

a compact set,

VP15 (x)
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< Pt~ (B
> p"(p"' B 1) f; (E{(Pu’tf>27p~(Xu)e—Zj;“K(an)dr—Zj:rM o(rX,)dl, |Xc _ X}) -1 du’

where when p = 1, the inequality is understood as its limitas p | 1:

PY 10 - PS‘ 10 PS X
VR FP) < BN (Bulos R
/ (E {Pqu(Xu)eizjsuK(":Xr)drfzjxy o(rX,)dl, )(‘v :X}) du

Proof. By the derivative formula established in Theorem 2.3, it is easy to derive (ii) from (i); then
according to Theorem 2.7, we see that (ii)—(iv) implies (i); and finally, taking f € C*(M) and f is
constant outside a compact set, we derive (iii), (iv) from (ii) by a similarly discussion as in the proof
of [36, Theorem 2.3.1] for the case with constant metric. We just take the proof of “(ii) = (iii)” for
example. A similar argument leads to “(ii)= (iv)”.

We again assume s = 0. As the boundedness of |[V'P.,f|. on [0,f] x M is verified above, by using
the derivative formula in Theorem 2.3,

3 Bu(Pus P ()

du
= p(p= P (Bua )21V P72}
M= Dl 212 P ™7 ) ()

¥ (\V’ PR 2l K0X)ar-2 [ o(rX,)d,

<

7))

holds for x € M, 0 < s <t < T. and f € C'(M) such that f is constant outside a compact set. Since
2 — p € [0, 1], by the Jensen inequality and the Markov property, we arrive at

d 4(p—1 1 v
&PO,M (Pu,th/p)p(x) < (Pp )Ex { V' £17 (X )e 2K Xrar=2 s G(an)d[r} :

Integrating with respect to u over [0,¢] yields (iii) for s = 0. O

Let ¢ : Rt — R™ be a non-decreasing function, we define a cost function C;(x,y) = @(p;(x,y)).
To this cost function, we associate the Monge-Kantorovich minimization between two probability
measures on M,

Wo(uv)= inf [ Glny)dn(e). @)
nees (u,v) JMxm

where €’ (1,V) is the set of all probability measures on M x M with marginal yu,v € &(M) and
2 (M) being the space of all probability measure on M. We denote

Wpa (1, v) = (Wyp (1, V)7

the Wasserstein distance associated to p > 0.

We now list more equivalent statements for (1.2), which is an extension of [12, Theorem 4.3] to
manifolds with boundary carrying convex flows. See also [31, 33, 34] for the corresponding conclu-
sions on the constant manifold with boundary.
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Theorem 4.2. Let p € [1,00), K € C([0,T..)) and {ps; }o<s<i<1, be the heat kernel of {Ps;}o<s<i<T.
associated with the volume measure U; with respect to the metric g;. Then the following assertions
are equivalent to each other.

(i) (1.2) holds.

(ii) Foranyx,ye Mand0<s<t<T,

Wp,t(sxPsJ, SyPs,t) S ps(xvy)e_,[f K(}’)dr‘

(ii") Forany uy,p € M) and 0 <s <t <T,

Wy (VP s, VaPy) < W, (v, Vz)eff; K(rdr,

(iif) When p > 1, for any f € B, (M) and 0 <s <t < T,

o -1
(Pusf)P(x) < P f?(y)exp | 2 / A KWy ) pi(x,y)].
’ ’ Ap=1)\Js :
(iv) Forany f € B (M) with f >1and0<s <t <T,
o -1
Ptog () <logu )+ (4 [ @EROar) )
(v) When p> 1, forany 0 <s <t <T,and x,y € M,

1
ps,t(x,y))”‘ p < /t 2 7 K(u)du >
s 3 d S — 5 s d
/Illp J(x y) <pAc,t(y7Z) nu“t( Z) exXp [4(p_ 1)2 B € r

(vi) Forany0<s<t<T,andx,y €M,

Pst( ) 2 < /t 2 7K (u)du )1
5. (X, ((dz) <ps(x,y)( 4[| es dr| .

-1

p: (x,y)] :

(vii) ForanyO0<s<u<t<T.and 1 < q < q such that

o -1 B ‘/‘S[erfK(r)drdT
g1 —1 N fg“eZK['fK(r)drdT’

4.2)

it holds 1
{PualPusf)" ) < (P f)n , f € By (M).

(viii) Forany0<s<u<t<T,and0< g2 < q1 or g2 < q1 < 0 such that (4.2) holds,

(P f)ii < {Pou(Pusf)2}e, £ B (M).
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(ix) Forany0<s<u<t<T.and f € C'(M) such that f is constant outside a compact set,

V3P f|7 < e PRKOIp (v p|P,

(x) Forany 0 <s < u <t < T. and positive function f € C'(M) such that f is constant outside a
compact set,
(PA2)[Puf? = (P f? 7" D)P]
4pr2—1)

4 "t
< / 672‘]“ K(r)drdu 'PS‘,Z‘V[f|t2'
S
When p = 1, the inequality reduces to the log-Sobolev inequality
4 t
Py (f2log f2) = (Puf?)log Py, f> < 4/ e 2K p |V FI7.
S

Proof. First, by Theorems 2.1, 3.1 and 4.1, the inequalities (ii)—(x) can be derived from (i) by a
similar discussion as in [12, Theorem 4.3] for the case without boundary.

Then, we assume (iv) and prove (i). For a fixed point x € M°, t € [0,T.) and X € T,M, take
f € C§(M) such that V' f = X, Hess';(x) = 0 and f = 0 in a neighborhood of M. The argument in
[12, Theorem 4.4] works well for this case, i.e. 7 > K(t) can be induced from (iv).

So, it only leaves for us to derive II; > 0. By Theorem 2.8, it is obvious to see that we only need
to consider the term with order v/¢. So we do not need to care about the terms, which come from the
time derivative about the metric, since they at least have order ¢. Therefore, by a similar procedure
as in time-homogeneous case (see [32]). We conclude that M is convex under the metric g, for all
t€[0,T,). O

S Appendix

Proof of Theorem 3.3. Without loss of generality, we also consider s = 0 for simplicity.

(a) By the Itd formula, we have
49, (%) = (V' P(X,),udB, ) + (L " (%) + 3,0, " (X,))dr + Ny " (X,
< <vf¢,—P (X,),u,dB,>t —p P(X){KY (1)dr + Ny log ¢,(X,)dl, }.

So, M; := ¢, P(X;)exp [p I Kép ) (s)ds+ p Jo Nslog ¢ (Xs)dls} is a local martingale. Thus, using the
Fatou lemma and noting that ¢, > 1, we have

B {0 e o [ K s [ Niogo.xar |

I/\Cn t/\Cn

< liminfE* {(j),_p(Xan)exp [p N;log (ps(Xs)dls] }
n—yoo 0

<, (x) < 1.

Ky (s)ds+p A

Therefore,

1 t
E*exp [p/ Nslogqbs(Xs)dls] < Hqﬁ,Hfoe_pfOKg(s)ds, t>0. 5.1
0
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Since II; > —N; log ¢;, by combining this with Theorem 2.3 for ¢ (z,-) = —N; log ¢, and Theorem 1.2
(i), we obtain

V0P, £18(x) <(Pos V' £17/ 7)Y P~ () B 0|7
<RI ) Eenp | [ Nelog .65
<[1Ql12.(Pos IV 11777 ) P71 ()P o Ko
Therefore, the first inequality holds.

(b) Let

s -2 2f6‘Kéz)(r)drd
h(S) fO ||¢ ||oo l/l’ s€E [O,t].

1 9ulz2e B8 0 gy
Then the following inequality follows from the second formula in (2.7) and (5.1) for p = 2,

\VOPy, fI3 <

Pof? [
ML [ 520 Pas

P, 12 t S
< O’tf]E/ ' (5)?|s|% exp [—2/ Kd(f)(r)dr] ds
2 0 0
1 4 u g2 (dr -1
<3| [1012e 85 ova a

We complete the proof of (3.13). O
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