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Abstract. Let Lt := ∆t +Zt for a C1,1-vector field Z on a differentiable manifold M with bound-
ary ∂M, where ∆t is the Laplacian operator, induced by a time dependent metric gt differentiable
in t ∈ [0,Tc). We first establish the derivative formula for the associated reflecting diffusion
semigroup generated by Lt ; then construct the couplings for the reflecting Lt -diffusion process-
es by parallel displacement and reflection, which are applied to gradient estimates and Harnack
inequalities of the associated heat semigroup; and finally, by using the derivative formula, we
present a number of equivalent inequalities for a new curvature lower bound and the convex-
ity of the boundary, including the gradient estimates, Harnack inequalities, transportation-cost
inequalities and other functional inequalities for diffusion semigroups.

1 Introduction and main results

It is well known that, functional inequalities, for instance, gradient inequalities and dimension-
free Harnack inequalities, are useful tools on stochastic analysis to investigate the behavior of the
underlying processes on Riemannian manifolds, see, for example, [9, 10, 14, 18, 36]. Among all
those work, one usually make the assumption that the metric is fixed. However, when it comes to the
case that metric is time-varying, a question arises naturally: how about functional inequalities on these
manifolds? In recent year, M. Arnaudon, K. Coulibaly and A. Thalmaier [1] constructed gt-Brownian
motions (i.e., the diffusion process generated by Lt =

1
2 ∆t) on manifolds without boundary carrying a

geometric flow, and established the Bismut formula under the Ricci flow, which in particular implies
the gradient estimates of the associated heat semigroup. In [12], the first author studied functional
inequalities, including on manifolds carrying geometric flow for the diffusion semigroup. Motivated
by the aforementioned results, this article aim to extends these results in [1, 12] to the case with
boundary.

The setting for our work is a differentiable manifold with boundary equipped with a geometric
flow. More precisely, let M be a d-dimensional differentiable manifold with boundary ∂M, which
carries a one-parameter C1,∞-family of complete Riemannian metrics {gt}t∈[0,Tc), where Tc is the
time when the curvature may blow up. Consider the elliptic operator Lt := ∆t + Zt , where ∆t is
the Laplacian operator associated with the metric gt and (Zt)t∈[0,Tc) is a C1,∞-family of vector fields.
Let (Xt) be a reflecting diffusion process generated by Lt (called the reflecting Lt-diffusion process),
which is assumed to be non-explosive. This assumption immediately implies that this process then
corresponds in a natural way to a strongly continuous semigroup Ps,t , i.e.,

Ps,t f (x) = E( f (Xt)|Xs = x), 0≤ s≤ t < Tc.
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In this article, we fix on extending the former discussions to our content for the semigroup Ps,t . Com-
pared with F.-Y. Wang’s work on functional inequalities over Riemannian manifolds with boundary
(see for example [31, 32, 33, 34, 35, 36] and the reference therein), we need make some necessary
modifications to our inhomogeneous context, since e.g. geometric quantities are time-dependent and
the underlying process is time-inhomogeneous.

Before moving on, let us briefly recall some known results in the time-inhomogeneous Rieman-
nian setting without boundary. K. Coulibaly [2] investigated the optimal transportation inequality by
constructing horizontal diffusion processes. Then, K. Kuwada and R. Philipowski [22] studied the
non-explosion of gt-Brownian motions under the super Ricci flow, and K. Kuwada [23] developed the
coupling method to estimate the gradient of the semigroup. Very recently, the author [12] has consid-
ered the construction of coupling processes and some important functional inequalities on manifolds
without boundary carrying a geometric flow. All those works lay solid foundation for our study.

Let ∇t be the Levi-Civita connection associated with the metric gt . For simplicity, we introduce
the notation: for X ,Y ∈ T M,

RZ
t (X ,Y ) := Rict(X ,Y )−

〈
∇

t
X Zt ,Y

〉
t −

1
2

∂tgt(X ,Y ),

where Rict is the Ricci curvature tensor with respect to the metric gt , and 〈·, ·〉t := gt(·, ·). Define the
second fundamental form of the boundary with respect to gt by

IIt(X ,Y ) =−
〈
∇

t
X Nt ,Y

〉
t , X ,Y ∈ T ∂M,

where Nt is the inward unit normal vector field of the boundary associated with the metric gt . If
IIt ≥ 0 for all t ∈ [0,Tc), then the geometric flow {gt}t∈[0,Tc) is called to be convex. In fixed metric
case, functional inequalities are always deduced under the Bakry-Emery curvature condition. In this
paper, we begin our discussion by using the following curvature constraints:

RZ
t ≥ K(t, ·) and IIt ≥ σ(t, ·) (1.1)

for some continuous functions K,σ ∈C([0,Tc)×M). Here and in what follows, for any two-tensor
Tt and any function f , we write Tt ≥ f if Tt(X ,X)≥ f 〈X ,X〉t , for X ∈ T M and t ∈ [0,Tc). Compared
with the usual Bakry-Emery curvature condition, the time derivative about the metric will become a
new important term involved in the curvature condition.

Let ρt be the Riemannian distance and | · |t be the norm associated with the metric gt . When the
geometric flow is convex, we have the first main result of this paper.

Theorem 1.1. For any K ∈C([0,Tc)), the following statements are equivalent to each other.

(i) The following curvature condition holds,

RZ
t ≥ K(t) and IIt ≥ 0 (∂M 6=∅) for all t ∈ [0,Tc). (1.2)

(ii) The gradient inequality

|∇sPs,t f |s ≤ e−
∫ t

s K(r)drPs,t |∇t f |t , 0≤ s≤ t < Tc (1.3)

holds for f ∈C1(M) such that f is constant outside a compact set of M.
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(iii) For any p > 1, 0≤ s < t < Tc and f ∈B+
b (M),

(Ps,t f )p(x)≤ Ps,t f p(y)exp

[
p

4(p−1)

(∫ t

s
e2
∫ r

s K(u)dudr
)−1

ρ
2
s (x,y)

]
. (1.4)

We intend to use the coupling method to prove that (1.2) implies (1.3) and (1.4). It is well known
that coupling method is a useful tool in stochastic analysis. It is remarkable that M.-F. Chen and
F.-Y. Wang [9, 10, 11] gave subtle estimates about the first eigenvalue on Riemannian manifolds by
constructing suitable coupling processes. Note that K. Kuwada [23] first constructed the coupling
processes for Lt-diffusion processes on manifolds without boundary via discrete approximation. In
our recent work [12], we gave a direct construction for general coupling processes on manifolds
without boundary. Here, we modify this proof to our setting.

On the other hand, to prove that each of (1.3) and (1.4) implies the curvature condition (1.2),
we need to use the derivative formula to characterize RZ

t and IIt first. In the following section, we
construct a series of Hsu’s multiplicative functionals to establish the derivative formula (see Theorem
2.3 below). When the metric is independent of t, our construction is due to [36, Theorem 3.2.1] for
the constant metric case.

In fact, it is more difficult for us to deal with the case carrying the non-convex flow, since it is
hard to control the effect from the boundary by using the coupling method. A direct thought is to
make a conformal change of the metrics such that the new flow becomes convex. When the metric
is independent of t, this method is successfully applied to the non-convex manifold, see [30, 33, 35].
First, let us introduce an important set:

D = {φ ∈C1,∞([0,Tc)×M) : infφt = 1, IIt ≥−Nt logφt}. (1.5)

Then, by [30, Lemma 2.1], for φ ∈D , the new flow g̃t := φ
−2
t gt is convex. Moreover, we are required

to having the following assumption on φ , RicZ
t , and ∂tgt to continue our discussion.

(H1) Let d ≥ 2. There exist functions K1,K2 ∈C([0,Tc)) such that

RicZ
t := Rict −∇

tZt ≥ K1(t), ∂tgt ≤ K2(t), (1.6)

and φ ∈D such that ‖∇tφt‖∞ < ∞, ‖φt‖∞ < ∞ and

Kφ ,1(t) : = inf
M

{
φ

2
t K1(t)+

1
2

Ltφ
2
t −|∇t

φ
2
t |t · |Zt |t − (d−2)|∇t

φt |2t
}
>−∞,

Kφ ,2(t) : = sup
M
{2∂t logφt}+K2(t)< ∞,

where ‖∇t f‖∞ := supx∈M |∇t f |t(x).

If this assumption holds, then by constructing suitable coupling processes, we have the second main
result of this paper.

Theorem 1.2. Suppose that (H1) holds and

Kφ (t) := K−
φ ,1(t)+

1
2

Kφ ,2(t)+ [2‖φtZt +(d−2)∇t
φt‖∞ +d‖∇t

φt‖∞]‖∇t
φt‖∞ < ∞.

Then the following conclusions hold.
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(i) For any f ∈C1(M) such that f is constant outside a compact set,

|∇sPs,t f |s ≤ ‖φt‖∞‖∇t f‖∞e
∫ t

s Kφ (r)dr, 0≤ s≤ t < Tc.

(ii) For 0≤ s < t < Tc, let δs,t = 1− supr∈[s,t] ‖φr‖−1
∞ , λs,t = inf(r,x)∈[s,t]×M φ−1 and

δp = max
{

δs,t ,
λs,t

2
(
√

p−1)
}
.

Then for p > (1+ δs,t
λs,t

)2, x,y ∈M and f ∈Cb(M), it holds

(Ps,t f (y))p ≤ Ps,t f p(x)exp

{ √
p(
√

p−1)ρs(x,y)

8δp[(
√

p−1)λs,t −δp]
∫ t

s e−2
∫ r

s (Kφ (u)+‖∇uφu‖2
∞)dudr

}
.

As an important application of the induced conclusions above for general geometric flow, we
consider the Ricci flow with umblic boundary as follows: for λ ≥ 0,

∂

∂ t g(x, ·)(t) = 2Ric(x, t), (x, t) ∈M× [0,T ];

II(x, t) = λg(x, t), x ∈ ∂M.

(1.7)

Shen [27] proved the short time existence of the solution to the above equation. We also refer the
reader to [3] for more geometric explanation for this Ricci flow. To our knowledge, there are few
references about gradient estimate and Harnack inequalities for the solution to the heat equation
under the Ricci flow carrying non-convex umbilic boundary. In Section 3.3, we will apply Theorems
1.1 and 1.2 to establish these inequalities for this system; see Theorems 3.6 and 3.8 below.

The rest parts of the paper are organized as follows. In Section 2, we construct the reflecting
Lt-diffusion processes, prove the Kolmogorov equations and then establish the derivative formula for
the associated semigroup. In Sections 3, we turn to prove Theorems 1.1 and 1.2 by constructing
the coupling processes, which are applied to the Ricci flow with umbilic boundary. In Section 4,
some important inequalities including transportation-cost inequality, Harnack inequalities and other
functional inequalities are proved to be equivalent to the lower bound of RZ

t and the convexity of the
boundary.

We end this section by making some conventions on the notations. Let Bb(M) be the set of all
measurable functions and Cp

0 (M) the set of all Cp-smooth real functions with compact supports on
M. For any function f and ϕ respectively defined on [0,Tc)×M and [0,Tc)×M×M, we simply write
ft(x) := f (t,x) and ϕt(x,y) := ϕ(t,x,y), t ∈ [0,Tc),x,y ∈M. In addition, ‖ ft‖∞ := supx∈M f (t,x) and
‖ f‖∞ = sup(t,x)∈[0,Tc)×M f (t,x). For any time-depending vector field Vt , we write ‖Vt‖∞ := ‖|Vt |t‖∞

for simplicity.

2 Preliminaries

In Subsection 2.1, we briefly introduce the construction of reflecting Lt-diffusion processes. In
Subsection 2.2, the forward and backward Kolmogorov equations are established for Neumann dif-
fusion semigroup. In Subsection 2.3, a derivative formula is established, which is further applied to
characterizing RZ

t and IIt .
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2.1 Reflecting Lt-diffusion processes

Let F (M) be the frame bundle over M and Ot(M) the orthonormal frame bundle over M with
respect to the metric gt . Set p : F (M)→ M be the projection from F (M) onto M. Let {ei}d

i=1
be the canonical orthonormal basis of Rd . For any u ∈ Ot(M), let Ht

X(u) be the ∇t-horizontal lift
of X ∈ TpuM and Ht

i (u) = Ht
uei
(u), i = 1,2, · · · ,d. For any u ∈ F (M), let {Vα,β (u)}d

α,β=1 be the
canonical basis of vertical fields over F (M).

Let Bt := (B1
t ,B

2
t , · · · ,Bd

t ) be a Rd-valued Brownian motion on a complete filtered probability
space (Ω,{Ft}t≥0,P) with the natural filtration {Ft}t≥0. As in the time-homogeneous case, to con-
struct the reflecting Lt-diffusion process, we first construct the corresponding horizontal diffusion
process by solving the Stratonovich stochastic diffusion equation (SDE):

dut =
√

2
d

∑
i=1

Ht
i (ut)◦dBi

t +Ht
Zt
(ut)dt− 1

2 ∑
i, j

∂tgt(utei,ute j)Vi, j(ut)dt +Ht
Nt
(ut)dlt ,

u0 ∈ O0(M), pu0 = x ∈M,

where lt is an increasing process supported on {t ∈ [0,ζ ) : Xt := put ∈ ∂M}, where ζ := lim
n→∞

ζn and

ζn := inf{t ∈ [0,Tc) : ρt(pu0,put)≥ n}, n≥ 1, inf∅= Tc.

Similarly as explained in [1], the last term is essential to ensure ut ∈ Ot(M). Then, it is easy to see
that Xt := put solves the equation

dXt =
√

2ut ◦dBt +Zt(Xt)dt +Nt(Xt)dlt , X0 = x

up to the life time ζ . By the Itô formula, for any f ∈C1,2
0 ([0,Tc)×M) with Nt ft := Nt ft |∂M = 0,

f (t,Xt)− f (0,x)−
∫ t

0
(∂s +Ls) f (s,Xs)ds =

√
2
∫ t

0

〈
u−1

s ∇
s f (s, ·)(Xs),dBs

〉
s

is a martingale up to the life time ζ . So, we call Xt the reflecting diffusion process generated by Lt .
Throughout this paper, we only consider the case where the reflecting Lt-diffusion process is non-

explosive before Tc. In this case,

Ps,t f (x) := E( f (Xt)|Xs = x), x ∈M, 0≤ s≤ t < Tc, f ∈Bb(M)

gives rise to a Markov semigroup {Ps,t}0≤s≤t<Tc on Bb(M), which is called the Neumann semigroup
generated by Lt . Here and in what follows, E and P (resp. Ex and Px) stand for the expectation and
probability taken for the underlying process (resp. the underlying process starting from x ∈M).

2.2 Kolmogorov equations

Let
CN(L) = { f ∈C1,∞([0,Tc)×M),Nt ft |∂M = 0,(Lt +∂t) f ∈Bb(M), t ∈ [0,Tc)}.

In this subsection, we now introduce the Kolmogorov equations for Ps,t as follows.



6 LI-JUAN CHENG, KUN ZHANG

Theorem 2.1. For f ∈ CN(L), the following forward Kolmogorov equation holds,

∂

∂ t
Ps,t f (t,x) = Ps,t (Lt f +∂t f )(t,x), 0≤ s < t < Tc. (2.1)

Moreover, for f ∈Bb(M), there hold

(i) for any 0≤ t < Tc, P·,t f ∈C1,2([0, t]×M) and the backward Kolmogorov equation

∂

∂ s
Ps,t f =−LsPs,t f , 0≤ s < t < Tc, (2.2)

moreover,
NsPs,t f = 0, 0≤ s < t < Tc;

(ii) if |∇·P·,t f |· is bounded on [r, t]×M and t ∈ (0,Tc], then

∂

∂ s
Pr,sψ(Ps,t f ) = Pr,s

(
ψ
′′(Ps,t f )|∇sPs,t f |2s

)
, s ∈ [r, t],

where ψ ∈C2(R) with compact support in [inf f ,sup f ].

Proof. By using the Itô formula, the equality (2.1) follows directly. Moreover, (ii) can be calculated
by combining (2.1) and (2.2). Thus it suffices for us to prove (i).

We first show that there exists a solution u to the following equation: for 0≤ s≤ t < Tc,
∂

∂ s u(·,x)(s) =−Lsu(s, ·)(x), x ∈M;
Nsu(s, ·)(x) = 0, x ∈ ∂M;
u(t,x) = f (x), x ∈M.

(2.3)

First, it is easy for us to see from [17] that by replacing the Laplacian operator ∆t with ∆t +Zt , and
repeating the same argument as in the proof of [17, Theorem 2.1], there exists a fundamental solution
p(s,x; t,y) to the following equation{

∂

∂ s p(·,x; t,y)(s) =−Ls p(s, ·; t,y)(x);
limt↓s p(s,x; t, ·) = δx(·).

Then, by a similar discussion as in the proof of [16, Theorem 2 in Section 3], there exists a solution
u to the Neumann problem with the form:

u(s,x) =−
∫ t

s

∫
∂M

p(r,x; t,y)ψ(t,y)µ∂ ,t(dy)dr−
∫

M
p(s,x; t,y) f (y)µt(dy),

where ψ ∈C1
b([s, t]×M) and µ∂ ,t is the area of ∂M induced by µt . Thus by the Feymann-Kac formula,

we have
Ps,t f (x) = u(s,x) =

∫
M

p(s,x; t,y) f (y)µt(dy).

We then complete the proof.
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Remark 2.2. For fixed T ∈ (0,Tc), from Theorem 2.1, we see that Pt,T f is a solution to the following
heat equation with Neumann boundary condition,

∂tu(·,x)(t) =−Ltu(t, ·)(x), (t,x) ∈ [0,T ]×M,

u(T,x) = f (x), x ∈M,

Ntu(t, ·)(x) = 0, (x, t) ∈ ∂M× (0,T ].

(2.4)

Then let (XT
t )t∈[0,T ] be the reflecting L(T−t)-diffusion process with semigroup {Ps,t}0≤s≤t≤T . It is

obvious that PT−t,T f , t ∈ [0,T ] solves the Neumann problem
∂tu(·,x)(t) = Ltu(t, ·)(x), (t,x) ∈ [0,T ]×M,

u(0,x) = f (x), x ∈M,

Ntu(t, ·)(x) = 0, x ∈ ∂M, t ∈ (0,T ].

(2.5)

Actually, the theory, presented in this paper, is meant to be applied to the solution of (2.5).

2.3 Derivative formula and applications to characterizing RZ
t and IIt

This subsection is devoted to the derivative formula for the Neumann semigroup, which is further
applied to characterizing RZ

t and IIt .
Before moving on, let us introduce some basic notations first. For u ∈ Ot(M), the lift operators

RZ
t (u), IIt(u) ∈ Rd⊗Rd are defined by

RZ
t (u)(a,b) =

〈
RZ

t (u)a,b
〉
= RZ

t (ua,ub), IIt(u)(a,b) = IIt(pt
∂
ua,pt

∂
ub), a,b ∈ Rd ,

where for x ∈ ∂M, pt
∂

: TxM → Tx∂M is the project operator on (M,gt). We now introduce the
derivative formula for the Neumann semigroup first.

Theorem 2.3. Let 0≤ s < t < Tc and x∈M be fixed. Let K ∈C([0,Tc)×M) and σ ∈C([0,Tc)×∂M)
be such that RZ

t ≥ Kt and IIt ≥ σt . Assume that

sup
u∈[s,t]

E
(

exp
{
−
∫ u

s
K(r,Xr)dr−

∫ u

s
σ(r,Xr)dlr

}∣∣∣∣Xs = x
)
< ∞. (2.6)

Then there exists a progressively measurable process {Qs,r}s≤r≤t on Rd⊗Rd such that

Qs,s = I, ‖Qs,r‖ ≤ exp
[
−
∫ r

s
K(u,Xu)du−

∫ r

s
σ(u,Xu)dlu

]
, r ∈ [s, t].

Moreover, for any f ∈C1
c (M) with |∇·P·,t f |· being bounded on [s, t]×M, and h ∈C1([s, t]) satisfying

h(s) = 0,h(t) = 1, it holds

(us)
−1

∇
sPs,t f (x) = E

{
Q∗s,tu

−1
t ∇

t f (Xt)
∣∣Xs = x

}
=

1√
2
E
{

f (Xt)
∫ t

s
h′(r)Q∗s,rdBr

∣∣∣∣Xs = x
}
. (2.7)

To prove this theorem, we need the following two properties to investigate the short time behavior
of the diffusion process first.
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Proposition 2.4. Let Xt be a reflecting Lt-diffusion process with X0 = x ∈M, Then,

(a) if x ∈M◦, then for t0 ∈ [0,Tc), there exist constants r0 > 0 and c1 > 0 such that Bt0(x,r0) ∈M◦

and
Px(σr ≤ t)≤ c1e−r2/16t , r ∈ [0,r0], t ∈ [0,1∧Tc]

holds, where σr := inf{s : ρt0(Xs,x)≥ r, s ∈ [0,Tc)};

(b) there exist constants r0 > 0 and c2 > 0 such that

Px(σ̃r ≤ t)≤ c2e−r2/16t , r ∈ [0,r0], t ∈ [0,1∧Tc]

holds, where σ̃r := inf{s : ρs(Xs,x)≥ r, s ∈ [0,Tc)}.

Proof. First, we prove (a). Write ρt0(Xt) := ρt0(x,Xt) for simplicity. By taking smaller r0, we may
and do assume that Bt0(x,r0) ∈M◦ and ρt0 ∈C∞(M). By the Itô formula, we obtain

dρ
2
t0(Xt)≤ 2

√
2ρt0(Xt)dbt +C1dt, t ≤ σr

for some constant C1 > 0, where bt is a one-dimensional Brownian motion. Thus, for fixed t > 0 and
δ > 0,

Zs := exp
(

δ

t
ρt0(Xs)

2− δ

t
C1s−4

δ 2

t2

∫ s

0
ρt0(Xu)

2du
)
, 0≤ s≤ σr

is a supermartingale. Therefore,

Px(σr ≤ t) = Px
{

max
s∈[0,t]

ρt0(Xs∧σr)≥ r
}
≤ Px

{
max
s∈[0,t]

Zs∧σr ≥ eδ r2/t−δC1−4δ 2r2/t
}

≤ exp
[
C1δ − 1

t
(δ r2−4δ

2r2)

]
. (2.8)

The proof of (a) is completed by taking δ := 1/8.
Next, we show (b). Let φ ∈C1,∞([0,1]×M) be constant outside B = {(t,y)∈ [0,1]×M : ρt(x,y)≤

r0} such that φ ≥ 1 in B, and the boundary ∂M in Bt(x,r0) is convex under g̃t := φ
−2
t gt (see [30] for

the existence of φ ). Let ∆̃t and ∇̃t be respectively the Laplacian and the gradient operators induced
by the metric g̃t . Then, we have

φ
2
t Lt = ∆̃t +(d−1)φt∇

t
φt +φ

2
t Zt =: ∆̃t + Z̃t ,

and Xt solves the SDE:

dIXt =
√

2φ
−1
t utdBt +φ

−2
t Z̃t(Xt)dt + Ñt(Xt)dlt , (2.9)

where Ñt is the inward unit normal vector field of the boundary associated with the metric g̃t and dI

denotes the Itô differential1 on M. Let ρ̃t be the Riemannian distance under the metric g̃t . By taking

1In local coordinates, the Itô differential for a continuous semi-martingale Xt on M is given by (see e.g. [13])

(dIXt)
k = dXk

t +
1
2

d

∑
i, j=1

Γ
k
i, j(t,Xt)d

〈
X i,X j

〉
t
, 1≤ k ≤ d,

where Γk
i j(t,x) are the Christoffel symbols with respect to the metric gt .
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smaller r0, we may and do assume that ρ̃2 ∈ C1,∞(B). Then, we have that there exists a constant
C2 > 0 such that

(∂t +Lt)ρ̃
2
t (x, ·)(y) = 2ρ̃t(x,y)Lt ρ̃t(x, ·)(y)+2ρ̃t(x,y)∂t ρ̃t(x,y)+2|∇t

ρ̃t |2t ≤C2

holds on B. By the Itô formula, we further obtain

dρ̃
2
t (x,Xt)≤ 2

√
2φ
−1
t ρ̃t(x,Xt)dbt +C2dt, 0≤ t ≤ σr0 .

The remainder of the proof is similar to the proof of (a).

Proposition 2.5. Let x ∈ ∂M and σ̃r be the same as in Proposition 2.4 for a fixed constant r > 0.
Then,

(a) Exeλ lt∧σ̃r < ∞ for any λ > 0;

(b) Exlt∧σ̃r =
2
√

t√
π
+O(t3/2) holds for small t > 0.

Proof. Due to Proposition 2.4 (b), the proof is similar to that of [31, Theorem 2.1] for constant man-
ifolds, we omit it here.

Proof of Theorem 2.3. Without loss of generality, we assume s = 0, and simply denote Q0,t by Qt .
Following the idea of [18, Theorem 4.2], we need to construct the multiplicative functional Qs

first. For any n≥ 1, let Q(n)
s solve the equation

dQ(n)
s =−RZ

s (us)Q
(n)
s ds− IIs(us)Q

(n)
s dls

−1
2(n+2σ(s,Xs)

+)
[
(Q(n)

s )∗u−1
s Ns

]
⊗
(
u−1

s Ns
)

dls,

Q0 = I.

It is easy to see that for any a ∈ Rd ,

d‖Q(n)
s a‖2 = 2

〈
dQ(n)

s a,Q(n)
s a
〉

=−2RZ
s (usQ

(n)
s a,usQ

(n)
s a)ds−2IIs(ps

∂
usQ

(n)
s a,ps

∂
usQ

(n)
s a)dls

− [n+2σ(s,Xs)
+]
〈

usQ
(n)
s a,Ns

〉2

s
dls

≤−2‖Q(n)
s a‖2 [K(s,Xs)ds+σ(s,Xs)dls]−n

〈
usQ

(n)
s a,Ns

〉2

s
dls,

where ‖ · ‖ is the operator norm on Rd and 〈·, ·〉 denotes the inner product on Rd . Therefore,

‖Q(n)
s ‖2 ≤ exp

[
−2
∫ s

0
K(r,Xr)dr−2

∫ s

0
σ(r,Xr)dlr

]
< ∞, (2.10)

and for any m≥ 1,

lim
n→∞

Ex
∫ t∧ζm

0
‖(Q(n)

s )∗u−1
s Ns‖2dls

≤ lim
n→∞

(
1
n
+

1
n
Ex
∫ t∧ζm

0
2‖Q(n)

s ‖2 [|K|(s,Xs)ds+ |σ |(s,Xs)dls]
)
= 0, (2.11)
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where the second equality follows from Proposition 2.4 (b), (2.10) and the boundedness of K and σ

on {(s,y) : ρs(x,y)≤ m, 0≤ s≤ t}. Combining this with (2.10) and (2.6), we see that

Ex
∫ t

0
sup
n≥1
‖Q(n)

s ‖ds+Ex sup
n≥1
‖Q(n)

t ‖< ∞.

Thus, there exists a subsequence {Q(nk)} and a progressively measurable process Q such that for any
bounded measurable process (ϕs)s∈[0,t] on Rd and any Rd-valued random variable η , it holds

lim
k→∞

{
Ex
∫ t

0
(Q(nk)

s −Qs)ϕsds+Ex(Q(nk)
t −Qt)η

}
= 0.

Next, we turn to prove the first equality in (2.7). By observing dPs,t f (Xt) as a vector

(use1(Ps,t f ),use2(Ps,t f ), · · · ,used(Ps,t f )),

and using the Itô formula, we have

d(dPs,t f )(Xs) =∇
s
usdBs

(dPs,t f )(Xs)+RicZ
s (·, ∇

sPs,t f )(Xs)ds

+∇
s
Ns
(dPs,t f )(Xs)dls, (2.12)

where d is the exterior differential 2 and

RicZ
s (X ,Y ) := Rics(X ,Y )−〈∇s

X Zs,Y 〉s , X ,Y ∈ T M.

Now for any a ∈ Rd ,

dusQ
(n)
s a =−RicZ

s (usQ
(n)
s a, ·)ds− IIs(ps

∂
usQ

(n)
s a, ·)dls

− 1
2
(n+2σ(s,Xs))

+
〈

Ns,usQ
(n)
s a
〉

s
〈Ns, ·〉s dls.

By this and (2.12), we have

d
〈

∇
sPs,t f (Xs),usQ

(n)
s a
〉

s
=Hesss

Ps,t f (usQ
(n)
s a,usdBs)+Hesss

Ps,t f (usQ
(n)
s a,Ns)dls

− IIs(ps
∂
usQ

(n)
s a,∇sPs,t f (Xs))dls. (2.13)

Moreover, since for any v ∈ Ty∂M, y ∈ ∂M, we have

0 = v〈Ns,∇
sPs,t f 〉s (y) = 〈∇

s
vNs,∇

sPs,t f 〉s (y)+Hesss
Ps,t f (v,Ns),

which implies
Hesss

Ps,t f (v,Ns) = IIs(v,∇sPs,t f )(y).

Combining this with (2.13), we arrive at

d
〈

∇
sPs,t f (Xs),usQ

(n)
s a
〉

s

2For 0-form f , its exterior differential d f is defined by

d f (X) := X( f ) =
〈
∇

t f ,X
〉

t , for X ∈ T M.
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= Hesss
Ps,t f (usQ

(n)
s a,usdBs)+Hesss

Ps,t f (Ns,Ns)
〈

usQ
(n)
s a,Ns

〉
s
dls. (2.14)

It follows from (2.14), (2.11) and the boundedness of |∇·P·,t f |· on [0, t]×M that〈
∇

0P0,t f ,u0a
〉

0 = lim
m→∞

lim
k→∞

Ex
〈

∇
t∧ζmPt∧ζm,t f (Xt∧ζm),ut∧ζmQ(nk)

t∧ζm
a
〉

t∧ζm

= lim
m→∞

lim
k→∞

Ex
{

1{t≤ζm}

〈
∇

t f (Xt),utQ
(nk)
t a

〉
t

}
= Ex 〈

∇
t f (Xt),utQta

〉
t .

This implies the first equality.
Finally, it only leaves us to show the second equality. Since by the Itô formula, we obtain

dPs,t f (Xs) =
√

2〈∇s f (Xs),usdBs〉s .

Therefore, we have

f (Xt) = P0,t f (x)+
√

2
∫ t

0
〈∇sPs,t f (Xs),usdBs〉s .

So, for any a ∈Rd and m≥ 1, it follows from (2.10), (2.11) and the boundedness of {|∇sPs,t f |s}s∈[0,t]
that

1√
2
Ex
{

f (Xt)
∫ t

0
h′(s)〈Qsa,dBs〉

}
= Ex

{∫ t

0
h′(s)〈usQsa,∇sPs,t f 〉s (Xs)ds

}
= lim

k→∞

Ex
{∫ t

0
h′(s)

〈
usQ

(nk)
s a,∇sPs,t f

〉
s
(Xs)ds

}
= lim

m→∞
lim
k→∞

∫ t

0
h′(s)Ex

{〈
us∧ζmQ(nk)

s∧ζm
a,∇s∧ζmPs∧ζm,t f

〉
s∧ζm

(Xs∧ζm)

}
ds

=
∫ t

0
h′(s)

〈
u0a,∇0P0,t f

〉
0 (x)ds

=
〈
∇

0P0,t f (x),u0a
〉

0 .

We complete the proof.

By localizing the process on a fixed domain, we obtain the following local version of the derivative
formula directly.

Corollary 2.6. Assume RZ
r ≥ Kr and IIr ≥ σr for some K ∈C([0,Tc)×M) and σ ∈C([0,Tc)×∂M).

Let 0≤ s≤ t < Tc, x∈M and D be a compact domain of M such that x∈D◦, the inner set of D. Let Xt

be a reflecting Lt-diffusion process starting from x at time s and τD = inf{t ∈ [s,Tc),Xt ∈ ∂D,Xs = x}.
Then for all 0 ≤ s ≤ r ≤ t, there exists a progressively measurable process {Qs,r}r∈[s,t] on Rd ⊗Rd

such that

Qs,s = I, ‖Qs,r‖ ≤ exp
[
−
∫ r∧τD

s
K(u,Xu)du−

∫ r∧τD

s
σ(u,Xu)dlu

]
.

In addition, for any R+-valued process h satisfying h(s) = 0, h(r) = 1 for r > t ∧ τD and

E
(∫ t

s
h′(r)2dr

)α

< ∞
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for some α > 1/2, it holds

u−1
s ∇

sPs,t f (x) =
1√
2
E
{

f (Xt∧τD)
∫ t

s
h′(r)Q∗s,rdBr

∣∣∣∣Xs = x
}
, f ∈Bb(M).

By using the derivative formula established above, we have the following formulae to characterize
RZ

t and IIt , respectively. When the metric is fixed, the formulae for Ric were established in [5] and
[4, Propositions 2.1 and 2.6], and the formulae for second fundamental form were proved by F.-Y.
Wang [32]. There formulae are always applied to proving that some functional inequalities imply
corresponding curvature conditions.

Theorem 2.7. For each s ∈ [0,Tc), let x ∈M◦ (the inner set of M) and X ∈ TxM with |X |s = 1. Let
f ∈ C∞

0 (M) such that f = 0 around the boundary, Hesss
f (x) = 0 and ∇s f = X. Set fn = f + n for

n≥ 1. Then,
(i) for any p > 0,

RZ
s (X ,X) = lim

t↓s

Ps,t |∇t f |pt (x)−|∇sPs,t f |ps (x)
p(t− s)

; (2.15)

(ii) for any p > 1,

RZ
s (X ,X) = lim

n→∞
lim
t↓s

1
t− s

 p[Ps,t f 2
n − (Ps,t f

2
p

n )p]

4(p−1)(t− s)
−|∇sPs,t fn|2s

(x)

= lim
n→∞

lim
t↓s

1
t− s

Ps,t |∇t f |2t −
p[Ps,t f 2

n − (Ps,t f
2
p

n )p]

4(p−1)(t− s)

(x);

(iii) RZ
s (X ,X) is equal to each of the following limits:

lim
n→∞

lim
t↓s

1
(t− s)2

{
(Ps,t fn) [Ps,t( fn log fn)− (Ps,t fn) logPs,t fn]− (t− s)|∇sPs,t f |2s

}
(x);

lim
n→∞

lim
t↓s

1
4(t− s)2

{
4(t− s)Ps,t |∇t f |2t +(Ps,t f 2

n ) logPs,t f 2
n −Ps,t f 2

n log f 2
n
}
(x).

Proof. Without loss of generality, we only consider s = 0. Let r > 0 and t0 ∈ (0,Tc) be such that
Bt(x,r)⊂M◦, t ∈ [0, t0] and |∇t f |t ≥ 1

2 on {(t,x) : t ∈ [0, t0],x ∈ Bt(x,r)⊂M◦}. Due to Proposition
2.4 (a), the proof of [12, Theorem 4.1] works for the present setting by replacing s with s∧ σ̃r, where
σ̃r := inf{s : Xs /∈ Bs(x,r), X0 = x, s ∈ [0, t0]} and set t0 = inf∅ by convention, so that the boundary
condition needs not to be considered.

To avoid redundancy, we only prove (i) to explain the idea. By Proposition 2.4 (a) and Hess0
f (x) =

0, we have

P0,t |∇t f |pt = Ex{|∇t f |pt (Xt∧σr)}+o(t)

= |∇0 f |p0 +
[ p

2
|∇0 f |p−2

0 L0|∇0 f |20−
p
2
|∇0 f |p−2

0 ∂tgt |t=0(∇
0 f ,∇0 f )

]
t +o(t), (2.16)

where the second equality comes from the following formula,

∂t |∇t f |2t =−∂tgt(∇
t f ,∇t f ).
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Moreover, since f ∈C∞
0 (M) and f = 0 around the boundary, by the Kolmogorov equation,

d
dt
|∇0P0,t f |p0 |t=0 = p|∇0 f |p−2

0

〈
∇

0L0 f ,∇0 f
〉

0 ,

we have

|∇0P0,t f |p0 = |∇0 f |p0 + p|∇0 f |p−2
0

〈
∇

0L0 f ,∇0 f
〉

0 t +o(t).

Combining this with (2.16) yields (2.15) for s = 0.

Theorem 2.8. For each s ∈ [0,Tc), let x ∈ ∂M and X ∈ TxM with |X |s = 1. Then for any constant
p > 0 and f ∈C∞

0 (M) such that ∇s f (x) = X, it holds

IIs(X ,X) = lim
t↓s

π

2p
√

t− s

{
Ps,t |∇t f |pt −|∇s f |ps

}
(x)

= lim
t↓s

π

2p
√

t− s

{
Ps,t |∇t f |pt −|∇sPs,t f |ps

}
(x). (2.17)

If moreover f > 0, then for any p ∈ [1,2],

IIs(X ,X) =− lim
t↓s

3
8

√
π

t− s

{
|∇s f |2s +

p[(Ps,t f 2/p)p−Ps,t f 2]

4(p−1)(t− s)

}
(x)

=− lim
t↓s

3
8

√
π

t− s

{
|∇sPs,t f |2s +

p[(Ps,t f 2/p)p−Ps,t f 2]

4(p−1)(t− s)

}
(x),

where when p = 1, we set (Ps,t f 2/p)p−Ps,t f 2

p−1 as the following limit

lim
p↓1

(Ps,t f 2/p)p−Ps,t f 2

p−1
= (Ps,t f 2) logPs,t f 2−Ps,t( f 2 log f 2).

Proof. Due to Propositions 2.4 and 2.5, the proof is straightforward. For readers’ convenience, we
include the proof of the first equality in (2.17).

Let r > 0 and t0 ∈ (0,Tc) such that |∇t f |t ≥ 1
2 holds on {(x, t) : x ∈ Bt(x,r), t ∈ [0, t0]}. Let σ̃r :=

inf{t ∈ [0, t0] : Xt /∈ Bt(x,r)} and t0 := inf∅. As Ns|∇s f |2s = 2IIs(∇
s f ,∇s f ) holds on ∂M. So, by

using the Itô formula and Propositions 2.4 and 2.5,

P0,t |∇t f |pt (x) =Ex|∇t f |pt (Xt∧σr)+o(t)

=|∇0 f |p0(x)+Ex
∫ t∧σr

0
(Ls +∂s)|∇s f |ps (Xs)ds

+ p{|∇s f |p−2
s IIs(∇

s f ,∇s f )}(Xs)dls +o(t)

=|∇0 f |p0(x)+
2p
√

t√
π

II0(X ,X)+o(
√

t)

holds for small t > 0. This proves the first equality in (2.17).
Note that the additional terms, derived from the time derivative of the metric, have the order o(t).

Here, from the discussion above, we find that it does not need to take care of these terms larger than
order o(

√
t). Thus, the calculation is similar to that in the fixed metric case. For the rest of the proof,

we refer the reader to [32, Theorem 1.2] and [36, Theorem 3.2.4] for details.
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3 Proof of main results

In Subsection 3.1, we construct the coupling processes under convex flows by parallel displace-
ment and reflection first, then using coupling method, we give the proof of Theorem 1.1. In Sub-
section 3.2, we complete the proof of Theorem 1.2 by conformal change of the metrics and also the
coupling method. In Section 3.3, we applied Theorems 1.1 and 1.2 to the forward Ricci flow with
umbilic boundary.

3.1 Proof of Theorem 1.1 (Convex flow)

We first introduce the coupling method for the reflecting Lt-diffusion processes. Let Cutt(x) be
the set of the gt cut-locus of x on M. Then, the gt cut-locus Cutt and the space time cut-locus CutST
are respectively defined by

Cutt = {(x,y) ∈M×M | y ∈ Cutt(x)};
CutST = {(t,x,y) ∈ [0,Tc)×M×M | (x,y) ∈ Cutt}.

Set D(M) = {(x,x)|x ∈M}. For (x,y) /∈ Cutt , let {Jt
i}

d−1
i=1 be Jacobi fields along the minimal geodesic

γ from x to y with respect to the metric gt such that at points x and y, {Jt
i , γ̇ : 1 ≤ i ≤ d− 1} is an

orthonormal basis. Let

IZ(t,x,y) =
d−1

∑
i=1

∫
γ

(〈
∇

t
γ̇Jt

i ,∇
t
γ̇Jt

i
〉

t
−
〈
Rt(Jt

i , γ̇)γ̇,J
t
i
〉

t

)
(γ(s))ds+

1
2

∫
γ

∂tgt(γ̇(s), γ̇(s))ds

+Ztρt(·,y)(x)+Ztρt(x, ·)(y), (3.1)

where Rt is the Ricci tensor with respect to the metric gt . Moreover, let Pt
x,y : TxM → TyM be the

gt-parallel transform along the geodesic γ , and let

Mt
x,y : TxM→ TyM; v 7→ Pt

x,yv−2〈v, γ̇〉t (x)γ̇(y)

be the mirror reflection associated with the metric gt . Then Pt
x,y and Mt

x,y are smooth outside Cutt ∪
D(M). For convenience, set Pt

x,x and Mt
x,x be the identity for x ∈M.

Lemma 3.1. Let x 6= y and 0 < T < Tc be fixed. Let U : [0,T )×M×M → T M be C1-smooth in
(CutST∪ [0,T ]×D(M))c such that U(t,x1,x2) ∈ Tx2M for (t,x1,x2) ∈ [0,T ]×M×M.

(a) There exist two Brownian motions Bt and B̃t on the probability space (Ω,{Ft}t≥0,P) such that

1{(Xt ,X̃t)/∈Cutt}dB̃t = 1{(Xt ,X̃t)/∈Cutt}ũ
−1
t Pt

Xt ,X̃t
utdBt

holds, where Xt with lift ut and local time lt , and X̃t with lift ũt and and local time l̃t solve the
equation

dXt =
√

2ut ◦dBt +Zt(Xt)dt +Nt(Xt)dlt , X0 = x,

dX̃t =
√

2ũt ◦dB̃t +
{

Zt(X̃t)+U(t,Xt , X̃t)1{Xt 6=X̃t}

}
dt +Nt(X̃t)dl̃t , X̃0 = y.

(3.2)

Moreover, for any J ∈C([0,T ]×M×M) such that J ≥ IZ on (CutST∪ [0,T ]×D(M))c,

dρt(Xt , X̃t)≤
{

J(t,Xt , X̃t)+
〈
U(t,Xt , X̃t),∇

t
ρt(Xt , ·)(X̃t)

〉
t 1{Xt 6=X̃t}

}
dt (3.3)

holds up to the coupling time T0 := inf{t ∈ [0,T ] : Xt = X̃t}, inf∅= T .
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(b) The first assertion in (a) holds with Mt
Xt ,X̃t

in place of Pt
Xt ,X̃t

. In this case, for any J ∈C([0,T ]×
M×M) such that J ≥ IZ on (CutST∪ [0,T ]×D(M))c,

dρt(Xt , X̃t)≤ 2
√

2dbt +

{
J(t,Xt , X̃t)+

〈
U(t,Xt , X̃t),∇

t
ρt(Xt , ·)(X̃t)

〉
t 1{Xt 6=X̃t}

}
dt (3.4)

holds up to the coupling time T0, where bt is a one-dimensional Brownian motion.

Proof. We follow the argument in the proof of [12, Theorem 3.4], but construct the coupling pro-
cesses (Xt ,Y

n,ε
t ) with reflecting boundary. Then we should add more argument for one more term

caused by the local time on the boundary. More precisely, when applying the Itô formula to the radial
process ρt(Xt ,Y

n,ε
t ), we have the additional term

1(M×M)\Cutt (Xt ,Y
n,ε

t )(Nt(Xt)+Nt(Y
n,ε

t ))ρt(Xt ,Y
n,ε

t )dIn,ε
t ,

where In,ε
t is an increasing process which increasing only when (Xt ,Y

n,ε
t ) ∈ ∂ (M×M) \Cutt . Thus

to pass through the proof for the present case, we only need to show that Ntρt(x, ·)(y) ≤ 0 for any
y∈ ∂M,x∈M,(x,y)∈ (M×M)\Cutt and t ∈ [0,Tc). This is ensured by the convexity of the geometic
flow. Therefore, the proof of [12, Theorem 3.4] also works for the reflecting Lt-diffusion case.

By using the parallel coupling process, we complete the proof of Theorem 1.1.

Proof of Theorem 1.1. First, by Theorem 2.7 (i)(ii) and Theorem 2.8 (i.e. the characterizations for
RZ

t and IIt), each of (1.3) and (1.4) implies (1.2) directly.
Now, suppose the curvature condition (1.2) holds. We prove (1.3). We first observe from the index

lemma that

IZ(t,x,y)≤
1
2

∫
ρt(x,y)

0
∂tgt(γ̇, γ̇)(γ(s))ds−

∫
ρt(x,y)

0
RicZ

t (γ̇, γ̇)(γ(s))ds

=−
∫

ρt(x,y)

0
RZ

t (γ̇, γ̇)(γ(s))ds

≤−K(t)ρt(x,y), (3.5)

where γ : [0,ρt(x,y)]→M is the minimal geodesic from x and y associated with gt . Now let U = 0
and (Xt , X̃t) be the coupling by parallel displacement for X0 = x, X̃0 = y. By Lemma 3.1 for U = 0,
(3.5) and Ntρt(x, ·)(y)≤ 0 for y ∈ ∂M and x ∈M, we obtain

dρt(Xt , X̃t)≤−K(t)ρt(Xt , X̃t)dt.

Thus, ρt(Xt , X̃t)≤ e−
∫ t

s K(u)duρs(Xs, X̃s), which together with the dominated convergence theorem, we
have

|∇sPs,t f (x)|s ≤ limsup
y→x

E(| f (Xt)− f (X̃t)|
∣∣(Xs, X̃s) = (x,y))

ρs(x,y)

≤e−
∫ t

s K(u)du limsup
y→x

E
(
| f (Xt)− f (X̃t)|

ρt(Xt , X̃t)

∣∣∣∣(Xs, X̃s) = (x,y)
)

≤e−
∫ t

s K(u)duPs,t |∇t f |t(x).
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Finally, we prove the Harnack inequality. Let f ∈ C∞
0 (M) be such that f ≥ 1 and f is constant

outside a compact set. Given x 6= y and t > 0, let γ : [0, t]→M be the g0-geodesic from x to y with
length ρ0(x,y). Let νs =

dγs
ds . Then we have |νs|0 = ρ0(x,y)/t. Let

h(s) =
t
∫ s

0 e2
∫ r

0 K(u)dudr∫ t
0 e2

∫ r
0 K(u)dudr

.

Then h(0) = 0 and h(t) = t. Set ys = γh(s) and

ϕ(s) = logP0,s(Ps,t f )p(ys), s ∈ [0, t].

To get the derivative of ϕ , by using the Itô formula, we first have

d(Ps,t f )p(Xs) = dMs + p(p−1)(Ps,t f )p−2(Xs)|∇sPs,t f |2s (Xs)ds, 0 < s < ζn,

where Ms is a local martingale. As explained above, |∇sPs,t f |s ≤ e−
∫ t

s K(r)drPs,t |∇t f |t and (Ps,t f )p−2

is bounded, it is easy to deduce that

P0,s(Ps,t f )p(x)− (P0,t f )p(x) = p(p−1)
∫ s

0
P0,r[(Pr,t f )p−2|∇rPr,t f |2r ](x)dr.

That is
dP0,s(Ps,t f )p(x)

ds
= p(p−1)P0,s[(Ps,t f )p−2|∇sPs,t f |2s ](x),

which implies that for any s ∈ [0, t],

dϕ(s)
ds

=
1

P0,s(Ps,t f )p

{
P0,s

(
p(p−1)(Ps,t f )p|∇s logPs,t f |2s +h′(s)

〈
∇

0P0,s(Ps,t f )p,νs
〉

0

}
≥ p

P0,s(Ps,t f )p P0,s

{
(Ps,t f )p

(
(p−1)|∇s logPs,t f |2s

− ρ0(x,y)
t

h′(s)e−
∫ s

0 K(u)du|∇s logPs,t f |s
)}

≥
−pρ2

0 (x,y)h
′(s)2e−2

∫ s
0 K(u)du

4(p−1)t2 .

Since h′(s) = te
∫ s
0 2K(u)du∫ t

0 e
∫ r
0 2K(u)dudr

, we arrive at

dϕ(s)
ds
≥ −pρ0(x,y)2e

∫ s
0 2K(u)du

4(p−1)(
∫ t

0 e2
∫ r

0 K(u)dudr)2
, s ∈ [0, t].

By integrating over s from 0 and t, we complete the proof of (1.4) for s = 0.

Remark 3.2. We point out that by letting φt ≡ 1 in the proof of Theorem 1.2 (ii), the Harnack in-
equality can be deduced by using coupling method directly.
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3.2 Proof of Theorem 1.2 (Non-convex flow)

The proof of Theorem 1.2 is divided into two parts. First, we prove that the curvature condition
(H1) implies the gradient inequality.

Proof of Theorem 1.2. (Gradient inequality) We also use coupling method to prove the gradient in-
equality. To this end, we need make a conformal change of the geometric flow gt first. Let φ ∈ D .
As announced, the new flow g̃t := φ

−2
t gt is convex flow. Let ∆̃t and ∇̃t be the Laplacian and gradient

operator associated with the metric g̃t . According to [28, (2.2)],

Lt = φ
−2
t (∆̃t + Z̃t) and Z̃t = φtZt +

d−2
2

∇
t
φ

2
t . (3.6)

To simplify the discussion, we consider the process generated by L′t = ϕ2
t (∆t +Zt) on the manifold

carrying convex flow {gt}t∈[0,Tc) first, where ϕ ∈C1,∞([0,Tc)×M) and 0 < ϕ ≤ 1. Moreover, suppose

RicZ
t ≥ k1(t) and ∂tgt ≤ k2(t)

for some functions k1,k2 ∈C([0,Tc)). Let Xt solve

dIXt =
√

2ϕt(Xt)utdBt +ϕ
2
t (Xt)Zt(Xt)dt +Nt(Xt)dlt , X0 = x. (3.7)

Let Yt solve

dIYt =
√

2ϕt(Yt)Pt
Xt ,Yt

utdBt +ϕ
2
t (Xt)Zt(Yt)dt +Nt(Yt)dl̃t , Y0 = y. (3.8)

As the boundary (∂M,gt) is convex for all t ∈ [0,Tc), by the Itô formula, we have

dρt(Xt ,Yt)≤
√

2(ϕt(Xt)−ϕt(Yt))dbt +

{ n

∑
i=1

(U t
i )

2
ρt(Xt ,Yt)+∂tρt(Xt ,Yt)

+
〈
ϕ

2
t Zt(Yt),∇

t
ρt(Xt , ·)(Yt)

〉
t +
〈
ϕ

2
t Zt(Xt),∇

t
ρt(·,Yt)(Xt)

〉
t

}
dt,

where bt is a one-dimensional Brownian motion, {U t
i }n

i=1 are vector fields on M ×M such that
∇tU t

i (Xt ,Yt) = 0 and
U t

i (Xt ,Yt) = ϕt(Xt)V t
i +ϕt(Yt)Pt

Xt ,Yt
V t

i , 1≤ i≤ n

for {V t
i }n

i=1 a gt-orthonormal basis of TXt M. Let ρt = ρt(Xt ,Yt). Define

Jt
i (s) =

(
s
ρt

ϕt(Yt)+
ρt − s

ρt
ϕt(Xt)

)
Pt

γ(0),γ(s)V
t
i , 1≤ i≤ n,

where Jt
i (0) = ϕt(Xt)V t

i and Jt
i (ρt) = ϕt(Yt)Pt

Xt ,Yt
V t

i . Note that Pt
γ(0),γ(s)V

t
i are parallel vector fields

along γt ,

d

∑
i=1

(U t
i )

2
ρt(Xt ,Yt)

≤
d

∑
i=1

∫
ρt

0

{
|∇t

γ̇Jt
i |2t −

〈
Rt(γ̇,Jt

i )J
t
i , γ̇
〉

t

}
(γ(s))ds
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≤ d‖∇t
ϕt‖2

∞ρt −
1

ρ2
t

∫
ρt

0
{sϕt(Yt)+(ρt − s)ϕt(Xt)}2Rict(γ̇(s), γ̇(s))ds. (3.9)

On the other hand,

ϕ
2
t (Xt)

〈
Zt(Xt),∇

t
ρt(·,Yt)(Xt)

〉
t +ϕ

2
t (Yt)

〈
Zt(Yt),∇

t
ρt(Xt , ·)(Yt)

〉
t

=
1

ρ2
t

∫
ρt

0

d
ds
{(sϕt(Yt)+(ρt − s)ϕt(Xt))

2 〈Zt(γ(s)), γ̇(s)〉t}ds

≤ 1
ρ2

t

∫
ρt

0
(sϕt(Yt)+(ρt − s)ϕt(Xt))

2 〈(∇t
γ̇Zt)◦ γ, γ̇

〉
t
(γ(s))ds+2‖Zt‖‖∇t

ϕt‖∞ρt . (3.10)

Moreover,

∂tρt(Xt ,Yt) =
1
2

∫
ρt

0
∂tgt(γ̇(s), γ̇(s))ds≤ 1

2
k2(t)ρt .

Combining this with (3.9) and (3.10), we have

dρt(Xt ,Yt)≤
√

2(ϕt(Xt)−ϕt(Yt))dbt − k1(t)
{

1
ρ2

t

∫
ρt

0
[sϕt(Yt)+(ρt − s)ϕt(Xt)]

2ds
}

dt

+

{
d‖∇t

ϕt‖2
∞ρt +2‖Zt‖∞‖∇t

ϕt‖∞ρt +
1
2

k2(t)ρt

}
dt

≤
√

2(ϕt(Xt)−ϕt(Yt))dbt +Kϕ(t)ρt(Xt ,Yt)dt, (3.11)

where

Kϕ(t) := d‖∇t
ϕt‖2

∞ +2‖Zt‖∞‖∇t
ϕt‖∞ + k−1 (t)+

1
2

k2(t). (3.12)

Now we return to the diffusion processes generated by Lt = φ
−2
t (∆̃t + Z̃t) (see (3.6)). Let ϕt = φ

−1
t

and R̃ict be the new Ricci curvature tensor with respect to the metric g̃t . By [6, Theorem 1.129] and
[15, (3.2)], for any X ∈ T M such that g̃t(X ,X) = 1, i.e. |X |t = φt , we have

R̃ict(X ,X) = Rict(X ,X)+(d−2)φ−1
t Hesst

φt
(X ,X)+

1
2

∇
t
φ

2
t − (d−2)|∇t

φt |2t ,

and

g̃t(∇̃
t
X Z̃t ,X) =

〈
∇

t
X Zt ,X

〉
t +2

〈
∇

t logφt ,X
〉

t 〈Zt ,X〉t
+(d−2)φ−1

t Hesst
φt
(X ,X)+(d−2)

〈
X ,∇t logφt

〉2
t

−φt
〈
Zt ,∇

t
φt
〉

t − (d−2)|∇t
φt |2t .

Therefore, noting that |X |t = φt , we have

R̃ic
Z̃
t (X ,X) := R̃ict(X ,X)− g̃t(∇̃

t
X Z̃t ,X)

= RicZ
t (X ,X)+

1
2

Ltφ
2
t −2

〈
∇

t logφt ,X
〉

t 〈Zt ,X〉t − (d−2)
〈
X ,∇t logφt

〉2
t

≥ K1(t)φ 2
t +

1
2

Ltφ
2
t −|∇t

φ
2
t |t · |Zt |t − (d−2)|∇t

φt |2t
≥ Kφ ,1(t),
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and

∂t g̃t(X ,X) = ∂t [φ
−2
t gt(X ,X)] = (∂tφ

−2
t )φ 2

t +φ
−2
t ∂tgt(X ,X)

≤−2∂t logφt +K2(t)≤ Kφ ,2(t).

Moreover, let | · |′t be the norm with respect to the metric g̃t . Then,

|∇̃t
φ
−1
t |′t ≤ |∇t

φt |t and |Z̃t |′t ≤
∣∣∣∣φtZt +

d−2
2

∇
t
φ

2
t

∣∣∣∣
t
,

which, together with (3.11), yields

dρ̃t(Xt ,Yt)≤
√

2(φ−1
t (Xt)−φ

−1
t (Yt))dbt +Kφ (t)ρ̃t(Xt ,Yt)dt,

where
Kφ (t) := K−

φ ,1(t)+
1
2

Kφ ,2(t)+2‖φtZt +(d−2)∇t
φt‖∞‖∇t

φt‖∞ +d‖∇t
φt‖2

∞.

In addition, φt ≥ 1, we therefore have ρ̃t ≤ ρt ≤ ‖φt‖∞ρ̃t , which implies

ρt(Xt ,Yt)≤ ‖φt‖∞e
∫ t

s Kφ (r)dr
ρ̃s(x,y)≤ ‖φt‖∞e

∫ t
s Kφ (r)dr

ρs(x,y), s≤ t < Tc.

Then,

|∇sPs,t f |(x) = lim
y→x

∣∣∣∣Ps,t f (x)−Ps,t f (y)
ρs(x,y)

∣∣∣∣= ∣∣∣∣E(x,y)
[

f (Xt)− f (Yt)

ρt(Xt ,Yt)

ρt(Xt ,Yt)

ρs(x,y)

]∣∣∣∣
≤ ‖∇t f‖∞‖φt‖∞e

∫ t
s Kφ (r)dr,

which leads to complete the proof directly.

The following result is derived from Theorem 1.2 (i) and Theorem 2.3.

Corollary 3.3. Assume (H1) holds. If there exists φ ∈D such that Kφ (t)< ∞ for all 0≤ t < Tc, then
for p ∈ [1,∞) and f ∈C1(M) such that f is constant outside a compact set,

|∇sPs,t f |s ≤ ‖φt‖∞(Ps,t |∇t f |p/(p−1)
t )(p−1)/pe−

∫ t
s K(p)

φ
(r)dr, 0≤ s≤ t < Tc

holds for K(p)
φ

(r) := inf{φ−1
r (Lr +∂r)φr− (p+1)|∇r logφr|2r}. Moreover, for f ∈Bb(M),

|∇sPs,t f |2s ≤
1
2

[∫ t

s
‖φu‖−2

∞ e2
∫ u

s K(2)
φ

(r)drdu
]−1

Ps,t f 2, 0≤ s < t < Tc. (3.13)

Proof. The proof is due to [36, Corollary 3.2.8]. We include it in Appendix for readers’ convenience.

We apply the coupling method to the proof of the Harnack inequality (See Theorem 1.2 (ii)). In
[35], F.-Y.Wang constructed a proper coupling process to get the Harnack inequalities on manifolds
with fixed metric. Here, we should modify the idea to our setting, where the main difficulty is to
construct the coupling process such that it does not miss the information from the Ricci curvature.
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Proof of Theorem 1.2. (Part I: Harnack inequality) Without loss of generality, we assume s = 0 and
t = T . Now, let x,y ∈M and T ∈ (0,Tc) be fixed. To simplify the discussion, we also consider the
process generated by L′t = ϕ2

t (∆t +Zt) on a manifold carrying convex flow and suppose

RicZ
t ≥ k1(t) and ∂tgt ≤ k2(t)

for some k1,k2 ∈C([0,Tc)).
Let Xt solve (3.7) with X0 = x. For some strictly positive function ξt ∈C([0,T )), let Yt solve

dIYt =
√

2ϕt(Yt)Pt
Xt ,Yt

utdBt +ϕ
2
t Zt(Yt)dt− ϕt(Yt)ρt(Xt ,Yt)

ϕt(Xt)ξt
∇

t
ρt(Xt , ·)(Yt)dt +Nt(Yt)dl̃t ,

Y0 = y, (3.14)

where l̃t is the local time of Yt on ∂M. In the spirit of Lemma 3.1, we may assume that the cut-locus
of M is empty such that the parallel displacement is smooth. Let

dB̃t = dBt +
ρt(Xt ,Yt)√
2ξtϕt(Xt)

u−1
t ∇

t
ρt(·,Yt)(Xt)dt, 0≤ t < T. (3.15)

By a similar calculation as in (3.11), we have

dρt(Xt ,Yt)≤
√

2(ϕt(Xt)−ϕt(Yt))
〈
∇

t
ρt(·,Yt)(Xt),utdB̃t

〉
t +Kϕ(t)ρt(Xt ,Yt)dt

− ρt(Xt ,Yt)

ξt
dt, 0≤ t < T, (3.16)

which implies

d
ρt(Xt ,Yt)

2

ξt
≤2
√

2
ξt

ρt(Xt ,Yt)(ϕt(Xt)−ϕt(Yt))
〈
∇

t
ρt(·,Yt)(Xt),utdB̃t

〉
t

− ρt(Xt ,Yt)
2

ξ 2
t

[
ξ
′
t − (2‖∇t

ϕt‖2
∞ +2Kϕ(t))ξt +2

]
dt, (3.17)

where Kϕ is defined as in (3.12). Therefore, by letting

ξt = (2−θ)
∫ T

t
e−2

∫ s
t (Kϕ (r)+‖∇rϕr‖∞)drds, t ∈ [0,T ), θ ∈ (0,2),

we know that ξt , t ∈ [0,T ) solves the following equation,

2− (2‖∇t
ϕt‖2

∞ +2Kϕ(t))ξt +ξ
′
t = θ .

Combining this with (3.17), we obtain

d
ρt(Xt ,Yt)

2

ξt
≤2
√

2
ξt

ρt(Xt ,Yt)(ϕt(Xt)−ϕt(Yt))
〈
∇

t
ρt(·,Yt)(Xt),utdB̃t

〉
t −

ρt(Xt ,Yt)
2

ξ 2
t

θdt. (3.18)

Then, the following discussion is similar to that of [35, Theorem 1.1], we omit it here.
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3.3 Application to Ricci flow

Now, we turn to consider the Ricci flow (1.7). Assume that {gt}t∈[0,T ], T ∈ (0,∞) is a complete
solution to the equation (1.7). Let {Ps,t}0≤s≤t≤T be the Neumann diffusion semigroup generated by
∆t . Then, it is obvious to see that Ps,T f is a solution to the following heat equation

∂

∂ t u(x, ·)(t) =−∆tu(·, t)(x), (x, t) ∈M× [0,T ];

Ntu(·, t)(x) = 0, x ∈ ∂M, t ∈ [0,T ).

(3.19)

When λ ≥ 0, the corresponding gradient estimate and Harnack inequality can be derived from Theo-
rem 1.1 directly.

Theorem 3.4. Suppose {gt}t∈[0,T ] is a complete solution to (1.7) with λ ≥ 0. Then for f ∈ C1(M)
such that f is constant outside a compact set, Ps,T f , s ∈ [0,T ] is a solution to (3.19) and

|∇sPs,T f |s ≤ Ps,T |∇T f |T , 0≤ s≤ T. (3.20)

Moreover, for f ∈Bb(M) and s ∈ [0,T ],

(Ps,T f )p(x)≤ Ps,T f p(y)exp
[

p
4(p−1)(T − s)

ρ
2
s (x,y)

]
. (3.21)

Remark 3.5. It is easy to see that these results above are similar to that for the Ricci flat manifold.
Indeed, (3.20) and (3.21) also can be derived when {gt} is a convex Ricci flow. We would like to
indicate that Pulemotov [25] gave the proof of the short time existence of the convex Ricci flow.

When λ < 0, we need more curvature information around the boundary to deal with this case. Let
Sectt be the section curvature of M and ρ∂

t (x) be the distance between x and ∂M associated with the
metric gt . The required assumption is presented as follows.

(H2) There exist positive constants k,r0,k1 such that |Rict | ≤ k and on the set ∂ t
r0

M := {x ∈ M :
ρ∂

t (x)≤ r0}, ρ∂
t is smooth and Sectt ≤ k1.

If this assumption holds for r0 <
π

2
√

k1
, then by constructing explicit φt , the constants in terms of φ

in Theorem 1.2 can be estimated. Thus, we have the gradient estimates for the solution to (3.19) by
using Theorem 1.2 (i) as follows.

Theorem 3.6. Suppose that {gt}t∈[0,T ] is a complete solution to (1.7) with λ < 0. Assume that the
assumption (H2) holds for 0 < r0 ≤ π

2
√

k1
. Then, for f ∈ C1(M) such that f is constant outside a

compact set, Ps,T f is a solution to (3.19) and

|∇sPs,T f |s ≤
(

1− λ r0d
2

)
‖∇T f‖∞ exp

{
(T − s)

[
−λd

r0
+

(
4d− 11

2

)
λ

2d2−λdr0k+2k
]}

.

(3.22)

Proof. From the assumption (H2), we deduce that Rict ≤−k and ∂tgt = 2Rict ≤ 2k, which leads to
the following estimate

Kφ (t)≤ inf{φt∆tφt}−+ inf{∂t logφt}−+2k+(4d−6)‖∇t
φt‖2

∞ < ∞.
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We now turn to construct an explicit φ ∈C1,2([0,T ]×M). Let

h(s) = cos(
√

k1 s), for all s≥ 0. (3.23)

Then 0≤ h(s)≤ 1 for s ∈ [0, π

2
√

k1
]. Moreover, let

δ = δ (r0,λ ,k1) =
−λ (1−h(r0))

d−1∫ r0
0 (h(s)−h(r0))d−1ds

. (3.24)

Consider
φt := ϕ ◦ρ

∂
t , for all t ∈ [0,T ],

where
ϕ(r) = 1+δ

∫ r

0
(h(s)−h(r0))

1−dds
∫ r0

s∧r0

(h(u)−h(r0))
d−1du.

By an approximation argument, we may regard φ as C∞([0,T ]×M)-smooth. Obviously, φ ≥ 1 and
Ns logφs =−λ =−IIs, for all s ∈ [0,T ]. So, φ ∈D .

Next, we need to estimate inf{φt∆tφt}−, inf{∂t logφt}−, ‖∇tφt‖2
∞ and ‖φt‖∞ in terms of λ ,d,r0

and k. As h is decreasing on [0,r0], we conclude that

|∂t logφt |=

∣∣∣∣∣∣
δ (h(ρ∂

t ∧ r0)−h(r0))
1−d ∫ r0

ρ∂
t ∧r0

(h(u)−h(r0))
d−1du

φt
∂tρ

∂
t

∣∣∣∣∣∣≤ δ r0

φt
|∂tρ

∂
t |, ρ

∂
t ≤ r0.

Moreover, using the following formula,

∂tρ
∂
t =

1
2

∫
ρ∂

t

0
∂tgt(γ̇(s), γ̇(s))ds, ρ

∂
t ≤ r0,

where γ is the minimal curvature from x to ∂M, we obtain

|∂t logφt | ≤ δ r2
0k, ρ

∂
t ≤ r0. (3.25)

Similarly, it holds
|∇t

φt |2t ≤ δ
2r2

0. (3.26)

In addition, ∫ r0

0
(h(s)−h(r0))

1−dds
∫ r0

s
(h(u)−h(r0))

d−1du≤
∫ r0

0
(r0− s)ds =

r2
0
2
,

which implies

‖φt‖∞ = 1+δ

∫ r0

0
(h(s)−h(r0))

1−dds
∫ r0

s
(h(u)−h(r0))

d−1du≤ 1+
δ r2

0
2

. (3.27)

Moreover, since IIt = λ ≤ 0 and Sectt ≤ k1 on ∂ t
r0
(M), according to the Laplacian comparison theorem

for ρ∂
s (see [20, 21]), we have

∆tφt ≥
(
(d−1)ϕ ′h′

h
+ϕ

′′
)
(ρ∂

t )≥−δ , 0 < ρ
∂
t ≤ r0

(
≤
√

k1π

2

)
, t ∈ [0,T ].
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Combining this with (3.27) implies

inf{φt∆tφt} ≥ −‖φt‖∞‖∆tφt‖∞ ≥−
(

1+
δ r2

0
2

)
δ

2r2
0. (3.28)

Concluding from (3.25), (3.26), (3.27) and (3.28), it suffices for us to estimate δ . Since −h′ is
increasing and h is decreasing, by the FKG inequality, we have

∫ r0

0
(h(s)−h(r0))

d−1ds≥
−r0

∫ r0
0 (h(s)−h(r0))

d−1h′(s)ds
−
∫ r0

0 h′(s)ds
=

r0

d
(1−h(r0))

d−1.

By this and (3.24), we obtain δ ≤−λd/r0. Concluding all these estimates above, we have

Kφ ,1(t)− ≤ k− λd
r0

+

(
d− 3

2

)
λ

2d2; Kφ ,2(t)≤−2λdkr0 +2k. (3.29)

Then,

Kφ (t)≤ 2k− λd
r0

+

(
4d− 11

2

)
λ

2d2−λdr0k, (3.30)

which leads to complete the proof.

In addition,

K(p)
φ

(r) = inf{φ−1
r (∆rφr)+∂r logφr− (p+1)|∇r logφr|2r}

≥ −δ −δ r0k−δ
2r2

0(p+1)

≥ λd
r0

+λdr0k−λ
2r2

0(p+1). (3.31)

Using this estimate and Corollary 3.3, we have the following result directly.

Corollary 3.7. Under the some conditions of Theorem 3.6, we have that for f ∈C1(M) such that f
is constant outside a compact set and 0≤ s < T ,

|∇sPs,T f |s ≤
(

1− λ r0d
2

)
e(T−s)Kp(Ps,t |∇T f |p/(p−1)

T )(p−1)/p,

where

Kp =−
λd
r0
−λdr0k+λ

2r2
0(p+1). (3.32)

Moreover, we have

|∇sPs,T f |2s ≤
(

1− λ r0d
2

)2 K2

1− e2K2(s−T )
Ps,T f 2, s ∈ [0,T ), f ∈Bb(M).

Now, we turn to consider system (1.7)-(3.19). By Theorem 1.2, we have
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Theorem 3.8. Under same condition of Theorem 3.6, for p > (2−2λ r0d
2−λ r0d )2 and 0≤ s < T , the Harnack

inequality

(Ps,T f (y))p ≤ Ps,T f p(x)exp

{ √
p(
√

p−1)K̃ρs(x,y)

8δ̃p[2(
√

p−1)/(2−λ r0d)− δ̃p](1− e2K̃(s−T ))

}

holds for δ̃p := max
{
−λ r0d

2−λ r0d ,
√

p−1
2−λ r0d

}
and

K̃ :=−λd
r0

+

(
4d− 9

2

)
λ

2d2 +2k−λdkr0.

Proof. It is easy to see from (3.27) that

δT = sup
t∈[0,T ]

(supφ
−1
t − infφ

−1
t )≤ −λ r0d

2−λ r0d
; λT = inf

[0,T ]×M
φ
−1 ≥ 2

2−λ r0d
.

Combining this with the estimates obtained in the proof of Theorem 1.2, we complete the proof.

4 Equivalent functional inequalities for curvature conditions

In this section, we present the gradient estimates for the curvature conditions (1.1), which is an
extension of [12, Theorem 4.3] for the time-inhomogeneous manifold without boundary. This part is
mainly based on [32, Theorem 1.1] for the case when the metric is independent of time.

Theorem 4.1. Let p ∈ [1,∞) and p̃ = p∧ 2. Then for any [s, t] ⊂ [0,Tc), K ∈ Cb([s, t]×M) and
σ ∈Cb([s, t]×∂M), the following statements are equivalent to each other.

(i) RZ
t ≥ Kt and IIt ≥ σt hold for any 0≤ t < Tc.

(ii) |∇sPs,t f (x)|ps ≤ E{|∇t f |pt (Xt)exp[−p
∫ t

s K(r,Xr)dr− p
∫ t

s σ(r,Xr)dlr]|Xs = x} holds for x ∈M,
0≤ s≤ t < Tc, and f ∈C1(M) such that f is constant outside a compact set.

(iii) For any 0≤ s≤ t < Tc, x∈M and positive f ∈C1(M) such that f is constant outside a compact
set,

p̃[Ps,t f 2− (Ps,t f 1/ p̃)p̃]

4(p̃−1)
≤ E

{
|∇t f |2t (Xt)

∫ t

s
e−2

∫ t
u K(r,Xr)dr−2

∫ t
u σ(r,Xr)dlr du

∣∣∣∣Xs = x
}
,

where when p = 1, the inequality is understood as its limit as p ↓ 1:

Ps,t( f 2 log f 2)(x)− (Ps,t f 2 logPs,t f 2)(x)

≤ 4E
{
|∇t f |t(Xt)

∫ t

s
e−2

∫ t
u K(r,Xr)dr−2

∫ t
u σ(r,Xr)dlr du

∣∣∣∣Xs = x
}
.

(iv) For any 0≤ s < t < Tc, x ∈M and positive function f ∈C1(M) such that f is constant outside
a compact set,

|∇sPs,t f |2s (x)
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≤ [Ps,t f p̃− (Ps,t f )p̃](x)

p̃(p̃−1)
∫ t

s

(
E{(Pu,t f )2−p̃(Xu)e−2

∫ u
s K(r,Xr)dr−2

∫ u
s σ(r,Xr)dlr |Xs = x}

)−1
du

,

where when p = 1, the inequality is understood as its limit as p ↓ 1:

|∇sPs,t f |2s (x)≤
[Ps,t( f log f )− (Ps,t f ) logPs,t f ](x)∫ t

s

(
E
{

Pu,t f (Xu)e−2
∫ u

s K(r,Xr)dr−2
∫ u

s σ(r,Xr)dlr
∣∣Xs = x

})−1
du

.

Proof. By the derivative formula established in Theorem 2.3, it is easy to derive (ii) from (i); then
according to Theorem 2.7, we see that (ii)–(iv) implies (i); and finally, taking f ∈ C∞(M) and f is
constant outside a compact set, we derive (iii), (iv) from (ii) by a similarly discussion as in the proof
of [36, Theorem 2.3.1] for the case with constant metric. We just take the proof of “(ii)⇒ (iii)” for
example. A similar argument leads to “(ii)⇒ (iv)”.

We again assume s = 0. As the boundedness of |∇·P·,t f |· on [0, t]×M is verified above, by using
the derivative formula in Theorem 2.3,

d
du

P0,u(Pu,t f 2/p)p(x)

= p(p−1)P0,u{(Pu,t f 2/p)p−2|∇uPu,t f 2/p|2u}

≤ 4(p−1)
p

Ex
{
(Pu,t f 2/p)p−2(Xu)(Pu,t f

2(2−p)
p )(Xu)

×E
(
|∇t f |2t (Xt)e−2

∫ t
u K(r,Xr)dr−2

∫ t
u σ(r,Xr)dlr

∣∣Fu

)}
holds for x ∈M, 0 ≤ s ≤ t < Tc and f ∈C1(M) such that f is constant outside a compact set. Since
2− p ∈ [0,1], by the Jensen inequality and the Markov property, we arrive at

d
du

P0,u(Pu,t f 2/p)p(x)≤ 4(p−1)
p

Ex
{
|∇t f |2t (Xt)e−2

∫ t
u K(r,Xr)dr−2

∫ t
u σ(r,Xr)dlr

}
.

Integrating with respect to u over [0, t] yields (iii) for s = 0.

Let ϕ : R+→ R+ be a non-decreasing function, we define a cost function Ct(x,y) = ϕ(ρt(x,y)).
To this cost function, we associate the Monge-Kantorovich minimization between two probability
measures on M,

WCt (µ,ν) = inf
η∈C (µ,ν)

∫
M×M

Ct(x,y)dη(x,y), (4.1)

where C (µ,ν) is the set of all probability measures on M×M with marginal µ,ν ∈P(M) and
P(M) being the space of all probability measure on M. We denote

Wp,t(µ,ν) = (Wρ
p
t
(µ,ν))1/p

the Wasserstein distance associated to p > 0.
We now list more equivalent statements for (1.2), which is an extension of [12, Theorem 4.3] to

manifolds with boundary carrying convex flows. See also [31, 33, 34] for the corresponding conclu-
sions on the constant manifold with boundary.
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Theorem 4.2. Let p ∈ [1,∞), K ∈C([0,Tc)) and {ps,t}0≤s≤t<Tc be the heat kernel of {Ps,t}0≤s≤t<Tc

associated with the volume measure µt with respect to the metric gt . Then the following assertions
are equivalent to each other.

(i) (1.2) holds.

(ii) For any x,y ∈M and 0≤ s < t < Tc,

Wp,t(δxPs,t ,δyPs,t)≤ ρs(x,y)e−
∫ t

s K(r)dr.

(ii′) For any µ1,µ2 ∈P(M) and 0≤ s < t < Tc,

Wp,t(ν1Ps,t ,ν2Ps,t)≤Wp,s(ν1,ν2)e−
∫ t

s K(r)dr.

(iii) When p > 1, for any f ∈B+
b (M) and 0≤ s < t < Tc,

(Ps,t f )p(x)≤ Ps,t f p(y)exp

[
p

4(p−1)

(∫ t

s
e2
∫ r

s K(u)dudr
)−1

ρ
2
s (x,y)

]
.

(iv) For any f ∈B+
b (M) with f ≥ 1 and 0≤ s≤ t < Tc,

Ps,t log f (x)≤ logPs,t f (y)+
(

4
∫ t

s
e2
∫ r

s K(u)dudr
)−1

ρ
2
s (x,y).

(v) When p > 1, for any 0≤ s≤ t < Tc and x,y ∈M,

∫
M

ps,t(x,y)
(

ps,t(x,y)
ps,t(y,z)

) 1
p−1

µt(dz)≤ exp

[
p

4(p−1)2

(∫ t

s
e2
∫ r

s K(u)dudr
)−1

ρ
2
s (x,y)

]
.

(vi) For any 0≤ s < t < Tc and x,y ∈M,

∫
M

ps,t(x,y) log
ps,t(x,y)
ps,t(y,z)

µt(dz)≤ ρ
2
s (x,y)

(
4
∫ t

s
e2
∫ r

s K(u)dudr
)−1

.

(vii) For any 0≤ s < u≤ t < Tc and 1 < q1 ≤ q2 such that

q2−1
q1−1

=

∫ t
s e2

∫
τ

s K(r)drdτ∫ u
s e2

∫
τ

s K(r)drdτ
, (4.2)

it holds
{Ps,u(Pu,t f )q2}

1
q2 ≤ (Ps,t f q1)

1
q1 , f ∈B+

b (M).

(viii) For any 0≤ s≤ u≤ t < Tc and 0 < q2 ≤ q1 or q2 ≤ q1 < 0 such that (4.2) holds,

(Ps,t f q1)
1

q1 ≤ {Ps,u(Pu,t f )q2}
1

q2 , f ∈B+
b (M).
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(ix) For any 0≤ s < u≤ t < Tc and f ∈C1(M) such that f is constant outside a compact set,

|∇sPs,t f |ps ≤ e−p
∫ t

s K(r)drPs,t |∇t f |pt .

(x) For any 0 ≤ s < u ≤ t < Tc and positive function f ∈C1(M) such that f is constant outside a
compact set,

(p∧2)[Ps,t f 2− (Ps,t f 2/(p∧2))p∧2]

4(p∧2−1)
≤
∫ t

s
e−2

∫ t
u K(r)drdu ·Ps,t |∇t f |2t .

When p = 1, the inequality reduces to the log-Sobolev inequality

Ps,t( f 2 log f 2)− (Ps,t f 2) logPs,t f 2 ≤ 4
∫ t

s
e−2

∫ t
u K(r)drdu ·Ps,t |∇t f |2t .

Proof. First, by Theorems 2.1, 3.1 and 4.1, the inequalities (ii)–(x) can be derived from (i) by a
similar discussion as in [12, Theorem 4.3] for the case without boundary.

Then, we assume (iv) and prove (i). For a fixed point x ∈ M◦, t ∈ [0,Tc) and X ∈ TxM, take
f ∈C∞

0 (M) such that ∇t f = X , Hesst
f (x) = 0 and f = 0 in a neighborhood of ∂M. The argument in

[12, Theorem 4.4] works well for this case, i.e. RZ
t ≥ K(t) can be induced from (iv).

So, it only leaves for us to derive IIt ≥ 0. By Theorem 2.8, it is obvious to see that we only need
to consider the term with order

√
t. So we do not need to care about the terms, which come from the

time derivative about the metric, since they at least have order t. Therefore, by a similar procedure
as in time-homogeneous case (see [32]). We conclude that ∂M is convex under the metric gt for all
t ∈ [0,Tc).

5 Appendix

Proof of Theorem 3.3. Without loss of generality, we also consider s = 0 for simplicity.
(a) By the Itô formula, we have

dφ
−p
t (Xt) =

〈
∇

t
φ
−p
t (Xt),utdBt

〉
t
+(Ltφ

−p
t (Xt)+∂tφ

−p
t (Xt))dt +Ntφ

−p
t (Xt)dlt

≤
〈

∇
t
φ
−p
t (Xt),utdBt

〉
t
− pφ

−p
t (Xt){K(p)

φ
(t)dt +Nt logφt(Xt)dlt}.

So, Mt := φ
−p
t (Xt)exp

[
p
∫ t

0 K(p)
φ

(s)ds+ p
∫ t

0 Ns logφs(Xs)dls
]

is a local martingale. Thus, using the
Fatou lemma and noting that φt ≥ 1, we have

E
{

φ
−p
t (Xt)exp

[
p
∫ t

0
K(p)

φ
(s)ds+ p

∫ t

0
Ns logφs(Xs)dls

]}
≤ liminf

n→∞
Ex
{

φ
−p
t (Xt∧ζn)exp

[
p
∫ t∧ζn

0
K(p)

φ
(s)ds+ p

∫ t∧ζn

0
Ns logφs(Xs)dls

]}
≤ φ

−p
0 (x)≤ 1.

Therefore,

Ex exp
[

p
∫ t

0
Ns logφs(Xs)dls

]
≤ ‖φt‖p

∞e−p
∫ t

0 K p
φ
(s)ds, t ≥ 0. (5.1)
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Since IIt ≥−Nt logφt , by combining this with Theorem 2.3 for σ(t, ·) =−Nt logφt and Theorem 1.2
(i), we obtain

|∇0P0,t f |p0(x)≤(P0,t |∇t f |p/(p−1)
t )(p−1)(x)Ex‖Qt‖p

≤(P0,t |∇t f |p/(p−1)
t (x))(p−1)Ex exp

[
p
∫ t

0
Ns logφs(Xs)ds

]
≤‖φt‖p

∞(P0,t |∇t f |p/(p−1)
t )(p−1)(x)e−p

∫ t
0 K p

φ
(s)ds.

Therefore, the first inequality holds.
(b) Let

h(s) =
∫ s

0 ‖φu‖−2
∞ e2

∫ u
0 K(2)

φ
(r)drdu∫ t

0 ‖φu‖−2
∞ e2

∫ u
0 K(2)

φ
(r)drdu

, s ∈ [0, t].

Then the following inequality follows from the second formula in (2.7) and (5.1) for p = 2,

|∇0P0,t f |20 ≤
P0,t f 2

2
E
∫ t

0
h′(s)2‖Qs‖2ds

≤ P0,t f 2

2
E
∫ t

0
h′(s)2‖φs‖2

∞ exp
[
−2
∫ s

0
K(2)

φ
(r)dr

]
ds

≤ 1
2

[∫ t

0
‖φu‖−2

∞ e2
∫ u

0 K(2)
φ

(r)drdu
]−1

P0,t f 2.

We complete the proof of (3.13).
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