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Summary

Most diseases are characterized by altered epigenetic and metabolic states,

pointing to the need of a global and combined understanding of mechanisms under-

lying epigenetic and metabolic changes as an important piece to enable disease

eradication. Adipocytes impact systemic homeostasis and their differentiation en-

compasses a phenotypic change whose function becomes impaired with diseases

such as obesity and metabolic syndrome.

Following an integrative systems biology approach, we combined different

omics data from the differentiation of Simpson-Golabi-Behmel syndrome (SGBS)

adipocytes with a human metabolic model to observe key metabolic changes upon

differentiation, their regulation and relevance for disease.

Pursuing the link to disease, we used public data from the genome-wide

binding of TFs and location of active enhancers to test for disease association in

function of the regulatory load, revealing a cell type-selective enrichment for disease

of the high regulatory load genes.

Diverse experimental data were collected, covering a gene expression time-

course during adipogenesis, with identification of miR-27a, miR-29a and miR-222

target genes, the genome-wide binding profiles of PPARγ, C/EBPα and LXRα, and

the H3K4me3 histone modification mark for actively transcribed transcription start

sites (TSSs).

Metabolic genes showed a highly dynamic expression pattern during adipo-

genesis, most being targeted by PPARγ and C/EBPα. Lipid metabolism pathways

including triacylglyceride synthesis showed extensive and combinatorial regulation

by TFs and miRNAs, converging on known dyslipidemia genes.

For data visualization, we developed a web portal that interactively renders

metabolic pathways with omics data overlaid (IDARE, http://systemsbiology.

uni.lu/idare.html).

Public ChIP-seq data revealed a general principle of higher disease associa-

tion of genes under higher regulatory control in a cell type-selective manner.

First, data from the genome-wide binding of 10 TFs in HUVEC cells showed

an enrichment for vascular diseases on metabolic genes targeted by > 6 TFs.

Second, data from the binding of a total of 93 TFs confirmed the enrichment

for disease association of genes with the top TF load in 8 additional cell lines.

Finally, active enhancer data from 139 samples spanning 96 cell types and

tissues demonstrated the cell type-selective disease enrichment of the genes with

the highest active enhancer load.

High regulatory load genes enriched for disease association beyond genetic

xv
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variation, including association types like “altered expression” and “biomarker”,

among others.

Additionally, high regulatory load genes appeared on average in more KEGG

pathways and had higher betweenness centrality in a liver disease network than

other genes, showing longer 3’UTRs harboring more binding sites for diverse

microRNA families, suggesting also a higher post-transcriptional regulatory load

and a role as signal integrators within biological networks.

Our results point to the pertinence of including high regulatory load genes for

unbiased prioritization of novel candidate genes for disease association.

xvi



Preface

Here I describe the different chapters of the current thesis and how they

are organized, as a reference point. The thesis is cumulative, as allowed by

the Doctoral School in Systems and Molecular Biomedicine, and includes three

entire manuscripts within the main text body, Manuscript I, Manuscript II and

Manuscript III, presented in Chapter 4, Results (page 57).

Additionally, two other manuscripts are presented in appendix, Manuscript

IV and Manuscript V, starting on page 223. These two are technical summaries of

Manuscript I.

The general structure of the thesis comprises an overall introduction (Chapter

1, page 1), followed by two short chapters, the first describing the scope and aims

of the thesis (Chapter 2, page 45) and the second a brief desciption of the material

and methods employed within the thesis (Chapter 3, page 49). Following, a chapter

with results is presented, containing the three entire manuscripts that compose the

main thesis body (Chapter 4, page 57). Finally, the presented results are discussed

and future perspectives presented in chapter 5 (page 151).

Chapter 1, Introduction, draws a line from Cellular Biology to Systems

Biology, enabled by all discoveries from classical sciences and the technological

advances observed by the end of the 20th century. Moving from single components

to networks and systems, we will see how complex the human organism is and

that we are still missing many of the pieces to complete the puzzle. Individual

components interact within cellular networks, which sustain life processes and are

responsible for the large diversity of cellular functions and responses, and often

disrupted in diseases.

A considerable portion of the Introduction is dedicated to describe genome

functioning. The genome is a supramolecular entity composed of chromatin, which

encloses DNA and many associated proteins. Its usage is highly regulated within the

nucleus of eukaryotic cells in order to achieve a precise control of gene expression.

The precise control of gene expression is essential to maintain cellular viability and

respond to diverse stimuli. Within cells, highly dynamic and context-dependent

biological networks arise from a lot of combinatorial molecular interactions between

many interacting partners, resulting in a precise control of chromatin accessibility,

gene expression and cellular function.

In my thesis, extensive focus was given to the genome and gene regulatory

networks both in context of adipocyte differentiation and the link between the

regulatory load and disease association.

xvii



Preface

Moving then from genome to metabolism, which much promptly reflects the

cellular state and accounts for the biochemical reactions that characterize life, we

see that the genome and metabolism largely interact, and regulate each other

for instance via transriptional control of enzymatic activity or by contributing to

chromatin remodelling through histone modifications dependent on the metabolic

availability of chemical groups.

Perturbations in biological networks and their interplay underly diseases

and we will dive into adipocyte differentiation as an example of a phenotypic

transition useful to study the interplay between the gene regulatory and metabolic

networks and relevant for diseases such as obesity, type 2 diabetes and metabolic

syndrome.

At the end of the introduction, we return to Systems Biology as a framework

to study biological processes at a systems level and attempting to consider their

complexity as a unit rather than isolated parts. Systems Biology relies on the

omics techniques to extensively acquire evidence on biological components and

their interactions at different time points and conditions, currently allowing us to

move away from the analysis of single or few components to networks and their

relationships. Data integration and modelling of the biological processes in which

they are involved serves to better describe or predict how they function.

Transitioning from the Introduction to the Results, a Scope and Aims chap-

ter (page 45) contextualizes the thesis within Biology, stating current challenges,

introducing the undertaken work, describing its aims and introducing the resulting

scientific publications and my contribution. Following, the materials and methods

employed in the thesis are presented (Chapter 3, Materials and Methods, page

49), not very detailed in context of a cumulative thesis. The respective detailed

descriptions can be found within each manuscript.

The Results chapter contains one general overview introducing each of the

manuscripts presented within the thesis and then is divided in three sections, one

per manuscript.

Manuscript I (section 4.2, page 59), "Integrated analysis of transcript-level

regulation of metabolism reveals disease-relevant nodes of the human metabolic

network", deals with transcript-level regulation of human adipocyte differentiation

and associated metabolic changes as well as the relation between transcription fac-

tor load and disease association in HUVEC cells. Manuscript I has been published

in Nucleic Acids Research in 2014 (PMID: 24198249).

Manuscript II (section 4.3, page 117), extends from the first one by looking

at the relation between regulatory load and disease association in several different

xviii



cell and tissue types, showing also properties of the high regulatory load genes that

distinguish them from other genes, in a computational analysis of public data. It

is entitled “Cell type-selective disease-association of genes under high regulatory

load” and was accepted for publishing in Nucleic Acids Research on 14.08.2015

(published online on 03.09.2015, PMID:26338775). The published version of

Manuscript II has been included in the thesis after defence.

Manuscript III (section 4.4, page 147), describes a tool for automated gen-

eration of image metanodes and a Cytoscape app for multi-omics integration and

visualization within Cystocape networks, “IDARE2 - Simultaneous visualization of

multi-omics data in Cytoscape”. The main author of Manuscript III is Thomas Pfau

(thomas.pfau@uni.lu) and it is in preparation for a soon submission.

Finally, in the Discussion and perspectives chapter (page 151), I comment

on the presented results with respect to the literature and discuss their relevance.

Perspectives and suggestions for changes or improvements are also given.

An appendix chapter contains Manuscript IV (page 224) and Manuscript

V (page 228), two technical summaries produced in context of Manuscript I and

published in Genomics Data. The IDARE2 user guide (page 236) is also presented

in appendix.

xix





1 Introduction

1.1 From Cell Biology to Systems Biology

Ever since Robert Hooke looked at a cork slice under a microscope in 1665

and observed walls and compartments resembling "cells" of a monastery that our

advent through Cellular Biology started [1]. Cells are the units of life, being the

smallest independent and self-perpetuating entities. In multicellular organisms, they

operate concertedly in order to achieve multiple functions that allow survival. With

increasing knowledge on cellular biology, the existence of a microscopic sub-cellular

world governing the processes of life and becoming disrupted in case of disease

became clear [2, 3]. As more disease causes and treatments were discovered, the

realization that a single disease cause (genetic, environmental or other) is rarely the

case in place led researchers to hypothesize on interacting partners and effectors

that would overall cause the disease. The complexity is huge, with around 20000

genes [4] and an even larger number of proteins, metabolites and macromolecules

[5–7]. An extra layer of complexity is raised by the interactions and interplay between

all different biological entities, making it impossible for human cognition to handle

and understand without computational support. This complexity reflects the need for

models and modelling frameworks in biology that can help us to in silico reproduce

and test biological phenomena [8].

More than 50 years ago, F. Crick first stated the “central dogma of Biology”,

with an information flow from DNA to RNA to proteins. More recently, evidence for a

complex multidirectional relationship among biological components and processes

not following such simple hierarchical structure has been recognized. The order and

nature of processes rather follow a cyclic pattern, where indeed information stored

in DNA is transcribed into RNA and from therein translated to proteins. However,

there is neither DNA transcription to RNA nor RNA translation to protein without

proteins, metabolites and other molecules as well as their interactions, in a cyclic

self-regulatory system [9]. Proteins are in general the cellular effectors, while DNA

contains a vast and versatile library of "code" that can be used upon stimuli or

need to generate proteins. RNA is transcribed from DNA and presents a vast set

of functions that operate between the "two extremes", including mRNAs which can

be translated to proteins but also many other RNA types, including microRNAs that

are involved in post-transcriptional gene silencing. Figure 1.1 (page 2) represents

the “central dogma of Biology” in light of this cyclic and interconnected dependency

between cellular components and processes not following a unidirectional flow.

1



1 Introduction

RNA

Epigenome Epitranscriptome Epiproteome

DNA Protein
Ribozymes Prions

Transcription Translation

RT, regRNA RBPs

Histone + base modification RNA modification PTMs

DBPs

Signalling + Metabolism

Inherited or transmitted

Figure 1.1: The “central dogma of Biology” in light of today’s knowledge. A complex inter-
relationship among many processes and components underlies Biology. The information flow is
multidirectional, sustained by processes such as replication, reverse transcription (RT) and trans-
position. Ribozymes and prions confer an increased diversity of cellular processes and complexity.
Chemical modifications impacting DNA, RNA and proteins that define the epigenome, epitranscrip-
tome and epiproteome fine tune the course of cellular responses. DNA- and RNA-binding proteins
represent another layer of interdependency between the proteome, genome and transcriptome, and
sustain all the basic processes that end up in translation, including the transcriptional machinery,
the binding of specific TFs and RNA processing. The many regulatory RNAs (regRNA) define an
additional system for controlling gene expression. Signalling and metabolism closely relate with all
cellular dimensions, through many diverse molecular interactions and transferred chemical groups,
exemplifying the highly interconnected nature of cellular functioning. Systems Biology uses panomics
approaches to attempt a higher understanding of the complex interactions of all biological processes
within cells and how they are integrated within organisms in health and disease. Adapted from
Saletore et al. [10].

Proteins, resulting from the translation of mRNAs, are cellular effectors by

excellence, performing tasks as diverse as cellular structure and support (e.g. in-

volved in cellular shape), cellular events requiring enzymatic catalysis (e.g. anabolic

& catabolic metabolism, signaling cascades, active transport), non-enzymatic medi-

ated cellular transport (e.g. facilitated diffusion or electrochemical potential-driven

transport, in which proteins form channels and pores) and regulatory functions

in which they are generally called “factors” (e.g. transcription factor (TF) binding

specific DNA sequences and thereby controlling the flow of genetic information to

mRNA - transcription) [2, 7, 11].

With only about 2% of the genome encoding for proteins, the remaining

consists of non-coding RNA genes, regulatory sequences (to which regulatory

proteic factors bind and regulate genetic events), introns, and non-coding DNA. The

"Genome" encloses the code with the basis for life perpetuation, which is transmitted

2



1.2 Genome and gene regulatory networks

to the progeny and contains the necessary information for a fully functional organism,

being physically composed by DNA and associated proteins, which compose a 3D

structure named "chromatin".

"Genes" within the genome are "organized pieces of code" serving as tem-

plate to build effector gene products, such as proteins, which we have studied and

understand relatively well. Beyond the nucleotide sequence of the genome is the

epigenome, represented by the chemical modifications to the DNA and associ-

ated histones and involved in the control of the chromatin structure and genome

accessibility, which tune gene expression programs together with specific TFs.

The ENCODE project [12] attributed a biochemical function to 80.4% of the

human genome, much of which owing to non-coding DNA [12], with a recent study

estimating 7.1-9.2% of the human genome to be presently under negative selection

with respect to indels [13], meaning incurring removal of deleterious mutations

(disadvantageous or harmful insertions and deletions).

Biochemistry and Molecular Biology generated a legacy of data and knowl-

edge about cellular components, processes and their regulation that allowed to

depict metabolic pathways of the cell (series of reactions in which the products

of one reaction are the substrates for the following reactions). Although not com-

prehensive, this legacy allows to build biochemically, genetically and genomically

(BiGG) structured reconstructions that can be mathematically represented (models)

and integrated with omics data to e.g. predict metabolic flux distributions of cells /

tissues, a task experimentally complex at a large-scale level [14, 15] (more details

in section 1.7.1).

In the “genome era”, increasing numbers of genomes have been sequenced,

including a first version of the human genome in 2001 [16, 17]. It soon became

clear that knowing the genome’s nucleotide sequence by itself would not provide

much additional insights into the interconnection of genetic information and cellular

processes. The need for an integrated approach considering the multiple levels

of cellular organization and regulation became clear. This further stimulated the

expansion of additional high-throughput technologies towards global molecular

profiling (omics), which provide the biological data needed to connect observable

phenotypes with realistic genome-scale network reconstructions [18].

1.2 Genome and gene regulatory networks

The study of the human genome and its regulation is of high importance

because it contains the information that allows cellular multiplication and life sus-

tainment. Understanding it is therefore crucial for both medical and purely research
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purposes [19]. In the context of this thesis, genome regulation and changes in gene

expression have a central role. For this reason, in the current chapter, I give an

overview of several aspects relating with the genome and how its usage is regulated

in order to achieve a precise control of gene expression.

DNA, the genome component containing the “code of life”, is a complex

macromolecule formed by two nucleotide strands with the particular feature of

intertwining in each other from opposite directions and creating an anti-parallel

double helix around the same axis. This complex structure provides additional

resistance to cleavage with repeated phosphate and sugar residues filling the

outter surface (backbone) while the four nucleotide bases Adenine (A), Cytosine

(C), Guanine (G) and Thymine (T) fill the double helix core further increasing its

stereochemical stability through complementary base-pairing (hydrogen bonds) and

adjacent base-stacking (non-covalent attractive interactions between aromatic rings)

[20, 21].

Most cells in the human body contain one equal copy of the genome (diploid

somatic cells, 46 chromosomes), except gametes (haploid cells, 23 chromosomes)

and enucleated cells (erythrocytes and platelets). The human adult body contains

an estimated 3.72 × 1013 cells [22], spanning > 400 cell types [23] that origi-

nate from one zygote, through cellular divisions replicating an identical genome

through each generation. Such diversity of distinct cell types arises from a complex

regulation of gene expression programs throughout development and adult life.

Despite one largely identical genome across cell types, they are characterized

by a distinct integration of signals via the epigenome. Many variable signals and

chemical modifications confer a highly dynamic chromatin structure and modulate

the accessibility to genes, giving rise to diverse epigenetic signatures and gene

expression programs.

Gene expression is the process by which inert information encoded in genes

is used to synthesize a gene product, commonly a protein, or a functional RNA (e.g.

tRNA or snRNA). It involves transcription, RNA processing and, in case the gene

encodes a protein, translation and post-translational modification.

Regulation of gene expression is a complex process involving spatial, physical

and sequence features that occur at all steps leading to the synthesis of a gene prod-

uct, including genome accessibility (section 1.2.1), when and how much genes

are transcribed (section 1.2.2), the resulting RNA properties and processing

(section 1.2.3) and the resulting protein translation and properties (section 1.2.4).

Overall, it reflects combinatorial molecular interactions within (section 1.2.5) and

between (section 1.4) sub-cellular networks (e.g. gene regulatory, signalling and

metabolic networks, section 1.2.6 and 1.3) with varying amount, strength and nature
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1.2 Genome and gene regulatory networks

which are dynamically integrated with external stimuli at the organism-level and

whose perturbation is associated with diseases (section 1.5).

Conceptually, there are two modes by which differences in gene expression

arise: i) DNA sequence variation, such as single nucleotide polymorphisms (SNPs)

in a population (traditionally studied by genetics), and ii) epigenetic factors impact-

ing genome usability without differences in the nucleotide sequence, e.g. DNA

methylation or histone modifications.

While many sequence variants affecting gene expression and associated

to disease have been discovered [24–26], here more focus is given to epigenetic

processes involved in gene expression control [27, 28]. Of note, nuclear organi-

zation and sub-nuclear location have also been reported to play an important role

in determining gene expression levels [29, 30]. Fertilization marks the beginning

of the long developmental process that results in the formation of a new individual

and involves time- and spatially coordinated gene regulatory mechanisms pre-

cisely controlling gene expression, including karyogamy, epigenetic reprogramming,

embryonic genome activation (EGA) and cellular divisions [31, 32].

Figure 1.2 (page 6) summarizes some of the genome properties that are

described in the following sections.

1.2.1 Chromatin structure and genome access

Within cells, DNA localizes to the nucleus (with exception of mitochondrial

DNA) where it is densely packed and complexed with structural and regulatory pro-

teins forming chromatin. Chromatin states and domains underlie genome function,

namely throughout development and in response to diverse stimuli, as chromatin

structure determines the physical access to genes, which ultimately dictates the

transcriptional potential [35–37]. Spatial constraints and the highly dynamic chro-

matin structure (considerably varying throughout the cell cycle) temporally regulate

gene expression based on genome accessibility.

Nucleosomes are the basic repeating elements of chromatin and their po-

sitioning and density determine chromatin structure. Actively transcribed less

densely packed domains (euchromatin) are accessible to RNA polymerases and

the transcriptional machinery, opposed to highly condensed largely inactive regions

(heterochromatin) [38–48].

During cellular division, chromatin attains the highest packing density when

chromosomes of cells in metaphase become visible under the microscope. Sur-

prisingly, unwinding the DNA from one single cell would lead to a linear chain

larger than 1 m(1), whereas the nucleus of a human cell has an average diameter

(1)The human genome has more than 3 billion base pairs (3 · 109 bp) and one nucleotide unit length
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Accessibility based on chromatin compaction

Closed (no access) Accessible

Genome organization

Active promoter
(H3K4me3)

Chromatin “domains” characterized by 
specific histone modifications

Active enhancer
(H3K27ac)

TFs

A typical human protein coding mRNA

Post-transcriptional regulation

(miRNAs bind to the 3’UTR of mRNAs 
and inhibit their translation to protein)

Transcriptional regulation

Figure 1.2: Summary of the organization and functioning of the genome. The genome is highly
packed within the nucleus, with very dense inactive regions of heterochromatin and more active
regions of euchromatin accessible for transcription. Active enhancers (marked by H3K27ac) associate
with transcriptional activation and harbour binding sites for specific TFs, whose binding favours
interactions with coregulators sunch as Mediator and looping events bridging to the transcriptional
machinery on the promoters of target genes. Gene expression can be post-transcriptionally regulated
by microRNAs which bind to the 3’UTR of target mRNAs and preclude their translation into protein.
Additional regulation at the RNA and protein levels represent another strong component of the
regulation of gene expression. Sources: [33, 34], http://en.wikipedia.org/wiki/Messenger_
RNA.

of 10 µm (1 · 10−6 m), greatly exemplifying the huge packing degree of nuclear

DNA. Among others, dynamic chromatin remodelling can be achieved through

nucleosome density and positioning (section 1.2.1), covalent histone post-

translational modifications (section 1.2.1), DNA methylation (section 1.2.1) and

non-coding RNA regulation of chromatin structure [28, 49–54].

Nucleosome density and positioning

Allowing to achieve a huge DNA compaction in the nucleus are the nucleo-

somes, composed of the nucleosome core, ≈ 147 bp of DNA wrapped around a

histone octamer(2) and a DNA stretch with variable length depending on chromatin

compaction (linker DNA)(3) [55]. The DNA sequence itself contributes to the nucle-

osome positioning by dictating the affinity between the nucleotides and the core

histones. Transcription factors (TF, section 1.2.2) and other proteins also influence

nucleosome distribution through cooperative or competitive interactions, besides

is 0.33 nm.
(2)2 copies of each core histones H2A, H2B, H3 and H4.
(3)Histone H1 links different nucleosomes through the linker DNA, contributing to higher order chro-

matin structures.
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1.2 Genome and gene regulatory networks

being involved in the recruitment of ATP-dependent remodeling complexes which

can actively translocate, dissociate or restructure nucleosomes [56, 57].

Bargaje et al. [58] have shown that liver highly expressed genes were depleted

of nucleosomes in their TSS, whereas in the brain, where they were lower expressed,

their TSS was nucleosome masked. These results suggest a role for nucleosome

positioning and possibly sliding on the control of tissue-specific gene expression,

further requesting systematic elucidation across tissues and conditions (e.g on

health and disease). Remarkably, despite nucleosomes, in vivo transcription occurs

at comparable speeds to that of naked DNA templates [48, 59]. Nucleosome density

and positioning in the genome is therefore an important means of regulating gene

expression, being highly complex and dynamically re-arranged upon diverse stimuli

[60, 61] and contributing to disease [62].

The histone code

Histone proteins compose the nucleosomes(4) and allow for DNA compaction

and de-compaction as needed within the nucleus. Due to their highly basic nature

with a net positive charge, histones have affinity to the negatively charged phosphate

groups of the DNA. Histones are subject to reversible covalent post-translational

modifications (PTMs) mainly on the amino (N)-terminal tails oriented to the exterior

of nucleosomes, causing a local closing or opening of chromatin.

Some PTMs occurring in histones include methylation, acetylation, phospho-

rylation, ubiquitylation, propionylation, crotonylation, succinylation and glycosylation

(and their reciprocal) via specific enzymes, namely histone acetyltransferases

(HATs), deacetylases (HDACs), sirtuins, methyltransferases (HMTs), and kinases

[41, 63–66]. For instance, histone lysine acetylation in general associates with

chromatin opening, due to the neutralization of the lysine’s positive charge with the

addition of the acetyl group, thereby decreasing its affinity to DNA. These modifi-

cations influence inter-nucleosomal interactions, thus directly impacting the overall

chromatin structure, and the interactions with many proteins, including effectors

such as ATP-hydrolizing remodelling enzymes that reposition nucleosomes [67, 68],

additional histone modification reader and writer proteins and coregulators, leading

to effects on gene expression.

Several histone modification marks have been identified in association with

chromatin states and components [69], defining a “histone code” that underlies spe-

cific cellular responses based on sequential and combinatorial histone modifications

that can be interpreted and interact with a multitude of proteins and enzymes [51,

70–78], with > 400 described histone modification types [79].

(4)See footnote (2) in page 6.
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For instance, H3K4me3 is associated with promoters [80, 81] and H3K4me1

preferentially associates with enhancers [82], genomic regions proximal and distal

to target gene TSSs associated with activation of gene transcription [83]. H3K27ac

and H3K9ac associate with active enhancers [84, 85]. H3K36me3 and H4K20me1

associate with transcribed regions [81, 86]. Furthermore, H3K27me3 associates

with Polycomb-repressed regions [86]. These and other modifications testify a

transcriptional regulation system based on chromatin allostery effected through

histone modifications [87] and shown to play important roles in several diseases

[88–92] as well as beneficial mechanisms [93].

Histone modifications thereby confer a signalling dimension coupled to the

genome, as part of the epigenome [94], propagating multiple latent signals through

recruitment of particular proteins that mediate biological functions, such as for DNA

methylation by unmethylated H3K4 through interaction with DNMT3L [95], or for

hetero-chromatin formation through interactions between H3K9me3 and hetero-

chromatin-associated protein 1 (HP1) [96, 97].

DNA methylation and de-methylation

Along with nucleosome density and positioning and histone modifications,

DNA base modification is also involved in the chromatin packing. Cytosine methy-

lation at the fifth carbon is the most common base modification, originating 5-

methylcytosine (5mC). Methylation of cytosines adjacent to guanines (CpG islands)

on gene promoters often associates with gene silencing with proteins binding

to methylated DNA also forming complexes with HDACs, promoting an hyper-

methylated and de-acetylated state that results in compact and silent chromatin

[98]. Antagonically, DNA methylation within gene-bodies, more frequent than in

promoters, has been positively correlated with gene expression [99–101]. This

dynamic effect of DNA methylation reveals a complex context-specific role of DNA

methylation on genome regulation, including exon usage [102, 103].

In particular, DNA methylation/de-methylation is an heritable epigenetic trait

impacting several cellular processes, namely embryonic development, differen-

tiation, chromatin structure, transcription, genomic imprinting and chromosome

stability [98, 104, 105]. The enzymes involved include DNA methyltransferases

(DNMTs), which use S-adenosylmethionine as a methyl group donor, and ten eleven

translocation enzymes (TET1-3), which sequentially convert 5mC to the demethy-

lation intermediates 5-hydroxymethyl-cytosine (5hmC), 5-formylcytosine (5fC) and

5-carboxylcytosine (5caC) [106–109].

Tissue-specific genes often have un-methylated promoter CpG islands which

appear methylated in other tissues [28, 110]. DNA methylation effect on gene
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expression has been recognized for long [111, 112] and gene silencing described as

its most prominent effect, with prime example on the silencing of one X chromosome

in females [113]. However, more recently, a broader complexity and variety of DNA

methylation mechanisms and effects has been revealed [28, 98, 110, 114–118],

namely gene expression changes resulting from alteration in non-CpG methylation in

human adult brain, T cells and skeletal muscle [119]. DNA hyper/hypo-methylation is

also highly involved in diseases, namely the hyper-methylation of tumour suppressor

promoters as a tumourigenesis driver [105, 120], and involvement in cardiopathies

including atherosclerosis [118, 121–124], diabetes [125] and autoimmune diseases

[126, 127].

The interplay between DNA and histone lysine methylation has also recently

become apparent, with direct links between H3K4, H3K9 and H3K36 methylation

and the targeting of DNA methylation, mechanistically supporting normal chromatin

function [109, 128]. Additionally, methylation processes are also directly linked to

metabolism and nutrition, relying on co-factors such as folate and the vitamins B6

and B12 as well as on the cellular methyl-donor pools [128–130].

1.2.2 Transcriptional regulation

Genome accessibility dictates which genes are physically able to be tran-

scribed (section 1.2.1) and is highly coupled with transcriptional regulation, the

level of gene expression control determining when accessible genes are tran-

scribed and how much RNA is thereby synthesized. Factually, these processes

are intrinsic to each other. Genome accessibility has its basis on protecting and

keeping the genome’s integrity while allowing important “parts” to be used when and

where necessary. Transcription and its regulation further build upon this accessibility

to operate functions through gene products.

Transcription refers to the process of producing an RNA strand comple-

mentary to a template DNA and it involves three sequential steps, all subject to

regulation - initiation, elongation and termination - that occur in transcription

factories harboring the transcriptional machinery (RNA polymerase(s) and many

proteic and enzymatic complexes with affinities for multiple partners that overall

catalize transcription). Chakalova and Fraser [131] nicely illustrate the 3D concept

of the highly dynamic transcription of multiple genes on transcription factories, a

complex process with a tight spatio-temporal control.

RNA polymerases, the transcriptional machinery core, are the master en-

zymes for RNA synthesis, being capable of binding to DNA on gene promoters and

polymerize ribonucleotides into a nascent RNA transcript (nucleotidyl transferase

activity). Distinct RNA polymerases transcribe different gene classes, namely RNA
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polymerase I transcribing genes coding for rRNA, RNA polymerase II transcribing

protein coding genes into mRNA as well as microRNA (miRNA) genes and RNA

polymerase III transcribing genes coding for tRNAs and some rRNAs. Following

descriptions will refer mainly to RNA polymerase II.

Gene transcription can be regulated by direct binding to a gene, interaction

with the transcriptional machinery or via an epigenetic mechanism and its “effec-

tors” include trans-acting elements (e.g. genes encoding general TFs, activators,

repressors, general cofactors and the resulting proteins themselves) and cis-acting

DNA sequences (enhancers, insulators and silencers).

Transcription initiation is an ATP-dependent step during which nascent RNA

transcripts are initialized from the 5’ to the 3’ direction, meaning the first ribonu-

cleotide of the nascent transcript has a triphosphate group at the fifth carbon

(5’end), while additional ribonucleotides are linked to the other extremity of the

nascent transcript on the third carbon (3’end). A promoter-bound complex including

the pre-initiation complex, the RNA polymerase II and additional general TFs is

formed, eliciting DNA melting, strand separation and subsequent initiation of the

synthesis of nascent RNA transcripts. Abortive cycles resulting in truncated RNAs

occur until a transcript longer than 10 nucleotides is synthesized, which triggers the

polymerase escape from the promoter and the elongation phase. During elongation,

interaction with many factors from the initiation phase is lost and new interactions

with elongation factors take place. The process is not continuous nor at a constant

rate, with several pause periods, and involves DNA unwrapping, correct nucle-

oside triphosphate selection, phosphodiester bond synthesis and proof-reading

through pyrophosphorolysis or phosphodiester bond hydrolysis for removal of non-

complementary nucleotides. RNA processing steps, namely 5’ capping(5) (during

elongation) and splicing(6) (during or after transcription) give rise to mature mRNAs,

which dissociate from the RNA polymerase II upon transcription termination, a step

involving additional termination factors and RNA cleavage and poly-adenylation(7)

in case of polymerase II transcripts (transcription of protein coding genes).

Basal transcription levels can be sustained through the promoter-bound

complex formed during initiation, while fine-tuning of gene expression is exerted

by often signal dependent specific TFs that are able to directly bind short specific

regulatory DNA regions (response elements (REs)). These regulatory regions often

(5)Results in the addition of 7-methylguanosine with a 5’ triphosphate bridge to the 5’ end of the
nascent RNA, confering protection to exonuclease degradation and involved in the regulation of
nuclear export and promotion of 5’ proximal intron excision and translation [132–134].

(6)Intron removal and exon joining involving trans-esterifications (except for tRNAs) which gives rise to
mature transcripts, namely mRNA [135–138].

(7)Addition of ≈ 200 adenine residues to the 3’ cleaved RNA [139–141].
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locate within gene promoters. They can also be either proximal or distal (far up- or

down-stream) to the target gene TSS and are defined "enhancers" or "silencers"

if the effect on gene transcription is activation or inhibition, respectively.

Transcription factors directly bind DNA through their DNA binding domain

(DBD), the majority composed of zinc-coordinating or helix-loop-helix domains, with

10-20 protein-DNA interactions most often on DNA major grooves where attractive

forces between particular amino acids and the nucleotide pairs overall produce

very strong and specific binding (hydrogen bonds, ionic bonds and hydrophobic

interactions) [142, 143]. Additionally, many TFs bind DNA as dimers, which in-

creases binding intensity and stability through doubling the DNA-protein contact

area, resulting in higher effect consistency. Additively, this oligomerization capacity

increases the binding combination possibilities ranging from monomers, homo-

and hetero- dimers to higher order associations, contributing to the high regulatory

complexity of the genome.

TF diversity and action spectrum directly relate with organism complexity and

in humans they represent the largest protein family, with ≈ 2500 DBD-containing

proteins and roughly 10% of the human genes coding for TFs [144]. The nucleotide

sequence as well as the amino acids in the DNA binding domain of the TF determine

which TFs bind which regulatory regions, ultimately defining which genes will be

under the regulatory action of a certain TF. The large number of TFs and their many

binding regions in the genome as well as the multiple regulators per gene result in a

vast possible state space defining a complex gene regulatory network, responsible

for the spatio-temporal control of gene expression and allowing for adaptation

and versatile responses to numerous stimuli [145–147]. Consequent activation or

repression of target gene transcription occurs either by a direct mechanism or in

conjugation with other proteins that lack a DBD. Besides the DBD, TFs contain

binding sites for other proteins, namely transcriptional cofactors, in a trans-activating-

domain (TAD) responsible for the protein interactions that can induce or inhibit target

gene transcription via interactions with the transcriptional machinery. In addition to

the DBD and the TAD, some TFs harbour as well a signal-sensing-domain (SSD),

that responds to external or internal stimuli, often through ligand binding such as with

nuclear receptors (NRs) (ligand binding domain (LBD)) or PTMs, upon which effect

on the transcription of target genes is exerted. PTMs, including phosphorylation,

represent major mechanisms regulating protein activity, including TFs [145].

General cofactors such as Mediator [148, 149] physically bridge specific

TFs with the basal transcriptional machinery, allowing for the integration of signals

that results in gene expression adjustments. Protein interactions triggered by the

specific TFs will result in the recruitment of particular interacting partners leading to
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an overall conformation that can induce or prevent gene transcription. Within this

pool of multiple interacting partners, the presence of activators allows for higher

transcription levels whereas their absence holds low transcription. Repressor TFs

can prevent gene transcription by direct physical obstruction of the RNA polymerase

to the gene promoter, via binding to silencers or via binding to mRNA with translation

inhibition. Through 3D genomic looping and energetically favorable protein-protein

interactions, distant regions and associated TFs come to proximity with gene pro-

moters and the necessary cofactors and transcriptional machinery, thereby effecting

their action on the control of gene expression. Long-range interactions with TSSs

represent additional means for controlling gene expression, constituting yet an-

other complex 3D interaction network at the level of chromatin, largely undisclosed.

Attesting for this complexity is an average 3.9 distal elements interacting with a

TSS and an average 2.5 TSSs interacting with distal elements, as derived by the

ENCODE project [12], raising the possibility for a huge combinatorial network when

considering all genes and regulatory regions.

In addition to spanning multiple TF-binding sites (TFBS) and highly enhancing

gene transcription via the enhanceosome complex, enhancers relate with cell-type

specific characteristics. Villar and colleagues compared liver active promoters

and enhancers of 20 mammals including humans [150]. In contrast to promoters,

enhancers present a rapid evolution and low conservation among mammals. Re-

cently evolved enhancers often associate with genes under lineage-specific positive

selection.

Specific transcription factors and the precise tuning of gene expression

The >2000 different TFs have been classified based on their properties (e.g.

structural, namely according to their DBD, and functionally), with many available

public and commercial databases on curated TF classification and details, including

their consensus binding motifs [151–156]. TF activity is regulated by several

different mechanisms, namely ligand binding, membrane release, PTMs including

phosphorylation, subunit coupling, unmasking and nuclear transport [157].

Well known TF classes, based on the DBD, include “Immunoglobulin domains”

often involved in cell cycle, apoptosis and immunity processes (e.g. p53 and STAT

family), “Basic domains” with many diverse cellular functions, including cAMP

response, steroid hormone synthesis and cancer development (e.g. C/EBP, CREB,

Fos, Jun, Myc and SREBP factors) and “zync-coordinating domains” (e.g. GATA

factors involved in hematopoietic cell development) including “NRs” (e.g. steroid

and thyroid hormone receptors and RXR-related receptors).

In particular, the animal-exclusive (metazoans) family of nuclear receptors
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regulates the transcription of many genes, presenting a wide-range of actions,

spanning from development and differentiation to homeostasis and metabolism,

with 48 known family members in humans, of which 24 are ligand-dependent [158–

164]. NR ligands include lipophilic compounds such as endogenous hormones and

bile acids, fatty acids, sterols, vitamins (e.g. A and D) and xenobiotics, which upon

binding to the SSD induce a conformational change that results in the activation

of the NR. In the presence of a ligand, activated NRs bind their specific genomic

response elements and through recruitment of cofactors and chromatin remodelers

increase target gene transcription. Some NRs have affinity for corepressors in the

absence of ligand, in which case they silence gene transcription [163]. Due to their

role in ubiquitous functions, NRs are majorly involved in pathological processes,

namely in many metabolic, immune and cancerous diseases [165–169], with >10%

of US Food and Drug Administration (FDA) approved drugs targeting NRs [170].

Combinations of different inputs (e.g. ligand binding and/or PTMs) on a

TF can have different effects on target genes, through variable interactions with

coactivators and corepressors that lead to the differential activation/repression of

target gene sets [171]. Such coactivators and corepressors are often involved

in chromatin remodelling and histone modification, as earlier introduced, and the

combinatorial nature of interactions further increases response diversity and adds

to the fine control of gene expression.

Transcriptional cascades elicited by TFs in response to diverse stimuli amplify

signals and result in the precise spatio-temporal control of gene expression. During

development, they drive the embryo through decreasing pluripotency stages with

concomitant increase in morphological complexity and functional determination,

including TFs such as OCT4, SOX2, KLF4, NANOG, GATA6, CDX2 and SOX17 [31,

172]. The spatio-temporal coordination and regulation of the dosage and circuitry

of developmental TFs is essential for the correct development of an organism [32].

Cellular differentiation is the prime example of a process in which specific TFs

act in order to elicit a determined phenotype based on particular gene expression

programs [173], with several feedback loops where pioneer factors and master regu-

lators of stage transitions sustain their own expression while inducing or repressing

key transcription factors of other stages as well as target genes [172, 174–177]. The

combination of activating and repressing signals from specific TFs together with the

interacting partners composing the multi-protein complexes involved in transcription

are key for gene- and cell-type-specific transcription.

Besides presenting sequence specificity, TFs colocalize whithin transcrip-

tional hotspots, characterized by a high density of TF and coregulator binding with

cooperative regulation of gene expression and high transcriptional activity [178–181].
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These genomic "islands" or "epicentres" locate particularly within super-enhancers

[182–185], Mediator-rich [186] large enhancer clusters densely occupied by pioneer,

pluripotency, master regulator and cell-type specific factors [187, 188]. Spatio-

temporal differentiation, fate acquisition and response to stimuli involve disruption

and re-establishment of new super-enhancers and associated hotspots, as shown

for lineage progression [189] and inflammation [190].

1.2.3 Post-transcriptional regulation

As we have seen so far, the timing, quantity and tissue distribution of RNA is

finely regulated by conjugations of diverse stimuli and different genome usage (e.g.

on different tissues), evoked mainly through genome accessibility (section 1.2.1)

and transcriptional regulation (section 1.2.2). Another regulatory level impacting

the fate of RNA transcripts comes to action, including RNA processing, stability,

sequestration, transport and degradation rate, named Post-transcriptional reg-

ulation, mainly exerted by RNA-binding-proteins (RBPs) and small RNA species

themselves, such as microRNAs (miRNAs).

Many RBPs interact with RNA transcripts and are involved in their regulation,

through their RNA-binding-domain (RBD) which contains particular amino acids

able to bind short specific RNA sequences (RNA-recognition-motif (RRM)), some-

what similar to the DBD earlier described for TFs. These RBPs are involved in

diverse processing steps such as alternative splicing and nuclear export [191–196],

exosome- and P-body-mediated RNA processing, storage or degradation [197–202]

and ultimately translation (section 1.2.4).

In addition, another class of short RNAs, named miRNAs, has a high impact

in the post-transcriptional control of gene expression [203]. miRNAs are non-coding

double stranded short RNAs of ≈ 22 nucleotides capable of binding target mRNA

sequences through perfect matching over a “seed region” of ≈ 7 nucleotides. By

allowing imperfect base pairing throughout the remaining, mainly causing mRNA

destabilization, miRNAs preclude mRNA translation to protein, leading to gene

silencing [204–208].

Since miRNAs discovery in humans in the early 2000s [209–212], their

number has rapidly grown [213], with 1881 precursor miRNAs and 2588 mature

miRNAs listed in miRBase(8) [214], a microRNA sequence and annotation database.

This large number of miRNAs, comparable to that of known TFs, is in agreement with

at least 60% of human genes harbouring miRNA binding sites in the 3’-untranslated-

region (3’UTR) of their mRNA transcripts [215].

(8)http://www.mirbase.org/, as of June 2014.
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The biological relevance of miRNAs is readily illustrated by the lethality,

abnormal development or diseases caused by miRNA knockout in animal models

[216–225].

Individual miRNAs can repress hundreds of target genes and likewise, in-

dividual target genes are often regulated by multiple miRNAs, overall imposing a

complex miRNA-target network that further extends the gene regulatory network

[226, 227]. Although the global impact of miRNAs on gene expression is not com-

pletely understood, they seem to act as “buffers” against abrupt expression changes

while keeping cellular output to sensible levels, with a reported modest effect on

protein levels of target genes [228–233].

On the other hand, “switch”-like behaviours during signal propagation or lin-

eage commitment associated with feedback-loops and transient high miRNA levels

have also been reported [234–236]. Expression of miRNAs itself is a highly regu-

lated process that results in context-specific post-transcriptional gene expression

control [237–242].

miRNAs are frequently encoded by families of genes with a common promoter

and often identical seed sequences. They are either inter- or intragenic, the latter

being co-regulated with the host mRNA, which supports their role as “buffers” to

avoid the uncontrolled expression rise of certain genes [241, 243, 244].

miRNA gene transcription mainly by RNA Polymerase II [245] gives rise to

primary-miRNA (pri-miRNA) transcripts that can have multiple hairpin structures

of ≈ 70 nucleotides each. These double-stranded RNA hairpins undergo several

cleavage steps mainly by the endoribonucleases Drosha and Dicer, in the nucleus

and cytosol, respectively, with energy-dependent export into the cytosol in between,

upon which generally one strand of the ≈ 22 nucleotide miRNA is incorporated

within the RNA-induced silencing complex (RISC), containing one of the Argonaute

protein family (Ago) members and many associated proteins including the GW182

family, where the miRNA and target mRNA interact [246–251]. Additionally, RNA

editing steps such as methylation, uridylation and adenylation, Ago loading and RNA

decay all further influence miRNA post-transcriptional control of gene expression

[251–253].

miRNAs impact diverse cellular processes such as development, differentia-

tion, proliferation, cell cycle, apoptosis and metabolism, affecting the expression

of proteins with varied functions, such as TFs, signalling and metabolic enzymes,

receptors, interleukins and growth factors [235, 254, 255]. As expected based

on their numerous biological functions, miRNA involvement in disease has been

shown in patologies such as cancer and immune, cardiovascular and metabolic

diseases [256–262]. Owing to the progress of the past 15 years in the miRNA
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field, the complexity and dynamics of miRNA-mediated gene regulatory processes

in conjugation with RBPs and including cellular storages such as P-bodies and

exosomes, as well as their overall impact on cellular as well as systemic processes,

are starting to be elucidated [263–268].

1.2.4 Translation and protein characteristics

Following gene expression control at the levels of mRNA synthesis and pro-

cessing (sections 1.2.2 and 1.2.3), regulation of translation is the next control step,

dictating which, where and how much mRNAs are translated to proteins. Protein

translation is an energy dependent anabolic process that leads to the synthesis

of proteins based on a template mRNA, involving initiation with ribosome recruit-

ment, peptide elongation, translocation (ribosome displacement along the mRNA

molecule) and termination (upon binding to a stop codon) steps, with general

analogies to transcription (described in 1.2.2). Its main effectors are ribosomes and

it occurs in the cytoplasm or across the endoplasmic reticulum membrane.

Ribosomes are protein-RNA complexes (ribonucleoprotein) capable of read-

ing mRNA molecules and synthesizing a complementary polypeptide, through their

ribosomal RNA catalytic peptidyl transferase activity (ribozyme). Ribosomes are

composed of two subunits, a small one responsible for the interactions with the

mRNA and a large one, which binds tRNAs and associated amino acids. Through

mRNA codon pairing with aminoacyl-tRNA anti-codons(9), amino acids are polymer-

ized based on the sequence dictated by the mRNA molecules, starting from their

5’ end by an AUG start codon. Likewise in transcriptional regulation, all steps of

protein translation are subject to regulation, namely by several translational protein

complexes including kinases, and can thereby cause considerable differences in

expression levels when comparing to the transcriptional and post-transcriptional

outputs, being involved in many diseases [269–275].

Besides internal regulation via PTMs on interacting partners of the transla-

tional machinery, many different external stimuli elicit effects on protein translation,

namely hormones such as insulin which leads to increased protein synthesis,

prostetic groups such as heme which can restrict globin mRNA translation if at in-

sufficient levels, viral-infection-derived interferon synthesis with translation inhibition

via inactivating phosphorylation or mRNA degradation, as well as pathogen-derived

toxins [272, 276, 277].

Despite all regulation upon protein translation, the actual protein effect, e.g.

binding to specific DNA region in case of a TF, target phosphorylation in case of

(9)Codons of 3 nucleotides define the “genetic code”, a translation between nucleotides and amino
acids.

16
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a kinase or metabolic reaction catalysis in case of a metabolic enzyme, depends

on many subsequent factors such as correct protein folding and targeting, stability,

activity and turnover. Their final state arises from the many PTMs and the huge

interaction network with multiple molecular classes so characteristic of the highly

complex and promiscuous “protein world”, representing yet another regulatory layer

impacting gene expression.

1.2.5 The combinatorial nature of genome regulation

The previous sections attempt to give an overview of the individual compo-

nents and processes making up the genome and its dynamic and complex usage

(1.2.1 through 1.2.4). In reality, all these processes and their components undisso-

ciably compose an intricate interplay in which they co-operate to elicit phenotypic

changes, including irreversible state transitions and lineage commitment during

cellular differentiation or immune responses.

As described in previous sections, the different layers regulating the genome

usage and gene expression commonly share the same cellular targets and influence

each other on multiple ways, which accounts for the complexity of biological systems

and confers them robustness with increased survival chances.

Overall, despite a largely invariant hardly coded genetic information, genome

usage and output are dynamically tuned in time and space, giving rise to a huge

set of cellular responses, based on sequential and combinatorial processes com-

prising epigenetic mechanisms, such as chromatin remodelling with nucleosome

re-positioning involving histone modifications and DNA methylation, mutually influ-

enced [128], causing the opening of previously unaccessible chromatin to master

regulators and specific TFs that upon binding within enhancers can trigger cell-type

specific transcriptional cascades and gene programs [189, 278]. These processes

are further controlled via feedback loops also involving miRNAs [279, 280], RBPs

and signalling cascades operating on the cellular protein pool, subject to protein

availability and activity, as largely modulated by external stimuli [281, 282].

Regulatory cross-talking on genome usage and gene expression control

has been shown, for instance, for mRNA biogenesis and metabolism [283], on

lineage-specific master regulators targeting Mediator for super-enhancer formation

on cell-type specific genes, such as for PPARγ regarding adipocyte differentiation

and for GATA1 on blood cell lineage development [284, 285] or for the miRNA-

mediated DNA methylation control through targeting of transcriptional repressors

[286].

In agreement and further illuminating Waddington’s "epigenetic landscape"
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[68, 174, 175, 287–292], we are currently gathering more and more evidence of

a very dynamic and plastic transcriptional landscape, in which chromatin state

changes upon diverse stimuli [293–296], including through the remodelling of

nucleosomes and super-enhancers which allow for variable interactions with key

regulators. This dynamic re-arrangement underlies cell identity, lineage commitment

and disease mechanisms [58, 61, 297, 298], as already shown for Friedreich ataxia

[62], Huntington disease [299], inflammation and atherosclerosis [300], oncogenic

drivers [301–306] and variants associated with cell-type relevant traits such as

diabetes or immune-mediated disorders [307, 308].

The epigenetic landscape is characterized by peaks representing initial or

transition phases between two cellular states, of lower stability, while valleys repre-

sent well defined or differentiated cellular states, of higher stability and from which it

is harder to divert. With so many cell types, the complete epigenetic landscape is

highly complex. Gene regulatory networks (section 1.2.6) acting on cells dictate

their fate through the epigenetic landscape, via the different concentrations of key

TFs, the effects of miRNAs, other ncRNA species as well as other interactions

arising from the integration of external and internal signals among different cellular

components and allowing to precisely control the expression of different gene sets

in time and space.

1.2.6 Gene regulatory networks

As described in the previous sections, the genome is dynamically and differ-

entially used upon external or internal stimuli, as the result of an intricate interplay

within and between gene, signaling and metabolic networks, including signaling

molecules, receptors, enzymes, TFs, genomic regulatory regions, miRNAs, RBPs,

target genes and their products, which define regulatory networks associated with

specific cellular processes, functions or development stages [144, 309]. Figure 1.3

(page 19) contains a schematic representation of the interdependencies between

diverse cellular components which interact through regulatory networks.

While less focus is given here to signalling networks, these are intricate to

gene regulatory and metabolic networks, making up one system of highly connected

and inter-dependent components assuring the correct functioning of the organism

[311], allowing to keep homeostasis and so diversely adapt to changes and respond

to stimuli, including through the activation and inhibition of transcription factors and

metabolic enzymes, with a huge degree of combinatorial interactions and cross-talk

that provides higher diversity and robustness [312–315].

Recent technological advances and international consortia including the EN-
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1.2 Genome and gene regulatory networks

Figure 1.3: Schematic representation of key players from regulatory networks and their rela-
tionships [310]. Regulatory networks operate within cells via signal transduction from the interactions
between many partners. TFs and microRNAs closely relate and delineate the output from transcription.

CODE [12], the BLUEPRINT epigenome [316] and the NIH Roadmap Epigenomics

[317] projects have started to provide novel insights into genome components, func-

tion, organization and regulatory network [318–325], which will help leveraging our

understanding of pathological mechanisms and thereby our capacity to effectively

revert or cure diseases. The ENCODE project is a large-scale public research

initiative launched by the US National Human Genome Research Institute (NHGRI)

in 2003 aiming to identify all functional elements in the human genome. The

BLUEPRINT epigenome project is a large-scale EU research initiative launched in

2011 aiming at providing a blueprint of haematopoietic epigenomes and comparing

healthy and disease states. The NIH Roadmap Epigenomics project was launched

in 2010 with the goal of producing a public resource of human epigenomic data

to catalyze basic biology and disease-oriented research. By 2015, it has provided

reference human epigenomes for more 100 tissues.

Conceptually, gene regulatory networks can be studied as a control system

with inputs, intermediary components and outputs connected through feedback
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and feedforward loops (FFLs). For instance, TFs, miRNAs and target genes define

cellular modules that build up large complex gene regulatory networks, varying

on time and in response to different stimuli [235, 326]. The variety and complex

architecture of FFLs within gene regulatory networks underlies binary switching or

oscillatory behaviours accompanying critical cellular steady state transitions, built

upon signal frequency, duration and amplification through the individual modules

[173]. The difficulty relies on cataloguing all individual components and the motifs

describing their interactions, knowing when they operate and which of the partners

are in action in different contexts, as well as their interaction strength and direction,

all of these contributing to the overall outcome [327–329]. Modelling is thereby

particularly necessary for studying gene regulatory networks due to the large number

of possible combinations of interactions between the elements, additionally providing

the means to in silico test network properties and simulate network perturbations,

such as the effect of a drug or of changing the expression of particular components.

Multiple modelling frameworks have been developed specifically for the purpose of

modelling complex gene regulatory networks [330].

1.3 Metabolism and the metabolic network

Metabolism defines the interconnected set of biochemical reactions con-

stantly occurring in an organism. It underlies all processes sustaining and

perpetuating life, allowing cells to extract energy from nutrients. Likewise, it is the

realm of enzymes and metabolites which are transported and chemically trans-

formed through series of connected reactions in which the products of certain are

the substrates of others. Individual reactions are commonly grouped into reaction

sets often with a defined function, named metabolic pathways(10). Metabolite

availability partially represents the environment and can vastly influence cellular

processes and viability. Metabolism thereby represents one layer of the complex

genome-environment interplay that extends from the simpler unidirectional infor-

mation flow (central dogma of Biology). Metabolic pathways make up one large

inter-dependent reaction system, the metabolic network. Systemic or multi-organ-

level metabolism includes processes such as digestion or an inflammatory response

and intimately relates with homeostasis, while at the cellular level the metabolic

network comprises all reactions taking place, including all metabolites, enzymes

and cofactors, with > 7000 reactions [331, 332] and > 40000 metabolites [5]

already known in humans. In this thesis, focus is given to cellular level metabolism,

in particular to the metabolic changes occurring during adipocyte differentiation

(10)visit http://biochemical-pathways.com/ for an overview on metabolic pathways.
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(chapter 4.2).

In general, metabolism involves compounds from four main organic classes:

nucleotides, amino acids, lipids and carbohydrates, together with many nec-

essary coenzymes and cofactors such as vitamins, as well as xenobiotics and

other inorganic compounds including iron, zync or phosphate groups. Synthesis,

degradation and transport reactions involving compounds from these classes,

most catalized by enzymes with respective cofactors, sustain energy transfer and

primely distinguish lifeless matter from living organisms. Through metabolism, the

energy from nutrients can be directly used on necessary cellular processes, via the

catabolic break-down of macromolecules with energy release, or the anabolic as-

sembly of simple molecules into macromolecules such as nucleotides and proteins,

with energy consumption. Alternatively, energy can be stored into cellular reserves

for use upon energetic demand, such as glycogen in the liver and triglycerides in

adipocytes.

Enzymes are the master effectors of metabolism, catalizing the conversion of

metabolites without being therein consumed and allowing to increase the reaction

rates by decreasing their activation energy (Gibbs free energy), often speeding

up many orders of magnitude in comparison to their spontaneous occurrence. A

large proportion of the regulation of metabolic activity is achieved through enzymes,

namely in response to environmental changes or signals from other cells. The notion

of tighter control of only a few key enzymes within a pathway as been advocated

since long [333], with recent work providing hints regarding the transcriptional

control of metabolic pathways and its roles in evolution [334]. Energy metabolism

involves mainly the catabolism of proteins, lipids and carbohydrates through the

pathways of amino acid degradation, fatty acid oxidation and glycolysis, respectively,

which converge in acetyl-coA, entry point into the tricarboxilic acid cycle (TCA)

which bridges to the oxidative phosphorylation, a cellular pathway with high efficient

production of ATP, the cellular energetic force. Besides its involvement in the

TCA cycle, acetyl-coA is also a building block for fatty acid, ketone body and

cholesterol synthesis, the latter via the condensation of two acetyl-coA molecules

by acetoacetyl-coA transferase (ACAT), the first step of the mevalonate pathway.

Additionally, it forms the neurotransmitter acetylcholine combined with choline in

a reaction catalized by choline acetyltransferase (CHAT), linking metabolism and

signalling.

Indeed, one large cellular network exists which encompasses and integrates

all biochemical reactions from metabolism and signalling with the genome, its

regulation and gene products and the environmental stimuli.
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Since molecular conversions and interactions are the basis for all cellular

processes, metabolism is virtually linked with all cellular activities and subject

to fine regulation. Multiple regulatory levels are exerted on metabolism [335],

including compartmentation which segregates enzymes and metabolites into pools

and confers higher organization; self-regulation often via allosteric control, namely

based on the levels of pathway intermediates, e.g. hexokinase inhibition by glucose-

6-phosphate; post-translational modifications such as glycosylation, phosphorylation

and acetylation, which can activate or repress enzyme activity; cooperativity in

which the binding of a substrate induces conformational changes increasing or

decreasing the affinity to additional substrate molecules, e.g. the increased affinity

of hemoglobin upon binding of the first oxygen molecule; or extrinsic control such

as that exerted by hormones, namely insulin, which leads to signalling cascades

resulting in glucose uptake and a shift in metabolism towards glycogen and fatty

acid synthesis. Regulation through feedback and feedforward loops modulates both

the activity and concentration of enzymes, the first case occurring at the order of

seconds or minutes and accounting for the fine tuning of metabolic activity and

capacity, and the second taking minutes to hours and defining a more coarse control

of metabolism, including transitions to different metabolic states.

As metabolism is so diverse, complex and inter-connected, with varying

specialization degrees throughout the body according to the tissue or cell-type,

with highly dynamic and fast adptation and responses to a large range of stimuli

[336, 337], a big challenge remains still in characterizing all cellular responses

and relating them with conditions or metabolic states and signatures that could

be used as disease markers or predictors of systemic states [338, 339]. In this

context, metabolic models and modelling (more details in 1.7.1) hold the promise

to help us to better understand metabolic pathways in health and disease. Metabolic

disorders such as diabetes, metabolic syndrome and dyslipidemia arise mainly

from an intricate interplay between genetic, environmental, and nutritional factors

impacting the cellular metabolic state to a greater or lesser extent.

Over 100 years of research in biochemistry provide a vast knowledge on

metabolism, systematically initiated already in the 19th century with works on

fermentation and related enzymes by A. Payen, L. Pasteur, W. Kühne and E.

Buchner. Nowadays, metabolism is one of the best known cellular processes and

spans a vast set of pathways and components, including the central carbon and

energy metabolism, largely uniform across species.

Due to its vastness and complexity, researchers have manually compiled

information on metabolic pathways since long and this knowledge has been avail-

able for instance in textbooks and journal articles. Since a few decades, electronic
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databases provide the resource of choice for storing, organizing and sharing infor-

mation, including that related to metabolism. These databases are an important

source of knowledge on metabolism going beyond what is described in textbooks

which are often outdated. Unfortunately it has been very hard to curate and unify

the multiple existing databases, which are both redundant and exclusive to certain

degrees, with no unique choice giving a fully comprehensive result. Additionally,

these databases often contain information on pathways and reactions including

both the metabolic and regulatory levels, the degree to which they are separated de-

pending on the author’s criteria. Therefore, expert knowledge and curation is further

required in order to focus on each of these cellular dimensions separately. Some of

these databases include MetaCyc [340], including the HumanCyc (Encyclopedia of

Human Genes and Metabolism), KEGG [341], BRENDA [342], REACTOME [343],

WikiPathways [344], ConsensusPathDB [345], SMPDB [346] and HMDB [5].

1.4 The interplay between the genome and the

metabolism

In the section “Genome and gene regulatory networks” (1.2), we saw

that the genome represents the physical material existing in cells which contains

information for cellular multiplication and life perpetuation, defining the identity of a

species.

Diploid organisms such as humans have two copies of the genetic material,

in a combination of gene pairs that defines each individual’s genotype, manifested

through the phenotype representing the observable characteristics of an organism,

such as hair and eye color, which result from specific allele combination. In the cellu-

lar context, the metabolic state is at the frontline of the observed phenotypic

characteristics: macromolecules are responsible for information storage (DNA),

processing (RNA) and execution (proteins) and the set of reactions, metabolites and

compounds present in a cell at a given time reflect their overall interaction and joint

effect, representing the cellular state (details in “Metabolism and the metabolic

network”, 1.3).

The genome and the metabolism are part of the same network specialized in

maintaining life and responsible for the cellular response diversity, with extensive

relationships and overlaps between the gene regulatory and metabolic networks [9,

347]. For instance, metabolic signaling through metabolite-sensing TFs including

NRs readily modulates gene expression, namely by the altered molecular interac-

tions with coregulators, often also metabolite-sensing, whose function alteration has
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been associated to diseases [348–353]. On the other hand, in response to stimuli or

transcriptional cascades, the expression of metabolic enzymes is modulated,

representing control of metabolic capacity and activity via transcription.

Furthermore, PTMs which regulate the stability and activity of many proteins

are dependent on the metabolic availability of chemical groups such as phos-

phate, methyl and acetyl, the latter also implicated on genome accessibility through

DNA methylation or histone modification. Acetyl-coA is a key metabolite linking

metabolism, signaling, chromatin structure and transcription, namely as source

of the acetyl group transferred in protein acetylation, including of histone lysine

residues [354]. Metabolism thereby exerts an effect on transcriptional con-

trol, namely through the cellular pools of active chemical groups and their donors,

required for epigenetic mechanisms.

The existence of multifaceted proteins, conferring evolutionary advantages,

is yet another example of the intricate interplay within cells. For instance, some

glycolytic enzymes present non-glycolytic activities as well, including the regulation

of transcription, apoptosis and of cell motility [355–358].

Alterations in the interplay between gene regulatory and metabolic networks

have a pivotal role in disease aetiology, as we will better understand in the following

section.

1.5 Diseases as perturbations of biological networks

The leading causes of death worldwide are cardiovascular diseases, cancers,

diabetes and chronic lung diseases, as reported by the World Health Organization

(WHO) with data from 2012(11). Since 1980, the number of obese people worldwide

has more than doubled, with 600 million obese adults in 2014 and more deaths

due to overweight and obesity than underweight. Obesity is a complex chronic

disease with epidemic proportions worldwide that continues to increase regardless

of age and gender, characterized by a body mass index (BMI) > 30 (12). It is highly

preventable and mainly caused by an excessively high calorie diet with low energy

expenditure (e.g. physical exercise). While not a cause of death by itself, obesity is a

major risk for metabolic syndrome, type 2 diabetes mellitus (T2DM), cardiovascular

diseases and chronic inflammation, often resulting in premature death. Concerning

Luxembourg, a study from LISER(13) states that, in 2008, 55% of the population

older than 15 years was either overweight or obese [359]. Measures to stop obesity

expansion across the globe and to decrease the current number of obese persons

(11)http://www.who.int/mediacentre/factsheets/fs310/en/, as of 01.06.2015.
(12)http://www.who.int/mediacentre/factsheets/fs311/en/, as of 01.06.2015.
(13)former CEPS/INSTEAD, http://www.ceps.lu/
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are therefore essential.

Despite a yet unfullly disclosed aetiology and pathophysiology of many com-

plex diseases, they all share a common overall characteristic: a complex in-

terplay between genetic and environmental factors with altered metabolism

[360, 361].

From about 30000 known human diseases, over 10000 are monogenic(14)

[362], including sickle cell anemia, haemophilia and cystic fibrosis. Biological

networks are the natural way how cells, tissues, organs and ultimately the whole

organism communicate and operate changes. They comprise many interactions

among many components [363], including genes, their products, metabolites and

other compounds, and result from millions of years of evolution, presenting a high

redundancy level that confers them robustness against perturbations, including

environmental changes or pathogenic attacks, increasing the organism chances

of survival [262, 364, 365]. Most diseases affect the information flow within these

networks.

In diseased individuals, a combination of genetic and environmental factors

leads to altered interactions between network partners, which can be suppressed,

diminished, increased or additional in comparison to that of healthy individuals, with

impact on protein folding, stability and molecular affinity that affects multiple cellular

processes including protein-DNA, protein-protein and enzyme-substrate interactions

[366–368]. Single gene mutations such as indels and SNPs can cause aberrant

protein functioning, affecting both regulatory and metabolic tasks. An accumulation

of such low impact mutations across multiple genes can jointly lead to a disease

[367].

The study and understanding of biological networks in health and disease,

including their comparison between related and unrelated disorders, is currently a

major endeavour to increase our capacity to effectively diagnose and heal complex

diseases. Thereby, network biology provides means to model inheritance traits and

other genetic phenomena, besides shedding light into disease mechanisms through

the identification of disease modules (Figure 1.4, page 26), aiding to prioritize

diagnostic markers or therapeutic candidate genes [369–371].

1.5.1 Disease databases

In a data-rich era, gene-disease databases storing details on genetic associa-

tion to diseases have emerged, namely the OMIM [373], UNIPROT [374], CTD [375],

ClinVar [376] and GAD [377], which include Mendelian, complex and environmental

(14)http://www.who.int/genomics/public/geneticdiseases/en/, as of 01.06.2015.
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Figure 1.4: Example of a disease module [372]. “A disease module represents a group of nodes
whose perturbation (mutations, deletions, copy number variations, or expression changes) can be
linked to a particular disease phenotype, shown as red nodes. (...) a disease can be viewed as the
breakdown of a functional module.”

diseases. Each of these and other disease databases do not provide the complete

set of genetic associations to diseases, in part because they focus on different

aspects, such as links between chemicals and diseases (CTD), protein function

based on sequence (UNIPROT) or candidate gene and genome-wide association

studies (GWAS, GAD), becoming complementary and requiring efforts to integrate

their heterogeneous information if attempting to work at the most complete level.

In this context, integrative databases such as DisGeNET(15) [378] are valu-

able resources providing more comprehensive overviews on current knowledge

about gene-disease associations and details on the information sources. DisGeNET

combines data from various expert curated databases and text-mining derived as-

sociations(16) and the current version (v3.0) contains 429111 associations between

17181 genes and 14619 diseases, ranked with a score based on the support-

ing evidence(17). In this thesis, DisGeNET was used as source for gene-disease

associations.

(15)http://www.disgenet.org/.
(16)http://www.disgenet.org/web/DisGeNET/menu/dbinfo#sources.
(17)http://www.disgenet.org/web/DisGeNET/menu/dbinfo, as of 03.06.2015
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1.5.2 Disease networks

In the context of multigenic diseases which do not follow a Mendelian inheri-

tance, disease networks emerge based on their multiple associated genes and their

products, each with a relatively low impact in the overall pathology, but together

defining a gene-disease network that characterizes each disease, with shared

disease-associated genes among different diseases [366, 372].

In 2007, Goh et al. [366] published the first human disease network, sys-

tematically linking genetic disorders with the disease-associated genes known at

the time. In a gene centric representation, genes (nodes) are connected to each

other (edges) if they associate to a common disease, allowing clustering based

on the genes link to disease, revealing network topology features such as disease

modules as well as bridges among different diseases. From this representation it

became apparent that genes shared between diseases contribute to comorbidity

susceptibility. Additionally, using a disease centric representation, the authors gen-

erated a network of diseases (nodes) connected to each other (edges) if sharing

at least one gene in which mutations are associated with both diseases. Based in

this representation, a large disease cluster of multiple cancer types was prominent,

owing to common tumour suppressor genes such as TP53 and PTEN. Metabolic

diseases appeared poorly connected in that original disease network, leading Lee

et al. [379] to investigate the link between disease and the metabolic network,

through metabolic links such as shared mutated enzymes, reactions or metabolites,

revealing a higher comorbidity susceptibility with significant comormidity for 31% of

all metabolically linked diseases [380]. Similar disorders associate to genes with a

higher likelihood of interacting [366, 381].

Later in 2014, Zhou et al. [382] derived a human symptoms-disease network

from biomedical literature that quantifies the similarity between the symptoms of

any two disease pairs.

1.5.3 Examples of diseases as network perturbations

The concept of diseases arising from network perturbations can be exempli-

fied by the typical cancer abnormal methylation on promoters of tumour suppressor

genes and frequent de-methylation on promoters of oncogenes, leading to a net-

work rewiring that spans silencing tumour suppressors and activating oncogenes,

in a disruption of the normal interactions that allows cancer cells to proliferate and

escape apoptosis [383].

In this section, focus is given to T2DM, a chronic systemic disease with

multifactorial causes impacting many different cell types and organs, including
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the liver, pancreas, vasculature and adipose tissue, with many implications in

biological networks. As T2DM is a complex disease impacting systemic functions

and impairing adipocyte differentiation (studied within my thesis) and functioning,

more detail is given to its description. The link between T2DM and Alzheimer’s

disease (AD), or more generally, hyperglycemia and dementia, is also shortly

addressed, exemplifying how studying cellular networks can help understanding the

links between apparently unrelated diseases.

T2DM is a complex disease resulting from the body’s ineffective use of

insulin and characterized by hyperglycemia (high blood sugar levels), usually with

adult onset and highly preventable by a healthy diet and frequent physical activity.

T2DM accounts for 90% of all people with diabetes in the world [384], with an

estimated 1.5 million deaths directly caused by diabetes in 2012(18). Obesity,

high caloric diet and sedentary lifestyle are major risk factors to develop T2DM,

in conjugation with genetic susceptibility and environmental factors, with several

known metabolic changes, including of BCAA levels [385], and epigenetic alterations

[386, 387]. As the pathology progresses, individuals with normal glucose tolerance

degenerate into impaired glucose tolerance, with high blood sugar and insulin

levels, associated with insulin resistance leading to a decreased glucose uptake

from the blood by cells across the body in response to insulin, affecting muscles,

then the liver and lastly adipose tissue [388]. Pancreatic β-cells initially respond

to insulin resistance by increasing the production and secretion of insulin, leading

to even higher insulin blood levels, in a less severe condition that can last for

years. In this setting, vascular endothelial cells, which directly face increased

glucose, fatty acid and inflammatory cytokine levels in the blood, are primely affected

during the progression into T2DM, with vascular complications due to accelerated

atherogenesis and endothelial dysfunction, namely through reduced endothelium-

dependent vasodilator response to acetylcholine with impairment of the regulation

of blood pressure, also contributing to exacerbate the inflammatory state [389–392].

For this reason, the study of the endothelium and its functions has received much

attention, and human umbilical vein endothelial cells (HUVEC) represent one of

the most widely used cellular model for the study of endothelial-relevant processes

[393–396]. In context of this thesis, public data from the binding of 10 TFs on

HUVEC cells was used to assess the enrichment for vascular-disease-associated

genes among metabolic genes with varying number of associated TFs.

Together with life deteriorating conditions such as high fat and sugar diet

and inactivity, impaired glucose tolerance declines into a more severe state in

(18)http://www.who.int/mediacentre/factsheets/fs312/en/, as of 02.06.2015.
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which insulin no longer suppresses glucose release by the liver, with persistent

hyperglycemia at advanced stages. In parallel, increased insulin levels often trigger

weight gain via increased fat storage in adipose tissue, more insulin sensitive than

muscle and liver, in particular in the abdominal cavity with concomitant local chronic

inflammation and worsening of the obesity condition [397]. At this stage, gluco-

and lipo-toxicity, endoplasmic reticulum (ER) and mitochondrial stress burden cells,

ultimately leading to pancreatic β-cell apoptosis [398] and insulin deficiency, further

increasing hyperglycemia and enhancing several T2DM complications and comor-

bidities. As sugar levels increase, the blood becomes more viscous and normal

circulation and diffusion processes are particularly affected in small capillaries, in

some cases resulting in diabetic retinopathy (causing blindness) and peripheral

neuropathy (extremity numbness and pain). Poor wound healing often leading to

amputation is another clinical complication from T2DM, together with comorbidities

such as fatty liver disease, kidney disease and increased risk for cardiovascular

diseases.

Many genes were found to contribute to the risk for T2DM including TCF7L2,

PPARγ, FTO, KCNJ11 and HNF4A. Thiazolidinedione (TZD) drugs such as rosigli-

tazone and pioglitazone, PPARγ agonists, have been used for improving insulin

resistance. These agonists activate PPARγ which associates with a coactivator

complex including a histone acetylase, translating into opening of chromatin on

PPARγ responsive elements, with consequent induction of the expression of target

genes involved in glucose transport, insulin signalling and fatty acid metabolism,

namely glucokinases, glucose transporter type 4, malic enzyme, lipoprotein lipase,

fatty acyl-CoA synthase, adipocyte fatty acid binding protein and adiponectin [387].

This PPARγ-induced transcriptional cascade results in a systemic potentiation of

insulin action with decreased liver glucose secretion and increased peripheral glu-

cose uptake (e.g. by adipose tissue and muscle), overall attenuating hyperglycemia.

See section “Adipocytes as an example of disease relevant cell type” (5.2) for

details in the mechanism of action of PPARγ in context of adipocyte differentiation.

In addition to the mentioned effects, hyperglycemia has been shown to asso-

ciate with increased susceptibility for dementia, in both diabetic(19) and non-diabetic

persons [399], namely to AD [400], with insulin signalling modullating the phospho-

rylation of tau protein [401], reflecting the highly connected and inter-dependent

nature of biological networks and organism functioning. AD is a neurodegenerative

disease causing gradual loss of cognitive and functional body capacity with marked

deposition of amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated

(19)http://www.alz.org/national/documents/topicsheet_diabetes.pdf, as of 02.06.2015.
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tau protein in the brain, accounting for 60% to 70% of dementia cases(20). In 2013,

Carvalho and colleagues showed that the simultaneous presence of high glucose

and amyloid-β peptide reduced cell viability and membrane potential, with increased

mitochondrial superoxide radical and peroxide production (oxidative stress indi-

cators), in both rat and mice cells [402]. More recently in 2015, Macauley et al.

showed that hyperglycemia increased the production of the amyloid-β protein in an

AD mouse model, with a 38.8% increase in amyloid-β levels in older mice already

with neuritic plaques upon doubling glucose blood levels [403]. These researchers

showed that the high-blood-glucose-induced increase in amyloid-β level in the

brain was mediated by ATP-sensitive potassium (KATP) channels, thereby coupling

metabolism and neuronal activity. Interestingly, KATP channels are also the ones

used by pacreatic β-cells to secrete insulin in response to high blood sugar levels,

possibly revealing a higher order link between glucose levels, insulin secretion

and amyloid-β levels in the brain, connecting insulin resistance and diabetes with

dementia.

1.6 Adipocytes as a disease relevant cell type

Adipocytes are the cells responsible for storing fat in the organism, as energy

source, and they compose the adipose tissue. The importance of adipose tissue

for normal body functioning is illustrated by the disease spectrum arising with both

extremely decreased and increased adipose tissue functioning, respectively in con-

genital generalized lipodystrophy (or Berardinelli-Seip syndrome) and obesity,

for instance. Both associate with insulin resistance and metabolic syndrome due to

nutrient overload in the blood and across vital organs. Persons with congenital gen-

eralized lipodystrophy, a very rare autosomal recessive disease with lack of adipose

tissue and muscular hypertrophy, develop insulin resistance with hyperglycemia and

in some cases T2DM, as well as hypertriglyceridemia with enlarged internal organs

due to ectopic fat deposition. As fat accumulates in vital body organs, their correct

functioning is impaired, namely with hepatomegaly and fatty liver, hypertrophic

cardiomegaly, hypertension and splenomegaly, besides several other complications

that overall can cause premature death. In agreement with the body impairment in

the absence of adipose tissue observed in humans, transgenic mice without white

adipose tissue present similar features such as diabetes, lipid-loaded liver, enlarged

internal organs, reduced leptin and higher serum triglycerides, with premature death

[404]. Likewise, sugar and fat overload typical of obesity impair adipocyte differenti-

ation with an increase of incompletely differentiated adipocytes that are less capable

(20)http://www.who.int/mediacentre/factsheets/fs362/en/, as of 02.06.2015.
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of taking up fat from the blood and activate the immune system, leading to inflam-

mation and fat accumulation in vital organs. Overall, the excess of highly caloric

and fatty nutrients increases the risk for comorbidities like metabolic syndrome,

encompassing T2DM, cardiovascular diseases (e.g. hypertension, coronary heart

disease, stroke) and inflammation [405], as well as higher susceptibility for certain

cancer types, including from the digestive or female reproductive systems [406].

Two types of adipose tissue are commonly described, white adipose tissue

(WAT), specialized in storing triglycerides and a major endocrine organ [407–

409] that releases leptin, adiponectin, resistin and composes most body fat, and

brown adipose tissue (BAT), capable of releasing heat from fatty acid oxidation

and present in smaller amount in adults compared to newborns. Interestingly, BAT

was firstly described in 1551 by the Renaissance naturalist Konrad Gessner from

his observations of the anatomy of alpine marmots, in which he reports a tissue

in the interscapular area as “neither fat, not flesh [“nec pinguitudo, nec caro” ],

but something in between” ( [410], page 842) [411]. This tissue was afterwards

recognized as BAT and more than 450 years later, the presence of active BAT

in adult humans became consensual [412–415]. A distinct developmental origin

between WAT and BAT has been demonstrated, the latter sharing a common

precursor with muscle cells [416, 417]. Additionally, recent reports have shown

the presence of “brite” (brown-in-white) or “beige” adipocytes within WAT depots,

with brown-adipocyte-like characteristics, pointed with interest for the activation of

energy expenditure pathways and potential intermediates for rescuing obesity [418–

424]. Adipose tissue is dynamic and presents a high plasticity [425]. Food intake

higher than energy expenditure leads to WAT hypertrophy, which can be reversed

through adipocyte mobilization when energy expenditure is higher than intake;

cold exposure and sensitizing compounds induce BAT activation and expansion to

increase thermogenic capacity; and pregancy and lactation induce the appearance

of “pink” adipocytes, mammary gland alveolar epithelial cells that produce and

secrete milk from the transdifferentiation of white adipocytes, recently characterized

in mouse [426].

White adipocytes are round cells containing a single large fat droplet that

can occupy over 90% of the cell volume, with few mitochondria. In contrast, brown

adipocytes are polygonal and contain numerous mitochondria and several small lipid

droplets, being smaller in size than white adipocytes. Molecularly, the expression

and induction of uncoupling protein 1 (UCP1) is a brown adipocyte mark, with much

lower levels in white adipocytes. Both WAT and BAT are highly vascularized and in-

nervated. Besides adipocytes, WAT contains a multitude of other cell types including

pre-adipocytes, fibroblasts, endothelial cells, macrophages and leukocytes, which
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contribute for the large endocrine and paracrine activity of WAT. Pre-adipocytes are

undifferentiated fibroblasts and adipocyte-precursor cells capable of differentiating

into adipocytes upon diverse stimuli including nutrient abundance and hormones

like insulin. Both pre-adipocytes and adipocytes are highly sensitive to insulin, which

promotes adipose tissue expansion through increased triglyceride storage and de-

creased lipolysis, or counter-acting hormones like ACTH, glucagon and epinephrine,

which promote fat mobilization and a decrease in adipose tissue from fatty acid

oxidation.

Adipogenesis and the full differentiation of adipocytes are crucial in both

physiological and pathological events related with adipose tissue, including obesity,

being subject to tight regulation [427], as we will see in more detail in the following

section (“Adipogenesis and its regulation", 1.6).

Adipogenesis and its regulation

Adipogenesis is the process of differentiation of precursor cells (pre-adipocytes)

into adipocytes, capable of storing fat, responsive to several stimuli and actively

secreting hormones and citokines (adipokines) based on the energy load state [409].

Adipocytes originate during development from mesenchymal stem cells (MSCs)

derived from the embryonic germ layer mesoderm, which also gives rise to muscle

cells and chondrocytes [428]. BAT is formed earlier around week 20 and large

WAT accumulation is already visible by week 25 of fetal development(21). Brown

adipocytes and muscle cells have a common Myf5+ precursor not common to

white adipocytes [416], with recent lineage tracing studies in mouse providing a

complex picture for the cellular origins and precursors of adipocytes(22), including a

small subset of white adipocytes with Myf5+ precursors [429–433]. The following

descriptions apply mainly to white adipocytes, whose differentiation was studied in

context of this thesis. Figure 1.5 (page 33) summarizes adipocyte origin and key

players in their differentiation programme.

During development, some MSCs commit to pre-adipocytes upon extracel-

lular signals and regulation from several pathways including the Wnt, Hedgehog,

bone morphogenic protein (BMP) and insulin growth factor (IGF) signaling, which

regulate the balance between the myo, adipo and osteo lineages through inhibitory

and activating effects [435–437]. Proliferating pre-adipocytes are no longer capable

to differentiate into cell types other than adipocytes. In the presence of adipogenic

(21)http://discovery.lifemapsc.com/library/review-of-medical-embryology/, as of
05.06.2015.

(22)http://discovery.lifemapsc.com/in-vivo-development/adipose, as of 05.06.2015.
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PPARγ agonists 
(e.g. rosiglitazone)
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Figure 1.5: Adipocyte lineage and differentiation programme. Adipocytes arise from mesenchy-
mal stem cells which give also rise to muscle cells. White and brown adipocytes present distinct
progenitors, brown adipocytes being from the myogenic lineage together with myocytes. BMP2 and
BMP4 favour the white adipocyte lineage whereas BMP7 promotes the myogenic lineage. At later
stages, PPARγ and members of the C/EBP family regulate terminal white adipocyte differentiation.
PPARγ is also involved in brown adipocyte differentiation, including via the stimulation of UCP1, a
brown adipocyte marker. In vitro differentiation of adipocytes can be achieved through cellular stimu-
lation with an “adipogenic” cocktail containing PPARγ agonists, insulin, cortisol, thyroid hormones
and cAMP activators. Adapted from [434].

stimuli such as insulin, glucocorticoids, PPARγ agonists, thyroid hormones and

elevation of cyclic adenosine monophosphate (cAMP) levels, pre-adipo-cytes cease

proliferating and through an epigenomic transition state differentiate into mature

adipocytes [438]. Adipogenesis exemplifies well a phenotypic change with precise

spatio-temporal regulation eliciting chromatin re-arrangements and repositioning of

genes in the nucleus. DNA methylation contributes to the silencing of pluripotency

genes and those specific to other lineages. De-methylation and histone modifica-

tions are involved in the opening of adipocyte-related genes. Together with the

concerted action of transcription factors, these events sequentially shape cells into

the adipocyte phenotype. In this setting, PPARγ interactions with Mediator elicit the

establishment of adipocyte-specific enhancers [180, 284, 436, 439–443].

Early adipogenic factors include ZNF423, TCF7L1, C/EBPβ and δ, GR, SREB-

F1, STAT5, AP1, KLF15, KLF4, KLF5 and EBF1 which operate changes leading

to cell rounding, LPL expression and C/EBPα and PPARγ activation which induce

a transcriptional cascade resulting into terminal adipocyte differentiation with ex-

pression of lipid droplet formation, many metabolic and adipokine genes, including

glycerophosphate dehydrogenase, fatty acid synthase, acetyl-coA carboxylase,
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malic enzyme, glucose transporter type 4, insulin receptor and adipocyte protein 2

(the adipocyte-selective fatty acid binding protein) [444, 445]. While hundreds of

TFs have been reported to be involved in adipogenesis [445], PPARγ appears as a

master regulator, being necessary and sufficient to induce fibroblast differentiation

into adipocytes [445, 446]. PPARγ is member of the ligand-dependent family of

NRs and upon activation, namely through natural lipophilic compounds, dimer-

izes with another NR, RXR, being then capable of binding abundant peroxisome

proliferator-activated receptor response elements (PPREs) across the genome,

thereby regulating the expression of target genes and playing also a role in the

synthesis of biologically active compounds in vascular endothelial and immune cells

[447–451].

PPARγ activation by agonists such as TZD drugs has been clinically used on

patients with T2DM, increasing glucose uptake and decreasing insulin resistance.

However, these drugs can cause severe side effects including water retention, weight

gain, hepatotoxicity and increased risk for heart failure and bone fracture [452–

457], urging the discovery of new drugs able to elicit insulin-sensitization without

such side effects. Resulting from alternative splicing, two PPARγ isoforms are

produced, PPARγ1, largely ubiquitously expressed, and PPARγ2, more exclusive

of adipose tissue and involved in lipid storage in WAT or energy dissipation in BAT

[458, 459]. Recently, NFAT5 has been shown to inhibit PPARγ2 and associate

with suppression of adipogenesis and insulin signaling. Thereby, reducing its

expression has been pointed as a possible therapeutic target to replace PPARγ

agonists [443]. Additionally, partial PPARγ agonists including natural compounds

might hold promise to improve hyperglycemia with decreased side effects [460,

461]. Interestingly, the selective activation of PPARγ in adipocytes has been

shown to be sufficient for systemic insulin sensitization in mice, with improved

adipokine, inflammatory and lipid profiles and serum insulin levels without increased

adipogenesis [462].

PPARγ, C/EBPα and LXRα were studied within this thesis in the context of

Simpson-Golabi-Behmel syndrome (SGBS) adipocyte differentiation. C/EBPα is a

basic leucine zipper domain (bZIP domain) TF that can bind to response elements

in the genome as a homodimer or heterodimer with C/EBPβ or C/EBPδ and has

been involved in cell cycle regulation, body weight homeostasis, energy metabolism

and several cancer types [463]. C/EBPα is an important regulator of adipoge-

nesis, inducing PPARγ and being required for acquiring insulin sensitivity, with

differential roles in white and brown adipose tissue [445, 464, 465]. LXR is another

ligand-dependent NR also dimerizing with RXR and closely related with PPARγ,

being involved in the regulation of fatty acid, cholesterol and glucose homeostasis
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and implicated in neurodegenerative changes [466–469]. Two isoforms, LXRα

and LXRβ have been identified, the latter ubiquitously expressed while LXRα is ex-

pressed in the liver, kidney, intestine, lung, spleen, adipose tissue and macrophages.

Oxysterols, oxygenated cholesterol derivatives including 22(R)-hydroxycholesterol,

24(S)-hydroxy-cholesterol, 27-hydroxycholesterol and cholest-enoic acid, are their

natural ligands, with two synthetic agonists (T091317 and GW3965) being widely

used in research [470, 471].

More recently, miRNAs have also been shown to play important roles in

adipocyte differentiation and lipid metabolism [472–475]. For instance, miRNA-

143 up-regulation promotes adipogenesis [476, 477], let7 favours the osteocyte

lineage [478, 479], miRNA-27 familly is down-regulated with adipogenesis and

targets PPARγ and C/EBPα [480, 481], and many others [482]. Within this thesis,

miRNA expression was profiled during SGBS adipogenesis in order to obtain a

list of miRNAs therein involved, leading to the selection of three down-regulated

miRNAs, miR-27a, miR-29a and miR-222, which were over-expressed in differen-

tiating adipocytes in order to assess their target genes. All these miRNA families

have been subject to extensive research in the recent years, with reported links in

several processes including in the pathology of cancer, atherosclerosis and insulin

resistance [483–485].

Due to the diverse mechanisms, dynamic behaviour and the systemic impact

it can have, adipogenesis has been one of the most widely studied processes

and model system for transcriptional, epigenetic and metabolic regulation of cell-

type-specific gene expression and phenotypic determination. Several adipocyte

cellular models have been developed [486], including the extensively used mouse

3T3-L1 pre-adipocytes, established already in 1975 [487], or the human SGBS pre-

adipocyte cell line, established in 2001 from the stromal cell fraction of subcutaneous

adipose tissue of an infant with Simpson-Golabi-Behmel syndrome [488], a rare

X-linked congenital disorder characterized by pre- and post-natal overgrowth with

features like macrosomia, renal and skeletal abnormalities as well as an increased

risk of embryonic cancers. SGBS cells reliably recapitulate human adipogenesis

compared with primary adipocytes, being neither transformed nor immortalized

and providing an almost unlimited source due to their ability to proliferate for up

to 50 generations with retained capacity for adipogenic differentiation [488–490].

These reasons motivated the use of SGBS cells for studying human adipogenesis

within the work described in this thesis, being their differentiation protocol previously

described [488–490].
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1.7 Systems Biology

Systems biology represents the natural progression of the life sciences [8],

which conceal vast amounts of knowledge on organism functioning, resulting from

thousands of years during which mankind experienced and tried to understand the

most diverse life related phenomena, in particular during the last few centuries, with

so many discoveries.

Basic research through the life sciences has uncovered many of the mech-

anisms underlying a large number of common and less common observations

and the current medical practices allow us to treat many diseases and conditions

otherwise lethal. With the advent of biochemistry, cellular and molecular biology and

their large expansion during the 20th century, details on so many individual cellular

components, processes and to some extent on their relationships were generated.

As the sub-cellular complexity was being unraveled, with so many compo-

nents and interactions, the technologies and methods to study them also evolved,

going from single-throughput to high-throughput starting from the 1990’s. Such

technological advances span areas such as microscopy, cytometry, spectroscopy,

amplification & hybridization techniques and sequencing. Together with computer

science and bioinformatics they lead to a flood of ever increasing complex biological

data, in particular in the post-genome era where the different omics techniques

generate large-scale data on genomes, transcriptomes, proteomes, metabolomes,

interactomes, etc. [491].

As knowledge increases and more discoveries and inventions are made,

more complex and harder mysteries remain, which is the root for an ever-increasing

complexity and demands for unraveling biological processes and relationships. In

agreement with a shift from individual or few components to network approaches,

attempting to simultaneously consider many interacting partners, more data has

been generated, covering multiple aspects of the cellular or organism functioning.

These data require a higher capacity to process, catalog and store them as

well as effective methods to translate information into reliable knowledge. In this

context, online databases became indispensable resources housing huge amounts

of information on the most varied topics. One of the current challenges for the

scientific community is exactly on which information sources to rely on for obtaining

the most correct evidences.

Parallel to the comprehension of a very complex picture of human functioning

with so many components and dynamic interactions and with the increasing amounts

of data necessary to address biological questions, modelling also became an

invaluable resource for biology, in particular for the study of phenomena for which
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experimentation is limited. Figure 1.6 (page 37) presents an overview of systems

approaches to study cellular processes and functioning.

Figure 1.6: Overview of a systems approach to study cellular functioning [8]. Systems biology
holds upon the omics techniques to acquire vast amounts of data from many different cellular aspects.
Data integration is necessary to place together these different aspects and provide a unified view of
the system or part of it. Modelling cellular processes is useful for better understanding their complexity,
to predict unknown or missing information and to visualize properties of the system.

1.7.1 Modelling Biological Processes

Modelling in biology involves models representing a process or organism of

interest, which is a defined system. Mathematical algorithms are used to perform

specific tasks and the computational power is used to find possible solutions to

problems defined through the algorithms, models and available data. Modelling

is entangled with data integration and visualization of biological entities and their

relationships, with different detail levels. Such models can be of biological networks,

e.g. gene regulatory, signalling, metabolic; whole cell models, increasingly hard

with the complexity of an organism; models of a specific process; multi-cellular or

organ models; and whole organism models.

Due to the heterogeneity of cellular processes and interactions, different

cellular dimensions are usually modelled through different mathematical formalisms,

which relate with the nature of the processes in study and question to be answered

as well as historical aspects [492–494].

37



1 Introduction

Vast amounts of omics data from individual components and their interactions

allow building models and iteratively simulate and curate them, making models of

diverse cellular processes abundant in biology, with common model repositories

such as BioModels [495].

Within this thesis, more focus was given to the gene regulatory and metabolic

networks, with metabolic modelling of the adipocyte differentiation. Therefore, the

following section addresses modelling in context of metabolism.

Metabolic models and modelling

Metabolic models are mathematical formulations of the knowledge about

biochemical reactions and their properties. They represent the classical biochemical

pathways and reaction details in a frame that can be simulated and challenged in

silico. For that, the equations of biochemical reactions are stored in files with a

specific structure and format, specifying the components of a metabolic network,

including reactions, metabolites and their relationships, defining substrates and

products and the stoichiometry of their conversions, often with additional information

regarding their properties and usage. These are called metabolic models and

several different formats exist with particular syntaxes.

One of the most widely used formats is the Systems Biology Markup Lan-

guage (SBML) [496], “a machine-readable exchange format for computational

models of biological processes”(23), based on XML, freely available and capable of

representing many different classes of biological phenomena, including metabolic

networks, cell signaling pathways, regulatory networks, infectious diseases, and

many others. Within this thesis SBML metabolic models were used in context of

human adipocyte differentiation.

Metabolic models embed the stoichiometric matrix (S), in which the rows

represent biochemical compounds (metabolites), the columns biochemical reactions

and whose entries contain the stoichiometric coefficients (integers) that link a

reaction to a metabolite, which can be directly used as the basis on which to

computationally infer network properties (e.g. null space analysis).

First models of human metabolism

The first genome-scale human metabolic network models appeared in 2007,

Recon1 [497] and the Edinburgh Human Metabolic Network (EHMN) [498], by two

independent groups. These were the result of spurious and methodical manual

(23)http://sbml.org/Documents/FAQ#What_is_SBML.3F, as of 24.07.2015.
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curation of the literature together with genome annotation and biochemical evidence

for reactions. They have since then been updated [499, 500] and several additional

generic and context-specific human metabolic models were developed [501–506],

together with the dissemination of a protocol for the high-quality generation of

genome-scale metabolic reconstructions [507].

Besides containing details on biochemical reactions, their properties and in-

volved species, metabolic models also describe the genes that encode the enzymes

of the metabolic network. A metabolic pathway is included in a model through

the connections between its metabolites and reactions, which represent enzymes,

transporters, diffusion or exchanges. Gene-protein-reaction associations (GPRs)

are then used to include genes in a metabolic model, based on the knowledge of

which protein or protein subunit the gene encodes for, and of which reaction(s) the

protein is involved in. The annotation for gene-reaction associations in Recon1

has been more careful, and it provides rules of which genes are necessary for a

reaction to occur as well as their relationship, allowing for easy coupling with gene

expression data. For this reason, within this thesis only Recon1 was used.

Recon1 is based on the genome annotation Build 35 (2004) and accounts for

1905 genes, 2004 proteins, 2766 metabolites, and 3742 metabolic and transport

reactions, while Recon2 contains > 7000 metabolic reactions [500]. Tissue/cell-

specific models can be generated from the generic human models by introducing

or removing reactions based on literature curation or various omics techniques,

namely e.g. transcriptomic, proteomic, metabolomic and phenotypic data. The

context-specific data is mapped to the metabolic reconstruction via GPRs that allow

for excluding links contained in the general model for which no evidence is found

(e.g. from inactive genes, proteins or absent metabolites) and also adding links

based on specific data. These links consolidate experimental noise and allow to

more accurately infer the metabolic activity reflected in the data. By specifying

inputs, outputs and constraints derived from experimental data, one can achieve a

highly specific model for the study system. The accuracy of such models depends

on the knowledge available for the system, on how well transcription correlates

with enzyme abundance and activity and on metabolite availability for a particular

reaction (e.g. metabolite concentration, complexation state, intracellular location).

Constraint-based modelling of metabolism

Organisms are limited to live a certain time and attain a certain growth.

Species evolution represents a prime example of how adaptation has been directing

which characteristics are retained and which are lost throughout generations, with
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advantageous outfits being positively selected. Overall, from the simplest to the

most complex characteristics of living organisms, constraints are everywhere.

Cells, the units of life, represent as well a constrain that delineates an internal

or intrinsic space from an external environment. In regards to metabolism, its intrin-

sic chain organization where the products of upstream reactions are the substrates

of the following with many transport reactions connecting different processes and

compartments, many constraints apply. Therefore, modelling metabolism by impos-

ing constraints to the known biochemical conversions follows a biological reasoning.

The challenge relies on identifying the set of constraints characterizing different

cellular processes, cell and tissue types and conditions [508–510].

Constraint-based modelling (CBM) allows to study large-scale metabolic

networks relying only on simple physico-chemical and physiological constraints

without accurate kinetic constant values or enzyme and metabolite intracellular

concentrations, as required by kinetics-based models describing the change in

metabolite concentrations over time [511–513].

One simplification of most CBM methods is the assumption of a steady state

for the metabolic network, with an equal rate of production and consumption for

each metabolite, meaning no accumulation or depletion of metabolites despite flux

through reactions. In this case, exchange reactions account for replenishment

and drainage of metabolites, keeping a flow through the system where the overall

supply equals the drainage. Equation 1.1 generally describes the change in the

concentration of metabolites (~C, vector of concentrations) in a network over time

(d~C/dt), which corresponds to the product of the stoichiometric matrix (S) and the

vector of fluxes through each reaction (~v ).

d ~C
dt

= S ∗ ~v (1.1)

Under the steady-state assumption, with no change in the concentration of metabo-

lites, we have the relation described in Equation 1.2.

d ~C
dt

= 0 (1.2)

And substituting in Equation 1.1, we get the relation:

S ∗ ~v = 0 (1.3)

Equation 1.3 is generally used to compute the metabolic state of a network assuming

the steady state.
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Available information on protein localization, kinetic constants and intracellular

concentrations of enzyme and metabolite further extend and allow various mathe-

matical and in silico network analyses. Constraints are mathematically described

as balances or bounds. Bounds constraining the values of individual variables

are usually identified, leading often to inequalities (e.g. vmin 6 v 6 vmax ). Sev-

eral methods/algorithms for constraint-based analysis have been developed and

validated [508, 514].

In general terms, there are four constraint types limiting cellular functions:

physico-chemical (e.g. mass, energy and momentum conservation or enzyme

turnover), spatial or topological (e.g. crowding of molecules inside cells), condition-

dependent environmental constraints (e.g. nutrient availability, temperature, pH)

and regulatory or self-imposed constraints (e.g. amounts of gene products [tran-

scriptional and translational regulation] and their activity [enzyme regulation]; gene

repression in response to external signals).

A summary of CBM methods and their applications can be found on http:

//cobramethods.wikidot.com/start, which contains descriptions for many of

the CBM methods available, several implemented under the Constraint-based

Reconstruction and Analysis toolbox (COBRA) [515] for Matlab.

CBM methods are thereby very useful to study metabolism at the genome-

scale, providing a framework to simulate cellular growth, drug response, gene

deletion, the effect of a treatment or differentiation in metabolism as well as a

platform for integrating and conciliating multi-omics data for integrative analysis.

The prediction of metabolic activity at the genome-scale is an important task in

Systems Biology and can aid to understand how cells adapt to perturbations and

evolve with time by providing a snapshot of the metabolism and cellular state on a

particular condition or state.

In 2008, Shlomi et al. [516] introduced a constraint-based computational

method allowing to systematically predict specific metabolic behaviour based on

metabolic models and the integration of omics data. They exemplified the usage of

the method integrating the genome-scale metabolic network Recon1 with tissue-

specific gene- and protein-expression data, allowing them to predict tissue-specific

metabolic activity in ten human tissues. The method of Shlomi et al., updated in

2010 by Zur et al. [517], prompted the prediction of the metabolic activity during

adipocyte differentiation done within this thesis, allowing to integrate transcription

data and metabolism and acquire a better notion of how they relate. The authors

consider genes to be post-transcriptionally up- or down-regulated based on the

discrepancy between the measured levels and the predictions. For additional details
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on Shlomi’s method, refer to the Material and Methods (Chapter 3, page 49).

Still in 2008, another method allowing to generate context-specific networks

was presented, GIMME [518]. GIMME removes genes and respective reactions

from a general metabolic network based on gene (in)activity, generating smaller

specific networks that are able to produce a pre-defined output, set through an

objective function. Since the definition of objective function is not straightforward for

human cells, throughout the thesis, only Shlomi et al. method was used to perform

metabolic predictions of adipocyte differentiation.

1.7.2 Data integration and visualization

Biomedical data are increasingly complex and large, having attained massive

proportions in the past few decades with constant advancements in the high-

throughput technologies. Such data flood has the potential to unravel further

knowledge, but also brings us challenges not faced before, such as on data storage

and safety, as well as processing and analysis. The different technical methods

produce vast quantities of heterogeneous data, prone to different types of noise.

Therefore, keeping track with data and revealing new insights is a hard task [519].

Data integration appears thereby very relevant, if not necessary, in order to deal and

percept such vast amount of data, or extracting dependencies not observable from

any component individually [520]. The collection of more diverse data sets spanning

multiple cellular aspects already makes data integration a natural avenue, but having

more data per se does not imply a gain in understanding from compiling those varied

datasets. Gene expression can be mapped into metabolic networks allowing to

visualize the distribution of expression levels through the network. Improving from

this direct mapping, metabolic modelling can integrate the expression values, the

network structure and the constraints therein contained to predict metabolic activity

that obeys to those impositions. Direct mapping of expression data into a network

fails to expose fluxes that can not occur due to upstream reagent absence or

inactivity, for instance. A few of these individual cases might be easy to spot, but not

attained by human perception at the level of metabolic or other biological networks.

Therefore, data integration is not a straightforward endeavour, requiring much

careful methodologies to not confound data meanings and expose often dispersed

relationships [521–523], but is useful to improve our understanding of biological

processes. Several methods and tools provide means to perform data integration

with network analysis or visualization [524–530]. As no known routine provides

easy means to automatically generate image metanodes depicting multi-omics data

that can be overlaid on biological networks, we set out to develop such a tool for

automated generation of metanode images of omics data and provide means to
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quick and easily map and visualize those image nodes on Cytoscape networks.

1.8 Outline

In light with a post-genome era in which the omics techniques are providing

more and more means to profile and measure diverse cellular processes and com-

ponents, areas such as bioinformatics and systems biology are constantly being

utilized and developed in order to process, integrate, analyze and visualize biological

data. Comprehensive and multi-faceted approaches are needed. Here we adopted

integrative systems biology approaches to describe processes and relationships.

In particular, we focussed on human adipogenesis as an experimental model for

cellular differentiation, suitable for studying the regulatory and metabolic cellular ar-

chitectures, and relevant for diseases including obesity, T2DM, metabolic syndrome

and related comorbidities. We set out to integratively describe adipogenesis by

collecting a diverse set of experimental data relative to the process and combining

it with metabolic modelling and prediction of metabolic activity. Besides integratively

analyzing and presenting adipocyte differentiation, we were interested in highlighting

disease-associated genes in context with regulators and the metabolic network, as

well as exploring the relationship between the regulatory load or convergence on

genes and their association to diseases. Despite a limited breadth and scope,

we believe our work is a pioneering example of an integrative effort to study and

present regulatory and metabolic processes characterizing adipocyte differentiation.

Furthermore, it reveals a general principle of higher regulatory load on disease-

associated genes, which can be explored through the epigenomic mapping of active

enhancers to prioritize novel candidate genes for disease association.
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2 Scope and Aims

In the present post-genome and omics era, a major challenge and bottleneck

for improving our understanding of biological processes in health and disease and

translate it into actionable treatment routines is the ability to effectively integrate

and consolidate huge amounts of heterogeneous data on various complex cellular

components, related processes and mechanisms and ultimately provide a unified

view of organism funtioning. Such endeavour is required because that is the setting

of an organism, which functions as an integrated unit that can not be disentangled

without functional loss. Additionally, the >100 years of biological and medical

research and knowledge led to the accumulation of a large information repository on

individual components and processes, spanning most avenues of human functioning.

The biomedical data needed and produced nowadays is heavier and more complex

than ever, imposing integrative approaches to conciliate the existing knowledge with

the newly generated data in order to depict the missing links and pieces and further

our comprehension on human functioning in health and disease [531] (1).

How to effectively integrate and visualize omics data in order to easily grasp

biological meanings and relationships? is still a largely unanswered question urging

us to develop strategies and methods fulfilling such need.

The ability to integratively describe biological processes would allow us to

be more exact about conclusions, more comprehensive regarding mechanisms

and interacting partners and more aware of possible off-target interactions, overall

providing a better understanding of a process in context of the organism and

reducing the burden from inadequate treatments.

Within this thesis, focus is given to adipogenesis as an experimental model

for cellular differentiation, suitable for studying the regulatory and metabolic cel-

lular architectures, and relevant for diseases including obesity, T2DM, metabolic

syndrome and related comorbidities.

Based on the cellular setting with a signal responsive dynamic genome

organization, one could speculate that genes with more control, or with a higher

regulatory load, might be more relevant for cellular-specific functions and thereby

also more likely to be implicated in diseases. My work addressed this question, in

particular the relation between TF and enhancer load on genes and their association

to disease (Results chapter 4.3), in particular regarding complex diseases, which

could facilitate prioritizing novel candidate genes for disease-association.

Accordingly, the aims of the work described in this thesis were:

(1)http://apps.who.int/iris/handle/10665/152819, as of 10.06.2015.
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1. To study human adipocyte differentiation with focus on the interplay

between the gene regulatory and metabolic networks by collecting mul-

tiple experimental data and predicting metabolic activity;

2. To present an integrated view of human adipogenesis based on the

collected data and metabolic modelling, focussing on the expression

dynamics and regulator incidence on known key lipid metabolism and

dyslipidemia genes;

3. To test whether a general principle of higher regulation of disease genes

can be observed across cell-types using public TF and active enhancer

data and if that principle applies for cell-type related diseases;

4. To investigate properties of the high regulatory load genes that could

segregate them from other genes.

Resulting from the above mentioned aims, a total of 5 manuscripts have been

produced.

The first, Manuscript I (page 59, section 4.2), fulfills aims 1 and 2 and is

entitled “Integrated analysis of transcript-level regulation of metabolism reveals

disease-relevant nodes of the human metabolic network”. It was published in

Nucleic Acids Research on 2014 (PMID: 24198249).

The author contribution for the main tasks within Manuscript I is summarized

within Figure 2.1 (page 47). Accordingly, I contributed to all figures except Figures 5

and S4-S7.

The second, Manuscript II (page 117, section 4.3), fulfills aims 3 and 4 and

is entitled “Cell type-selective disease-association of genes under high regulatory

load”. It has been accepted for publishing also in Nucleic Acids Research on

14.08.2015 and was published online on 03.09.2015 (PMID: 26338775).

As stated in the “AUTHOR CONTRIBUTIONS” section of Manuscript II, I

performed all the analysis steps except the 3’UTR and miRNA analysis, done

by Philipp Berninger, and the liver disease network extraction and betweeness

centrality calculation for each gene in the network done by Thanh-Phuong Nguyen.

Accordingly, I contributed to all figures except Figures 7, S4 and S5.
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Cell culture Merja Heinaniemi, Lasse Sinkkonen, Mafalda Galhardo
Microarrays Merja Heinaniemi, Lasse Sinkkonen

ChIP Merja Heinaniemi, Lasse Sinkkonen
Transfections Merja Heinaniemi, Lasse Sinkkonen, Mafalda Galhardo

RT-qPCR Mafalda Galhardo, Lasse Sinkkonen, Merja Heinaniemi 

Microarray data analysis Merja Heinaniemi, Lasse Sinkkonen
miRNA heptamer enrichment analysis Philipp Berninger, Lasse Sinkkonen

Microarray data discretization and metabolic modelling Mafalda Galhardo, Thomas Sauter
ChIP-seq data analysis Mafalda Galhardo, Merja Heinaniemi

Gene metanodes and IDARE webportal Mafalda Galhardo, Jake Lin

Task distribution by author, manuscript I
Experimental techniques

Computational techniques

Figure 2.1: Summary of the distribution of main tasks from Manuscript I, per author.

Additionally, IDARE2, a tool developed for the automated generation of multi-

omics image metanodes and mapping into Cytoscape networks, is described in

Manuscript III (page 147, section 4.4), entitled “IDARE2 - Simultaneous visualiza-

tion of multi-omics data in Cytoscape”, which is in preparation for a soon submission.

The tool was mainly developed by Thomas Pfau (thomas.pfau@uni.lu), with support

for setting up the web-server from Jake Lin (jake.lin@uta.fi). IDARE2 consists of an

upgrade to IDARE, a web-portal designed in the context of Manuscript I presented

in this thesis. My contribution was on the conceptual framework and extensive

testing.

Still in context of Manuscript I, two technical summary reports were gener-

ated in order to describe in more detail the experimental and technical methods

employed within the analysis, presented in appendix, respectively, Manuscript IV

(page 224) and Manuscript V (page 228). These have been published in Genomics

Data.
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3 Materials and Methods

Detailed description of the materials and methods utilized within this thesis

can be found in the three attached manuscripts - Results sections 4.2 (page 59), 4.3

(page 117) and 4.4 (page 147) - respectively, Manuscript I - “Integrated analysis

of transcript-level regulation of metabolism reveals disease-relevant nodes of the

human metabolic network”, Manuscript II - “Cell type-selective disease association

of genes under high regulatory load” and Manuscript III - “IDARE2 - Simultaneous

visualization of multi-omics data in Cytoscape”.

In the following pages, I summarize the methodology applied to achieve

the aims outlined in Chapter 2 (page 45, “Scope and Aims”), mainly covering

Manuscript I and Manuscript II, followed by a short overview on methods used in

Manuscript III.

3.1 Overview of the materials and methods employed in

Manuscript I

In order to study human adipogenesis comprehensively and integratively,

we collected diverse experimental data sets from the differentiation of SGBS pre-

adipocytes into lipid-loaded adipocytes, described in detail in Manuscript I (4.2), in

its “MATERIALS AND METHODS” section starting from page 63.

The SGBS human pre-adipocyte cell line was kindly provided by Prof. Dr. M.

Wabitsch (martin.wabitsch@uniklinik-ulm.de).

A time course of the gene expression during adipocyte differentiation using

Illumina HT-12 v3 microarrays served to obtain a global view of the expression

dynamics during adipogenesis, namely which genes changed the most and at what

stage of differentiation.

Firstly, based on the gene expression profile of TF genes, the 3 highest

differentiation-induced TFs were selected for profiling their genome-wide binding in

adipocytes using ChIP-seq, a keystone of our work which served the purpose of

linking gene expression changes with key regulators.

Secondly, based on the expression of metabolic genes, we employed the

constraint-based method by Shlomi et al. [516] to predict the metabolic activity of

adipocytes at different time points of the differentiation, a fairly innovative and little

used approach allowing to consider metabolism at the genome scale. This CBM
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method takes the expression data together with a metabolic model and employs

a mixed integer linear programming (MILP) problem that finds a metabolic activity

distribution satisfying the stoichiometric and thermodynamic constraints embedded

in the model and maximizing the number of reactions whose predicted activity is

consistent with the expression of respective enzymes or transporters. Shlomi’s

method keeps an overall consistent network state, meaning that if an upstream

enzyme is lowly expressed and a downstream enzyme is highly expressed, the

reaction associated to the latter will still be predicted inactive as the reaction from a

reagent step was inactive. Thereby, for each reaction in the network, the method

runs two calculations for the overall network similarity with gene expression, one

setting the current reaction active and the other inactive. The one giving the highest

overall network similarity to expression data will be taken as predicted activity. In

case both an active and inactive predictions give the same similarity, the activity

of the reaction remains undetermined. The difference between Shlomi’s method

and the simple overlay of expression data on the metabolic network is the effect

of the metabolic network topology and overall network activity distribution, which

has to be consistent. Therefrom, the reaction activity predictions will deviate from

the expression data according to the network properties. Owing to the MILP nature

of the method, a conversion of continuous gene expression data into a discrete

category (discretization step) is required. Low and highly expressed genes are

taken into account for the predictions, which try to inactivate reactions associated to

lowly expressed genes and to activate reactions linked to highly expressed genes.

Therefore, the discretization method, for instance applying a threshold to segregate

genes into three categories, has a significant impact on the activity predictions,

which varies according to the GPR associations affected. One of the drawbacks

of Shlomi’s method is its considerable running time, which depends mainly on the

number of reactions with non-null data.

Thirdly and supplementing the genome-wide binding profiles for 3 key adi-

pogenesis regulators, we also profiled the H3K4me3 histone modification mark in

pre-adipocytes in comparison to adipocytes, which could be indicative of changes

in the chromatin state at the origin of a disparate gene program usage between

pre-adipocytes and adipocytes. Additionally, we expanded our view on the regu-

lation of adipogenesis by profiling as well the expression of miRNAs throughout

differentiation using miChip (v.11.0) arrays and selecting 3 down-regulated miRNAs

for further investigating their target genes, which we did by profiling the expression

of genes with Illumina HT-12 v4 microarrays after over-expressing the 3 selected

miRNAs and then collecting down-regulated genes containing in their sequence the

complementary of the miRNAs seed sequence.
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The previous paragraphs addressed the multiple experimental data types

collected during SGBS adipocyte differentiation, with a focus on key regulators and

prediction of metabolic activity based on gene expression, as described in the first

aim of Chapter 2 (“Scope and Aims”, page 45) .

The above mentioned diverse experimental datasets paved our way into an

integrated analysis and concerted view of adipocyte differentiation, leading us to

develop custom gene “metanodes” enclosing the gene centric data (multiple data

types associated to one node). These gene metanodes were then embedded

on familiar metabolic pathways, linked to reactions representing enzymes. In

this representation, enzymes are connected by the metabolites involded in the

respective reactions, through edges representing the reversibility of an enzyme

with direct or reverse arrows. The edges of the metabolic pathways were colored

based on the difference in predicted metabolic reaction activity comparing pre-

adipocytes and adipocytes, depicting the general metabolic flow upon differentiation.

In order to represent the diverse experimental datasets encompassing the gene

expression dynamics during adipogenesis, the regulatory convergence from 3 TFs

and 3 miRNAs and the H3K4me3 change between pre-adipocytes and adipocytes

and the metabolic activity prediction, we set up a webportal for interactive data

exploration, IDARE(1), with highlight for disease-associated genes, fulfilling the aim

of presenting an integrated view of human adipogenesis based on the collected

data and metabolic modelling, with focus on the expression dynamics and regulator

incidence on known key lipid metabolism and dyslipidemia genes, the second aim

described in Chapter 2 (“Scope and Aims”, page 45).

Additionally at this step, we collected public ChIP-seq data from the genome-

wide binding of 10 TFs in HUVEC cells (bed peak files), either unstimulated from

the ENCODE project [12] (cMYC, GATA2, MAX, cJUN, cFOS) or from the SRA

archive (ETS1 from VEGFA stimulation, MEF2C from statin stimulation, p65 from

TNF stimulation, FLI1 representing an endothelial cell developmental TF, HIF1A

from hypoxia). After peak calling and peak-to-gene association with the tool GREAT

[532], a list of the number of TFs per gene was obtained. We further focussed on

metabolic genes and used the hypergeometric distribution to test for the enrichment

of vascular disease-associated genes among genes with the highest TF load (up to

10).

Detailed description of the materials and methods employed in Manuscript

I can be found from page 63, in its “MATERIALS AND METHODS” section. In

addition, two technical summary reports were generated in context of Manuscript

(1)http://systemsbiology.uni.lu/idare.html
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I, which describe the experimental techniques and computational analysis therein

employed, respectively, Manuscript IV and Manuscript V, in appendix.

Manuscript IV - “Transcriptomics profiling of human SGBS adipogenesis”

(page 224), describes the experimental design, material and methods for the iden-

tification of differentially expressed genes during SGBS adipocyte differentiation

using microarrays combined with the prediction of metabolic activity associated to

the gene expression, using the method of Shlomi et al. (2008).

Manuscript V - “ChIP-seq profiling of the active chromatin marker H3K4me3

and PPARγ, CEBPα and LXR target genes in human SGBS adipocytes” (page 228)

describes the experimental design, material and methods for identifying the most

highly induced TFs and their putative targets during SGBS adipogenesis, using

ChIP-seq, including deep-sequencing quality controls.

Given their technical nature, no further details are given to Manuscript IV

and Manuscript V.

3.2 Overview of the materials and methods employed in

Manuscript II

To address the link between regulatory load and disease association, we used

public data from the ENCODE [12], the BLUEPRINT [316] and the NIH Roadmap

Epigenomics [317] projects, in an exclusively computational analysis described in

section 4.3, Manuscript II. Detailed description of all analysis steps can be found

in the “MATERIALS AND METHODS” section within Manuscript II (page 120).

The tests for enrichment of disease-associated genes among the genes with

a high regulatory load were done using the hypergeometric distribution [532–534],

with gene-disease associations based on the DisGeNET database(2) [378]. We

required a minimum association score of 0.08 to exclude associations supported by

automated text-mining and a minimum of 15 genes associated to a disease in order

to avoid significant results due to very small set sizes, resulting in 340 diseases

from the DisGeNET tested per sample. The hypergeometric distribution is useful for

calculating the significance of a known result from a two-by-two factor experiment,

without replacement. In the present case, our two-by-two factors are the setting of

high regulatory load (HRL) and non-HRL genes versus disease and non-disease

genes, being the null hypothesis that the proportion of disease-associated genes

(2)http://www.disgenet.org/.
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among HRL genes is not statistically significantly higher from that among non-HRL

genes. Genes were grouped in bins of regulatory load, per sample, and each bin

of genes was tested for enrichment of the genes associated to each of the 340

DisGeNET diseases, using the hypergeometric distribution.

To test whether genes under high regulatory load enrich for disease associa-

tion in comparison to other genes in multiple cell types, we gathered ChIP-seq data

from the genome-wide binding profiles of 93 TFs in 9 cell lines from the ENCODE

project. As enhancers are known to be involved in gene transcription activation

mechanisms, we equally took the ENCODE data from the same cell lines on the

H3K27ac mark, known to characterize active enhancers. Furthermore, we realized

the availability of the H3K27ac data for another 11 ENCODE cell lines, as well

as from the BLUEPRINT and the NIH Roadmap Epigenomics projects, which we

obtained totalizing a set of 139 samples covering 96 cell types and tissues (Supple-

mentary file I). The GREAT tool [532] was used to perform associations between

ChIP-seq peaks and genes, resulting in a list of genes ranked by the number of

associated TFs or by the number of H3K27ac peaks falling within each genes

regulatory domain as defined by the “Basal + extension” rule of the GREAT tool,

respectively the TF load per gene and enhancer load per gene, or generally, the

regulatory load per gene, for each sample. The H3K4me3 data of each sample was

used to filter out genes lacking the mark within their TSS ± 1000 bp, considered to

be in closed chromatin regions and thereby not transcribed.

The previous paragraphs addressed the different datasets and processing

steps performed in order to test for a general principle of higher regulation among

disease genes across cell-types, for both TFs and active enhancers, with a di-

verse set of diseases which could expose cell-type-related enrichments, thereby

addressing the third aim described in Chapter 2 (“Scope and Aims”, page 45).

Additionally, Kyoto Encyclopaedia of Genes and Genomes (KEGG) [341]

pathways were used to assess the participation of the HRL genes in multiple

pathways, in comparison to other genes, which could give a hint about their network

relevance. To compare the average number of KEGG pathways per HRL genes to

that of other genes, we performed 10000-fold permutation tests by randomly picking

an equal number of genes as HRL and obtaining the average number of pathways

they participated in. From here, we derived a p-value from the ratio between i) the

number of times the average number of KEGG pathways per gene from the randomly

selected genes was at least that of the HRL genes and ii) 10000 (the total number

of random permutations). The described routine was separately done for each of

the 139 samples. Remaining within network properties, we then focused on liver
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samples (primary liver and HepG2) and derived a liver gene-disease network based

on MeSH terms including 137 liver-related disorders. Based in these diseases,

liver disease genes (nodes) were extracted from the Comparative Toxicogenomics

Database (CTD) [375], considering only curated disease-gene associations, and

extending with interactions (links or edges) from the Human Protein Reference

Database (HPRD) [535] (accessed on June 2015), containing manually curated

protein interactions from literature and leading to a liver-disease network of 3775

genes and 8278 interactions. We then calculated the betweenness centrality for

each gene and compared the average betweenness centrality of the high regulatory

load and other genes in liver samples, to investigate the role of these genes in the

network.

We further compared the average 3’UTR length of the HRL versus other

genes, which could be indicative of the post-transcriptional control, based on

annotation from Biomart (Ensembl Genes 78), obtaining as well predicted target

sites for conserved miRNAs from TargetScan 6.2 [215] and summing up the target

site count per 3’UTR, resulting in an average target site count per transcript, which

we also compared between the HRL and other genes. In this way, we studied

multiple properties of the HRL genes and tested if they were different from other

genes, fulfilling the fourth aim described in Chapter 2 (“Scope and Aims”, page

45).

3.3 Overview of the methods employed in Manuscript III

To address a generalized lack for automated generation of custom multi-omics

image metanodes and easily mapping those images onto Cytoscape networks,

IDARE2 has been developed and is described in Manuscript III (section 4.4),

starting from page 148.

Briefly, IDARE2 image metanode generation is implemented on Matlab and

access to users is granted via the web-server http://idare-server.uni.lu/

(currently still only available within the uni.lu network), which is an interface for data

upload and to request jobs for automated metanode generation.

The tool takes as input one or more user-provided datasets, which can

range from discrete to continuous values, currently supporting a maximum of 9

simultaneous input files and 20MB per file. Several “DataType” choices are available,

including ItemData for a less stringent organization and repositioning of the data

within the image node. “Heatmap” draws a boxed representation also free on the

positioning. “ItemGrid” or “TimeSeries” data types are useful when the user would
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like to specify an order defining the positioning of the different elements within the

node. IDARE2 user guide (page 236) provides detailed descriptions for additional

features and properties.

In addition to the metanode generation frontend, IDARE2 also provides a

Cytoscape App for an easy mapping and network visualization containing the

generated metanodes. The app is composed by an image mapping tool and

the IDARE visual style, based on matching keys between images and nodes; a

COBRA specific SBML reader for importing gene-protein-reaction associations

from COBRA models or metabolic models in general; and a network extractor

tool, which collapses large networks into sub-systems, or pathways containing

related reactions and metabolites, while keeping the links to the original network

and between sub-networks, creating links from each subnetwork to the position of a

connecting metabolite, thereby facilitating network navigation and inspection.
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4 Results

4.1 Overview

The current “Results” chapter is integrally composed by sections containing

the manuscripts generated based on the work performed within my PhD studies.

In section 4.2, page 59, I present Manuscript I, “Integrated analysis of

transcript-level regulation of metabolism reveals disease-relevant nodes of

the human metabolic network”, Nucleic Acids Research, 2014 (PMID: 24198249).

By collecting a diverse and comprehensive set of regulatory data on adipocyte

differentiation we were able to show that enzymes crucial or rate limiting for lipid

metabolism were often associated with miRNAs and high occupancy binding by

multiple TFs, suggesting tight combinatorial effects of TF upregulation and miRNA

downregulation driving metabolic changes in adipogenesis.

In section 4.3, page 117, I present Manuscript II, “Cell type-selective

disease-association of genes under high regulatory load”, accepted for pub-

lishing also in Nucleic Acids Research on 14.08.2015 (PMID: 26338775). Herein,

Manuscript II refers to the online published version from 03.09.2015 which has been

included in the thesis during the correction phase after defence.

Through a computational analysis of public ChIP-seq data, we could observe

a general principle of higher regulatory load on disease-associated genes, across

multiple tissues and cell types, suggesting that genes under higher regulation and

integrating multiple signals might incur a higher likelihood for disease. As a result,

we showed that the epigenomic mapping of active enhancers can serve as tool for

the unbiased prioritization of novel candidate genes for disease association.

In context of Manuscript I, we generated a web-portal for the interactive

inspection of metabolic pathways overlaid with metanodes depicting the gene-related

data colected for the SGBS and HUVEC cells, IDARE (http://systemsbiology.

uni.lu/idare.html).

IDARE2 supplements the need for a tool to automatically generate user

tailored multi-omics metanodes for mapping within (biological) networks and addi-

tionally provides easy means to visualize them in Cytoscape.

In section 4.4, page 147, I present Manuscript III, “IDARE2 - Simultaneous

visualization of multi-omics data in Cytoscape”, which is an upgrade of IDARE

and will be submitted for publication soon, being first-authored by Thomas Pfau.

Finally, in Appendix (page 223), I include Manuscript IV and Manuscript

V, summary reports of the experimental techniques and analysis employed within

Manuscript I, which focussed on the integrated analysis and interpretation of
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biological findings with less details on the technical aspects. I shortly describe

next Manuscript IV and Manuscript V with no further highlights as all biological

descriptions and interpretations can be found in section 4.2, page 59, Manuscript

I.

Manuscript IV, “Transcriptomics profiling of human SGBS adipogene-

sis”, page 224, describes the experimental design and quality controls applied

to profile the expression of SGBS cells during adipocyte differentiation using mi-

croarrays, with identification of differentially expressed genes and coupling with

constraint-based modelling of metabolism to predict metabolic changes associated

with the gene expression.

At last, in Manuscript V, “ChIP-seq profiling of the active chromatin

marker H3K4me3 and PPARγ, CEBPα and LXR target genes in human SGBS

adipocytes”, page 228, the experimental design and quality controls applied to

identify the putative target genes of the 3 highest induced TFs during SGBS adipocy-

te differentiation using ChIP-seq are described. PPARγ, CEBPα and LXR showed

the highest increased expression, respectively with > 10000, > 6000 and > 2000
putative target genes in SGBS adipocytes. Additionally, it contains similar descrip-

tions for the profiling of the H3K4me3 mark in pre-adipocytes and adipocytes by

ChIP-seq.
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4.2 Manuscript I - “Integrated analysis of transcript-level

regulation of metabolism reveals disease-relevant

no-des of the human metabolic network”

Although the biomedical field has largely advanced in the recent decades,

complex diseases are increasing among the population and account for a consid-

erable fraction of deaths worldwide(1). In regards to obesity, T2DM and metabolic

syndrome, comorbid diseases affecting many millions of people worldwide, an

impaired functioning of adipose tissue has been recognized for long [536–547],

resulting in adipogenesis being one of the most studied biological processes in an

attempt to understand the mechanisms underlying such impairment and finding

ways to revert it. Thereby, by the time I began my PhD studies in September 2012, a

vast literature body was already available on adipocyte biology, to cite only a few see

[409, 548–556]. A Pubmed search with the key “adipose tissue function review” with

a limit for papers until September 2012 retrieves 7890 articles (Supplementary file

II). While not all of these will exactly describe adipose tissue function, the number

reflects how the topic has been under appreciation throughout the years.

The TFs PPARγ and C/EBPα were recognized master regulators of adi-

pogenesis, capable of triggering a transcriptional cascade leading to lipid-loaded

fully differentiated adipocytes. TZD drugs, peroxisome proliferator-activated recep-

tor (PPAR)γ agonists, were often used to improve insulin resistance on patients with

T2DM, although having many reported side effects. By activating PPARγ, TZDs

would improve adipocyte metabolism and differentiation, with activation of genes

involved in glucose and fatty acid uptake and anabolism, leading to a systemic

decrease in hyperglycemia and increasing insulin sensitivity, although often causing

weight gain due to increasing triglyceride storage.

Despite such vast knowledge, facts were rather dispersed over the literature

and therefore hard to realize, and an integrated view of adipogenesis combining

the gene regulatory and metabolic networks and highlighting disease-associated

genes was not available. Furthermore, the interactive exploration of links between

these networks was also hardly possible. To meet this lack, we aimed at integra-

tively study human SGBS adipocyte differentiation, in particular combining an

experimental and computational approach to globally depict adipogenic changes

involving the gene regulatory and metabolic networks in concert, through key

regulators and prediction of metabolic activity, exposing their convergence on lipid

disease-related genes.

In order to achieve such endeavour, we generated:

(1)http://www.who.int/mediacentre/factsheets/fs310/en/, as of 01.06.2015.
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4 Results

− a time series gene expression profile during differentiation (microarrays);

− a time series miRNA gene expression profile during differentiation (miRNA

microarrays);

− candidate target genes of the miRNAs miRNA-27a, miRNA-29a and miRNA-

222, downregulated with adipogenesis, based on seed match analysis upon

repression in the array experiment from the over-expression of the 3 miRNAs;

− the genome-wide binding profiles of the three highest differentiation-induced

TFs, PPARγ, C/EBPα and LXR in adipocytes (chIP-seq);

− the genome-wide profile of the H3K4me3 histone modification, a mark for

actively transcribed genes.

Additionally, data analysis and integration resulted in the generation of:

− metabolic models with the predicted metabolic reaction activity during the

SGBS cell transition from pre-adipocyte to day 12 differentiated adipocytes

(based on gene expression data and the constraint-based modelling (CBM)

method by Shlomi et al. [516, 517]);

− the IDARE webportal(2), containing Recon1 metabolic pathways integrated

with metabolic predictions and metanodes of the gene regulatory data col-

lected in order to facilitate inspection and interpretation of their relationships.

The main results obtained with such integrative analysis include:

1. a highly dynamic gene expression during SGBS adipocyte differentiation with

up-regulation of lipid metabolism genes (Figures S2, S3, 4 (A), 6, 8 (A) and

S8);

2. predicted activation of metabolic pathways involved in lipid metabolism (Fig-

ures 3, 6 (C), 7, 8 (A) and S8);

3. hundreds of miRNA significant putative targets, ranging from 6 to 12 for

metabolic genes (Figures 4 and S4);

4. PPARγ, C/EBPα and LXRα as the highest induced TFs having a large set of

putative target genes including on lipid metabolism pathways (Figures 5, 6, 7,

8, S6 and S8);

5. little changes on the H3K4me3 mark between SGBS pre-adipocytes and

adipocytes (Figures 5 (D) and S5);

(2)http://systemsbiology.uni.lu/idare.html.
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4.2. MANUSCRIPT I

6. combinatorial TF and miRNA regulation of the triacylglyceride synthesis and

the BCAA catabolism pathways and on several lipid and glucose metabolism

genes such as ACADM, CYP1B1, GPAM, HK2, LPL, PISD, RPIA and SCD,

several known dyslipidemia-associated genes (Figures 6, 7, 8, S1, S8).

The results described above suggest an extensive and combinatorial regula-

tion on key genes for lipid metabolism, including those already known to associate

with dyslipidemia, leading us to hypothesize that disease genes might be under

tighter regulation than genes in general. To test this hypothesis in a larger dataset,

we gathered chIP-seq data from the genome-wide binding of 10 TFs in HUVEC cells,

publicly available, and derived a set of vascular-disease-associated genes from

the DisGeNET, using the hypergeometric distribution to calculate the enrichment of

disease genes among the genes with between 1 to 10 TFs, obtaining a > 2-fold en-

richment for vascular-disease-associated genes among genes with between

seven and nine TFs, namely the nitric oxide synthase 3 (endothelial cell, NOS3)

putatively bound by eight out of ten TFs (Figure 2).

Manuscript I is integrally presented starting from page 62.
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ABSTRACT

Metabolic diseases and comorbidities represent an
ever-growing epidemic where multiple cell types
impact tissue homeostasis. Here, the link between
the metabolic and gene regulatory networks was
studied through experimental and computational
analysis. Integrating gene regulation data with a
human metabolic network prompted the establish-
ment of an open-sourced web portal, IDARE
(Integrated Data Nodes of Regulation), for visualizing
various gene-related data in context of metabolic
pathways. Motivated by increasing availability of
deep sequencing studies, we obtained ChIP-seq
data from widely studied human umbilical vein endo-
thelial cells. Interestingly, we found that association
of metabolic genes with multiple transcription
factors (TFs) enriched disease-associated genes.
To demonstrate further extensions enabled by
examining these networks together, constraint-
based modeling was applied to data from human
preadipocyte differentiation. In parallel, data on
gene expression, genome-wide ChIP-seq profiles
for peroxisome proliferator-activated receptor
(PPAR) c, CCAAT/enhancer binding protein (CEBP)
a, liver X receptor (LXR) and H3K4me3 and
microRNA target identification for miR-27a, miR-29a
and miR-222 were collected. Disease-relevant key
nodes, including mitochondrial glycerol-3-phosphate

acyltransferase (GPAM), were exposed from meta-
bolic pathways predicted to change activity by
focusing on association with multiple regulators. In
both cell types, our analysis reveals the convergence
of microRNAs and TFs within the branched chain
amino acid (BCAA) metabolic pathway, possibly
providing an explanation for its downregulation in
obese and diabetic conditions.

INTRODUCTION

Several diseases caused by dysfunction in metabolism have
become prevalent in human populations worldwide.
Among these, cardiovascular disease (CVD) represents
the leading cause of death worldwide. Obesity is a major
risk factor for CVD, in particular when accompanied with
insulin resistance, hypertension and altered blood lipid
profiles (1). These in combination are referred to as the
metabolic syndrome that also confers risk to develop
diabetes and cancer (1).
High-quality genome-scale metabolic reconstructions

are now available that represent the entire network of
metabolic reactions a given organism is known to
exhibit (2,3). Metabolic fluxes within the network adapt
according to enzyme activity, substrate, cofactor, energy,
metabolite and product availability as well as posttransla-
tional regulation (4,5). Current technologies allow the
characterization of global phenotypes on the transcrip-
tome level through deep sequencing of RNA and DNA

*To whom correspondence should be addressed. Tel: +358 40 3553049; Fax: +358 17 163751; Email: merja.heinaniemi@uef.fi
Correspondence may also be addressed to Thomas Sauter. Tel: +352 46 66446296; Fax: +352 46 66446435; Email: thomas.sauter@uni.lu

The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Nucleic Acids Research, 2013, 1–23
doi:10.1093/nar/gkt989

� The Author(s) 2013. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial
re-use, please contact journals.permissions@oup.com

 Nucleic Acids Research Advance Access published November 5, 2013

 at U
niversity of L

uxem
bourg on June 6, 2015

http://nar.oxfordjournals.org/
D

ow
nloaded from

 



molecules. However, global measurements of proteome
activity or metabolic fluxes remain a bottleneck.
To address the latter limitation, it is possible to leverage
the ability of mathematical models to integrate various
data types to reveal central changes in metabolism.
These mathematical representations allow the computa-
tion of physiological states. For estimating reaction
activities, a method was proposed (6) where the expression
levels serve as a soft-constraint to favor consistent solu-
tions in concordance with the mass conservation in the
metabolic network.
Alterations in the expression status are an initial step

for a metabolic shift and can serve as a predictor of the
metabolic activity cells are able to sustain. For this reason,
the regulator molecules actuating this shift represent can-
didate therapeutic targets. In adipocytes, two transcrip-
tion factors (TFs), peroxisome proliferator-activated
receptor g (PPARg) and CCAAT/enhancer binding
protein a (CEBPa), have been shown to be the key regu-
lators: they are required to initiate terminal differentiation
and are sufficient to convert other cell types to adipocytes
(7), manifested through their genome-wide binding profile
that positions them as master regulators of the adipocyte
expression profile (8–10). Several antidiabetic drugs have
been developed that activate PPARg (11). The widely used
CVD drugs statins on the other hand impact cholesterol
levels through genes regulated by the signal-responsive
TFs sterol-regulatory element binding factors (SREBFs)
and liver X receptors (LXRs) (12). It is highly likely that
interactions among TFs could play a role in disease, yet
less is known so far how their targets overlap. Recent
studies have also placed attention on the role of
noncoding RNA regulators known as microRNAs
(miRNAs) during adipocyte differentiation of cell
culture and in vivo models (13,14), identifying counteract-
ing regulators such as the miR-27 family and let-7 (15–18).
We have recently identified several miRNAs as primary
PPARg target genes in mouse adipocytes (19), yet it
remains unclear to what extent these different regulators
converge to control the metabolic phenotype and whether
identifying their convergence points could improve thera-
peutic interventions.
The Encyclopedia of DNA Elements (ENCODE)

project has built an extensive list of functional elements
in the human genome, including regulatory elements
bound by TFs that control gene activity (20). Human um-
bilical vein endothelial cells (HUVECs) belong to the
panel of ENCODE cell types with most data available
and are also widely used as a model cell line in CVD
research. Here, we hypothesized that observing the regu-
lation of metabolic genes via multiple regulators (epigen-
etic, transcriptional and posttranscriptional) could
indicate a plausible high relevance in a disease context.
Moreover, to delineate the metabolic activity shifts
affected by these key nodes, such an integrative analysis
could become informative coupled with mathematical
modeling of reaction activities. To allow data sources of
gene regulation [such as ENCODE (20)] and metabolic
network models (2,3) to be explored in an integrative
manner, we used a tripartite graph representation and
developed an interactive web portal, Integrated Data

Nodes of Regulation (IDARE, http://systemsbiology.
uni.lu/idare.html, see User Guide in Supplementary
Material), that can be used to visualize global or tissue-
specific data. This integrative experimental and computa-
tional analysis allowed us to address the connectivity
between the human regulatory and metabolic networks.

Using just the overlap of TF-gene associations and the
metabolic network, we observed a strong enrichment of
disease-associated nodes among genes that show TF
binding in multiple HUVEC ChIP-seq studies, including
the nitric oxide synthase (NOS) gene family. We collected
further experimental data on TFs and miRNAs in adipo-
cytes differentiated from Simpson–Golabi–Behmel
syndrome (SGBS) preadipocyte cell line, an established
model for human adipogenesis (21). Interestingly, each
of the previously characterized dyslipidemia genes
LDLR (LDL receptor) (22), LPIN1 (lipin 1) (23) and
LPL (lipoprotein lipase) (24) that belong to the
triacylglycerol synthesis and release pathway are high-
lighted as shared TF- and miRNA-associated genes.
Moreover, the cell fate determining TFs were observed
to form a multi-TF feed-forward loop with binding sites
nearby genes from the cholesterol synthesis and fatty acid
activation pathways. Finally, the convergence of miRNAs
and TFs highlight the branched-chain amino acid (BCAA)
metabolism as a key nonlipid pathway for which altered
regulation by the factors studied here may provide an ex-
planation for its association with obesity and diabetes.

MATERIALS AND METHODS

Cell culture and differentiation

The human preadipocyte cell line isolated from a
Simpson-Golabi-Behmel syndrome patient (SGBS) have
previously been shown to be in many ways identical to
differentiated primary adipocytes from healthy donors
but maintain their differentiation capacity longer than
other isolated cells (21), therefore representing an
optimal model system for high-throughput analysis. The
SGBS cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM)/Nutrient Mix F12 (Gibco, Paisley,
UK) containing 8mg/l biotin, 4mg/l pantothenate,
0.1mg/ml streptomycin and 100U/ml penicillin (OF
medium) supplemented with 10% FBS in a humidified
95% air/5% CO2 incubator. The cells were seeded into
culture medium flasks or plates, which were coated with
a solution of 10 ml/ml fibronectin and 0.05% gelatine in
phosphate-buffered saline (PBS). Confluent cells were
cultured in serum-free OF medium for 2 days followed
by stimulation to differentiate with OF media supple-
mented with 0.01mg/ml human transferrin, 200 nM T3,
100 nM cortisol, 20 nM insulin, 500 mM IBMX (all from
Sigma-Aldrich) and 100 nM rosiglitazone (Cayman
Chemical, Ann Arbor, USA). After day 4, the
differentiating SGBS cells were kept in OF media supple-
mented with 0.01mg/ml human transferrin, 100 nM
cortisol and 20 nM insulin. SGBS cells differentiate
within 10–12 days as determined by microscopic analysis
(Oil red O staining). At this time point, the cells are filled
with small-sized lipid droplets and are most responsive,
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whereas at later time points (20 days), the lipid droplets
fuse and cells are less active (Dr Martin Wabitsch,
personal communication). RNA samples were collected
at 0, 4, 8 and 12 h and on days 1, 3 and 12 of differenti-
ation and chromatin samples from day 0 (H3K4me3) and
day 10 (TFs and H3K4me3). To find LXR-responsive
genes, the day 10 differentiated SGBS cells were
stimulated with 1 mM T0901317 for 4 h (synthetic agonist
for LXRs), while control cells received DMSO (final con-
centration 0.1%).

miRNA transfection

MiRNA mimics for miR-27a, miR-29a and miR-222
(Thermo Scientific Dharmacon, Colorado, USA) or a
scrambled double-stranded siRNA sequence as control
(siCtrl) (Eurogentec, Liège, Belgium) were introduced
into 4 days differentiated SGBS adipocytes using
Lipofectamine RNAiMAX reagent (Invitrogen, Halle,
Belgium) according to manufacturer’s instructions.
Shortly, miRNA mimics or siRNAs were mixed with
Lipofectamine RNAiMAX reagent, incubated for 20min
and diluted with plain DMEM-F12 medium to a final
concentration of 100 nM. The first differentiation
medium was replaced by the transfection mixture and
incubated for 2 h before changing to the second differen-
tiation medium (see above). Twenty-four hours after
transfection, the cells were collected for RNA extraction.

RNA extraction and real-time quantitative polymerase
chain reaction

Total RNA was extracted using TriSure (Bioline, London,
UK). One milliliter of TRIsure was added per a confluent
six-well to lyse the cells. RNA was extracted with 200 ml of
chloroform and precipitated from the aqueous phase with
400 ml of isopropanol by incubating at �20�C overnight.
cDNA was synthesized by using 1 mg of total RNA,
0.5mM dNTPs, 2.5mM oligo-dT18 primer, 1U/ml
RiboLock RNase Inhibitor (Fermentas, Vilnius,
Lithuania) and 10U/ml M-MuLV Reverse Transcriptase
(Fermentas) for 1 h at 37�C. The reaction was stopped by
10-min incubation at 70�C. Real-time quantitative poly-
merase chain reaction (RT-qPCR) was performed with
Applied Biosystems 7500 Fast Real-Time PCR System
using Absolute Blue qPCR SYBR Green Low ROX Mix
reagent (Thermo Fisher Scientific, Surrey, UK). Five
microliters of cDNA template was used with 1 ml of
gene-specific primer pairs (10 mM) and 10 ml of the qPCR
SYBR mixture in a final reaction volume of 20 ml. The
PCR reaction started with 15min at 95�C to activate
the polymerase. The PCR cycling conditions were as
follows: 40 cycles, of which each was composed of
15 s at 95�C, 15 s at 55�C and 30 s at 72�C. Fold inductions
were calculated using the formula 2�(��Ct), where ��Ct
is [Ct(target mRNA)�Ct(RPL13A)]differentiated� [Ct(target mRNA)

�Ct(RPL13A)] and the Ct is the cycle at which the threshold
is crossed. PCR product quality was monitored using
post-PCR melt curve analysis. The primer sequences are
provided in Supplementary Table S1.

miRNA assays

The miRNA detection was performed by using TaqMan
MicroRNA Reverse Transcription Kit with TaqMan
MicroRNA Assays (Applied Biosystems). The miRNA
cDNA synthesis and miRNA real-time PCR were done
following manufacturer’s instructions and by using an
Applied Biosystems 7500 Fast Real-Time PCR System.
Relative expression levels in the undifferentiated and
the 5-day differentiated adipocytes were calculated
using the formula 2�(��Ct), where ��Ct is [Ct(target
miRNA)�Ct(U6)]differentiated� [Ct(target miRNA)�Ct(U6)]undif-
ferentiated and the Ct is the cycle at which the threshold is
crossed.

Microarray profiling

Total RNA in triplicates from the differentiation time
series, LXR agonist stimulation and the miRNA transfec-
tions were processed according to the manufacturer
instructions to prepare cDNA that was hybridized on
microarrays (for the time series and ligand stimulation,
the array hybridizations were performed on Illumina
HT-12 v3 arrays at the Turku Centre for Biotechnology,
Microarray and sequencing facility; for the miRNA trans-
fections, on Illumina HT-12 v4 arrays at DNA Vision,
Charleroi, Belgium). The raw data files were processed
and quality controlled using the R/Bioconductor lumi
package. Raw and normalized expression values are avail-
able via GEO (GSE41578). Genes that had a detection P
<0.05 were selected for statistical analysis performed
using the limma package. The F-test was used to assess
significance of overall dynamic response over the differen-
tiation and a two-tailed t-test to compare specific time
points to day 0 undifferentiated cells (Benjamini–
Hochberg adjusted P <0.01 was considered significant).
For the miRNA transfections, statistical analysis was
based on t-test significance comparing mean expression
levels on miRNA transfection to a scrambled siRNA
control transfection, and similarly the LXR agonist-
treated cells were compared with solvent-treated cells.
The expression profiles of metabolic genes or TFs were
clustered for visualization using self-organizing maps
[GEDI software (25)] and AutoSOME (26) as instructed
in the tool documentation. Enriched pathways from the
human metabolic reconstruction (2) were determined
using a hypergeometric test testing for overrepresentation.
Genes from Gene Ontology categories with similar gene
numbers as Recon1 (1040) were obtained using the GO
Online SQL Environment (http://www.berkeleybop.org/
goose), as of 12 August 2013: cell projection (747),
envelope (630), locomotion (775) and receptor activity
(464). The number of probes detected in the array is
indicated in brackets for each category from a total of
12 756 detected probes.

miRNA array profiling

Total RNA samples from time points day 0, day 1, day 3
and day 12 of the differentiation time series used for
mRNA array analysis (see above) were also used to
profile miRNAs using miChip arrays (v.11.0) arrays (27)
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at the EMBL Genomics Core facility at Heidelberg. The
raw signal values from total RNA array hybridizations
were median normalized and then further normalized to
the respective signals from day 0 samples. Only probes
corresponding to mature human miRNAs were included
in the analysis.

Chromatin immunoprecipitation

Nuclear proteins were cross-linked to DNA by adding
formaldehyde directly to the medium to a final concentra-
tion of 1% for 8min at room temperature. Cross-linking
was stopped by adding glycine to a final concentration of
0.125M and incubating for 5min at room temperature on
a rocking platform. The medium was removed and the
cells were washed twice with ice-cold PBS. The cells
were then collected in lysis buffer [1% sodium dodecyl
sulphate (SDS), 10mM EDTA, protease inhibitors,
50mM Tris–HCl, pH 8.1] and the lysates were sonicated
by a Bioruptor UCD-200 (Diagenode, Liege, Belgium) to
result in DNA fragments of 200–500 bp in length. Cellular
debris was removed by centrifugation and the lysates were
diluted 1:10 in ChIP dilution buffer (0.01% SDS, 1.1%
Triton X-100, 1.2mM EDTA, 167mM NaCl, protease
inhibitors, 16.7mM Tris–HCl, pH 8.1). Chromatin solu-
tions were incubated overnight at 4�C with rotation with
antibodies against H3K4me3 (4ml per immunopre-
cipitation (IP) of 17-614, Millipore, Billerica, MA,
USA), PPARg (mixture of 0.5ml per IP of sc-7196x,
Santa Cruz Biotechnologies, Santa Cruz, CA, USA and
5 ml per IP of 101700, Cayman, Ann Arbor, MI USA),
CEBPa (5 ml per IP of sc-61, Santa Cruz
Biotechnologies) and LXRa (5 ml per IP, kind gift from
Eckardt Treuter, Karolinska Institute, Stockholm,
Sweden). The LXR antibody recognizes also LXRb that
maintains a constant low level of expression during differ-
entiation. The immuno complexes were collected with
20 ml of MagnaChIP protein A beads (Millipore) for 1 h
at 4�C with rotation. Nonspecific background was
removed by incubating the MagnaChIP protein A beads
overnight at 4�C with rotation in the presence of bovine
serum albumin (250 mg/ml). The beads were washed se-
quentially for 3min by rotation with 1ml of the following
buffers: low salt wash buffer (0.1% SDS, 1% Triton X-
100, 2mM EDTA, 150mM NaCl, 20mM Tris–HCl, pH
8.1), high salt wash buffer (0.1% SDS, 1% Triton X-100,
2mM EDTA, 500mM NaCl, 20mM Tris–HCl, pH 8.1)
and LiCl wash buffer (0.25M LiCl, 1% Nonidet P-40, 1%
sodium deoxycholate, 1mM EDTA, 10mM Tris–HCl, pH
8.1). Finally, the beads were washed twice with 1ml of TE
buffer (1mM EDTA, 10mM Tris–HCl, pH 8.1). The
immuno complexes were then eluted by adding 500 ml of
elution buffer (25mM Tris–HCl, pH 7.5, 10mM EDTA,
0.5% SDS) and incubating for 30min on rotation. The
cross-linking was reversed and the remaining proteins
were digested by adding 2.5ml of proteinase K
(Fermentas) to a final concentration of 80 mg/ml and
incubating overnight at 65�C. The DNA was recovered
by phenol/chloroform/isoamyl alcohol (25:24:1) extrac-
tions and precipitated with 0.1 volume of 3M sodium
acetate, pH 5.2, and 2 volumes of ethanol using

glycogen as carrier. Immunoprecipitated chromatin
DNA was then used as a template for real-time quantita-
tive PCR or for library preparation and sequencing
(performed at EMBL Core facility).

PCR of chromatin templates

Real-time quantitative PCR of ChIP templates was per-
formed using chromatin-region–specific primers in a total
volume of 20 ml with Applied Biosystems 7500 Fast Real-
Time PCR System using Absolute Blue qPCR SYBR
Green Low ROX Mix reagent (Thermo Fisher Scientific,
Surrey, UK). The PCR cycling conditions were preincu-
bation for 15min at 95�C, 40 cycles of 15 s at 95�C, 15 s at
55�C and 30 s at 72�C and a final elongation for 10min at
72�C. Relative association of chromatin-bound protein
was calculated using the formula 2�(�Ct)*100, where
�Ct is Ct(output)�Ct(IgG control), output is the DNA
immunoprecipitated with TF-specific antibodies and IgG
control is the DNA from immunoprecipitations using
nonspecific control antibody. The primer sequences are
provided in Supplementary Table S1.

Discretization of array expression values and
constraint-based model

Metabolic changes resulting from human SGBS
preadipocyte cell differentiation were qualitatively pre-
dicted from gene expression data using an implementation
of the constraint-based method by Shlomi et al. (6).
Constraint-based modeling is a widely used mathematical
approach for the description and analysis of metabolic
networks. It relies on the stoichiometric structure and
does not require detailed kinetic parameters. By
assuming steady state for the intracellular metabolites,
the respective dynamic balance equations can be simplified
to easy to handle linear equations. Besides the law of
mass conservation, other constraints might be included,
e.g. enzyme capacities, irreversibility information or
measured uptake and secretion rates, as well as optimality
considerations, to further constrain the possible solution
space, i.e. the possible flux values, which can be realized
within the given network structure. Recent efforts, like the
aforementioned applied method of Shlomi et al., focus on
the generation of context-specific and thus more predictive
models via the additional integration of omics data. A
consistent version of the generic human metabolic model
Recon1 (2) served thereby as modeling platform on which
own microarray data were overlaid as soft-constraints
based on gene-protein-reaction associations to allow the
prediction of network activity distributions. LPIN1 was
missing and owing to its central role in adipocytes, was
added to the model and assigned to the triacylglycerol
pathway. Continuous log2-normalized expression values
were first discretized into three categories: lowly expressed
(�1), moderately expressed (0) and highly expressed (1)
genes, based on mean expression±0.5*standard devi-
ation cutoffs. These values were mapped to the reactions
contained in Recon1 and used as input for the metabolic
reaction activity prediction.
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Heptamer enrichment analysis and miRNA target
identification

To identify heptamer motifs whose frequency is signifi-
cantly different in the 30-untranslated regions (30-UTRs)
of downregulated transcripts, relative to their frequency in
the entire set of 30-UTRs, we considered all RefSeq tran-
scripts for which a corresponding probe set was signifi-
cantly downregulated (P< 0.01, log2-fold change <�0.3)
24 h after miRNA mimic transfection. The 30-UTR se-
quences of the RefSeq transcripts were downloaded
from the UCSC genome browser (14.05.2012) and the
human miRNA sequences were obtained from miRBase
release 18 (http://www.mirbase.org/). The enrichment
analysis was performed using a Bayesian model originally
introduced for comparing miRNA frequencies between
samples (28,29) that have been successfully applied to
determine motif enrichments of small RNAs (30,31).

The transcripts for the list of putative target transcripts
of miR-27a, miR-29a and miR-222 were selected based on
two criteria: (i) at least one probe set corresponding to the
transcript was significantly downregulated on the respective
miRNA transfection and, (ii) the transcripts 30-UTR con-
tained at least one hit for any of the possible heptameric
reverse complements for the corresponding seed sequences
of miR-27a (CUGUGAA or ACUGUGA), miR-29a (GG
UGCUA, AUGGUGC or UGGUGCU) or miR-222 (AU
GUAGC), respectively.

ChIP-seq analysis

The HUVEC H3K4me3 peak data available from ENCODE
(wgEncodeUwHistoneHuvecH3k4me3StdPkRep1) was over-
lapped with transcription start site (TSS) coordinates from
Refseq to limit the analysis to active genes in HUVECs.
Gene to disease associations were obtained from
DisGeNET (32). A list of endothelial-relevant disease-
associated genes was compiled by combining genes
associated with CVDs, vascular diseases, coronary artery
diseases, cerebrovascular disorders, peripheral arterial oc-
clusive disease and pulmonary arterial hypertension.
ENCODE data from untreated HUVEC cells was
retrieved as peak coordinate files (UTA cMYC, SYDH
GATA2, SYDH MAX, SYDH cJUN and SYDH
cFOS). Other public data were obtained from the SRA
database as .sra files (SRR576805 ETS1 from VEGFA
stimulation, SRR351351 MEF2C from statin stimulation,
SRR390745 p65 from TNF stimulation, SRX096362 FLI1
representing an endothelial cell developmental TF,
SRR518265 HIF1A from hypoxia and PPARG samples
SRX032890 and SRX019521, each with their respective
control samples) that were converted to fastq files using
sratools v.2.1.7. (data from own experiments were already
in fastq format). Raw reads were first quality controlled
using the FASTQ software v.0.10.0 (http://www.bioinfor-
matics.babraham.ac.uk/projects/fastqc/). A deviation
from the expected GC-content was observed in the input
sample of SGBS cells and this sample was replaced in the
downstream analysis by a new input obtained from
similarly differentiated cells. All reads that were detected
as read artifacts or that had low-quality base pair calling
were removed and read stacks collapsed using the FASTX

software v.0.0.13 (minimum quality score of phred 10
across the read length was required) (http://hannonlab.
cshl.edu/fastx_toolkit/index.html). The reads that passed
the quality control steps were aligned to the hg19
human genome using the Bowtie (33) software v0.1.25
(one mismatch allowed, maximum three locations in the
genome from which the highest quality match was
reported). The mapping capability with these settings
was tested by aligning all 36-mers of the hg19 fasta
genome available via UCSC and was determined to be
0.88 and used in the subsequent peak-calling step.
SGBS histone data were analyzed using the EpiChIP

software v.0.9.7 (34), where the H3K4me3 signal was
quantified from �750 to +1250 region centered at
Refseq TSS coordinates. This region was detected to
have the highest signal by window analysis. TF peak de-
tection from SGBS was performed using the Quest
software (35) v.2.4. run in the advanced mode with
default settings applied except for the mappable genome
fraction (set to 0.88) and enrichment (ChIP enrichment set
to 15 and ChIP to background enrichment to 2.5). Fastq
files and signal tracks from SGBS cells can be accessed via
NCBI GEO (GSE41578). The final peak lists were filtered
to remove peaks with log10Qvalue <3. We chose to apply
two cutoffs to detect both low-occupancy (enrichment
>15) and high-occupancy (enrichment >30) binding
sites. In the text, the complete list of low- and high-
occupancy genomic regions (Supplementary Table S2)
has been analyzed unless otherwise specified. The public
HUVEC ChIP-seq data were processed with default
settings (enrichment 30), which corresponds to settings
used in their respective publications (information was
available for three of five studies via GEO). To assess
what biological pathways could be most affected by the
given TF, a genomic region enrichment test was per-
formed using the GREAT software (binomial P-value,
false discovery rate (FDR) 1%) (36). The same software
was used to obtain the peak to gene association files for
analyzing TF convergence on shared targets. The
complete gene association and enrichment term lists for
the SGBS TFs can be found in Supplementary Table S3

Gene metanodes and IDARE web portal

Gene Metanodes (Figure 1) showing gene-related data were
generated withMatlab�. Recon1metabolic gene Entrez IDs
were used for data mappings. Based on homogeneous
(HUVEC TFs) or heterogeneous (SGBS) data we
customized the metanode visual appearance. The open
sourced IDARE web portal and its HUVEC and SGBS in-
stances are built using HTML5 standards and javascript
libraries jQuery, highchart.js, bootstrap and cytoscapeweb.
The release contains a configuration-based pythonworkflow
responsible for building graph objects fromRecon1 SIF and
XGMMLpathways into javascript object notation files (full
description on the User Guide provided in the
Supplementary Material). In addition, gene metanode
image files, annotations from hg19 and time course expres-
sion data are integrated along with reaction and metabolite
relationships. The images and graph object files are then
deployed to the appropriate directories according to the
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instance workflow configurations. This architecture is ex-
tendable and allows for easy inclusion of other data sets
like HUVEC as well as custom pathways. IDARE instances
can be deployed locally or on web and cloud servers.

RESULTS

Integrating gene regulation data with a human metabolic
reconstruction

A metabolic network typically consists of metabolite and
reaction nodes. To make such models actionable in

context of disease pathways or drug target identification,
it becomes useful to integrate the regulation of genes that
catalyze the reactions within the model. We included ver-
satile nodes (referred to as gene metanodes) associated to
reactions, which can represent any gene-centric data col-
lected from different experiments (Figure 1). TF binding
data indicated in filled circles in the metanode can be
overlaid with the metabolic network that includes rect-
angular nodes representing metabolites and diamonds rep-
resenting reactions. Exemplified using HUVEC data, the
visualization can be used to examine the co-occurrence of
transcriptional regulators. The display options are flexible
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Figure 1. Conceptual overview of the analysis performed that links the regulatory and metabolic networks for exposing disease-relevant genes. A
summary of the data sets and data integration approach is shown. By integrating regulatory network components with metabolic pathways, gene
metanodes shown from the IDARE webportal provide a simple and intuitive means to analyze relationships between the metabolic and regulatory
networks. HUVEC data set: Overlaying TF-binding data indicated in filled color circles with the metabolic network reaction backbone can be used to
examine the co-occurrence of transcriptional regulators that is informative of likely disease association. Yellow rectangular nodes represent metab-
olites and small orange diamonds represent reactions in the metabolic network. SGBS data set: Often the biological question involves comparison of
phenotypic states. Constraint-based modeling methods, established in context of metabolic reconstructions, can be used as exemplified with data
from adipocyte differentiation. Those pathways that are predicted to shift to an active state in adipocytes compared with preadipocytes are indicated
by the red edge color, yellow and black color correspond to active or inactive reactions in both states. The heatmaps show for each differentiation
time point the gene expression (below) and predicted reaction activity (above) where blue indicates low/absent gene expression or inactive reaction,
gray, moderate expression or undetermined reaction and red stands for highly expressed gene and active reaction, respectively. The regulators can be
added as different shapes. Here, circles above represent the presence (red) or absence (white) of the H3K4me3 marker for active transcription and the
three different polygons to the right represent PPARg (star), CEBPa (triangle) and LXR (square) peak associations (red, present; white, not present).
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including presenting the regulators as different shapes, as
shown in SGBS. Moreover, the edges forming the network
backbone can be colored to represent reaction activity
obtained using constraint-based modeling methods. The
metanode heatmaps show for each differentiation time
point the gene expression (below) and predicted reaction
activity (above). By integrating regulatory network com-
ponents with metabolic pathways, gene metanodes shown
from the IDARE web portal (see Supplementary Data—
IDARE User Guide for further details) provide a simple
and intuitive means to analyze relationships between the
metabolic and regulatory networks.

To illustrate the concept and to test whether such data
could be informative to highlight key parts of the large
metabolic reconstruction networks, we collected ChIP-seq
data from HUVECs that represent the most studied
primary cell type among ENCODE data sets. Using the
H3K4me3 chromatin mark to focus on active loci, we
associated Recon1 genes to TF peaks from 10 studies, 5
collected from NCBI GEO database and 5 available
from ENCODE (see ‘Materials and Methods’ section for
details). Disease information was collected from the
DisGeNET database (32), focusing on endothelial-
relevant disease. Table 1 shows those genes that are
associated with eight or more TFs while the complete
TF and disease association result is shown in
Supplementary Table S4. Interestingly, expressed genes
associated with between seven and nine TFs are >2-fold
enriched in vascular disease-relevant genes, a result
that points to the prominent link between high TF-
mediated gene expression regulation and disease. The
hypergeometric P-values for the different number of
TF associations to Recon1 genes are shown in
Figure 2A, comparing vascular disease-relevant associ-
ations to all disease associations (the observed increasing
trend in significance and enrichment apply also when
analysis is not restricted to metabolic genes, data not
shown).

The gene with most disease associations overall, the
endothelial nitric oxide synthase, NOS3 (also known as
ENOS), is visualized in Figure 2B. The release of NO is
a key paracrine signal in the vascular system that is
essential for the regulation of blood flow and pressure
(37). The two other nitric oxide synthases (NOS1 and
NOS2) can catalyze the same reaction to convert
L-arginine to NO. Interestingly, each of these gene
metanodes show multiple TF associations (Figure 2B).
The respective genomic region around NOS3 TSS with
TF signal from the 10 ChIP-seq experiments is shown in
Figure 2C. The other multi-TF–associated nodes in the
proline-arginine metabolic pathway shown in
Supplementary Figure S1 include ALDH4A1 that partici-
pates in multiple amino acid pathways and is known to
cause the autosomal recessive disorder known as type II
hyperprolinemia (38) and MTAP from the coronary
artery disease genome-wide association study (GWAS)
reported locus on chromosome 9 (39). Encouraged by
these findings, we next evaluated whether the same prin-
ciple generalizes in human adipocytes that represent a key
cell type in obesity and metabolic disease. However, a
more limited set of available genome-wide regulator

profiles motivated the collection of experimental data
and in parallel using mathematical predictions based on
the metabolic reconstruction to expose relevant pathways
as described in more detail below.

Predicted metabolic activity changes during adipocyte
differentiation

To outline plausible metabolic activity changes during
adipocyte differentiation using the SGBS cell line, which
represents an established human adipocyte cellular model
isolated from a SGBS patient (21), we leveraged the
constraint-based modeling approach (see ‘Materials and
Methods’ for details) to predict the dynamic activity
changes of metabolic reactions (6). Based on a time-
course measurement of the transcriptome of
differentiating SGBS preadipocytes a dynamic shift is
evident, in particular, in the expression levels of metabolic
genes among which 18%, 2-fold more when compared
with other gene categories with similar numbers of genes
or even with all detected genes (Supplementary Figures S2
and S3) (25,26), are differentially regulated. An overall
trend of increasing levels from day 1 onward results in
219 upregulated metabolic genes by day 12 of differenti-
ation, compared with 98 downregulated genes
(Supplementary Table S5).
As gene expression levels alone are insufficient to

describe the metabolic adaptation that occurs during
terminal differentiation, we used them as soft-constraints
to predict reaction activity for Recon1 (2,6). The predicted
pathway activity changes are shown in Figure 3 and the
complete prediction results for all seven differentiation
time points and the 2469 consistent reactions contained
in Recon1 are provided in Supplementary Table S6
(‘Materials and Methods’ section). Consistent with the
mRNA level changes, a much higher number of reactions
were predicted active in adipocytes than in preadipocytes
(556 compared with 290, respectively) with 259 reactions
predicted to become active during differentiation. Five
pathways with highest predicted activation between
preadipocytes and adipocytes were cholesterol metabolism
(76% reactions predicted to change), fatty acid activation
(64%) and oxidation (93%), triacylglycerol synthesis
(60%) and branched chain amino acid (BCAA: valine,
leucine, isoleucine) metabolism (50%) (for metabolites
and enzymes involved refer to Supplementary Table S7),
highly involved in lipid metabolism and metabolic
diseases, suggesting the ability of the approach to
recapitulate adipocyte characteristics. On a metabolite
level, these pathways converge at acetyl-CoA, which can
produce intermediates to be converted to fatty acids or to
be consumed in the energy-producing mitochondrial
oxidation. Pathways excluded from further analysis
contained reactions predicted undetermined in one of the
two phenotypic states, concretely, heme biosynthesis
with 10 reactions, all predicted active in adipocytes, but
nine of them undetermined in preadipocytes; heme
degradation with only two reactions, both predicted
active in adipocytes but undetermined in preadipocytes
and the biosynthesis of tyrosine, phenylalanine
and tryptophan, which contains only one
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reaction (O2+L-Phenylalanine+Tetrahydrobiopterin
-> Tetrahydrobiopterin-4a-carbinolamine+L-Tyrosine),
predicted active in adipocytes and inactive in
preadipocytes.

More than 300 metabolic reactions are predicted to
change from preadipocytes to adipocytes (Supplementary
Table S6). In agreement with an increased gene expression
for the majority of metabolic genes, most reaction changes
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Figure 2. Gene metanodes reveal frequent TF association to disease-relevant genes exemplified by nitric oxide synthases in HUVEC data. The result
of disease enrichment tests for genes associated with 1–10 TFs are shown (A), where the horizontal line corresponds to hypergeometric P <0.01. The
endothelial relevant diseases (diamonds) is compared with all diseases (triangles). (B) The three enzymes encoding nitric oxide synthases (NOS1,
NOS2 and NOS3) and the two reactions that convert L-arginine to NO for regulating vascular dilation are shown. Data related to genes are
displayed in gene metanodes superimposed on the metabolite-reaction network. Peak associations from 10 ChIP-seq studies in HUVECs (ETS1,
MEF2C, p65, FLI1, HIF1a available via NCBI SRA and cMYC, GATA2, MAX, cJUN, cFOS and input available via ENCODE) are displayed in
the indicated order where color indicates TF association and the respective TF signal tracks are shown in C. The value range 1–100 is used in the first
five tracks and 1–78 in the ENCODE tracks.

Table 1. Endothelial disease relevant genes exposed by association to multiple TFs in HUVEC data

Symbol Pathway Entrez GeneID Number
of disease

Number
of TFs

NOS3 Arginine and proline metabolism 4846 140 8
PTGS2 Eicosanoid metabolism 5743 97 8
HMOX1 Heme degradation 3162 56 8
ABCA1 Transport, extracellular; transport, golgi apparatus 19 20 9
PTGS1 Eicosanoid metabolism 5742 12 8
LIPG Triacylglycerol synthesis 9388 9 10
ADA Nucleotides; purine catabolism 100 9 9
PDE4D Nucleotides 5144 9 8
PDE4B Nucleotides 5142 8 9
ABCC4 Transport, extracellular 10 257 7 9
PDE3A Nucleotides 5139 7 8
PIK3CG Inositol phosphate metabolism 5294 7 8
SLC12A2 Transport, extracellular 6558 6 9
PAFAH2 Glycerophospholipid metabolism 5051 4 9
GCLM Glutathione metabolism 2730 3 10
MTHFD1L Folate metabolism 25 902 3 10
GALNT2 O-glycan biosynthesis 2590 3 9
PPAP2B Triacylglycerol synthesis 8613 1 10
NNMT NAD metabolism 4837 1 10

The 19 Recon1 metabolic genes annotated with endothelial-relevant disease terms in the DisGeNET database (32) and having an active TSS mark
(H3K4me3) with putative binding of at least 8 TFs from ChIP-Seq HUVEC studies (see ‘Materials and Methods’ section for details) are presented.
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Figure 3. Predicted metabolic activity changes during adipocyte differentiation and reaction backbones of selected pathways. A heatmap represent-
ing the predicted percentage of active reactions for each differentiation time point (columns) and metabolic pathway (rows) is shown for the Recon1
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predicted are activations, especially those in lipid metabol-
ism pathways. The BCAA metabolism pathway appeared
as the most affected nonlipid pathway based on the
predictions.

Genome-wide measurements of transcriptional,
posttranscriptional and chromatin-level regulation in
adipocytes

We performed a diverse set of genome-wide measurements
from SGBS adipocytes, summarized in Figure 4A. We first
focused on identifying the most highly induced TFs and
their putative targets. In agreement with metabolic gene
expression changes, a highly dynamic TF expression
profile is also observed (Figure 4A). Among the highest
upregulated TFs (see Supplementary Table S8), PPARG
and CEBPA have been previously associated with a key
role in adipocyte differentiation and global regulation of
metabolic genes (8,40,41). The most upregulated TF gene
was the signal responsive LXRA (also known as NR1H3),
an established regulator of cholesterol reverse transport
(42) for which the genome-wide occupancy has not yet
been studied in adipocytes. We obtained the genome-
wide binding profiles of PPARg, CEBPa and LXRa to
reveal their possible interplay in SGBS adipocytes, by
collecting ChIP samples for sequencing (ChIP-seq). We
also included published primary adipocyte (day 9) (10)
and SGBS PPARg (day 20) (41) data sets retrieved from
the Sequence Read Archive database for comparison. The
ChIP-seq reads that satisfied quality criteria were aligned
to the hg19 human genome (see ‘Materials and Methods’
section for details). Statistics about initial and final read
numbers are indicated in Supplementary Table S2.
In addition to regulation of the transcriptional output,

the measured expression changes of metabolic genes could
also be controlled at the posttranscriptional level. In par-
ticular, miRNAs have emerged as important regulatory
molecules and regulation of a number of miRNAs have
been described as important for successful adipogenesis
and lipid accumulation (43). We hypothesized that differ-
ent miRNAs that become down-regulated during
adipogenesis might contribute to allow the observed
upregulation of metabolic genes to take place, serving as
gatekeepers in preadipocytes. To investigate this possibil-
ity, we performed microarray profiling to detect differen-
tially regulated miRNAs on days 0, 1, 3 and 12 of
differentiating SGBS cells, revealing several candidate
miRNAs for further analysis (Supplementary Figure S4).
We focused on miRNA clusters with several members re-
pressed already at early stages of differentiation, which
lead to the selection of miR-27a that has previously been
studied in mouse models, and two miRNAs whose role in
adipocytes has not been characterized, miR-29a and miR-
222 for further experiments. Their downregulation was
validated by RT-qPCR to occur already by day 5 of dif-
ferentiation (Figure 4B). To identify candidate target
genes, we performed a miRNA mimic transfection (cor-
responding to a specific overexpression of each miRNA)
at day 4 of differentiation and analyzed by microarrays
the mRNA profiles at 24 h posttransfection and compared
these with the cells similarly transfected with a scrambled

control siRNA. An analysis for enriched heptamer motifs
in 30-UTRs of the downregulated mRNAs from the micro-
array analysis at day 5 reveals enrichment of motifs com-
plementary to respective miRNA seed sequences (Figure
4C and D), suggesting that the observed mRNA
downregulation could be due to their direct targeting by
the miRNA.

Finally, we used the H3K4me3 chromatin modification,
indicative of the transcriptional potential of the associated
TSS, to evaluate changes in chromatin state of metabolic
genes. We collected ChIP samples from undifferentiated
and differentiated SGBS cells for sequencing and analyzed
the ChIP-seq data obtained and public data from primary
preadipocytes and adipocytes (10,41).

Predicted target gene profiles and their overlap

The comparison of all genes (in A) or metabolic genes
(in B) associated to each TF is shown in Figure 5.
Figure 5C shows the intersection of metabolic genes
associated with PPARg in the three independent data
sets (1278). This first genome-wide mapping of LXR
binding in human adipocytes revealed 2117 associated
putative target genes. For CEBPa, we obtained 6880
putative target genes, while for PPARg, the 11 078
putative target associations kept reflect peak associations
that were found in our data set and observed in at least
one of the two public data sets (10,41). From these genes,
1691 were associated with peaks from all three TFs
(Figure 5A, Supplementary Table S3), with 147 common
metabolic putative target genes.

To evaluate TSS activity changes, we analyzed the
H3K4me3 ChIP-seq data using a mixture model method
(34) that separates histone marker labeled gene TSS from
those lacking the marker (Supplementary Figure S5) based
on their read count distribution estimates. According to
this analysis, most genes did not completely switch their
TSS activation state during differentiation in SGBS cells
(15 263 active; 19 311 inactive; 470 unclassified), while
among the transcripts with altered TSS activity, the
H3K4me3 marker mostly decreased: 1223 metabolic
gene TSS are labeled with H3K4me3 in both preadipo-
cytes and adipocytes, 1125 are inactive, TSS activity
decreased for 37 transcripts (corresponding to 25 gene
loci) while only 2 gained the activity marker (Figure 5D
and Supplementary Table S9). As indicated, there was
considerable agreement between primary adipocyte (10)
and SGBS data (Supplementary Table S9).

The large intersection of TF-associated genes with the
metabolic genes from Recon1 (1069 out of 1496 genes,
Figure 5B) suggests a high contribution of these 3 TFs
to the metabolic changes observed on terminal adipocyte
differentiation. Interestingly, the metabolic pathways with
most changes (those highlighted in Figure 3) show exten-
sive TF binding. The acyl-CoA synthetase long-chain
family member 1 (ACSL1) gene of the fatty acid activation
pathway was among the top genes associated with high-
occupancy binding sites for all three TFs (Figure 5E). The
co-localized binding seen in Figure 5E was rather excep-
tional; genome-wide overlap in peak regions by all three
TFs occurred only at 223 peak locations. At gene ontology
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term level (Supplementary Table S3), the TFs overlap in
regulation of cholesterol efflux. Several genomic regions
each bound by one or several of the TFs studied
concentrated in the vicinity of ATP-binding cassette, sub-
family A member 1 (ABCA1) a key gene in cholesterol
reverse transport (Figure 5G). Interestingly, ACSL1 is
required for oleate- and linoleate-mediated inhibition of
cholesterol efflux through ABCA1 in macrophages
indicating cross-talk between the pathways (45). ChIP-
qPCR validation from independent immunoprecipitations
is shown for the two regions indicated (Figure 5F and H),
and the CDH1 and FABP4 loci that served as a negative
and positive control region, respectively, are shown in
Supplementary Figure S6.
Next we identified target genes for each miRNA based

on repression in the array experiment and a seed match
analysis (putative targets are indicated in red in Figure 4
and listed in Supplementary Table S10), ranging from 65
(miR-222) to 134 (miR-29a) significant target calls per
miRNA. Figure 5I shows the metabolic target genes of
each miRNA overlapped with TF target association lists
(those genes that are significantly regulated during differ-
entiation are indicated with a star).
Interestingly, those putative miR-27a and miR-222

targets that are overlapping with more than one TF are
in fact mainly associated with high-occupancy binding,
namely PISD, CYP1B1, the mitochondrial glycerol-3-phos-
phate acyltransferase (GPAM), hexokinase 2 (HK2), LPL,
RPIA, the C-4 to C-12 straight chain acyl-CoA dehydro-
genase (ACADM) and stearoyl-CoA delta-9-desaturase
(SCD), suggesting that key metabolic genes are under
tight combinatorial transcriptional and posttranscrip-
tional regulation. Interestingly, the DisGeNET resource
reports a disease association for each of these genes,
only HK2 is not supported by this data source but in
light of recent literature is implicated in cancer (46,47).
All but two putative miRNA targets were also associated
with TF-mediated regulation. Moreover, as previously
reported (17,16), we could confirm PPARG among the
miR-27a targets in adipocytes. There is also overlap
between the miRNAs: according to our analysis miR-
27a and miR-222 both target CYP1B1, miR-27a and
miR-29a target the amino acid transporter solute carrier
family 7 member 5 (SLC7A5) while miR-29a and miR-222
target dihydrolipoamide branched chain transacylase E2
(DBT).
In conclusion, the putative shared TF and miRNA

target genes that our data integration revealed were

ACADM, DBT, GPAM, HK2, LPL and SLC7A5.
Taken together, by collecting a diverse and comprehensive
set of regulatory data on adipocyte differentiation we were
able to show that enzymes crucial or rate limiting for lipid
metabolism were often associated with miRNAs and high
occupancy binding by multiple TFs, suggesting tight
combinatorial effects of TF upregulation and miRNA
downregulation driving metabolic changes in
adipogenesis.

Cell fate determining TFs engage signal-dependent TFs in
a feed-forward motif

Defects in adipocyte differentiation represent an import-
ant early event in obesity and related metabolic dysfunc-
tion. To address the role of cell fate master regulators
interfacing the metabolic and regulatory networks,
heatmaps showing the top-ranked upregulated TFs ac-
cording to differential expression between day 12 and
day 0 are shown in Figure 6A. Focusing on target gene
associations to high occupancy binding by the three TFs
(lines connecting the studied TFs to upregulated genes),
the prominent role for PPARg in regulating other TFs in
adipogenesis becomes apparent. Notably, each TF studied
here binds its own regulatory region, while CEBPa and
LXR show few high-occupancy interactions to the other
upregulated TFs, in contrast to PPARg. In fact, the only
other TF association is the LXR binding to SREBF1.

We confirmed the binding of LXR to the prominent
LXR peaks in the SREBF1 locus by ChIP-qPCR in adi-
pocytes (enrichment was also observed for CEBPa), while
the prominent PPARg peak further upstream is supported
by all three ChIP-seq studies (Figure 6B). According to
our data, the cell fate regulating TFs form two closely
connected feed-forward motifs to these two signal respon-
sive TFs, both known to play key roles in cholesterol me-
tabolism, with PPARg associated to SREBF1 through
both LXR and CEBPa (Figure 6A and Supplementary
Figure S7).

As a representative of a ligand-responsive candidate
drug target TF, we examined the high-occupancy LXR
binding sites and confirmed binding to 11 previously
reported LXR targets (Supplementary Table S3 in bold).
Notably, all these genes were also upregulated during dif-
ferentiation. To test the ligand-responsiveness of genes in
the loci occupying the LXR binding sites (<500 kb from
the TSS), we performed a microarray with the LXR
agonist T0901317 (Supplementary Table S11) from a 4-h
ligand stimulation of differentiated SGBS cells and could

Figure 4. Continued
RT-qPCR analysis. (B) RT-qPCR analysis of the relative expression values of the endogenous miR-27a, miR-29a and miR-222 from undifferentiated
and 5-day differentiated SGBS cells. The measured expression values were normalized to U47 snRNA and are shown relative to undifferentiated
cells, value of which was set to 1 (gray bars). Data points indicate the mean expression values of triplicate experiments and the error bars represent
SD. Student’s t-test was performed to determine the significance of downregulation on differentiation (*P< 0.05; **P< 0.01; ***P< 0.001). (C)
Enrichment analysis of heptamer motifs in the 30-UTR sequences of significantly downregulated transcripts. The count of all possible heptamer
motifs (each represented by a circle) and their log2-enrichment within the 30-UTRs of downregulated transcripts are depicted on the x-axis and y-axis,
respectively. The significantly enriched heptamers are marked in red. The most enriched abundant heptamers are corresponding to the reverse
complement sequences of the overexpressed miRNA seeds as indicated (see ‘Materials and Methods’ section for details). (D) MA-plot depicting the
log2-expression levels (x-axis) of all transcripts in cells transfected with indicated miRNA mimics and the log2-fold change relative to cells transfected
with siCtrl. The significantly downregulated transcripts (unadjusted P< 0.01, log2-fold change<�0.3) containing at least one putative binding site
for the respective miRNA are marked in red. The total number of putative miRNA targets is indicated (with metabolic target genes in brackets).
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Figure 5. Overlaps in the genome-wide target profiles of PPARg, CEBPa, LXR and the miRNAs �27a, �29a and �222 from SGBS adipocytes.
Venn diagrams comparing putative target genes for PPARg, CEBPa and LXR (in A and B) or between different studies that profile PPARg binding
(B) as obtained using the GREAT tool (36) are shown. Among all genes (A), 1691 genes are associated with all TFs, representing a large fraction
from each individual TF peak-gene association list. Metabolic genes (C) show a similar highly overlapping target association profile. (C) In total, 606
PPARg target associations to metabolic genes are supported by ChIP-seq data from day 10 and day 20 differentiated SGBS cells (41) and day 9
differentiated primary adipocytes (44), with an additional 419 metabolic genes supported by at least two data sets. The pie chart (D) illustrates how
many genes gain or lose the H3K4me3 signal, showing that most genes retain their activity marker status. (E) The ChIP-seq signal tracks from
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validate 39 additionally ligand-responsive genes at this
early time point (Supplementary Table S12). Among
known target genes, MYLIP1, SREBF1, ABCA1 and
ABCG1 were significantly ligand responsive at this time
point, while the upregulation of stearoyl-CoA delta-
9-desaturase (SCD) was modest and did not pass the
multiple testing correction (unadjusted P< 0.05). New
putative target associations to ADH1B, TMEM17 and
WSB1 were supported by the array data and high-
occupancy binding sites. However, the majority of respon-
sive genes were associated with less-prominent LXR
binding under the unstimulated condition represented by
the ChIP-seq experiment, including ELOVL6, LIPA,
SCARB1, HSD17B7 and LPIN1 that function in lipid
metabolism. Therefore, ligand stimulation greatly
impacts LXR-mediated regulation of the metabolic
network, in agreement with observations from mouse
liver (49).
The interaction of PPARg, LXR and SREBF1 has been

studied before on selected target genes (50), and therefore
our focus here was how they interact on pathway level.
First, to confirm that SREBF1-mediated regulation con-
verges with the pathways observed to change most during
adipogenesis (Figure 3 and Supplementary Figure S2), we
obtained a list of SREBF1-regulated genes observed in
human myocytes (48). Cholesterol metabolism was the
most significant pathway (hypergeometric P=3.15e-06,
Supplementary Table S13). The TF feed-forward circuits
additionally engage the acyl-CoA synthetase enzyme
genes, namely ACSL3, �4, �5 (Supplementary Figure
S8) and the previously highlighted ACSL1 (Figure 5), in
fatty acid activation that fuels triglyceride synthesis.
The integrative pathway map of cholesterol metabolism

is shown in Figure 6C. Red edges represent predicted
reaction activation from the preadipocyte state and
black edges represent reactions predicted inactive. A
detailed description of all the components can be found
in the figure legend. In short, filled shapes indicate the
putative binding of a TF (polygons on the right) or the
presence of the active TSS marker (circles above) from
ChIP-seq data. The central heatmaps display the
discretized gene expression (below) and the reaction
activity during differentiation as predicted by the mathem-
atical model (above).
Based on the microarray data, all genes participating in

the active branch of the cholesterol synthesis pathway,
except CYP51A1, show an increased expression on
differentiation. RT-qPCR validation for eight induced
genes is displayed in Figure 6D. Genes involved in the
inactive branch, namely 3-hydroxy-3-methylglutaryl-CoA

(HMGC)-lyase-like-1, HMGC-synthase-2, SLC25A16
and SOAT1, show a constant low level of expression. To
place the candidate regulatory motifs including SREBF1
(Supplementary Figure S7) in context of the ChIP-seq
data, we used these integrative pathway maps to check
which expression profiles potentially reflect more
complex dynamics that can be achieved through feed-
forward motifs by identifying those that could not be
explained by simple direct binding by the three most up-
regulated TFs selected for ChIP-seq.

Binding sites for at least one of the three TFs were
associated to most genes in the pathway (81%). PPARg
has high-occupancy binding sites in the vicinity of
HMGC-synthase 1 and mevalonate kinase (MVK)
indicating that it may have a predominant role in
regulating these enzymes at key upstream reactions of
the synthesis pathway (Figure 6C, upper left corner).
All TFs bound nearby the HMGC-reductase (HMGCR)
gene locus encoding the rate limiting enzyme and
gene loci encoding enzymes of the initial steps of the
alternative ketogenesis pathway (mitochondrial) that
start by producing HMGC from acetyl-CoA and
acetoacetyl-CoA, namely HMGC-synthase 2 and
HMGC-lyase-like-1. Concordant regulation by SREBF1
observed in myocytes concentrates on HMGCR, and, in
particular, on the central and terminal parts of the
pathway, including all genes starting from MVD.
Among these, five were not bound by the other TFs in
the ChIP-seq data, suggesting that their upregulation
occurs indirectly via the regulation of SREBF1. These
include farnesyl diphosphate synthase (FDPS) that has
been reported to synthesize isoprenoid natural ligands
for PPARg (51), constituting a putative metabolite
positive feedback loop. Interestingly, nodes associated to
multiple TFs reappear at the end of the synthesis pathway
(lower left corner) at the dehydrocholesterol reductases
(DHCR)-7 and �24 loci, the latter being a known LXR
target gene (52) in addition to ABCA1. However, only
ABCA1 is significantly up-regulated in the microarray
after 4 h of ligand stimulation (Supplementary Table S11
and S12), which suggests that more complex dynamics
may be used to control the terminal step of the pathway
at the DHCR24 locus.

In summary, a tight regulatory circuit between TFs ne-
cessary for adipocyte differentiation and those implicated
in proper cholesterol homeostasis was observed and
associated with the major lipid synthesis pathways.
More generally, analyzing TF binding in context of the
metabolic network allows formulating testable hypothesis
about the regulatory mechanism.

Figure 5. Continued
PPARg studies in SGBS cells (41) and primary adipocytes (44), CEBPa and LXR from SGBS adipocytes and H3K4me3 from primary and SGBS
cells are displayed at the ACSL1 locus that shows high-occupancy binding of PPARg, CEBPa and LXR. The ChIP-qPCR validation comparing
enrichment with specific antibody to IgG unspecific control for the PPARg and CEBPa occupied region indicated is shown in (F). (G) Similarly as
above, the TF signal tracks show multiple peaks at the ABCA1 locus including the LXR response elements that show significant enrichment also with
PPARg and CEBPa antibodies as validated using ChIP-qPCR in (H). The enrichment values are shown relative to the enrichment of IgG and
indicate the mean enrichment values of triplicate experiments and the error bars represent SEM. One sample t-test was performed to determine the
significance of TF enrichment compared with IgG (*P< 0.05; **P< 0.01). (I) Venn analysis of metabolic target genes of the tested miRNAs and their
targeting by TFs. The lists of metabolic genes targeted by the individual miRNAs and by the TFs PPARg, CEBPa or LXR are overlapped to identify
the metabolic genes under combinatorial multilevel regulation. The genes significantly changing during SGBS differentiation are indicated with a star.

14 Nucleic Acids Research, 2013

 at U
niversity of L

uxem
bourg on June 6, 2015

http://nar.oxfordjournals.org/
D

ow
nloaded from

 



0

10

20

ABCA1
DHCR24

FDPS
HMGCR

IDI1
LSS

MVD
MSMO1

R
el

at
iv

e 
ex

p
re

ss
io

n

Undifferentiated  (day 0)
Differentiated      (day 12)

*

*
*

*

*

*

*

SGBS day 20
PPARG PPARGPPARG

SGBS day 10 LXR CEBPAprim day 9

0h 4h 8h12h d1d3 d12
Gene expression

Reaction activity

H3K4me3

PPARγ
CEBPα
LXR

GENE SYMBOL

−4 4
log2 fold change

HOXB6
MLXIPL_2
STAT3
ZBTB20
EBF1
SREBF1_2
MKX
PPARG
HES6
BCL6
CEBPD
ZBTB16
MESP1
STAT5A
MAFB
MLXIPL_1
SREBF1_1
TSC22D3_2
FOXO1
TSC22D3_1
KLF9
PPARG
CEBPA
NR1H3

LXR

PPARG

CEBPA4 h 8 h 12 h D1 D3 D12
100 kb

MIR33B
SREBF1
SREBF1

TOM1L2

1           2 

5dpmev[x] ipdp[x]

ppi[x]frdp[x]

grdp[x]

dmpp[x]

lanost[r]

sql[r]

Ssq23epx[r]

ppi[r]

frdp[r]

EBP1r

xolest_hs[c]

dsmsterol[r]
DHCR71r

chlstol[r]ddsmsterol[r]

acac[m]hmgcoa[m]

accoa[m]

HMGLm

zymstnl[r]
EBP2r

4mzym_int1[r]lthstrl[r]
C4STMO1r

4mzym_int2[r]

5pmev[x]mev-R[x]hmgcoa[c] hmgcoa[x]

C4STMO2r

zym_int2[r]

DHCR241r

zymst[r]

aacoa[c]
acac[x]coa[c]

HMGLx
accoa[x]

44mzym[r]

44mctr[r]

for[r]
DHCR243r DHCR242r

DHCR72r
7dhchsterol[r]

coa[x]
accoa[c]

R2coa_hs[c]R1coa_hs[c]

aacoa[m]

coa[m]

chsterol[e]

DHCR71r DHCR72r DHCR241r DHCR242r DHCR243r HMGLxHMGLm C4STMO1r C4STMO2r EBP1r EBP2r

Cholesterol synthesis

chsterol[r]

chsterol[m]

chsterol[c]

0

10

35

45

*

**

1            2 

0

10

20

F
ol

d 
en

ric
hm

en
t I

P
/Ig

G

regulated in
SREBF1 microarray

A

C

D

B

Figure 6. Integrated analysis of the regulation of the cholesterol synthesis pathway. (A) The average logarithmic fold change values from 4, 8 and
12 h and days 1, 3 and 12 of differentiation displayed as a heatmap and sorted based on day 12 values identify LXRA (NR1H3), CEBPA and
PPARG as the most upregulated TF genes. Association to high-occupancy ChIP-seq peaks of PPARg, CEBPa and LXR in SGBS cells are indicated
with colored lines identifying autoregulation of each TF, regulation of SREBF1 by LXR and PPARg, of CEBPD and PPARG by CEBPa and
regulation of majority of TF genes shown by PPARg. (B) The ChIP-seq signal tracks as in Figure 4 are shown at the SREBF1 locus. Regions with
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Convergence of miRNAs and TFs exposes further
disease-relevant nodes

Our data also revealed several convergence points of
miRNAs and TFs on metabolic genes (Supplementary
Figure 5I). Figure 7 shows the BCAA catabolism
pathway that represents the main nonlipid pathway high-
lighted here. The early steps include several genes that are
upregulated during differentiation, two of which are po-
tentially targeted by all three TFs studied, the branched
chain keto acid dehydrogenase E1 beta (BCKDHB) and the
dihydrolipoamide dehydrogenase (DLD), while DBT is a
putative target of PPARg, CEBPa, miR-222 and miR-
29a. Together with BCKDHA, these genes in fact encode
for the large protein complex called branched-chain alpha-
keto acid dehydrogenase. According to our results, this
enzyme complex is the key regulatory point under the
control of multiple regulators and an interesting target
for further analysis. Moreover, the cytosolic branched
chain aminotransferase 1 (BCAT1) that catalyzes the first
steps of the BCAA turnover in cytosol is associated with
all 3 TFs. The upregulated genes downstream include
propionyl CoA carboxylase beta (PCCB) and
methylmalonyl CoA epimerase (MCEE) whose genomic
loci are occupied by both PPARg and CEBPa and
PCCA that is associated to all three TFs. Thus, similarly
to cholesterol synthesis pathway, the TFs studied converge
especially at the initial and terminal steps of the pathway,
with the added complexity of posttranscriptional regula-
tors at the large main enzyme complex. As described
earlier, the SLC7A5 gene that functions in BCAA trans-
port is targeted by two miRNAs (miR-27a and miR-29a).
The BCAA pathway from HUVECs is shown in
Supplementary Figure S9. Among the miRNA target
profiles available from HUVECs, a study of miR-663
targets reported regulation of SLC7A5 (54), and
moreover, 9 out of 10 TFs in HUVECs were associated
with this gene. As in adipocytes, the BCAT1 gene is
associated with multiple TFs in HUVECs revealing key
similarities between the regulator profiles and multi-regu-
lator nodes of these cell types.
To visually assess the convergence of the studied TFs

and miRNAs on the other highly activated metabolic
pathways, we extended gene metanode metabolic maps
to two additional pathways (fatty acid oxidation in
Supplementary Figure S8 and triglyceride synthesis in

Figure 8). All five maps, as well as the remaining 94
pathways in Recon1, and associated data can be inter-
actively explored in our IDARE web portal (http://
systemsbiology.uni.lu/idare.html).

MiR-27a is known to engage in the main TF circuitry
through the inhibition of PPARg (15–17). The triglyceride
pathway was identified to contain multiple shared target
associations, as shown in Figure 8. The regulatory associ-
ations from TFs and miRNAs converge along the
pathway at three key enzymes: (i) GPAM that catalyzes
the initial and committing step in glycerolipid biosynthe-
sis, playing a pivotal role in the regulation of cellular
triacylglycerol and phospholipid levels (57), (ii) LPIN1
that catalyzes the penultimate step in triglyceride synthesis
including the dephosphorylation of phosphatidic acid to
yield diacylglycerol (23) and (iii) LPL that catalyzes the
release of fatty acids from triglycerides (24) [extracellular
LPL facilitates fatty acid import, whereas also intracellu-
lar activity has been observed that could serve in fatty acid
export (58)]. The enzymes from reactions directly
connected to these highly regulated gene nodes are also
upregulated and associated with PPARg (and some
CEBPa) binding, including the AGPAT gene family
members (directly downstream GPAM), the
triacylglycerol synthesizing DGAT1 and DGAT2, and the
lipase MGLL, supporting a tight transcriptional regula-
tion of triglyceride synthesis spread across the pathway.
We selected the GPAM locus for further validation experi-
ments, as it was the first enzyme targeted by both TFs and
miR-27a. We could confirm binding to several prominent
peaks upstream of the GPAM locus (Figure 8B and C).
Furthermore, miRNA motif analysis of the 30UTR
revealed two miR-27a binding sites, one of which corres-
ponds to a conserved site that has been shown functional
in mice (56). In agreement, transfection with miR-27a
mimic, but not that of mir-29a or mir-222, significantly
decreased GPAM mRNA levels (Figure 8D).

Finally, we also examined the H3K4me3 data in context
of the pathways identified to change most. A reciprocal
change in the TSS activity affecting carbohydrate and
lipid metabolism was observed for two genes encoding
enzymes involved in glycerol metabolism: the glycerol-
3-phosphate dehydrogenases GPD1 and GPD2. Glycerol-
3-phosphate (G3P) can be synthesized from glucose via an
intermediate step that forms dihydroxyacetone phosphate

Figure 6. Continued
high enrichment for one or several TFs were selected for validation by ChIP-qPCR (numbered in the figure). The enrichment values using antibodies
against all three TFs are shown relative to the enrichment of IgG and indicate the mean enrichment values of triplicate experiments and the error
bars represent SEM. One sample t-test was performed to determine the significance of TF enrichment compared with IgG (*P< 0.05; **P< 0.01). (C)
The metabolic pathway of cholesterol synthesis is shown with several omics data overlayed extending the metanode features presented in Figure 2.
The pathway starts with the condensation of acetyl-CoA (accoa[c]) and acetoacetyl-CoA (aacoa[c]) to form 3-hydroxy-3-methylglutaryl-CoA
(hmgcoa[c]) catalyzed by HMG-CoA synthase encoded by the gene HMGCS1. The end point metabolite is cholesterol (chsterol[r][m][c][e], r—
endoplasmic reticulum, m—mitochondria, c—cytosol, e—extracellular). The start and end reactions are indicated by a thicker arrow and genes
discussed further in the text are shown as larger metanodes for clarity. For details of heatmap, node and edge descriptions, see Figure 1, and for a
complete list of metabolite names, Supplementary Table S7. Here, regulation in the SREBF1 microarray (48) is indicated by purple lining of the
node. The reaction activity heatmap is blank if the gene is associated to multiple reactions with different predicted activity and in those cases the
respective reaction activity heatmaps can be found below the pathway with the reaction naming matching those shown on the pathway. (D) RT-
qPCR validation of the relative expression values of selected genes from the cholesterol synthesis pathway during SGBS differentiation. The
measured expression values are shown normalized to RPL13A mRNA and relative to undifferentiated cells (set to 1). Data points indicate mean
expression values of triplicate experiments and the error bars represent SEM. Student’s t-test was performed to determine the significance of
upregulation (*P< 0.05).
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(DHAP). This metabolite and NADH are converted
to G3P by GPD1, and G3P can subsequently be
converted to lipids (55). GPD1 increased H3K4me3
levels in differentiated cells, also in primary adipocytes
(Figure 8E), matching its expression profile with a
7.9-fold increase in transcription (Supplementary
Table S5). GPD2 in turn can convert G3P to quinone to
fuel mitochondrial oxidation; in agreement with a shift to

lipogenic metabolism its TSS activity was repressed
(Figure 8E) and a low level of expression maintained.
Altogether, we obtained four novel genome-wide target

gene profiles associating the TF LXRa and the miRNAs
�27a, �29a and �222 with their likely target genes in
human adipocytes to support the analysis performed
using public data of TF binding for additional 12 TFs
from adipocyte and endothelial cells. Such data on
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CoA and succinyl-CoA can be fed into the TCA cycle. The important intermediates malonyl-CoA and acetoacetate link to lipogenesis or ketone
body formation, respectively. This pathway has similarities with FAO, sharing the enzyme ACADM and the metabolite propionyl-CoA (ppcoa[m]).
The metanodes indicate that two nodes are associated with both TFs and miRNAs: The component of the large multienzyme complex, DBT, is
associated with PPARg, CEBPa, miR-29a and miR-222, while among BCAA transporters contained in Recon1, SLC7A5 is associated to PPARg,
miR-27a and miR-29a. The genes discussed further in the text are shown as larger metanodes for clarity.
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Figure 8. Integrated metabolic pathway of triacylglycerol synthesis. (A) The triacylglycerol synthesis pathway from Recon1 (2) is shown. The
metanode and edge representation is identical to Figure 6. This pathway represents the synthesis of triacylglycerol (tag_hs[c]) from glycerol-3-
phosphate (glyc3p[c]), which can be generated from the reduction of dihydroxyacetone phosphate (dhap[c]) by Glycerol-3-phosphate dehydrogenase
(GPD1) (55). The GPD1 and GPD2 genes encode enzymes that function in an opposing manner in the conversion between DHAP and G3P. The
mitochondrial GPD2 functions in a catabolic pathway that fuels the TCA cycle, whereas GPD1 plays a role in triglyceride synthesis. The initial and
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regulatory factors are highly relevant to describe their role
in different cell types and potentially in driving disease.
However, often the volume of data from genome-wide
assays hinders tangible conclusions to be drawn. We
provide here an easily accessible tool to analyze links
between the metabolic and regulatory networks, to
identify different regulatory mechanisms at the pathway
level and for the discovery of key nodes as demonstrated
here using the convergence of regulators to highlight such
genes in the two cell types.

DISCUSSION

Despite the growing amount of data collected from gene
expression studies, a common framework or a model to
capture the key systems properties is often lacking. Here,
we collect a comprehensive data set from own experiments
and public data focusing on two key cell types implicated
in the pathogenesis of metabolic syndrome, namely endo-
thelial cells and adipocytes. To study in an integrated
manner how components of transcriptional and posttran-
scriptional regulation impact the expression of metabolic
genes, we introduce gene metanodes and the web portal
IDARE (Integrated Data nodes of Regulation) for inter-
active data exploration of various data types within the
metabolic network context.

The endothelium-derived relaxing factor NO and the
catalyzing enzymes nitric oxide synthases that generate
NO from the amino acid L-arginine represent a key dis-
covery in CVD research. Together with genes implicated
in hereditary monogenic disease (ALDH4A1) (38) or in
recent GWAS studies (MTAP) (39), these enzymes from
the arginine-proline metabolic pathway represent those
associated with most TF binding in our analysis of 10
ChIP-seq studies from HUVEC cells.

TFs represent key factors to establish a cellular pheno-
type; however, they do not function in isolation. For a
more comprehensive view, the analysis was extended
from TFs to include the evaluation of chromatin marker
levels and miRNAs. Three most upregulated TFs
(PPARg, CEBPa and LXRa) and prominent members
of miRNA families (miR-27a, miR-29a and miR-222)
downregulated on adipocyte differentiation were selected
for genome-wide analysis. We validated the combinatorial
binding in ChIP-qPCR and repression of mRNA using
miRNA mimics for GPAM, representing a gene associated
with TF and miRNA binding at a committing step in

glycerolipid biosynthesis. Supporting the relevance of
maintaining tight regulation of its expression level,
Brockmöller et al. (59) reported a significant association
between lowered GPAM mRNA levels and poor survival
in breast cancer, a misregulation that in context of our
results could be linked to the increased expression levels
of miR-27a reported in invasive breast cancers (60). These
results are highly supportive of the relevance of regulatory
associations following the approach used here. However,
mammalian regulatory regions may overlap and span
across gene boundaries resulting inevitably in some false
target gene associations. As further possible caveats,
target mRNA dynamics impact detection of the miRNA
regulatory effect and ChIP-seq signal only implies TF
binding that constitutes a necessary, but not sufficient,
condition to alter mRNA synthesis.
Despite possible inaccuracies in representing true regu-

latory interactions, the integrated analysis on metabolic
pathway regulation clearly implicated the dyslipidemia
loci LPL (24) and LPIN1 (23) as well as LDLR (22) (the
latter is missing from Recon1), each associated with
multiple TFs and miRNAs. Furthermore, the GPD1
locus that we identify among genes with increased TSS
marker levels has recently been described to cause infantile
hypertriglyceridemia (61). Thus, our analysis holds
promise to identify key regulatory nodes that are import-
ant in different diseases by using microarray and
sequencing data that are readily available from multiple
tissues.
Our data extends data collected on PPARg and CEBPa

in human adipocytes (10,40,41,44), while for LXR and
miR-27a, our genome-wide data on target genes are the
first reported in human adipocytes and can be compared
with data obtained from liver (49,56) and foam cells (62).
PPARg and CEBPa represent cell fate determining TFs
widely studied in context of adipocytes. However, their
interplay with signal-dependent TFs is less well under-
stood, including LXRa that increased at expression level
most during differentiation. The first glimpse to the LXR
genome-wide binding profile through ChIP-seq showed
binding in a few hundred to few thousand regions (high-
versus low-occupancy cutoff), in agreement with a similar
number of binding sites reported from unstimulated
mouse liver cells (49). Most strikingly, among all
upregulated TFs, only SREBF1 was associated with TFs
other than PPARg, being bound by LXR and CEBPa.
The cholesterol synthesis and fatty acid activation

Figure 8. Continued
committing step in glycerolipid biosynthesis is catalyzed by GPAM. GPAM, LPIN1 and LPL are all associated with all three TFs and in addition
GPAM and LPL are targeted by miR-27a. The synthesis of both triacylglycerol and glycerol is predicted to shift to active in adipocytes. The genes
discussed further in the text are shown as larger metanodes for clarity. (B) The ChIP-seq signal tracks as in Figure 5 are shown at the GPAM locus.
Regions with high enrichment for one or several TFs were selected for validation by ChIP-qPCR (numbered in the figure). Each region was tested for
enrichment using antibodies against all three TFs and IgG as a control as is shown in adjacent plots (C). The enrichment values are shown relative to
the enrichment of IgG and indicate the mean enrichment values of triplicate experiments and the error bars represent SEM. One sample t-test was
performed to determine the significance of TF enrichment compared with IgG (*P< 0.05; **P< 0.01). (D) The GPAM 30UTR is shown with miRNA
target predictions from TargetScan. Two binding sites for miR-27a can be seen, one of which is conserved and previously validated in mouse liver
(56). Fold change values from miRNA mimic transfections are displayed from the microarray data. Two sample t-test was performed to determine
the significance of silencing compared with siCtrl transfection (**adjusted P< 0.01; ***adjusted P< 0.001). (E) Signal tracks at the vicinity of their
TSS regions of GPD1 and GPD2 show the H3K4me3 ChIP-seq signal from primary preadipocytes and adipocytes (10) compared with SGBS
preadipocytes and adipocytes. At the GPD1 locus, the H3K4me3 signal increases in SGBS and primary adipocytes, whereas a decrease in signal
is observed at the GPD2 TSS in SGBS cells.
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pathways were each associated with this putative multi-TF
feed-forward circuit. It is intriguing that precisely these
pathways have been reported to contribute to generation
of endogenous PPARg ligands (51,63), potentially
providing a metabolite positive feedback to substantiate
transcriptional autoactivation required for cell
differentiation.
On activating signal, our microarray using an LXR

agonist revealed regulation of several genes that in our
ChIP-seq data were initially associated with low occu-
pancy binding. Similar study in mouse liver (49) showed
a dramatic increase in peak height on agonist activation,
suggesting that the ligand-bound receptor may be more
efficiently recruited to its genomic target loci. It will there-
fore be of interest to test the ligand-dependent binding
profile also in adipocytes. LXRs have been shown to
play critical roles in the regulation of overall cholesterol
catabolism, absorption and transport in the intestine,
macrophages and liver (42). Furthermore, the LXR
target gene MYLIP that inhibits the LDLR pathway by
targeting LDLR to proteasomal degradation (64) is a
likely target gene of miR-222 according to our microarray
and seed analysis, exposing a CVD-relevant novel regula-
tory factor in the cholesterol intercellular trafficking
pathway.
The miRNA with most interaction with TFs (including

regulation of PPARG) is miR-27a. The regulation of
GPAM by miR-27b was recently described in mouse
liver (56) and is supported by our microarray and
heptamer analysis in human adipocytes. Moreover, we
observe multiple other genes that are posttranscriptionally
regulated along the pathway. These target associations
include the LDLR, LPL and LRP5 that function in lipid
transport. It is worth pointing out that also LPIN1 is
among genes that have a modest downregulation on
miR-27a transfection, in agreement with existence of a
well-conserved binding site in its 30-UTR. However,
further validation is required to ascertain its regulation.
Participation of carbohydrate metabolism in fueling the
triacylglycerol synthesis is supported by the switch in regu-
lation of GPD genes. The upstream enzyme hexokinase-2
that phosphorylates and thereby activates glucose, similar
to GPAM, LPIN1 or LPL, was identified among the list of
target genes associated with all TFs and miR-27a. Based
on the earlier reports and our combined microarray and
30-UTR heptamer analysis, miR-27 family is establishing
itself as a key miRNA regulator of the triacylglycerol
metabolism.
Interestingly, both miR-222 and miR-29a regulate the

BCKD complex in the BCAA catabolism. Recently,
increased levels of the BCAAs were shown to play an im-
portant role in diabetes (65). In a model proposed by
Newgard (66), and supported by experiments applying
in vivo mouse models (67), an obesity-related decline in
BCAA catabolism in adipose tissue drives the rise of
circulating levels of these amino acids. The model
suggests that readily usable glucose and lipid substrates
may obviate the need for amino acid catabolism in
adipose tissue. However, the mechanism by which
increased supply of these substrates causes downregula-
tion of the BCAA catabolic enzymes is unknown. Drugs

that activate PPARg (thiazolidindiones or TZDs) can
restore expression of the catabolic genes to normal (68),
already suggesting a role of suppressed PPAR signaling in
this metabolic adaptation. The miR-29 family is
implicated in diabetes based on studies of hepatic
gluconeogenesis in diabetic rat models (69). Based on
our data, it will be relevant not only to study PPARg,
but to include CEBPa, miR-27a, miR-29a and miR-222
as other key regulators of this pathway, and by that po-
tentially further elucidate the novel link of the BCAA
pathway to diabetes.

Both miRNAs targeting the DBT subunit of the BCKD
complex according to our data (miR-29a and miR-222)
are upregulated in the adipose tissue of diabetic rats and
are induced by increased glucose levels in mouse adipo-
cytes (70,71). Moreover, the targeting of DBT by miR-29
family has already been validated in other cell types (72),
making the combinatorial repression of DBT by the
miRNAs one likely explanation for lowered catabolism
of BCAAs in diabetic adipose tissue. In addition to the
initial steps of BCAA catabolism, also the BCAA trans-
port step mediated by SLC7A5 appears to be a highly
regulated node possibly contributing to the diabetic
phenotype. On top of being associated as a PPARg
target in our analysis, SLC7A5 appears to be targeted
by miR-27a and miR-29a, both glucose responsive and
induced in diabetic condition (71). The complexity of
SLC7A5 regulation is further increased when looking at
HUVEC data that reveal it as a potential target of as
many as 9 TFs and an additional miRNA (miR-663) in
the endothelial cells and in context of recent literature
implicating it in key metabolic changes required for T-
cell differentiation (73).

As an initial means to discover key pathways, we used
the gene expression levels as soft constraints to obtain
predictions for metabolic activity in Recon1, a generic
model of human metabolism (2,6). Several other
methods for the integration of expression data on
genome scale metabolic networks have been and are cur-
rently being developed (74) and will be important to
benchmark and consolidate the prediction results in
future studies. Transcript-level measurements address the
space of available network states that translational control
and posttranslational modifications further fine tune [for
HMGCR this is well established (53)]. The metanodes
enable mapping and visualization of further data onto
metabolic pathways, facilitating data exchange and hy-
pothesis-driven research in context of the metabolic
network. Here, two trends in transcriptional regulation
were observed: (i) shared and high-occupancy binding
nearby gene loci of the initial and terminal steps of a
pathway (the cholesterol synthesis and the BCAA
pathways), a type of transcriptional regulation that has
been reported advantageous for fast responses to environ-
mental conditions in pathways with low protein synthesis
cost (75), and (ii) tight regulation spread along the entire
pathway (triacylglycerol synthesis), which might link to
the tight transcriptional regulation on pathways
spanning high cost enzymes (75).

In conclusion, the analysis of genomic and
transcriptomic data linked with a metabolic network
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model is useful as a means to explore high-throughput
data in a global manner, revealing genes implicated in
disease as convergence points of regulation. To focus on
metabolic pathways that differ in activity comparing two
phenotypes, constraint-based modeling to predict active
metabolic pathways can be included. The putative
shared TF and miRNA target genes from pathways
activated during human adipocyte differentiation that
our new data sets revealed were ACADM, DBT, GPAM,
HK2, LPL and SLC7A5. Genes associated with all adipo-
cyte TFs studied further include ABCA1, ACSL1, the
acetyl-CoA acetyltransferase 2 (ACAT2), the BCAT1;
two more genes from the branched-chain alpha-keto
acid dehydrogenase complex, namely BCKDHB and the
DLD; four genes from the cholesterol synthesis pathway
DHCR7, HMGCS2, HMGCLL1, HMGCR; and three
other lipase genes from triglyceride metabolism, namely
lipase C, lipase G and LPIN1. These data can now be
compared with published data sets such as those from
HUVECs using the IDARE tool. Our workflow extends
from current routines in which these disparate but com-
plementary types of cellular information are kept apart
and further motivates study of biological processes from
an integrative point-of-view.

ACCESSION NUMBERS

The microarray and deep sequencing data from this pub-
lication have been submitted to the NCBI GEO database
(http://www.ncbi.nlm.nih.gov/geo/) and assigned the iden-
tifier GSE41578 and can be explored in context of the
pathways described using the web resource at http://
systemsbiology.uni.lu/idare.html, including a track hub
for UCSC Genome Browser that allows fast visualization
of ChIP-seq signal tracks at any gene locus.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Teichmann,S.A. (2011) EpiChIP: gene-by-gene quantification of
epigenetic modification levels. Nucleic acids Res., 39, e27.

35. Valouev,A., Johnson,D.S., Sundquist,A., Medina,C., Anton,E.,
Batzoglou,S., Myers,R.M. and Sidow,A. (2008) Genome-wide
analysis of transcription factor binding sites based on ChIP-Seq
data. Nat. Methods, 5, 829–834.

36. McLean,C.Y., Bristor,D., Hiller,M., Clarke,S.L., Schaar,B.T.,
Lowe,C.B., Wenger,A.M. and Bejerano,G. (2010) GREAT
improves functional interpretation of cis-regulatory regions. Nat.
Biotechnol., 28, 495–501.

37. Ignarro,L.J. (1989) Endothelium-derived nitric oxide:
pharmacology and relationship to the actions of organic nitrate
esters. Pharm. Res., 6, 651–659.

38. Geraghty,M.T., Vaughn,D., Nicholson,A.J., Lin,W.W., Jimenez-
Sanchez,G., Obie,C., Flynn,M.P., Valle,D. and Hu,C.A. (1998)
Mutations in the Delta1-pyrroline 5-carboxylate dehydrogenase
gene cause type II hyperprolinemia. Hum. Mol. Genet., 7,
1411–1415.

39. McPherson,R., Pertsemlidis,A., Kavaslar,N., Stewart,A.,
Roberts,R., Cox,D.R., Hinds,D.A., Pennacchio,L.A., Tybjaerg-
Hansen,A., Folsom,A.R. et al. (2007) A common allele on
chromosome 9 associated with coronary heart disease. Science,
316, 1488–1491.

40. Schmidt,S.F., Jørgensen,M., Chen,Y., Nielsen,R., Sandelin,A. and
Mandrup,S. (2011) Cross species comparison of C/EBPa and
PPARg profiles in mouse and human adipocytes reveals
interdependent retention of binding sites. BMC Genomics, 12, 152.

41. Soccio,R.E., Tuteja,G., Everett,L.J., Li,Z., Lazar,M.A. and
Kaestner,K.H. (2011) Species-specific strategies underlying
conserved functions of metabolic transcription factors. Mol.
Endocrinol., 25, 694–706.

42. Calkin,A.C. and Tontonoz,P. (2012) Transcriptional integration of
metabolism by the nuclear sterol-activated receptors LXR and
FXR. Nat. Rev. Mol. Cell Biol., 13, 213–224.
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Supplementary Table Legends 

 
Table S1: Primer sequences for RT-qPCR and ChIP-qPCR. The primer sequences used in 

PCR reactions of the validation experiments are listed here. 

 

Table S2: ChIP-seq peaks identified for PPARγ , CEBPα and LXR in day 10 differentiated 

SGBS cells and in a comparable analysis of SRX032890 and SRX019521data sets. The 

number of reads that passed through each processing step is indicated for the SGBS data 

obtained here and the public raw read data processed from SRX032890 and SRX019521. The 

ChIP-seq peaks together with enrichment quantification and statistical significance values as 

identified using QuEST tool (35) are presented for each data set. The same analysis settings were 

applied to generate highly comparable data. The peaks that pass the enrichment threshold >30, 

chosen here to distinguish high-occupancy binding, are highlighted in bold. Notice that a 

separate sheet exists in the xls file for each data set. 

 

Table S3: Peak to gene association and ontology term enrichment analysis for ChIP-seq 

data sets. The ChIP-seq peak coordinates from Table S2 were used as input for the GREAT tool 

(36) that first associates the peaks to putative target genes listed. Significant ontology terms were 

collected and highlight the role of these TFs in lipid and carbohydrate metabolism. 

 

Table S4: HUVEC TF and disease association result. Recon1 metabolic genes are shown in 

context of the number of associated diseases and TFs (from 10 ChIP-Seq studies on HUVEC), 

detailed analysis description is found on Materials and Methods. Data were sorted by gene 

relevance for endothelial disease, by the number of associated TFs and by the H3K4me3 active 

transcription mark. The number of diseases the gene is associated to is based on DisGeNET 

database (32). 

 

Table S5: Differentially expressed metabolic genes during SGBS differentiation. The 

average logarithmic fold change values and statistical analysis including t-test for individual time 

points and F-test results across all time points is presented for differentially expressed metabolic 

genes (based on Recon1 (2)). 
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Table S6: Comparison on reaction activity predictions for pre-adipocytes and adipocytes. 

Metabolic changes resulting from human SGBS pre-adipocyte cell differentiation were 

qualitatively predicted from gene expression data using an implementation of the constraint-

based method from (6). The 323 reactions with predicted reaction activity change are 

highlighted. 

 

Table S7: Naming of metabolic genes and enzymes from selected pathways. The complete 

names for the metabolites and enzymes included in the pathway figures are presented. 

 

Table S8: Differentially expressed TF genes during SGBS differentiation. The average 

logarithmic fold change values and statistical analysis including t-test for individual time points 

and F-test results across all time points is presented for differentially expressed TF genes. 

 

Table S9: Genes with altered H3K4me3 status during SGBS differentiation. The H3K4me3 

histone marker quantification from -1250 to +750 bp around gene TSS is presented for metabolic 

genes that changed their H3K4me3 status in SGBS cells, including the respective data from 

primary adipocytes (10). 

 

Table S10: Target gene associations for miR-27a, miR-29a and miR-222 based on 

combined microarray target profiling and heptamer motif analysis. Genes identified to be 

responsive to miRNA mediated regulation from SGBS array profiling experiments following 

miRNA over-expression and 3’-UTR motif analysis are listed (see Methods for details). Notice 

the separate data sheets for each miRNA. 

 

Table S11: Differentially expressed genes in 4 h LXR agonist T0901317 stimulated SGBS 

adipocytes. The average logarithmic fold change values and statistical analysis is presented for 

differentially expressed genes upon ligand activation of LXRs. 
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Table S12: Additional data supporting LXR peak to gene associations. Data in support of 

LXR mediated regulation of the genes associated with LXR peaks is presented collected from 

own microarrays (see Table S11) and GSE35262. 

 

Table S13: Hypergeometric test for enriched pathway terms among genes regulated by 

SREBF1. Recon1 pathway enrichment results from a hypergeometric test on genes reported as 

SREBF1 targets on muscle. Cholesterol pathway ranked first, followed by oxidative 

phosphorylation and fatty acid activation and elongation. 

 

 
  

Supplementary Figure Legends 

 
Fig. S1: Integrated metabolic pathways of arginine and proline metabolism in HUVECs. 

The complete argine-proline metabolism pathway that contains the top disease associated gene 

NOS3 is shown. Regulatory associations from ten ChIP-seq studies (as in Fig. 1) are displayed in 

the gene metanodes. Among genes involved the initial steps of the pathway, ALDH4A1, ALDH2 

and MTAP, represent genes associated with endothelial relevant disease and with multiple TFs. 

TF association is indicated with filled circles. The genes discussed further in the text are shown 

as larger metanodes for clarity. 

 

Fig. S2: Time series expression profile of metabolic genes during SGBS differentiation. The 

average logarithmic fold change values from 4, 8 and 12 h and days 1, 3 and 12 are displayed in 

color using GEDI maps (25) to cluster metabolic genes with similar expression profiles. Initially, 

the responses seen are modest shifting to more prominent up- and down-regulation by day 3 with 

the largest changes observed at day 12. The number of genes in each cluster is displayed in the 

Gene density panel below. To distinguish pathway dynamics, overrepresented metabolic 

pathways among significantly regulated genes are listed beside each map. The clustering of 

sample replicates and the separation between the time points using AutoSOME (26) is illustrated 

in the figure inset, in agreement the day 12 samples separate most from the other time points. 
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Fig. S3: Time series expression profile of selected GO categories during SGBS 

differentiation. The average logarithmic fold change values from 4, 8 and 12 h and days 1, 3 

and 12 are displayed in color using GEDI maps (25) as in Fig. S2 from other functionally related 

genes for comparison. All genes in the HT12 Illumina array (A), or genes from the GO 

categories cell projection, envelope, locomotion and receptor activity (respectively B, C, D and 

E) having similar number of genes as Recon1 were selected to show gene expression changes. 

Focusing on day 12, several up- and downregulated clusters relative to 4 h can be observed, 

however not as prominent as observed for metabolic genes based on color intensity or the 

percentage of significantly differentially expressed genes (adjusted F-test p-value <0.01, absolute 

log2 fold change >1) indicated below the panels. 

 

Fig. S4: MiRNA expression profiling by microarrays reveals down-regulation of several 

miRNA clusters during adipocyte differentiation. Total RNA samples from time points day 0, 

day 1, day 3 and day 12 of SGBS differentiation time series were used to profile miRNAs using 

miChip arrays (v.11.0) arrays (27) containing probes for all miRNAs from miRBase version 

11.0. In order to identify miRNAs that could contribute to prevailing upregulation of mRNAs 

during adipogenesis, the analysis is focused on down-regulated miRNAs. Bar graph depicts all 

miRNAs that have a normalized expression signal of > 50 at time point day 0, that become early 

down-regulated > 1.25-fold on day 1 and day 3 of differentiation and that remain down-regulated 

> 1.5-fold on day 12 of differentiation. The measured expression values were median normalized 

and are shown relative to undifferentiated cells, value of which was set to 1 (light grey bars). 

Data points indicate the mean expression values of triplicate experiments and the error bars 

represent SD. No statistical analysis was applied due to large variation between separate array 

hybridizations following the median normalization. The miRNA clusters with multiple 

downregulated mature miRNAs and early downregulation profile were selected for further 

analysis and are indicated with a black bar. 

 

Fig. S5: To illustrate the separation of the measured values between the signal and noise 

distributions the model fits are shown for SGBS pre-adipocytes (A) and adipocytes (B). At the 

overlapping region, genes remain unassigned.  
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Fig. S6: Negative and positive control regions for ChIP-seq validation experiments. The 

ChIP-seq signal tracks from PPARγ studies in SGBS cells and primary adipocytes (10, 41), 

CEBPα and LXR from SGBS adipocytes and H3K4me3 from primary and SGBS cells 

comparing pre-adipocytes and adipocytes are shown from a 200 kb region centered at TSS 

regions of CDH1 (negative control) (A) and FABP4 (positive control) (B) regions. Regions with 

high enrichment for one or several TFs from each locus were selected for validation by ChIP-

qPCR (indicated by a lined box and numbered for each locus). Each region was tested for 

enrichment using antibodies against all three TFs and IgG as a control as is shown in adjacent 

plots for the regions indicated on the ChIP-seq tracks. The enrichment values are shown relative 

to the enrichment of IgG and indicate the mean enrichment values of triplicate experiments and 

the error bars represent SEM. One sample t-test was performed to determine the significance of 

TF enrichment compared to IgG (*, p < 0.05; **, p < 0.01). 

 

Fig. S7: Feed-forward loops based on ChIP-seq data. The regulatory connections to the 

SREBF1 locus as identified from high-occupancy ChIP-seq regions and qPCR validation 

experiments are shown. The arrows represent the directionality of regulation (regulated by), and 

the sign of regulation is indicated if inferred from data (shown here only for LXR based on the 

microarray data). 

 

Fig. S8: Integrated metabolic pathways of fatty acid oxidation and activation. The fatty acid 

oxidation (A) and activation (B) pathways from Recon1 (2) are shown. The metanodes 

composition and edge color are identical to those in Figure 4. A) Fatty acids are broken down in 

the mitochondria to acetyl-CoA and a two-carbons shorter acyl-CoA, through β-oxidation. The 

figure represents the fatty acid oxidation in a simplified manner, where each fatty acyl-CoA is 

directly or via octanoyl-CoA (occoa[m]) oxidized to acetyl-CoA (accoa[m]). The pathway is 

largely predicted to shift to active in adipocytes (red edges). Two genes are controlling these 

reactions, ACADS and ACADM, that encode acyl-CoA dehydrogenases for short and medium 

chain fatty acids, respectively. ACADM is associated to PPARγ, CEBPα and miR-222. B) The 

fatty acid activation is shown. Fatty acids need to be esterified to coenzyme A (CoA) in order to 

be metabolically processed (oxidative degradation, elongation into complex lipids or attached to 

proteins as lipid anchors), catalyzed by fatty acyl CoA synthetases (ACSs). The pathway is 
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largely predicted to be activated in adipocytes (red edges) and ACSL1 is among the top genes 

associated with high-occupancy binding sites for all three TFs.   

 

Fig. S9: Integrated metabolic pathway of branched chain amino acid metabolism with 

HUVEC data. The BCAA metabolism pathway as in Figure 6 is shown for HUVEC data. 

Association with 8 or more TFs is highlighted and these nodes include five of the transporters 

including SLC7A5 and genes from upstream reactions catalyzed by BCAT1 and the branched-

chain α-keto acid dehydrogenase complex that overlap highly regulated nodes in SGBS. 
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1. General purpose 
IDARE was envisioned to provide a simple and familiar way of showing expression and 
regulatory data in context of metabolism. Using metabolic maps it provides easy links to 
biochemical knowledge and extends from current representations by introducing gene 
metanodes in association to the metabolic pathways. 
We show the general applicability of the IDARE concept with two distinct data sets, one 
from HUVEC multiple transcription factor binding data (static) and the other from human 
SGBS adipocyte differentiation related (dynamic) data. 
The utility brought by IDARE relies on providing a direct way of hypothesizing and 
interpreting the metabolic outcome of regulation, through visualizing data-customized 
gene metanodes linked to metabolic pathways and properties.  
 

2. Available metabolic pathways and datasets 
Currently, two datasets are available for exploring with IDARE: 

1) AdipoFlux : human SGBS adipocyte differentiation dynamic data; 
2) Huvec: human endothelial cell static multiple transcription factor binding data. 

The basis for IDARE pathway representations is Recon1 (Duarte et al., 2007), a general 
human metabolic network reconstruction containing metabolic reactions (3742) and 
associated enzymes, genes and metabolites. 
All Recon1 metabolic pathways are available, of which 5 were manually laid out due to 
their relevance in context of the adipocyte dataset 
(http://systemsbiology.uni.lu/adipoflux.html) we first analyzed: 

- Cholesterol metabolism; 
- Fatty acid activation; 
- Fatty acid oxidation; 
- Triacylglycerol synthesis; 
- Valine, leucine and isoleucine metabolism. 

These pathways were initially selected based on highest predicted metabolic activity 
difference between pre-adipocyte and adipocyte stages, as supported by our data and 
analysis. The networks were manually arranged on Cytoscape and saved as xgmml files 
containing xy node coordinates. The Cobra toolbox for Matlab® was used to extract 
network files from the Recon1 model that were imported into Cytoscape (sif). 
Additionally, the Arginine and Proline metabolism pathway has been manually laid out in 
context of the HUVEC dataset (http://systemsbiology.uni.lu/huvec.html). 
 

3. IDARE high level components 
IDARE relies in two separate components: 
1) Generation of gene ‘metanode’ image files on Matlab®;  
2) Web interactivity (Html and Cytoscape Web). 
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1) Generation of gene ‘metanode’ image files on Matlab® 
IDARE is currently supporting 2 metanode types, customized in context of SGBS 
adipocyte differentiation data (CASE 1) and HUVEC transcription factor data (CASE 2). 
 
Summary table of metanode types and properties: 

Metanode class Dataset Type Input data Icon 

discrete gene 
expression (-1, 0, 1) 

reaction activity 
prediction (-1, 0, 1, 

2, 3) 
TF putative binding 
of 3 TFs (gene list) 

Heterogeneous SGBS 
dynamic 
(7 time 
points) 

H3K4me3 presence 
or absence (0 or 1) 

on 2 time points 

 

Homogenous HUVEC static 10 TFs putative 
binding (0 or 1) 

 
 
CASE 1: SGBS data – dynamic gene expression, reaction activity predictions and few 
regulators. 
 
We exemplify this metanode type with the SGBS adipocyte differentiation dataset. 
Based in our dataset properties, we defined a gene metanode as containing: 

- one lower line with discrete gene expression; 
- one upper line with reaction activity 

prediction based on the gene expression; 
(both lines contain slots representing seven 
adipocyte differentiation time points) 

- three polygons on the right side of the lines, 
representing the putative binding of three transcription factors (TFs: PPARγ, 
CEBPα, LXR); 

- two circles on top of the lines, aligned according to the time point they belong to, 
which represent the presence of a histone modification mark associated with 
active transcription start sites (TSSs) – H3K4me3. 

Matlab®: using mainly Entrez gene IDs for mappings, reads in data files, collects arrays 
for each data type and associates them to each metanode component. For each gene, 
colors the metanode based on those component arrays. 
 
The following input data files were used (tabular text or excel files): 

i. Discrete gene expression data for coloring the bottom line: 
o 1st column – Recon1 Entrez gene IDs; 
o Remaining columns – discrete gene expression values:  

 -1 – lowly expressed gene; 
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 0 – moderately expressed gene; 
 1 – highly expressed gene. 
 
Matlab® : first step is to build empty (white) rectangles, as many as time points (7), on 
defined positions (x,y) that are colored based on the data from correspondent time point. 
 

ii. Reaction activity prediction for coloring the top line: 
o 1st column – Recon1 reaction abbreviation; 
o Remaining columns – reaction prediction results (including 

confidence): 
 0 – inactive; 
 1 – active (direct way); 
 -1 – active (reverse way); 

 2 – active (unknown direction); 
 3 – undetermined. 
Matlab® : second step is to build empty (white) rectangles, as many as time points (7), on 
defined positions (x,y) on top of the gene expression line; each rectangle is colored based 
on the data from correspondent time point. 
 
iii. Transcription factor Recon1 associated genes (list of gene symbols): 

 
Matlab® : third step is to build empty (white) polygons, one for each TF (3), 
on defined positions (x,y) on the right side of the expression line; from a 
discrete array (0 or 1) colors polygons in red (1) when gene is associated with 
a TF. 

 
iv. H3K4me3 data for each gene in Recon1: 

o 1st and 2nd columns: IDs for mapping (Recon1 Entrez gene 
IDs and reaction abbreviations); 

o Remaining columns: discrete values for the presence or 
absence of the histone mark. 

Matlab® : 4th step is to build empty (white) circles, on defined positions (x,y) on top of 
the reaction activity prediction line, aligned accordingly to the time point they represent; 
from reading the H3K4me3 data file, forms a discrete array (-1, 0, 1) and colors circles in 
red (1) or grey (0) accordingly. 
 
Metanodes are generated per pathway and within each pathway, per gene. 
In cases when one gene is associated with multiple reactions, the following occurs: 

- generate one metanode with white reaction activity prediction line (defines 
multiple reactions associated to that gene); 

- for each reaction, plots that individual reaction prediction line which is shown on 
the left side panel when clicking on the gene metanode.  

 
CASE 2: HUVEC data – regulator data only (TFs, static metanode). 
 
We exemplify this metanode type with the HUVEC transcription factor dataset. 
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Based in the HUVEC dataset properties, we defined a gene metanode as: 
- two lines of circles (5 each) representing the putative 

binding of a total of 10 TFs: 
o Bottom line – cMYC, GATA, MAX, cJUN and 

cFOS (ENCODE data); 
o Top line – ETS1, MEF2C, p65, FLI1 and HIF1 

(own data). 
- Circles are filled in red when data supports the binding of correspondent TF to 

current gene. 
Example input data file (tabular text or excel): 

 
Matlab®: using Entrez gene IDs and 
pathways for mappings, reads in data file 
with discrete values for the presence or 
absence (1, 0) of the putative binding of a 
TF on a gene; draws ten white circles on 

defined coordinates (x,y), and colors them red when finding a data point “1”. 
 

4. IDARE display 
On the following, we exemplify IDARE details using as example the adipocyte dataset 
first analyzed (AdipoFlux instance). The same general characteristics apply to the Huvec 
dataset. 
 

General view of a IDARE instance (AdipoFlux): 
 
Panel overview 

1 – Header menu panel 

2 – Gene 
metanode 
properties 

panel 
4 – Gene 

expression 
panel 

3 – 
Network 
display 
panel 
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1 – Header menu panel: here the user can select which metabolic pathway to display as 
well as access the search function. Links to the associated publication, network export, 
this user guide and our group’s homepage are also available. 
2 – Left side panel – Gene metanode properties: opens by clicking on a gene metanode 
and displays details. 
The first line on the panel shows the selected gene symbol and a link (‘Expression 
Changes’) to the right side panel where gene expression values are plotted. 
On the second line, ‘UCSC Genome browser’ link opens a pop-up ‘Adipocyte ChipSeq 
UCSC Genome Tracks’ with a link to a UCSC Genome Browser Adipoflux hub 
containing ChIP-Seq tracks associated to this work (TFs and H3K4me3 modification) 
and the selected gene’s position that the user should copy and paste to the genome 
browser in order to visualize the tracks in the selected gene location. Please refer to 
Chapter 6, section 2 for more details. 
A large gene metanode is shown below the two first lines followed by the ‘Reactions’ 
associated to the gene. Clicking on a reaction name opens a pop-up with reaction static 
details. 
On the bottom of the left side panel, a legend for edge colors and metanode is provided, 
so that the user can keep track of what is being represented. Please refer to ‘section 3’ for 
more details. 
3 – Central panel – CytoscapeWeb metabolic network display: this panel contains the 
metabolic network which can be re-arranged in accordance to user’s preference and 
embeds click-on functions for the nodes’ additional details. 
4 – Right side panel – gene expression: dynamically plots for a selected gene the log2 
FC values of each differentiation time point relative to control pre-adipocyte values 
(microarray data from SGBS cell differentiation time course). 
 

Panels 1, 2 and 4 can be expanded or collapsed by clicking on the center of the 
grey bar next to them. 

 

5. IDARE interactive elements and functions 
This chapter is a walk through IDARE interactive elements and functions, using as 
example ‘Cholesterol metabolism’ pathway. The metanodes exemplified are in context of 
the SGBS adipocyte differentiation data. All descriptions apply too for the Huvec data, 
except that the metanodes have a different visual display, as previously described on 
Chapter 4.1, case 2. 
Below we exemplify how to ‘read’ the cholesterol synthesis metabolic pathway, which 
starts with the condensation of acetyl-CoA (accoa[c]) and acetoacetyl-CoA (aacoa[c]) to 
form 3-hydroxy-3-methylglutaryl-CoA (hmgcoa[c]) catalyzed by the enzyme HMG-CoA 
synthase (gene HMGCS1). The end-point metabolite is cholesterol (chsterol[r][m][c][e], r 
– endoplasmic reticulum, m – mitochondria, c – cytosol, e - extracellular).  
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Figure 1: view of main adipoflux webpage, showing cholesterol synthesis pathway. 
 
 
1. Pathway components: 
a) Nodes: 

 - Metabolites (yellow boxes). 
 - Reactions (orange diamonds), appear with reaction abbreviation (as of Recon1) on 

top. 
- Gene metanodes representing 4 data levels: gene expression (bottom line 
rectangles), predicted reaction activity (upper line rectangles), TF 
association (right side polygons) and marker for active TSS (upper circles) 
– detailed metanode legend on the left side panel of the webtool and below. 
Gene metanodes link to reaction nodes (orange diamonds) representing 

gene-protein-reaction associations contained in Recon1. 
 

 - miRNA nodes that link to target genes (gene metanodes). Data from miRs 
-27a, -29a and -222 are included, all the three consistently down-regulated during 
adipocyte differentiation. 
 
b) Edges: 
- Metabolic edges (solid lines): link substrate and product metabolites (yellow nodes) via 
reactions (orange nodes) that are catalyzed by enzymes.  
Edge color represents predicted reaction activity based on a constraint-based method 
(Shlomi et al., 2008), the general human metabolic model Recon1 (Duarte et al., 2007) 
and gene expression data from a differentiation time course experiment on human SGBS 
cells. See description below for each edge color. 

1 

2 

3 

4 
5 

6 
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Edge width represents prediction confidence, with thinner lines for reactions 
undetermined in the pre-adipocyte and/or the adipocyte stage (colored in grey) and 
thicker lines for confident reaction activity prediction on both stages (please refer to 
Shlomi’s method for the concept underlying prediction confidence).  
 
- Gene-protein-reaction (GPR) edges (dashed green lines): link metabolic reactions back 
to the gene(s) encoding the enzymes that catalize them; this info is contained in Recon1. 
 
- miRNA target-inhibition edges (black solid lines in ‘T’ shape on target interface): link 
miRNAs with target genes, based on own experimental data.  
 
c) Edge color and gene metanode legend: can be found on the left side panel from within 
the webtool (click to show/hide) 

Red – reactions predicted inactive in pre-
adipocytes and active in adipocytes. 
Black – reactions predicted inactive in both pre-
adipocyte and adipocyte stages. 
Yellow - reactions predicted active in both pre-
adipocyte and adipocyte stages. 
Grey – reactions undetermined in at least one of 
pre-adipocyte or adipocyte stage. 
 
Metanode H3K4me3 panel – represents whether a 
tri-methylated Lisine-4 residue of Histone 3 was 
associated to the specific gene (red) or not (white). 
Left circle represents data on pre-adipocytes and 
right circle on adipocytes. 
 
Metanode TF panel – represents whether at least 
one peak from PPARG (star), CEBPA (triangle) or 
LXR (square) was associated with the specific 
gene (red) or not (white). Peak-gene associations 
were obtained from the GREAT tool by providing 
a list of TF-peak genomic coordinates. 
 

Metanode gene expression (bottom-line rectangles) and predicted reaction activity 
(upper-line rectangles) per differentiation time-point are represented by color with legend 
below the gene metanode icon. 
 
  
2. Data interactivity and integration 
 
Our web tool provides interactive access to the discussed five metabolic pathways 
combined with several omics data, future releases will incorporate many more pathways.  

The network itself can be re-arranged by moving nodes as preferred by 
the user. This can be done by clicking on the ‘hand’ icon on the panel to 
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the lower right corner of the screen. 
Once the ‘hand’ is selected, one can move each node to a desired position and the edges. 
 
The network can be exported as an svg file, by hitting the link ‘export network’ on the 
‘header menu panel’. 
 
Data interactivity is provided through the network nodes, via click-in functions that open 
the left side panel or pop-up tool tips on mouse over events. 
  
Mousing-over metabolite (yellow boxes), reaction (orange diamonds) or gene (white) 
nodes displays a callout with additional info/links. 
 
Gene mouse-over (blue callout): 

Clicking on ‘Metanode Details’ opens the left side panel, while 
clicking on ‘Expression changes’ opens the right side panel and 
dynamically plots the gene expression log2 FC of each 
differentiation time point relative to control pre-adipocytes. The 
‘UCSC Genome Browser’ link opens a pop-up that can re-direct to 
UCSC GB to visualize ChIP-Seq data tracks on the gene’s position. 
Genes whose expression was too low (not 

detected on the microarray) do not contain the ‘Expression changes’ 
link to the right side panel (e.g. HMGCS2 on the right). 
Direct click on a gene metanode opens both side panels (when 
expression values are available). 
 
Metabolite mouse-over: 

Clicking on ‘Details’ opens a 
pop-up containing the 
reactions the metabolite is 
associated to (either being 
consumed or produced). In 

the case of the reaction name containing ‘:’, that 
has been replaced with ‘_’ to conform to HTML5 
Java Script Object Notation syntaxes.  
Further clicking on the reaction link opens a new pop-up with reaction details (see below 
for reaction details description). Direct click on metabolite node opens same pop-up 
showing which reactions the metabolite associates with. 
 
Reaction mouse-over: 

Clicking on ‘Reaction Details’ 
opens a pop-up with static info 
on the current reaction. This info 
is contained in Recon1 and 
includes: 

- Subsystem (Recon1 pathway the 
reaction belongs to); 



 
 

10 

- Name (full name of selected reaction); 
- Short formula (biochemical reaction equation with metabolite abbreviations); 
- Full formula (biochemical reaction equation with metabolite full names); 
- Metabolites (abbreviations of the metabolites involved in the reactions); 
- Genes (Recon1 gene-reaction rule – if multiple genes are associated with the 

reaction, shows the Boolean rules ‘and’/‘or’ that characterize it; the notation was 
kept as of Recon1 and it represents as outdated version of Entrez Gene IDs; 
‘undefined’ stands for reactions without associated genes as of Recon1 (e.g. 
transport reactions); 

- EC numbers: Enzyme commission numbers for the enzyme(s) catalyzing the 
reaction, as of Recon1; ‘undefined’ is shown for reactions for which no EC 
number was available.  

  

 

MiR node mouse over shows the miRBase 
accession number and ID for the selected 
human microRNA (hsa-id). 
 

On click of the miRNA node redirects to 
miRBase page for the specific human 
miRNA. 
 

 
 
Plotting Gene Expression Changes: 

A key feature built in to adipoflux viz is the ability to plot gene 
expression changes collected over time; these values can serve as 
confirmatory metrics for the ‘Gene expression’ bottom line of the 
metanode graphs. Gene expression data is available for a large 
majority of genes in the pathways presented. Clicking on gene 
metanode automatically renders these dynamic plots when the data 
is available. For more convenience, clicking the hovering tooltip 
‘Expression Changes’ or within the Metanode Details (left panel) 

‘Expression Change’ will dynamically plot the selected gene expression values.   
 
Shown below are HMGCS1 and LSS expression over a differentiation time course 
(cholesterol metabolism pathway). Notice that LSS gene has multiple microarray probes 
and therefore expression sets (different lines in the plot). The probe ID and fold change 
value relative to control pre-adipocytes are displayed on mouse over. Further, these charts 
are exportable.  
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Launch Adipocyte Track Hub@UCSC Genome Browser: 

On clicking of the UCSC 
Genome Browser link within the 
Metanode details section, a url to 
connect to the UCSC Adipocyte 
Track Hub is served, using 
ABCA1 as an example. 
 

The URL launches to the following screen, then click Load Selected Hubs: 
 
 
 
 
 
 
 

UCSC Genome Browser with 4 H3K4me3 tracks visible, screen below indicates visibility 
control of Adipocyte Hub custom tracks: 
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3. Search function 
The search function has built in type ahead. A potential list of matches is displayed as a 
selectable list. This feature augments the power of search and is available for genes, 
reactions and metabolites; a message is shown on whether the term used is part of the 
active pathway, along with highlighting of the searched node.  
An example scenario of searching in the cholesterol pathway for HMGCS2 is as follows: 
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Type ahead automatically shows 
potential search terms.  
 

A message dialog shows search status; 
and the found node is highlighted in red.  

6. Web graph object automation 
We defined a pathway as a set of nodes (genes, reactions, metabolites) connected by 
edges (tripartite graph). The genesis of AdipoFlux uses xgmml files that contains custom 
graphs, where the node positions (x,y) and graph attributes (node shapes, colors, edge 
arrow types…) read in on page load. While this layout scheme is informative and 
controlled, it is quite manual and only 5 pathways were included. Soon we realized the 
need for an automated workflow to integrate new pathways. Using the pathway definition 
– our solution is based on simple interaction (add link) and edge configuration files; in 
addition, the generated metanodes are also read in for creation of background image icons.  
All the required scripts are available as part of release. 
 

 
Workflow inputs are set in a conf file and on workflow invocation, graph and image 
icons are created and placed into web container paths. Custom discrete mappers are 
coded as needed.     
Because our graph object automation workflow is built using python and bash scripts and 
designed around principled graph theory, being extensible for other pathway datasets. 
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7. Web interactivity (HTML and CytoscapeWeb). 
IDARE is an open sourced Web 2.0 application, built based on modern HTML specs. 
The source code is available online on https://code.google.com/p/adipoflux/, including a 
Matlab® file that can be used for producing the metanode image files (png). 
We use Cytoscape Web to embed metabolic pathways as interactive networks. 
We are grateful to the following open sourced projects that IDARE references: 

• JQuery and JQuery plugins 
o Messi 
o JQuery.layout 
o JQuery.tipsy 

• Bootstrap.js 
• Highchart.js 
• UCSC Genome Browser 
• ImageMagick 

The above tools and libraries were used to render data integration and interactivity and 
apply to all datasets on IDARE. A detailed description of the available functions can be 
found on the next chapter. 
 





CHAPTER 4. RESULTS

4.3 Manuscript II - “Cell type-selective

disease-association of genes under high regulatory

load”

Based on the observed association between lipid disease-related genes

and combinatorial regulation in SGBS adipocytes, and the enrichment of vascular

disease-associated genes among genes with > 6 TFs in HUVEC, we hypothesized

that disease-related genes are under tight regulatory control as a mechanism to

decrease errors as well as providing robustness to network perturbations.

The prioritization for novel disease-assotiation genes remains a rather com-

plex task with few methods leading to plausible results. Here we investigated the

relationship between regulatory load and disease, observing that HRL genes enrich

for disease in a cell type-selective manner.

To test the hypothesis that disease-related genes are under higher regu-

latory control in a general setting, we used public chIP-seq data from the binding

of a total of 93 TFs across 9 cell lines and a dataset on active enhancers (H3K27ac)

from 139 samples comprising 96 tissue and cell types to rank genes based on their

regulatory load and test the enrichment for disease association across multiple

diseases, revealing a cell type selective disease association enrichment for

the high regulatory load genes, as described in Manuscript II. The link between

disease association and high regulatory load had not been shown previously to the

presented extent.

Data analysis and integration resulted in the generation of:

− ranked lists of the TF and enhancer loads on protein coding genes for 9 cell

lines or 139 samples, respectively;

− disease association enrichment test results for the TF and enhancer data,

based in DisGeNET gene-disease associations and the hypergeometric distri-

bution;

− the overlap of genes with the top 10% enhancer load across 139 samples;

− the average number of KEGG pathways per HRL gene and for an equal

number of randomly selected genes, for each of the 139 samples;

− the average 3’UTR lengths of the HRL genes and other genes, per sample.

− the average betweenness centrality for all genes in a liver disease network

versus the high regulatory load genes from two liver samples (E066 and

HepG2).
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4 Results

The main results obtained were as follows:

1. higher proportion of disease genes among genes with more associated TFs

and enhancers (Figures 2 and 3 (B,C));

2. positive correlation for the TF and enhancer loads across 9 ENCODE cell

lines (Figures 3 and S1);

3. enrichment for disease association on the genes with highest TF and en-

hancer load across samples (Figures 2 (B), 3 (C), 4, 5 and S3);

4. low overlap between the genes with highest enhancer load per sample (aver-

age Jaccard index similarity < 30%, Figure S2);

5. cell-type selective enrichment for disease association of the high enhancer

load genes across samples (Figure 4 and S3);

6. enrichment for disease association for the HRL-non-super-enhancer associ-

ated genes, with little overlap between the top enhancer load genes and top

expressed genes (Figures 5 and S2);

7. higher betweenness centrality for the HRL genes than other genes from a

liver disease network (>2 FC greater, Figures 6 and S4);

8. HRL genes participate on average in more KEGG patwhays than random and

show longer 3’UTRs with more miRNA binding sites (Figures 6, 7 and S5).

Manuscript II is integrally presented starting from page 119.
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ABSTRACT

We previously showed that disease-linked metabolic
genes are often under combinatorial regulation. Us-
ing the genome-wide ChIP-Seq binding profiles for
93 transcription factors in nine different cell lines,
we show that genes under high regulatory load are
significantly enriched for disease-association across
cell types. We find that transcription factor load cor-
relates with the enhancer load of the genes and
thereby allows the identification of genes under high
regulatory load by epigenomic mapping of active
enhancers. Identification of the high enhancer load
genes across 139 samples from 96 different cell
and tissue types reveals a consistent enrichment
for disease-associated genes in a cell type-selective
manner. The underlying genes are not limited to
super-enhancer genes and show several types of
disease-association evidence beyond genetic vari-
ation (such as biomarkers). Interestingly, the high
regulatory load genes are involved in more KEGG
pathways than expected by chance, exhibit increased
betweenness centrality in the interaction network of
liver disease genes, and carry longer 3′ UTRs with
more microRNA (miRNA) binding sites than genes
on average, suggesting a role as hubs integrating
signals within regulatory networks. In summary, epi-
genetic mapping of active enhancers presents a
promising and unbiased approach for identification
of novel disease genes in a cell type-selective man-
ner.

INTRODUCTION

Identification of disease-relevant genes and gene products
as biomarkers and drug targets is one of the key tasks of
biomedical research. Great progress has been made in diag-
nosing and treating various diseases over the past decades.
Still, a great majority of research is focused on a small mi-

nority of genes while over a third of genes remain unstud-
ied (1). Unbiased prioritization within these ignored genes
would be important to harvest the full potential of genomics
in understanding diseases.

Many databases to catalog disease-associated genes and
the nature of their association, such as the Comparative
Toxicogenomics Database (CTD) or the Online Mendelian
Inheritance in Man (OMIM), have been created (2,3). One
of the more comprehensive databases, DisGeNET (4,5),
draws from multiple sources as well as text-mining ap-
proaches to generate gene-disease networks where genes
are associated to diseases by various evidence ranging from
altered expression and genetic variation to existing thera-
peutic association. DisGeNET already links many of the
human genes to at least one disease, highlights the multi-
genetic background of most diseases and how many genes
can be associated to multiple diseases (4,5).

Interestingly, as much as 90% of the human disease-
associated genetic variants are located outside of the cod-
ing sequences of protein coding genes, suggesting that they
affect the regulation of these genes instead (6,7). The active
regulatory regions of the genome can be identified in a cell
type-specific manner through chromatin immunoprecipita-
tion coupled with deep sequencing (ChIP-Seq) analysis of
selected covalent histone modifications such as histone H3
lysine 27 acetylation (H3K27ac; marking active enhancers)
and histone H3 lysine 4 trimethylation (H3K4me3; mark-
ing open transcription start sites), among others. Indeed, by
taking advantage of such epigenomic data produced by the
Roadmap Epigenomics Mapping Consortium, Farh et al.
(8) recently showed that up to 60% of human autoimmune
variants are located within active enhancers of immune
cells. In particular, the genetic variants seem to coincide
with so called super-enhancers or stretch-enhancers, large
enhancer regions often associated with key genes and mas-
ter regulators of cellular identity (9–11). These enhancers
function as hotspots with binding sites for multiple tran-
scription factors (TFs) (12) and, within the enhancers, sin-
gle nucleotide polymorphisms (SNPs) often disrupt these
binding sites as shown, for example, for type 2 diabetes vari-
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ants within islet enhancers (13). However, it remains unclear
whether the genes controlled by multiple enhancers and TFs
are associated to disease also beyond the genetic variation
in their regulatory regions, as could be assumed from their
role as regulators of cellular identity.

We have previously shown that metabolic genes regulated
by multiple TFs in human umbilical vein endothelial cells
(HUVEC) are enriched for genes associated to endothe-
lial relevant diseases in DisGeNET (14). Here we set out
to test whether this increased disease-association of genes
under high regulatory load (HRL) is a general observation
that holds across cell types and genes, and independent of
the type of disease-association evidence. Analysis of ChIP-
Seq data for 93 TFs across 9 ENCODE cell lines confirms
an enrichment for disease-association among the highest
regulated genes in all cell types. We find that the TF load
of the genes correlates with their enhancer load in the re-
spective cell types and thereby allows the identification of
genes under high regulatory load by epigenomic mapping
of active enhancers using H3K27ac. Consistently, genes as-
sociated with most enhancers are also most enriched for
disease-association in all 9 cell lines. To elucidate the power
of this approach and to analyze the cell type selectivity of
the disease-associations, we perform disease-association en-
richment analysis for high enhancer load genes from 139
ChIP-Seq samples of H3K27ac corresponding to 96 differ-
ent cell types and tissues, with many diseases showing high
level of cell type selectivity. Finally, we show that genes un-
der high enhancer load are involved in more Kyoto Ency-
clopaedia of Genes and Genomes (KEGG) pathways and
exhibit higher betweenness centrality in a liver disease gene
network than other genes on average, suggesting a central
role in integrating multiple signals in biological networks.
Consistently, the genes under high regulatory load at the
transcriptional level have longer 3′ untranslated regions (3′
UTRs) and contain more microRNA (miRNA) binding
sites than other genes, suggesting that they could be under
higher regulatory load also at the post-transcriptional level.

Taken together, these results paint a picture of high reg-
ulatory load genes as central nodes in biological networks,
that are more likely to be associated with human disease,
and identifies epigenomic analysis of active enhancers as a
tool for cell type-selective prioritization of previously un-
studied genes.

MATERIALS AND METHODS

Disease-associated genes

Gene-disease association data were retrieved from
the DisGeNET Database (GRIB/IMIM/UPF In-
tegrative Biomedical Informatics Group, Barcelona
http://www.disgenet.org/ version 2.1, 5th of May 2014).
DisGeNET provides gene-disease associations from several
public data sources and literature text-mining, with a score
ranking associations based on the supporting evidence. A
minimum association score of 0.08 was used to select gene-
disease associations supported by multiple data sources and
to exclude associations that are based solely on text-mining
results, resulting in 7428 disease-associated genes, of which
6167 were contained in our background set of 19 238
protein coding genes (Supplementary File 1). Alternatively,

a minimum association score of 0.2 characterizes cu-
rated disease-associated genes (7110 genes, of which 5853
were in the background set) (gene-disease associations
from UNIPROT, ClinVar and CTD human data set, see
http://www.disgenet.org/web/DisGeNET/menu/dbinfo).
Additionally, as a separate set of high confidence dis-
ease genes we used the OMIM database (downloaded
from ftp://ftp.omim.org/OMIM/, as of June 2015) (4557
genes of which 3483 were in the background set). For
gene set enrichment testing we selected only diseases
with at least 15 associated genes, to avoid significant
results only due to a very small set size, resulting in 340
diseases (Supplementary File 1) (15). Details about the
gene-disease-association types defined in the DisGeNET
for each disease are also found in the Supplementary
File 1, and they include ‘altered expression’, ‘biomarker’,
‘genetic variation’, ‘post-translational modification’ and
‘therapeutic’. To test whether ‘genetic variation’ was pre-
dominantly accounting for disease-association enrichment,
we defined the group ‘not genetic variation’ by pooling all
disease-associated genes with association evidence other
than ‘genetic variation’.

Background set of protein coding genes and their ‘regulatory
domain’

We focused on protein coding genes in the analy-
sis. The NCBI Entrez Gene annotations for ‘pro-
tein coding’ genes (Homo sapiens.gene info file, ftp:
//ftp.ncbi.nih.gov/gene/DATA/GENE INFO/Mammalia/,
downloaded on the 13th of May 2014) were used to derive
a set of genes serving as ‘background’ for gene set en-
richment testing. Their TSS was extracted by intersecting
with the RefSeq genes file taken from the UCSC Table
Browser (16) (http://genome.ucsc.edu/cgi-bin/hgTables,
RefSeq genes, assembly: February 2009 (GRCh37/hg19),
on the 13th of May 2014), resulting in 19 238 protein
coding genes. In order to associate ChIP-seq peaks to
the 19 238 genes, we used the Genomic Regions En-
richment of Annotations Tool (GREAT) (17) to derive
a ‘regulatory domain’ for each gene, using the script
‘createRegulatoryDomains’ and the rule ‘BasalPlusEx-
tension’ with default settings (source code from http:
//bejerano.stanford.edu/help/display/GREAT/Download,
May 2014). Chromosome sizes of the human genome
assembly hg19 were obtained using the script ‘fetchChrom-
Sizes’ from the UCSC BigWig and BigBed tools (18).
Supplementary File 1 contains details on the 19 238 protein
coding genes used for analysis, including their regulatory
domains derived by the GREAT tool as start and end
coordinates.

Data sources and processing

Public ChIP-seq data produced by the ENCODE
project (19), the BLUEPRINT Epigenome project
(20) and the NIH Epigenomic Roadmap project (21)
were downloaded from the ENCODE Data Coordina-
tion Center (http://genomebrowser.wustl.edu/encode/)
on May 2014, the BLUEPRINT consortium website
(http://www.blueprint-epigenome.eu) on July 2014, and
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NIH Epigenomic Roadmap supplementary website
(http://compbio.mit.edu/roadmap) on January 2015, re-
spectively. These data span 93 TFs, the H3K4me3 and
the H3K27ac modification marks across 139 samples that
comprise 96 tissues or cell types (Supplementary File 2).
The ENCODE data were no further processed, while the
BLUEPRINT and NIH Epigenomic Roadmap data were
filtered to keep only peaks with a minimum fold change
and (−log10 q-value) of 3.

The H3K4me3 data were used to filter out genes embed-
ded in closed chromatin. A file containing genes with at
least one H3K4me3 peak within their transcription start
sites (TSS) ±1000 bp was obtained per sample, using the
IntersectBed tool from the BEDTools suite (22) to intersect
each sample’s H3K4me3 data with a file containing Ref-
Seq genes and their TSS ±1000 bp as start and end coor-
dinates. In case of multiple H3K4me3 data files per sample,
we considered evidence from one single file sufficient to call
the mark present. The H3K27ac data served to map active
enhancers. The ENCODE project was the only source of
TF data. To select only TFs known to directly bind DNA,
we used a list of manually curated TFs (23), 111 of which
were included in the ENCODE TFs (Supplementary File
2) and 93 had been assayed in the used cell lines, result-
ing in the presented numbers of unique TFs assayed per
cell line. In case of multiple files of the same TF in a cell
line (e.g. different ENCODE data producing labs), a filter-
ing step for keeping only peaks overlapping by at least 1
bp in two thirds of the ‘replicates’ was applied. The inter-
sectBed tool was used to intersect TF or H3K27ac data
with the file containing regulatory domains for each gene
(see above), requiring a peak to completely fall within the
genes regulatory domain in order to assign it to that gene.
For each TF, we obtained a list of associated genes and de-
rived the TF load per gene from the total number of associ-
ated TFs, across nine ENCODE cell lines (A549, GM12878,
H1hESC, HCT116, HeLaS3, HepG2, HUVEC, K562 and
MCF7). To obtain the enhancer load per gene, we used the
count option of the IntersectBed tool to count the number
of H3K27ac peaks falling within the genes regulatory do-
main. For both TFs and enhancers, we ranked genes based
on the regulatory load and subsequently considered only
genes with the H3K4me3 mark within ±1000 bp of the TSS.
Following the above settings, on average 96% of peaks could
be associated to a target gene.

Gene binning and hypergeometric enrichment tests

In order to group genes based on their regulatory load,
we started binning ranked genes by deciles (bins contain-
ing 10% of the genes), with a separate group for genes
with no associated TFs or enhancers (11 starting bins).
Bins were then extended by inclusion of all genes with the
same regulatory load as the last gene falling in a bin, ex-
cluding cases of genes with equal regulatory load falling in
different bins (fewer bins depending on the sample). Top
bin genes for each sample can be found in Supplemen-
tary File 3. We then performed hypergeometric distribu-
tion tests for the enrichment of disease genes among the
different regulatory load bins per sample and the 340 Dis-
GeNET diseases with at least 15 genes. For each sample,

the ‘population size’ corresponded to the number of genes
with the H3K4me3 mark (varying per sample), the ‘num-
ber of successes’ being the number of disease genes with
the H3K4me3 mark (varying per sample) and the ‘num-
ber of draws’ the number of genes having the regulatory
load of the bin in case (number of TFs or enhancers). Hy-
pergeometric P-values were obtained using the Matlab R©
hypergeometric cumulative distribution function (hygecdf)
and were adjusted for multiple testing with the Benjamini
and Hochberg methodology as implemented in the Bio-
conductor’s qvalue package (http://www.bioconductor.org/
packages/release/bioc/html/qvalue.html).

Bicluster of hypergeometric enrichment statistical signifi-
cance

In order to simultaneously cluster samples and diseases into
homogeneous blocks based on the hypergeometric enrich-
ment significance (adjusted −log10 P-values), the R package
‘blockcluster’ (24) was applied to the matrix (of adjusted
−log10 P-values) from the 139 samples and 174 diseases,
after binarization (‘zero’ for −log10 P-value < 1.301, ‘one’
otherwise) and exclusion of diseases or samples only con-
taining ‘zero’. Shortly, block clustering methods estimate
a mixture model from permutations of objects and vari-
ables in order to draw a correspondence structure (thereby
with certain order variability with repetition). ‘Blockclus-
ter’ requires a predefined number of clusters for the rows
and columns, which we fixed at 9 and 7, respectively (here,
diseases and samples), in order to minimize redundant clus-
ters. Supplementary File 4 contains the ordering for diseases
and samples and their clusters (color shades), as obtained
with the ‘blockcluster’ package.

Identification of super-enhancer genes

NIH Roadmap epigenomics raw data were downloaded
from the GEO ftp site (ftp://ftp.ncbi.nlm.nih.gov/pub/
geo/DATA/roadmapepigenomics/by experiment/) on May
2015, selecting data for all three from H3K4me3, H3K27ac
and Input, resulting in 35 samples. These included bed
files of reads aligned onto the hg19 human genome as-
sembly using Pash 3.0 read mapper (http://egg2.wustl.edu/
roadmap/web portal/processed data.html). As the raw data
contained sample names and the processed data used for the
high regulatory load genes analysis contained sample IDs,
mappings between the two were manually obtained based
on descriptions from the original data sources (http://egg2.
wustl.edu/roadmap/web portal/meta.html). Next, the soft-
ware HOMER (version 4.7, 25th of August 2014) (25) was
used for super-enhancer calling on the H3K27ac bed files
from each sample, pooling samples from the same origin,
with default setting except the local fold change option (-
L) which was set to 0 as recommended by the authors for
super-enhancer analysis, resulting in the obtainment of the
chromosome, start and end coordinates of super-enhancer
peaks. We then used the IntersectBed tool from the BED-
Tools suite (22) and the genes ‘regulatory domain’ file ob-
tained with GREAT (see previous descriptions) to derive
a set of super-enhancer-associated genes per sample. These
genes were subsequently used for testing the enrichment for
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disease-association using the hypergeometric distribution,
as previously described.

Analysis of the RNA-seq data

Data were downloaded from http://egg2.
wustl.edu/roadmap/web portal/processed data.
html#RNAseq uni proc on June 2015, taking the file
‘57epigenomes.RPKM.pc’ containing the RPKM (reads
per kilobase per million mapped reads) for 57 samples,
38 of which were also in the set of 139 samples used for
the analysis of high regulatory load genes. Conversion of
ENSEMBL IDs to ENTREZ GENE IDs was done using
the Bioconductor package ‘biomaRt’ (26), resulting in
expression data for 18 220 ENTREZ GENE IDs across
samples, out of which 18 181 were included in our back-
ground set of 19 238 protein coding genes. For each of the
38 samples, genes were ranked based on expression. Since
the set of genes for high regulatory load and expression is
not the same, we defined the top bin of highly expressed
genes to contain the same number of high regulatory load
genes in each sample, triplicating this number for the 30%
top bins of expression. The 50% and 90% top expression
bins were obtained relative to the total number of genes for
which there was expression data (18 181).

KEGG pathway enrichment testing

KEGG (27) pathways were used to test whether high reg-
ulatory load genes appear in more pathways than ex-
pected. The list of KEGG pathways was obtained through
the REST-style KEGG API from http://rest.kegg.jp/list/
pathway/hsa, resulting in 282 pathways with at least one
gene. KEGG pathways were downloaded and gene info
per pathway was obtained using the R/Bioconductor pack-
age ‘KEGGprofile’. The average number of pathways per
KEGG gene (total of 6822 genes in all KEGG pathways),
per high regulatory load gene (differing from sample to
sample) or based on a random selection of an equal number
of genes as the high regulatory load genes for each sample
(10 000-fold) was calculated. Supplementary File 4 contains
the results obtained for each sample. A P-value (≤0.05 was
considered significant) was calculated from this re-sampling
test based on the probability to get at least the same average
number of pathways per KEGG gene in random selections
as obtained for the high regulatory load genes.

Constructing a liver disease gene network

The list of liver diseases was curated from the Medical Sub-
ject Headings (MeSH) database (http://www.ncbi.nlm.nih.
gov/mesh/). The MeSH database is the National Library of
Medicine’s controlled vocabulary thesauruses consisting of
sets of terms structured in a hierarchical form that facili-
tates searching at different levels. We curated 137 liver dis-
eases. Based on the obtained list of liver diseases, 847 genes
related to liver diseases (liver disease genes in short) were
extracted from the Comparative Toxicogenomics Database
(CTD) database (28). We considered only curated disease-
gene associations to increase the reliability of the liver dis-
ease gene data. The construction of liver disease gene net-

work was carried out by extracting human protein interac-
tions published in the Human Protein Reference Database
(HPRD) (29). The HPRD database contains manually cu-
rated protein interactions from literature and is one of the
most well-known human protein interaction databases.

The final liver disease gene network of interest consisted
of the liver disease genes and their neighbors (nodes), and
their direct interactions (edges). In this study, we took into
account one-step neighbors. The network was undirected
and unweighted because we considered binary interactions.
We obtained a network of 3775 genes and 8278 interac-
tions. To unravel the role of genes in the network, we cal-
culated betweenness centrality for each gene and compared
the average betweenness centrality of the high regulatory
load genes to that of all genes or all genes except those un-
der high regulatory load. Betweenness shows the bridge role
of a gene for other genes in the network (30). For each node
v in the network, we computed the total number of shortest
paths from node s to node t, called d(s,t) and the number of
those paths that pass through v, called d(s,v t), and then ra-
tio d(s,v, t)/d(s,t) was calculated. These steps were repeated
for all pairs of node s and node t in the network. The overall
betweenness centrality of a node v is obtained by summing
up those ratios. Betweeness B(v) of a node v is defined as
following:

B(v) =
∑

s �=v �=t

d(s, v, t)
d(s, t)

(1)

3′ UTR length and miRNA binding site analysis

Annotation data on 5′ UTR, CDS, 3′ UTR, spliced as well
as unspliced transcript length for human mRNA genes was
obtained from Biomart (Ensembl Genes 78). Transcripts
lacking proper UTR annotation were filtered out. In cases
where multiple transcripts correspond to one gene ID, a rep-
resentative member was randomly chosen. A background
set, consisting of 16 307 genes, was used for all comparisons.
In order to test the hypothesis, that highly regulated genes
tend to have longer 3′ UTRs, we compared in all 139 sam-
ples the length of 3′ UTRs, CDS, spliced as well as unspliced
transcript length of the high enhancer load genes with the
background set with the Kolmogorov-Smirnov test, testing
if the background set is smaller than the test set. In order to
correct for multiple testing, Bonferroni correction was used,
with a significance level ≤0.0003597122 (0.05/139).

Predicted target sites for conserved miRNAs were ob-
tained from TargetScan 6.2 (31). The target site count per 3′
UTR were summed up, resulting in an average site count per
transcript. In cases where a site in the 3′ UTR was assigned
to multiple miRNAs, it was counted only once.

RESULTS

Genes under high regulatory load from multiple transcription
factors are enriched for disease-association across cell types

Our previous work on regulation of metabolic genes in hu-
man adipocytes and human primary macrophages has un-
covered that combinatorial control by multiple regulators
is in particular occurring at genes associated to key nodes
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such as entry points of the metabolic networks and at genes
that are often disease-related (14; Pires Pacheco et al., under
revision). Moreover, analysis of metabolic genes controlled
by multiple TFs in HUVEC cells revealed consistent en-
richment for endothelial disease-relevant genes among the
genes under the highest regulatory load (14).

To investigate whether this is a general finding across dif-
ferent cell types and gene categories, we took advantage of
the numerous ChIP-Seq data sets of TF binding produced
by the ENCODE project in a number of cell types (19). In
detail, we used the existing TF binding data for a total of 93
different previously manually curated TFs (23) from nine
ENCODE cell lines, representing different cell and tissue
types (Figure 1, Supplementary File 2; see Methods for de-
tails). The number of assayed TFs per cell line varied from
6 TFs in HUVEC cells to 65 TFs in GM12878 cells. In ad-
dition we used ChIP-Seq data for H3K4me3 from each cell
line to identify the putative active genes and associated all
TF binding events to their proximal protein-coding genes
marked by H3K4me3 following the ‘BasalPlusExtension’
rule of the GREAT tool (17). The number of unique asso-
ciated TFs per each gene was then calculated and the genes
were ranked according to the number of associated TFs,
i.e. their regulatory load in each cell type (Figure 2A). The
number of associated TFs ranged from 0 TFs per gene to
as many as 57 TFs per gene for the genes with highest load
in the GM12878 lymphoblastoid cell line (Supplementary
File 2). Finally, all genes were classified either as disease-
associated or non-disease-associated based on the evidence
in the DisGeNET database (using a cut-off score of 0.08
for disease-association to exclude associations based only
on text mining) (Figure 1; see methods for details) (4,5).

When focusing on the genes ranked according to their
TF load, a similar pattern emerges in each cell line, inde-
pendent of the number of assayed TFs: the proportion of
disease-associated genes is usually close to or above 40%
for the genes with highest TF load while for the majority of
genes this proportion remains at 10–35% (Figure 2A). To
test whether the observed enrichment is statistically signifi-
cant, we ranked the H3K4me3 marked genes in each cell line
into 10 bins of comparable size according to their TF load
(6 bins in case of HUVEC cells) with an additional 11th
bin in case the gene was not associated with any TF (Fig-
ure 2B). Next, the enrichment of disease-associated genes
within each bin was tested using the hypergeometric distri-
bution (see Methods for details). As shown in Figure 2B,
only the bins of genes with highest TF load show a sig-
nificant enrichment of 1.301 or higher (adjusted −log10 P-
value corresponding to 0.05) for disease-association with
bins based on top 10% genes always showing the most sig-
nificant enrichment. Importantly, similar results were also
obtained when using Gene Set Enrichment Analysis instead
of hypergeometric distribution (15).

In conclusion, genes under combinatorial control from
multiple TFs are enriched for disease association across
multiple cell types, suggesting high regulatory load as a
common feature of genes implicated in human diseases.

High transcription factor load correlates with high abundance
of active enhancers

While presence of a TF binding event in proximity of a tar-
get gene could be indicative of either activation, repression
or even no regulation by the TF, the presence of enhancer
markers such as H3K27ac are indicative of active enhancers
engaged in transcriptional activation via chromatin looping
(32,33). To see whether the observed disease-association en-
richment of genes under high TF load could be more eas-
ily observed by analyzing only few chromatin modifications,
we used the H3K27ac ChIP-Seq data for active enhancers
produced by the ENCODE project from the correspond-
ing cell lines. Comparison of the average TF load and cor-
responding number of enhancer peaks at each open gene
across the cell lines revealed a clear positive correlation, ar-
guing that most genes under high TF load are also iden-
tifiable by a high active enhancer load (Figure 3A). Simi-
lar conclusion can be made when the genes are binned in
comparable sized groups according to their TF or enhancer
loads and analyzed for enrichment of genes within each bin
(Supplementary Figure S1, Supplementary File 5). For ex-
ample, the bins containing genes with highest TF load are
significantly enriched for genes with highest enhancer load,
and vice versa, the bins of genes with no associated TFs are
also enriched for genes with no enhancers.

Based on the obtained correlations, we asked whether
ranking of genes according to their enhancer peak abun-
dance would also reveal higher proportion of disease-
associated genes among the top ranking genes, similarly to
high occupancy by multiple TFs. Indeed, the top ranking
genes with highest enhancer load showed higher propor-
tion of disease genes while genes associated with less than
10 enhancer regions rarely show a disease-gene proportion
higher than 40% (Figure 3B). Again, the enrichments are
also highly significant for the genes under the highest en-
hancer load in each cell line when tested with the hyper-
geometric distribution after grouping genes in comparable
size bins, with top bins showing the most significant en-
richments (Figure 3C). And yet again, similar results were
also obtained when using Gene Set Enrichment Analysis in-
stead of hypergeometric distribution (15). Moreover, sim-
ilar enrichment patterns are also visible when more strin-
gent groups of disease genes (DisGeNET score cut-off 0.2
or genes of monogenic diseases from OMIM database) are
used (Supplementary Figure S2). Importantly, the disease-
gene proportion profiles obtained using the enhancer load
data appear more comparable between the different cell
lines than in the TF load analysis that is highly dependent
on the number and identity of the assayed TFs.

Taken together, the TF load of accessible (H3K4me3
marked) genes is positively correlated with the number of
associated active enhancer peaks and the genes with high-
est enhancer load are enriched for known disease-relevant
genes. This could allow the identification of novel disease
genes through ChIP-Seq analysis of enhancer load using hi-
stone marks such as H3K27ac.
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Figure 1. The workflow of the disease-gene enrichment analysis. Processed ChIP-seq data (bed files) from 93 transcription factors (TFs), H3K27ac and
H3K4me3 across 139 sample sets were downloaded from the ENCODE (19), NIH Epigenomic Roadmap (21), and BLUEPRINT Epigenome (20) projects
(see Supplementary File 2 for additional details). The H3K27ac was used as a mark for active enhancers. The GREAT tool (17) was used to derive a
‘regulatory domain’ for each protein coding gene (‘BasalPlusExtension’ rule with default settings) and the regulatory load per gene was obtained from the
number of TF or enhancer peaks falling within the genes regulatory domain. Genes within closed chromatin regions (without the H3K4me3 mark within
±1000 bp from the TSS) were ignored. Gene-disease associations for 340 diseases with at least 15 genes were based on the DisGeNET database (requiring
a minimum association score of 0.08), for a total of 7428 disease genes (4,5). The 19 238 protein coding genes (including 6167 of the disease genes) in our
background set were grouped into comparable sized bins based on the regulatory load per sample. These ‘regulatory load’ bins were used for testing disease
association enrichment (hypergeometric distribution) across 139 samples on the 340 diseases. The enrichment significance (adjusted −log10P-value) for
each disease across samples was used to infer cell type and function related associations.

Cell type-selective disease-association of genes controlled by
multiple active enhancers

H3K4me3 and H3K27ac profiles have already been mapped
in numerous different tissue and cell types, allowing us to
extend our analysis beyond the nine cell lines from the EN-
CODE project. To this end, we collected additional pre-
processed ChIP-Seq data mapping both modifications from
the ENCODE project (19), NIH Epigenomic Roadmap
Consortium (21) and BLUEPRINT Epigenome project
(20), obtaining a total of 139 sample sets corresponding to
96 different cell types and tissues (Figure 1, Supplementary

File 2). For each sample set we performed the enhancer-to-
gene association as described in Methods and binned the
H3K4me3 marked genes according to their enhancer load
to identify the genes under high regulatory load (in the top
bin) in each sample set (Supplementary File 3). To compare
the top bins, the Jaccard similarity index was calculated for
the pair-wise combinations of the 139 samples (Supplemen-
tary File 4). Interestingly, the genes with high regulatory
load varied a lot between the different cell types and tis-
sues, with most cell types showing lower than 30% similarity
when compared with the Jaccard similarity index (Supple-
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Figure 2. TF load enriches for disease association. Based on ENCODE data from 93 TFs across nine cell lines, the proportion of disease genes is higher
among genes with high TF load. (A) 3D scatter plot of the TF load per gene and proportion of disease associated genes across nine cell lines. The proportion
of disease genes is higher among genes with more TFs. Genes were ranked based on the number of TFs falling within their regulatory region (as defined
in Methods). The TF load is depicted on the z-axis and the gene rank based on the TF load on the x-axis. Data from genes without the H3K4me3 mark
within ±1000 bp of the transcription start site are not shown. The nine ENCODE cell lines are shown across the y-axis. 6167 disease genes were considered
based on the DisGeNET version 2.1 associations (minimum association score of 0.08). The proportion of disease genes among all genes with each unique
observed TF load is represented by the color gradient on the TF load for each cell line. (B) Heatmap depicting the statistical significance of the enrichment
for disease associated genes in all TF load bins (adjusted −log10P-value), across nine cell lines. For each cell line, genes were grouped based on the number
of TFs into deciles, and genes without TFs grouped separately. To avoid different bins having genes with the same TF load, the deciles were adjusted to
contain all genes with the same number of TFs as the last gene in the decile. Using the set of 6167 disease associated genes derived from the DisGeNET,
hypergeometric tests for each bin were performed. The statistical significance is indicated by the color gradient. Values below 1.301 (i.e. adjusted P-values
larger than 0.05) are shown in gray and not considered significant. The enrichment significance is highest in the top bin of each cell line.

mentary Figure S3). Consistent with previous reports, the
similarity was highest between the cell types from the same
tissue, function or developmental origin.

Based on this cell-type selectivity of the high regula-
tory load genes, we hypothesized that high regulatory load
would also enrich for diseases in a cell type-selective man-
ner, and possibly allow informative links between different
diseases and cell types. To test this, we collected all 340 dis-

eases from DisGeNET database that had at least 15 asso-
ciated genes with a minimum score of 0.08 (Supplemen-
tary File 1). Next, the enrichment of genes associated to
each of these diseases was tested separately in all 139 sets
of high regulatory load genes derived above based on the
number of associated H3K27ac peaks (Supplementary File
3) to obtain a matrix of cell type- and disease-selective sig-
nificant enrichments (Figure 4, Supplementary Figure S4,
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Figure 3. Enhancer load enriches for disease association. (A) Plots of the average number of TFs (y-axis) for each unique number of enhancer peaks per
gene (x-axis) for nine cell lines. A positive correlation between the two is observed and the Spearman’s rank correlation coefficient (r) is shown on the
lower right corner of each plot varying from 0.5 (HCT116) to 0.72 (HepG2). (B) 3D scatter plot of the enhancer load per gene and proportion of disease
associated genes across nine cell lines. The proportion of disease genes is higher among genes with more enhancers. Genes were ranked based on the number
of enhancer peaks falling within their regulatory region (as defined in Methods). The enhancer load is depicted on the z-axis and the gene rank based on
the enhancer load on the x-axis. Data from genes without the H3K4me3 mark within ±1000 bp of the transcription start site are not shown. The nine
ENCODE cell lines are shown across the y-axis. A set of 6167 disease genes were considered based on the DisGeNET version 2.1 associations (minimum
association score of 0.08). For each cell line, the proportion of disease genes among all genes with each unique enhancer load observed was calculated. This
proportion is represented by the color gradient on the enhancer load for each cell line. (C) Heatmap depicting the statistical significance of the enrichment
for disease associated genes on all the different bins of genes based on their enhancer load (adjusted −log10P-value), across nine cell lines. For each cell line,
genes were grouped based on the number of enhancers into deciles, and genes without enhancers grouped separately. To avoid different bins having genes
with the same enhancer load, the deciles were adjusted to contain all genes with the same number of enhancers as the last gene in the decile. Using the set of
6167 disease associated genes derived from the DisGeNET, hypergeometric tests for each bin were performed. The statistical significance is indicated by the
color gradient. Values below 1.301 (i.e. adjusted P-values larger than 0.05) are shown in gray and not considered significant. The enrichment significance
is the highest in the top enhancer load bin in all nine cell lines.
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Figure 4. Cell type-selective disease-association of genes under high regulatory load. Heatmap showing the statistical significance (adjusted −log10P-
value) of the disease association enrichment of the high enhancer peak load genes across 139 samples. For each of 139 samples, the set of genes with highest
enhancer load (top 10% bin) was taken to perform hypergeometric enrichment tests for disease association on 340 diseases (disease associated genes from
DisGeNET version 2.1, minimum 15 genes with a minimum score of 0.08 per disease). The significance of each test is represented as adjusted −log10P-value
for the 139 samples (columns) across 174 diseases (rows), as indicated by the color gradient. Values below 1.301 (i.e. adjusted P-values larger than 0.05)
are shown in gray and not considered significant. 166 diseases did not have an adjusted −log10P-value of at least 1.301 in any of the 139 samples. The R
package ‘blockcluster’ (24) was used to perform the clustering for samples and diseases resulting in the observed pattern. Supplementary Figure S4 shows
the same heatmap with names of all samples and diseases included and Supplementary File 4 contains the details of the diseases and samples as ordered
in the heatmap.
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Supplementary File 4). A total of 174 diseases showed sig-
nificant enrichment (adjusted −log10 P-value ≥ 1.301) in
the high regulatory load genes of at least one cell type. Fig-
ure 4 shows bi-clustering of the diseases and cell types or tis-
sues according to the enrichment profiles. As expected, cell
types are clustered together largely according to their func-
tion or developmental origin. For the different diseases the
clustering patterns are not as obvious but still interesting
clusters emerge. The largest cluster (second from the bot-
tom) consists of 76 various diseases that are fairly weakly
enriched in only one or a few different cell types or tis-
sues. On the contrary, only very few diseases (mostly in
the third disease cluster from bottom) showed enrichment
in almost all cell types. These include many systemic dis-
eases or syndromes such as type 2 diabetes and rheumatoid
arthritis or broad categories related to cancer such as car-
cinoma and leukemia. Among the different cell types, the
enrichments in the high regulatory load genes of the im-
mune cells included many different diseases. Diseases like
multiple sclerosis and systemic lupus erythematosus were
particularly enriched for cells of both innate and adaptive
immune systems while other autoimmune and inflamma-
tory diseases, including Crohn’s disease and asthma as well
as acute inflammations, induced for example by pneumonia
and drug-induced liver injuries, were preferably enriched in
high regulatory load genes of the innate immune cells. Fi-
nally, the most selective disease enrichments were observed
for the high regulatory load genes of the different brain re-
gions and the closely clustering pluripotent stem cells. Most
of these showed enrichments mainly for the disease groups
such as pervasive child development disorders, substance-
related disorders, schizophrenia and autistic disorder. Fi-
nally, among the cell types with a particularly low number of
disease-associations, pancreatic islet was associated to only
seven different diseases, with the most significant disease-
association to type 2 diabetes. Such selective disease associ-
ations might reflect the highly specialized functions of the
cell types like islet cells and stem cells, but might also reflect
the fact that relatively little is still known about the disease
mechanisms in tissues like brain.

In summary, the genes under high regulatory load vary
between different cell and tissue types and, consistently, are
enriched for different diseases in different cell types, often
in accordance with known involvement of those cell types
in the respective diseases. Therefore, identification of genes
under high regulatory load using epigenomic data for ac-
tive enhancers could guide identification of novel disease-
associated genes in a cell-type-selective manner.

Identification of novel putative disease genes in human mono-
cytes

Among the 139 samples of enhancer data the cell type with
most samples are the monocytes that are innate immune
cells involved in a wide range of diseases. To test the pre-
diction of novel disease genes based on their regulatory
load, we combined the high regulatory load genes from
10 monocyte samples to obtain an extensive list of 3131
monocyte high regulatory load genes. Next we compared
this list to high regulatory load genes in all other samples
in order to obtain a unique list of 82 monocyte-specific

high regulatory load genes (Supplementary File 6). From
these genes 25 were already included as disease-associated
genes in DisGeNET version 2.1 (from 5th of May 2014)
used in our analysis above, and 15 of them were associ-
ated to diseases with known involvement of monocytes or
cell types derived from them (e.g. arthritis, pycnodysostosis,
myeloid leukemia and properdin deficiency). This leaves 57
monocyte-specific high regulatory load genes that we expect
to have higher probability of being associated with disease,
especially in monocytes (Supplementary File 6).

After the initial submission of the manuscript a new ver-
sion of DisGeNET (version 3.0, May 2015) was released,
including 767 novel high confidence disease genes (cut-off
score of 0.2 including only strong evidence associations),
710 of which are included in the gene background set used
for our epigenomic analysis (Supplementary File 1). Search-
ing for the 57 predicted monocyte disease genes described
above among the 710 newly associated disease genes showed
that as many as 14 of them had now been included as
high confidence disease genes during the year between the
two releases. These include genes such as NUSAP1 and
MS4A6A that are associated to glomerulonephritis, an IgA
nephropathy (34); GPBAR1 that is highly expressed in in-
testinal monocytes of patients with inflamed Crohn’s dis-
ease (35), and; SYNJ1 and PLD3 that are both associ-
ated to Parkinson’s disease and Alzheimer’s disease (36–39).
While the latter two genes have been studied mainly in the
context of neurons, both associated neurodegenerative dis-
eases have also a well-established neuroinflammatory com-
ponent. And interestingly, PLD3 shows the highest expres-
sion across all cell types in monocytes and related cell types,
similarly to another non-classical phospholipase D family
member, PLD4, that is known to be involved in microglial
phagocytosis in the brain (40,41).

Finally, to perform a more robust test of the prediction
power of high regulatory load for disease-gene association,
we tested whether more of the newly associated 710 disease
genes from DiGeNET version 3.0 could be found among
the high regulatory load genes across all 139 samples used
in our analysis. Notably, 469 or 66% of the new disease
genes could indeed be found among the high regulatory
load genes across the analyzed cell types, a significantly
higher fraction than expected by chance (hypergeometric
test, P-value = 1.6880e-12). Thus, arguing that high regu-
latory can guide identification of novel disease-associated
genes.

Comparison of high regulatory load and super-enhancer
genes

High regulatory load from multiple active enhancer peaks
is conceptually very similar to previously described super-
enhancers or stretch-enhancers that have also been as-
sociated to disease through high occurrence of disease-
associated genetic variants within them (10,11). To com-
pare high regulatory load genes with super-enhancer genes
we used the 35 Epigenomics Roadmap samples for which
mapped reads of H3K27ac ChIP-Seq data were available to
call super-enhancer peaks in those samples (see Methods for
details). This yielded between 300 and 900 super-enhancer
genes per sample. Overlapping these genes with previously
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identified high regulatory load genes from the same samples
showed that in all cases the majority (on average 67.9%) of
the super-enhancer genes belong also to the group of high
regulatory load genes (Figure 5A). However, these make up
only 13–37% of all high regulatory load genes.

As expected, also super-enhancer genes were enriched for
disease-association in all tested cell types (Figure 5A). This
led us to wonder if the observed disease-associations for
high regulatory load genes are simply due to the included
super-enhancer genes. To address this possibility we gener-
ated separate lists of high regulatory load genes that exclude
super-enhancer genes in all 35 samples and tested these
genes for their disease-association enrichment. Importantly,
in each case the remaining high regulatory load genes en-
riched for disease-association also when the super-enhancer
genes were excluded from the analysis (Figure 5A).

Given that high regulatory load genes are associated with
high number of active enhancers it could be assumed that
they are also higher expressed than other genes on average.
Consistently, this has already been shown to be the case
for super-enhancer genes (9). To test this for high regula-
tory load genes we obtained normalized RNA-seq data for
38 cell types and tissues for which they were available from
the Epigenomics Roadmap consortium. In keeping with the
hypothesis, the high regulatory load genes showed approx-
imately 2.1-fold higher expression levels than all genes on
average (Supplementary File 7). And looking at all known
disease genes, they too exhibited approximately 1.65-fold
higher expression levels. This was mainly based on the two
largest disease categories called ‘Biomarkers’ and ‘Genetic
Variation’ which both showed the same average expression
levels while the other smaller categories all showed even fur-
ther elevated levels of expression between 2.65- to 3.2-fold
above the average of all genes.

Based on these results we asked whether the high regu-
latory load genes could be obtained simply by focusing on
the highest expressed genes in each cell type. To do this we
grouped the genes in each sample according to their expres-
sion depending whether they were in the top 10%, top 30%
or top 50% of highest expressed genes or in top 90% group
containing most genes. Next we asked how large proportion
of the high regulatory load genes in each cell type could
be found in each group. As shown in Figure 5B, on aver-
age across the cell types, only 16.6% of high regulatory load
genes could be found among the comparably sized top 10%
of highest expressed genes. And only when considering the
higher expressed half of all genes (top 50%) could 76.7%
majority of high regulatory load genes be obtained.

Taken together, the majority of super-enhancer genes
can be identified among the genes with high regulatory
load, but they do not alone explain the observed disease-
association enrichment of high regulatory load genes. Sim-
ilarly to super-enhancer genes, both high regulatory load
and disease genes show above average expression levels but
expression level alone serves as a poor predictor of high reg-
ulatory load.

High regulatory load genes are not associated to disease only
by genetic variation

As much as 90% of disease-associated genetic variants are
located outside of coding genic sequences in humans and
recent work integrating epigenomic analysis with GWAS
has showed that around 60% of the variants are coinciding
with active enhancers (6–8,19). This is particularly true for
super-enhancers that serve as binding platforms for com-
binations of multitude of TFs (10,11). While the observed
enrichment of disease genes among the genes under high
regulatory load is not only due to super-enhancer genes, it
might still be due to increased likelihood of these genes be-
ing associated to genetic variants.

In order to assess whether this is sufficient to explain
our findings, we divided all protein coding genes into three
categories: (i) genes not associated to any disease with a
score above 0.08 according to DisGeNET database (13 071
genes); (ii) genes associated to diseases based on evidence
for genetic variation (score ≥ 0.08; 2832 genes), and; (iii)
genes associated to diseases based on other evidence than
genetic variation (score ≥ 0.08; 4596 genes). Subsequently,
enrichment of each of these gene sets in the high regulatory
load genes of all 139 samples was tested and the boxplots
of the adjusted enrichment P-values are depicted in Fig-
ure 5C. Importantly, the genes not associated to any dis-
ease also did not show any enrichment in any of the sam-
ples while genes associated to diseases through genetic vari-
ation showed significant enrichment in all samples with a
median adjusted −log10 P-value of 6.1. However, also the
other disease-associated genes, without evidence for genetic
variation, showed a highly significant enrichment among all
139 sets of high regulatory load genes with a median ad-
justed −log10 P-value of 9.0. Thus, suggesting that there
could be also other explanations for the frequent disease-
association of the high regulatory load genes besides their
higher likelihood of being affected by a genetic variation.

High regulatory load genes are involved in multiple pathways

The positioning of disease genes as central hubs in gene-
regulatory or protein-protein interaction networks has been
suggested to make the genes more likely to cause or be af-
fected by perturbations than what would be the case for
more peripheral genes (42). Indeed, one of the putative
explanations for the higher occurrence of disease associa-
tion among the genes under high regulatory load could lie
within their role as central network nodes and as integration
points within and between pathways. To see whether this
hypothesis is supported by the current pathway knowledge
we obtained the node information for all KEGG pathways
(27) and calculated in how many pathways the high regu-
latory load genes occur on average in each of the 139 sam-
ples (Figure 6A). This was compared to the average path-
way occurrence of an equal number of randomly selected
H3K4me3 marked genes from each sample. Interestingly,
in 135 of the 139 samples the average pathway occurrence
was significantly higher (4.66 pathways per HRL gene on
average) than for the randomly selected genes (3.52 path-
ways per gene on average) based on a re-sampling test (see
Methods for details) with a large variation up to almost
6 pathways per gene in some cell types. Consequently, the
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Figure 5. Features of the disease association of high regulatory load genes and comparison to super-enhancer genes. (A) Proportions of high regulatory load
genes (descending diagonal stripes), super-enhancer genes (asscending diagonal stripes) and their overlap (crossing diagonal stripes) from their combined
count in 35 samples from Epigenomics Roadmap consortium are indicated as cumulative bars. Code name for the each sample corresponds to those
described in (21) and can be found in Supplementary File 2. Heatmap shows the statistical significance (adjusted −log10P-value) of the disease association
enrichment of either the super-enhancer genes (upper part of the bar) or high regulatory load genes without super-enhancer genes (lower part of the bar).
(B) Average cumulative proportion (±SD) of high regulatory load genes within the top 10%, top 30%, top 50% and top 90% of highest expressed genes
across 38 RNA-Seq samples from Roadmap Epigenomics consortium corresponding to samples detailed in Supplementary Files 2 and 7 (see Methods
for details). (C) Boxplot showing the statistical significance (adjusted −log10P-value) of the enrichment for disease association of the top enhancer load
bin from each sample (n = 139) obtained considering the 2832 genes for which the association to a disease is defined as ‘genetic variation’ (based on the
DisGeNET) versus the 4596 genes for which the association type is other than ‘genetic variation’. Adjusted −log10P-value values below 1.301 (gray dashed
line), i.e. P-values larger than 0.05 are considered non-significant. While disease-associated genes based on genetic variation enrich on the top enhancer
load bin, this enrichment is not lost when excluding those genes and keeping disease-associated genes based on other types of association evidence based
on DisGeNET (‘altered expression’, ‘biomarker’, ‘post-translational modification’ and ‘therapeutic’). The set of 13 071 genes in our background set that
are not disease associated was used as a control, showing no significant enrichment of non-disease genes among the genes with more enhancer peaks across
all 139 samples.
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Figure 6. High regulatory load genes appear on average in more pathways
and exhibit higher betweenness centrality than randomly observed. (A)
Plot of the average number of pathways per gene for the high regulatory
load genes across 139 samples (one dot per sample) as a function of the av-
erage number of pathways per randomly selected equal number of genes.
While randomly selected genes appear on average in 3.52 pathways (con-
stant number of pathways, the variation over the x-axis is very low), high
regulatory load genes appear on average in 4.66 pathways and present a
much higher variation (min. 3.86, max. 5.78), suggesting their importance
as network nodes. 282 KEGG pathways were considered. For each set of
highest enhancer load genes from the 139 samples, the average number of
KEGG pathways they belong to was calculated (y-axis). Equal numbers
of randomly selected genes were taken in a 10 000 fold re-sampling and
the average number of pathways they belonged to are depicted on the x-
axis. The statistical significance was determined by a re-sampling test and
the significant (P ≤ 0.05) and non-significant samples are shown as black
and gray dots, respectively. (B) Betweenness centrality of genes under high
regulatory load in liver disease gene network (for illustration see Supple-
mentary Figure S5). A liver disease gene network was constructed as de-
scribed in Methods and the betweenness centrality was calculated for each
gene present in the network and potentially expressed in either liver sample
based on the H3K4me3 mark. Boxplots (left side of the dashed line) repre-
sent the distribution of average betweenness centralities for 10 000 sets of
equal numbers of randomly selected network genes. Asterisks (right side of
the dashed line) represent the average betweenness centralities (±SEM) of
all genes, all genes except those under HRL in primary liver tissue (E066)
or HepG2 cell line and, high regulatory load genes in the two different
samples as indicated. The average betweenness centrality of high regula-
tory load genes is significantly higher than for other genes as determined
by a re-sampling test.

high regulatory load genes occur in more known pathways
than other genes on average, suggesting that the identified
disease-association enrichment could be due to central role
of these genes within biological networks.

Genes under high regulatory load in liver exhibit high be-
tweenness centrality in liver disease gene network

To directly address the positioning of high regulatory load
genes in biological and disease networks, we constructed
a liver disease-specific network covering 137 liver diseases
that comprises of 3775 genes (nodes) and 8278 interactions
(edges) based on human protein interactions from the Hu-
man Protein Reference Database (HPRD) (29) (see Meth-
ods for details of the network construction). An illustra-
tion of the network with positioning of high regulatory load
genes can be found in Supplementary Figure S5. Next we
obtained the lists of all H3K4me3 marked and high regula-
tory load genes in two liver samples, primary liver tissue and
HepG2 hepatocarcinoma cell line, that were also present in
the newly constructed liver disease gene network. As addi-
tional control, we created 10 000 lists of random selection
of genes of equal numbers from both samples. Finally, to
analyze the positioning of the high regulatory load genes
we calculated the betweenness centrality for each gene in
the network and compared the average betweenness cen-
tralities of the high regulatory load genes to the different
control gene lists. Notably, while randomly selected genes
showed similar mean betweenness as all genes, the high reg-
ulatory load genes showed in both samples almost 3 times
higher betweenness than either of these control groups (Fig-
ure 6B). This is consistent with the somewhat lower be-
tweenness centrality of the gene group where high regula-
tory load genes have been excluded. Accordingly, high reg-
ulatory load genes occupy the more central nodes within the
liver disease gene network.

Genes under high regulatory load at transcriptional level have
longer 3′ UTRs and contain more miRNA binding sites

Since high regulatory load genes appear to function as im-
portant nodes in biological pathways and integrate multi-
ple signals at the transcriptional regulation level, we asked
whether a similar finding could be made also at the other
regulatory levels. More specifically, we assumed that high
enhancer load genes might be under higher regulatory load
also at the post-transcriptional level. Post-transcriptional
regulation of mRNA stability and translation takes place
mainly via the binding of miRNAs and various RNA-
binding proteins to their regulatory regions in the mRNAs
3′ UTR with longer 3′ UTRs allowing higher number of
regulatory regions (43,44). To test whether the 3′ UTRs of
genes under high regulatory load from multiple enhancers
in different cell types could in principle occupy more regu-
latory regions than all genes on average, we collected the
3′ UTR lengths for all genes and compared the 3′ UTR
lengths in the different gene sets (Figure 7A, see Meth-
ods for details). Curiously, in 138 of the 139 samples the
3′ UTR length distribution was significantly longer for the
top bin of highest enhancer load genes than for all genes
(Kolmogorov-Smirnov test). The average 3′ UTR length for
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Figure 7. Genes under high regulatory load at transcriptional level have longer 3′ UTRs. (A) Distributions of 3′ UTR lengths in 139 sets of high enhancer
load genes from different samples (each depicted by a green line) and in a background set of 16 307 3′ UTRs (depicted by the black line). The average 3′
UTR length of all mean lengths of the high enhancer load genes was 1695 nt, 39% longer than the average length of 1213 nt for the background set genes.
For 138 samples the length was significantly longer than for the background set (Kolmogorov-Smirnov test, see methods). (B) Distributions of counts of
predicted conserved miRNA binding sites (TargetScan 6.2) in 139 sets of high enhancer load gene 3′ UTRs from different samples (each depicted by a
green line) and in a background set of 16 307 3′ UTRs (depicted by the black line). (C) The total number of predicted miRNA binding sites per 3′ UTR
(y-axis) is positively correlated with the number of distinct miRNA families targeting the 3′ UTR (x-axis) across all genes.

all genes was 1213 nt while mean of all high regulatory load
genes means was 1695 nt, i.e. 482 nt (or 39%) longer. To fur-
ther see whether these longer 3′ UTRs indeed contain more
regulatory regions, we analyzed the distribution of con-
served miRNA binding sites predicted by the TargetScan
software (31) within the 3′ UTRs (Figure 7B). In keeping
with the longer length, the 3′ UTRs of the high enhancer
load genes from each of the 139 sample sets contain signifi-
cantly more miRNA binding sites than other genes on aver-
age, making them more prone to post-transcriptional reg-
ulation. In general, across all genes, the increased number
of miRNA binding sites strongly correlates with the num-
ber of miRNAs from distinct miRNA families (Figure 7C),
suggesting that the observed high number of miRNA bind-
ing sites also reflects targeting by multiple different miRNA
families. Thus, the high regulatory load genes appear to be

under combinatorial regulation by distinct regulators me-
diating multiple signals both at transcriptional and post-
transcriptional level.

DISCUSSION

Much of the research is focused on elucidating the roles of
selected few genes in human health and disease although
this emphasis is not warranted by their connectivity, con-
servation or other features when compared to the less stud-
ied genes (1). The advent of different genome-wide ap-
proaches has allowed an improved ‘equality’ among genes
and unbiased approaches to prioritize the previously un-
characterized genes based on these vast data sets will be
increasingly important. Here we show that genes regulated
by a high TF load are more likely to be disease-associated
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genes and can be identified across cell types through epige-
nomic mapping of active enhancers. The sets of high regu-
latory load genes vary between cell types, thereby allowing
identification of putative disease-associated genes in a cell
type-selective manner. Disease-association of these genes
appears to rely on multiple different categories of associa-
tion evidence and we propose central role within biological
networks as one of the likely explanations for the observed
enrichment. In keeping with the putative role as integra-
tors of multiple signals between pathways, the high regu-
latory load genes appear also to be targeted by more post-
transcriptional regulators such as miRNAs. This is consis-
tent with earlier findings for positive correlation between
numbers of TF and miRNA binding sites (45), and provides
an additional feature that could be shared by the most rele-
vant genes.

High load of active enhancers often assumes high ex-
pression levels of the target genes, a concept already sug-
gested by many studies (9,10; Supplementary File 7). There-
fore it is somewhat paradoxical why these genes would also
be targeted by higher number of post-transcriptional reg-
ulators, such as miRNAs, that are mainly repressing their
target genes. One possibility is that the miRNA regula-
tion serves as a buffer to keep the abundant expression of
the target genes within certain threshold in a robust man-
ner (46). On the other hand, it is known that miRNAs
and their target mRNAs are expressed in a mutually exclu-
sive manner, suggesting that the high regulatory load genes
could be under strong miRNA-mediated repression in other
cell types where they are not occupied by high enhancer
load, thus further enforcing their selective expression pro-
files (47). Consistently, multiple different miRNA binding
sites might be needed to allow the repression of the genes
by different miRNAs in different cell types.

While analyzing the 3′ UTR lengths we observed that
also the coding sequences (CDS) of the high regulatory
load genes are longer than the mean of all genes, albeit
with smaller (24%) and less significant increase (Supple-
mentary Figure S6A). And importantly, the unspliced pri-
mary transcripts are as much as 94% longer (Supplementary
Figure S6B). This raises the possibility that these are sim-
ply longer genes occupying larger genomic regions, with the
higher regulatory association at transcriptional level stem-
ming from this feature. However, the 3′ UTR and CDS
lengths of the different genes show no correlation and sim-
ilar results for 3′ UTR lengths can be obtained when focus-
ing only on enhancers or TF binding sites located upstream
of the target genes (Supplementary Figure S6C and data not
shown). Therefore, the longer 3′ UTR and indeed an over-
all longer gene length appear to be inherent features of the
high regulatory load genes. This is particularly interesting in
the light of the recent observation that human orthologs of
mouse essential genes are significantly longer than all other
genes on average (48). Indeed, 77% of the 2472 known es-
sential genes with human orthologs are also identified as
high regulatory load genes in our analysis and significantly
enriched in the top regulatory load bins across all 139 sam-
ples (data not shown).

Our data suggest that epigenomic mapping of active en-
hancers could be used to predict disease-associated genes
and thereby prioritize the analysis of previously unknown

genes. Current analysis presented in Figure 4 provides an
interesting starting point. More detailed analysis of the in-
dividual cell types and associated disease enrichments might
provide novel insights into relationship of cell types and
diseases in question, and in particular, how do the previ-
ously unassociated high regulatory load genes within dif-
ferent cell types fit into the network of the already known
disease genes. To take the first step we already performed an
analysis to identify monocyte-specific high regulatory load
genes that could be novel disease genes and show this to be
the case for 14 of them. Moreover, genes like PLD3, that
has been linked to neurodegenerative diseases and studied
in the context of neurons, is identified as monocyte-specific
high regulatory load gene in our analysis. This suggests that
PLD3’s association to neurodegenerative diseases might be
related to neuroinflammatory component of these diseases,
similarly as has been shown for many Alzheimer’s disease-
associated genetic variants that are enriched in enhancer re-
gions active in inflammatory cells (49).

On the other hand, the enrichment of disease genes as-
sociated to many systemic diseases across the high regula-
tory load genes of most cell types further highlights the need
to find interventions to these diseases at whole-body level.
Moreover, obtaining epigenomic data from diseased cell
types or cells responding to different external signals could
provide further interesting target genes for future analysis.
In particular, the profiling of previously uncharacterized
disease related cell types such as dopaminergic neurons in
context of Parkinson’s disease could reveal entirely new in-
sights into the underlying epigenetic mechanisms of the dis-
ease development (50).

Our comparison of high regulatory load and super-
enhancer genes (Figure 5) suggests these features to be two
sides of the same coin and a less exclusive definition of these
key genes might be beneficial for future analysis. The high
enhancer load of the selected genes is largely a reflection of
binding of multiple TFs in the regulatory regions of these
genes as indicated by the correlations in Figure 2A. Sim-
ilarly, Joshi has found TF hotspots to be enriched for en-
hancers and consistently, Siersbak et al. have shown super-
enhancers to be enriched for TF hotspots (12,51). These
findings together with the increased occurrence of these
high regulatory load genes in more pathways than expected
by chance and with increased betweenness centrality within
liver disease gene network (Figure 6) lead us to propose the
central role of these genes in regulatory networks as a pos-
sible explanation for their increased likelihood for disease
association. The high regulatory load genes appear to serve
as integration points within and between pathways, possibly
also at the post-transcriptional level (Figure 7). Indeed, re-
cent work by Hnisz et al. showed embryonic stem cell super-
enhancers to consist from several constituents that together
serve as binding platforms for a number of TFs to merge
signals from multiple signaling pathways (52).

In conclusion, the central role of high regulatory load
genes as signal integrators comes with an inherent feature of
high enhancer load that can be taken advantage of to iden-
tify the genes through epigenomic profiling in a cell type-
selective manner. In the future, an integrative approach us-
ing high regulatory load together with other features such
as network centrality, post-transcriptional regulation, and
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expression data could be used to prioritize the previously
unstudied genes in terms of their relevance for disease.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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48. Georgi,B., Voight,B.F. and Bućan,M. (2013) From Mouse to Human:
Evolutionary Genomics Analysis of Human Orthologs of Essential
Genes. PLoS Genet., 9, e1003484.

49. Gjoneska,E., Pfenning,A.R., Mathys,H., Quon,G., Kundaje,A.,
Tsai,L.-H. and Kellis,M. (2015) Conserved epigenomic signals in
mice and humans reveal immune basis of Alzheimer/’s disease.
Nature, 518, 365–369.

50. Portela,A. and Esteller,M. (2010) Epigenetic modifications and
human disease. Nat. Biotechnol., 28, 1057–1068.

51. Joshi,A. (2014) Mammalian transcriptional hotspots are enriched for
tissue specific enhancers near cell type specific highly expressed genes
and are predicted to act as transcriptional activator hubs. BMC
Bioinformatics, 15, 6591.

52. Hnisz,D., Schuijers,J., Lin,C.Y., Weintraub,A.S., Abraham,B.J.,
Lee,T.I., Bradner,J.E. and Young,R.A. (2015) Convergence of
Developmental and Oncogenic Signaling Pathways at Transcriptional
Super-Enhancers. Mol. Cell, 58, 325–370.

 at U
niversity of L

uxem
bourg on Septem

ber 3, 2015
http://nar.oxfordjournals.org/

D
ow

nloaded from
 



Galhardo et al.: Cell type-selective disease-association of genes under high regulatory load 

 

 

Cell type-selective disease-association of genes under high 

regulatory load 

Mafalda Galhardo, Philipp Berninger, Thanh-Phuong Nguyen, Thomas Sauter and Lasse 

Sinkkonen 

Supplementary Information 



Galhardo et al.: Cell type-selective disease-association of genes under high regulatory load 

Supplementary Figures 

 

Supplementary Figure S1: TF load enriches similar bins of enhancer load. Heatmaps of the 

hypergeometric distribution enrichment significance (adjusted -log10p-value) of genes binned by 

TF load (y-axis) across different bins based on enhancer load (x-axis) for 9 ENCODE cell lines 

(from top to bottom, left to right: HUVEC, HCT116, MCF7, A549, HeLaS3, H1hESC, HepG2, 

K562 and GM12878). Genes were sorted by regulatory load and grouped in bins (y- and x-axis). 

Bottom or left side bins contain genes with lower regulatory load than top or right side bins. Bins 

denoted with “1” contain genes with no associated TF or enhancer. The enrichment significance 

(adjusted -log10p-value) is depicted by the color gradient, increasing from yellow to red (values ≥ 

50 appear in red). Dark grey represents (adjusted -log10p-value) < 1.3, not considered significant. 

The significance is evident along the diagonal for all 9 cell lines, denoting the concerted increase 

between TF and enhancer load, with genes in bins of low TF load enriching the highest for genes 

in bins of low enhancer load and vice-versa, genes of high TF load enriching the most for high 

enhancer load genes. Supplementary File 5 contains tables with the enrichment significance 

(adjusted -log10p-value) obtained and the exact TF load per bin (vertically) or enhancer load per 

bin (horizontally) for each of 9 cell lines. 

 

Supplementary Figure S2: High enhancer load genes enrich for disease association also 

with more stringent disease gene groups. Heatmaps of the hypergeometric distribution 

enrichment significance (adjusted -log10p-value) of genes binned by enhancer load across 139 

samples. Left side bins contain genes with lower enhancer load than bins on the right side. The 
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enrichment significance (adjusted -log10p-value) is depicted by the color gradient, increasing 

from yellow to red. Grey represents (adjusted -log10p-value) < 1.3 (equivalent to p-value > 0.05), 

not considered significant. The significance is evident on the bins of highest enhancer load on the 

right side, with orange and red colours. (A) Results using the set of curated disease genes from 

DisGeNET version 2, minimum association score of 0.2 (7110 genes of which 5853 were in the 

background set of 19238 protein coding genes). (B) Results using the set of disease genes from 

the OMIM database, as of June 2015 (4557 genes of which 3483 were in the background set of 

19238 protein coding genes). 

 

Supplementary Figure S3: Genes with highest enhancer load vary across 139 samples. 

Heatmap of the Jaccard similarity index for the pair-wise comparison of genes in the top 

enhancer load bin across 139 samples. The heatmap is mirrored along the diagonal. Blue denotes 

few common while red denotes many common genes on the two sets of highest enhancer load 

genes from any two samples. The predominance of the blue colour reflects an overall low 

similarity between the genes with highest enhancer load across samples (average similarity lower 

than 30%). The bottom and right-side color bars denote groups of samples with the same tissue 

of origin, color-coded on the bottom.  

 

Supplementary Figure S4: Cell type-selective disease-association of genes under high 

regulatory load. Heatmap from Figure 4 showing the statistical significance (adjusted -log10 p-

value) of the disease association enrichment of the high enhancer load genes across 139 samples 
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and 174 diseases with names of the diseases and samples written out for each case. For more 

details, see Supplementary File 4. 

 

Supplementary Figure S5: Liver disease gene network. Illustration of the reconstructed liver 

disease gene network containing 3,775 genes and 8,278 interactions. Red nodes represent the 

high regulatory load genes from the two liver samples (primary liver (E066) and HepG2) and 

grey nodes the other liver disease genes and their first neighbours in the network. A higher 

intensity of red color is observed on the central area of the network, reflecting the higher 

betweenness centrality of the high regulatory load genes as described in Figure 6. 

 

Supplementary Figure S6: HRL genes have longer CDS and transcripts on average. (A) 

Distributions of CDS lengths in 139 sets of high enhancer load genes from different samples 

(each depicted by a green line) and in a background set of 16307 CDSs (depicted by the black 

line). The average CDS length of all mean lengths of the high enhancer load genes was 1816 nt, 

24% longer than the average of length of 1455 nt for the background set genes. (B) Distributions 

of unspliced transcript lengths in 139 sets of high enhancer load genes from different samples 

(each depicted by a green line) and in a background set of 16307 unspliced transcripts (depicted 

by the black line). The average unspliced transcript length of all mean lengths of the high 

enhancer load genes was 105452 nt, 94% longer than the average length of 54451 nt for the 

background set genes. (C) The CDS lengths (y-axis) the 3’UTR lengths (x-axis) of the transcripts 

do not show correlation. 
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CHAPTER 4. RESULTS

4.4 Manuscript III - “IDARE2 - Simultaneous visualization

of multi-omics data in Cytoscape”

To facilitate data integration with network visualization, IDARE was upgraded

into IDARE2, a versatile tool to i) automatically generate image metanodes from

diverse user provided inputs and ii) mapping the generated metanodes onto Cy-

toscape networks through a Cytoscape app with the capability of disentangling

large networks into connected sub-networks that are easier to inspect and interpret.

Moving between sub-networks can be done by clicking on linker nodes.

This work was mainly undertaken by Thomas Pfau (thomas.pfau@uni.lu)

and Jake Lin (jake.lin@uta.fi). My contribution to the work includes the sharing of

the initial ideas, discussions and refinements during the generation process and

extensive testing of the metanode generation tool.

Manuscript III is integrally presented starting from page 148.
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IDARE2 - Simultaneous visualization of multi-omics data in Cytoscape

Thomas Pfau 1,2, Jake Lin 3, Mafalda Galhardo 1 and Thomas Sauter 1,∗

1Life Science Research Unit, University of Luxembourg, 162a, Avenue de la Faïencerie, 
L-1511 Luxembourg, Luxembourg
2Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Meston Building, AB24
3UE, Aberdeen, United Kingdom
3BioMediTech, University of Tampere, Biokatu 8, 33520 Tampere, Finland 

ABSTRACT
Summary: Visual integration of experimental data in metabolic 
networks is an important step to understand their meaning. With 
genome scale metabolic networks containing thousands of 
reactions this task becomes increasingly difficult. While databases 
like KEGG and BioCyc provide curated pathways which allow a 
navigation of the metabolic landscape of an organism, it is rather 
laborious to map data directly onto those pathways. There are 
programs available using these kind of databases as a source for 
visualisation, however these programs are then restricted to the 
pathways available in the database. Here, we present a way to 
overcome these limitations allowing the researcher to visualise multiple 
data types and time scales in a non-hairball network with linker nodes 
between subnetworks. The tool can be applied for visualisation of 
data on any type of network and is not restricted to biological networks. 
Availability: http://idare-server.uni.lu 
Contact: thomas.sauter@uni.lu

1 INTRODUCTION

With the ever increasing amount of 'omics' data it becomes 
increasingly important to handle and combine multiple sources of 
data and interpret the experimental findings. Generally, 
bioinformatic and statistical processing of omics data yields a 
set of individual targets, often leaving an open gap to 
interpretation. Placing those targets into context and visualizing 
the measurements is key to obtain ideas about the effects of a given 
treatment. With IDARE (Galhardo et al.(2014)) we introduced an 
approach to combine numerous sources of information and 
visualize them in the context of metabolic networks. The 
concept allows the simultaneous interpretation of multiple 
experiments and simulations in the context of biological 
networks, and thus provides an integrative way of visual 
inspection. Here we extend this concept and provide a convenient 
possibility for automatically generating images for various types of 
data and provide an app to incorporate the images into Cytoscape 
(Shannon et al. (2003); Saito et al. (2012)) networks. With the 
increasing complexity and completeness of network 
∗to whom correspondence should be addressed

definitions these networks tend to become very dense, making the 
visual inspection difficult. Therefore, we provide in addition a 
method to create connected subnetworks within cytoscape in a way 
similar to the connections available in KEGG (Kanehisa et al. 
(2014)) or BioCyc (Caspi et al. (2014)). This allows for a better 
inspection of data in the view of large networks, while preserving 
the network structure.

2 RESULTS
The present tool is divided into two distinct parts. The generation of 
multiomics node images is implemented in MATLAB and available 
via a webserver. The node generation is run on the high 
performance computing facility (Varrette et al. (2014)) of the 
University of Luxembourg, and can thus handle a large amount 
of simultaneous requests. The second part is the cytoscape 
application which provides integration of the generated nodes into a 
cytoscape network, along with several convenience functions.

1. Generation of multiomics visualisation. The IDARE2 webserver
(found at http://idare-server.uni.lu) provides a clear interface that 
allows users to upload processed sets of data along with their 
description. From the datafiles the webserver then generates image 
nodes combining the different datasets automatically. The user can 
select from several ways of data representation within the nodes, 
including heatmaps, time series, simple itemized representation and 
graphs. The implementation provides interfaces that allow an easy 
addition of further data types which the authors are happy to create 
on request. The input format for all types of representation, except 
graph representation, is the same, thus allowing the user to quickly 
create multiple different layouts for data. Input data has to be 
provided as excel sheets or as tab separated value files. To address 
unintuitive identifiers (e.g. entrez gene ids for gene nodes) which 
are often seen in metabolic networks, the user can provide two IDs 
for each entry, with one used for matching the nodes and the other 
being presented in the image node (label). As a proof of versatility, 
the IDARE2 tool successfully reproduces the nodes manually 
generated in the original IDARE publication (Figure 1) and can be 
applied to other data without effort. In addition to the image nodes, 
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Figure 1. The data used in the original IDARE paper (Galhardo et al.
(2014)) visualized within cytoscape using automatically generated nodes. 
The application automatically generates legends describing the nodes based 
on the information provided in the data files and during upload.

automatically generated Legends explain the layout of any 
generated node. This allows the use of inhomogenous datasets, 
in which multiple node types will be generated and legends for 
each node type, which can be especially useful, if experimental 
data is not available for all genes of interest. After submission of 
the data, the user will be informed upon successful generation 
of the image nodes and the nodes can then be downloaded. 
Further information on file formats and additional details can be 
found in the user guide (http://idare-server.uni.lu/UserGuide.pdf).

2. Cytoscape Application. The cytoscape application consists of
two main functionalities:

1. Mapping of the generated image nodes
2. Generation of connected subnetworks from a large network

The first functionality will use the identifiers provided 
during node generation to map the created images to nodes 
in the cytoscape network. To allow a greater flexibility, the 
user is asked which column of the network to use to map the 
images. This mapping is associated with a specific visualization 
style that includes the mapping functions. The second 
functionality of the application allows researchers to disentangle 
the hairball structure often prevalent in complex networks. 
Subnetworks can be generated based on common properties of 
nodes. Both methods are not restricted to metabolic networks, 
and while the image mapping is generally applicable, the 
subnetwork generation requires the network to represent a 
bipartite graph. This allows the application to diverse types of 
networks ranging from metabolic networks (metabolites and 
reactions), to social networks (individuals and groups) and others. 
The user will be asked to select a component type and an 
interaction type, which are used to determine subnetwork 
boundaries. It is assumed that interactions can directly belong to a 
subnetwork (e.g. metabolic pathway), while compounds can be 
shared. Since the hairball structure is often associated with highly 
connected compounds, the application allows the selection of 
compounds which should be excluded from the subnetworks (thus 
disentangling them). To retain the overall structure of the network, 
linker nodes are created between compounds shared by interactions 
belonging to different pathways.

This allows the user to follow the network structure and easily 
identify connections between different subsystems. The links can 
be followed by double clicking and opening the target network 
view (if existing). Finally, the app provides a utility function which 
allows the user to easily add gene and protein nodes to metabolic 
networks from SBML files. The app is able to read gene-
associations provided in the common COBRA style 
(Schellenberger et al. (2011)) and can interpret bioql annotations 
for enzymes and genes (like provided by e.g. HMR (Mardinoglu et 
al. (2014))).

Availability. The IDARE multiomics node generation webserver is 
freely available at idare-server.uni.lu. Images are generated on the 
HPC cluster of the University of Luxembourg (Varrette et al. 
(2014)). The cytoscape application can be downloaded from the 
cytoscape app store or directly from: idare-server.uni.lu/
IDARE.zip. A User Guide is also available on the website 
which gives further usage details. The image generation software 
is implemented in MATLAB and available on request.
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5 Discussion and perspectives

5.1 Overview

The work described in this thesis is centred on the links between genome

regulation, metabolism and disease, investigated with integrative approaches. The

interplay between the genome, signalling and metabolism orchestrates such diver-

sity of cellular responses and is altered upon disease. Studying this interplay and its

(dys)regulation is highly relevant for understanding the pathophysiology of an organ-

ism. First, we focussed on the interplay between the gene regulatory and metabolic

networks during adipocyte differentiation, a phenotypic change with considerable

impact in metabolism and homeostasis, and related with several diseases including

metabolic syndrome and obesity. In a second case, we explored the relation be-

tween regulatory load and association to disease in order to assess whether the

transcriptional control of a gene could predict disease association, thereby contribut-

ing to improve current disease gene prioritization routines. Additionally, we looked

for properties of the high regulatory load genes differentiating them from other

genes, which could relate to the observed link to disease. In both cases, integration

facilitated extracting insights from the data relationships, and our systems biology

approaches represent one step closer into truly integrative and comprehensive

analyses, which we believe are necessary to improve our understanding of human

functioning in health and disease, and will become routine in the coming years.

Thereby, our integrative analysis allowed the simultaneous visualization of multiple

omics data types, the extraction of links between multiple objects and biological

processes and the understanding of their relationships. In a third case, IDARE2 was

presented, a tool envisioned precisely to aid on integrating multi-omics data into

metanode images and rendering them on biological networks for quick visualization

and inspection of properties and relationships. A tool providing such capability

is highly useful due to the vastness and complexity of biological processes and

networks, with many components and interactions which make it unfeasible for

human perception to understand without visual support.

In “Manuscript I”, we sought an integrated study of adipocyte differentiation

with focus on the interplay between the gene regulatory and metabolic networks,

highlighting several dyslipidemia genes to be under combinatorial regulation by the

TFs PPARγ, CCAAT/enhancer-binding protein (C/EBP)α or liver X receptor (LXR)α

and the miRNAs miR-27a, miR-29a or miR-222. Already here, we interrogated

whether the regulatory load was related with disease association, observing an

enrichment for vascular-disease-associated genes among metabolic genes with
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5 Discussion and perspectives

most TFs in a dataset of 10 TFs in HUVEC cells. We believe such integrative

approach is more adequate to studying biological processes than very focussed or

single factor approaches, which fail to expose how the different components interact

within a system and should be decreasingly employed for the study of complex

biological phenomena.

In light with work prior and contemporary to “Manuscript I” [536–547, 557–

560], first published online in November 2013, our analysis is comprehensive and

innovative, with both expanded content diversity and integration level.

In regards to content, we experimentally collected data covering a time course

of gene expression during adipocyte differentiation, observed to be highly dynamic;

the genome-wide binding profiles of three key adipogenic TFs, PPARγ, C/EBPα

and LXRα , in adipocytes, observing between > 2000 and > 10000 putative target

genes, a number attesting for their prominent regulatory role in adipogenesis; the

genome-wide profile of the H3K4me3 histone modification mark in pre-adipocytes

and adipocytes, with little observed changes, likely due to the fact that SGBS pre-

adipocytes are already committed into differentiating only to adipocytes; and the

target genes of the miRNAs miRNA-27a, miRNA-29a and miRNA-222, with a few

dozens of key metabolic genes involved in lipid metabolism presenting combinatorial

regulation by the miRNAs and TFs.

Overall, our analysis spanned multiple layers from the regulation of transcript

levels in adipogenesis.

Combining the experimental data with metabolic modelling (CBM), we used

the time course gene expression and the method of Shlomi et al. [516] to predict

the metabolic activity that parallels the transcriptional cascade largely orchestrated

by PPARγ and C/EBPα and ultimately leading to lipid-loaded mature adipocytes.

Such prediction of metabolic activity associated with a cellular response (here differ-

entiation) remains still relatively little employed by the scientific community, while

technically relatively easy and feasible in most cases. As current proteome activity

and metabolic flux measurements do not cover a large portion of the components,

metabolic modelling provides a valuable resource for assessing metabolic activity

based on already known relationships and newly acquired data, possible to test

and improve with additional experiments, namely metabolomics, and to predict

perturbation outcomes and generating hypothesis about observed phenomena.

In regards to data integration, we then condensed all data into metabolic

pathways, providing an integrated view of adipogenesis through the representation

of custom gene metanodes with the different gene-related data and metabolic

predictions for the reaction activities from pre-adipocytes to adipocytes embedded

on the pathways. This representation allows to percept the flow of metabolic changes

upon differentiation and to inspect the network distribution and convergence of the
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above mentioned regulators on metabolic genes (http://systemsbiology.uni.

lu/idare.html), being considerably more effective than long lists, tables and

individual plots in exposing events, players and relationships.

Such data integration and visualization lead to the perception of a shared and

often combinatorial regulatory load on dyslipidemia genes in adipocytes, prompting

us to assess the relation between the gene regulatory load and the disease asso-

ciation in a larger dataset. For this purpose, we took public ChIP-seq data from

the genome-wide binding of 10 TFs on HUVEC cells, observing an enrichment for

association with vascular diseases among metabolic genes with between 6 and 9

TFs (“Manuscript I”, page 62), suggesting that genes relevant for disease are under

high regulatory control.

Based on this evidence, in order to show that the link between high regulatory

load and disease association is general, we then took public TF and active enhancer

data from 9 cell lines, the latter including as well data from additional 139 samples

spanning 96 tissues and cell types, and tested the enrichment for association with

multiple diseases based in DisGeNET, as a function of the regulatory load.

Therefore, in “Manuscript II”, we sought the link between the regulatory load

of a gene and the likelihood for being disease-associated, observing that genes

under higher regulatory load enrich for diseases in a cell type-selective manner

across samples, revealing a general principle of intrinsic higher control of key genes,

both with TF and active enhancer data, which were positively correlated.

Additionally, we highlighted several properties segregating high regulatory

load genes from other genes, such as an average higher participation on KEGG

pathways and increased betweenness centrality on a liver disease network for the

liver high regulatory load genes, both suggesting HRL genes as signal integrators

within biological networks. Of note, HRL genes also presented longer 3’UTRs

harboring more binding sites for diverse miRNA families, suggesting a concomitant

higher post-transcriptional control. We therefore propose the epigenomic mapping

of active enhancers, such as the genome-wide profiling of the H3K27ac mark, as a

valuable resource to consider in addition to traditional methods for the prioritization

of disease gene candidates, including genome-wide association studies (GWAS)

which often provide results with little actionable outcomes.

In light with work prior and contemporary to “Manuscript II” [188, 306, 307,

561–563], we present the analysis of a generally larger dataset, covering more

cell types than usual, and broader in scope, for instance by considering many

diseases and assessing the association to disease beyond genetic variation, as

well as exposing other properties of the high regulatory load genes differentiating

them from other genes, such as higher average participation on KEGG pathways,

betweenness centrality and post-transcriptional regulatory potential. Thereby, we
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could show a general principle of higher regulation on disease-associated genes, for

which further studies to dissect the mechanistic features and evolutionary properties

are necessary.

The work presented in “Manuscript II” illustrates the importance and useful-

ness of open access projects, as all the data therein analyzed were obtained from

public resources, namely the ENCODE project [12], the BLUEPRINT Epigenome

project [316] and the NIH Epigenomic Roadmap project [317]. Indeed, in their inte-

grative analysis of 111 reference human epigenomes [317], the authors focussed on

phenotype-associated variants from GWAS studies of diverse traits and disorders

and show that “enhancer-associated marks have the greatest ability to distinguish

tissue-specific enrichments for regulatory regions, but promoter-, open-chromatin-

and transcription-associated marks also have numerous significant enrichments,

suggesting that disease variants affect a wide range of processes”. This observa-

tion brings value to the use of active enhancer data to assess cell type-selective

enrichment for disease association as described in “Manuscript II”. Furthermore,

it suggests that considering additional marks for transcribed (H3K36me3), promoter

(H3K4me3 and H3K9ac) and open chromatin (DNase peaks) regions could be

useful to capture associations outside annotated enhancer regions. In this way,

it would be interesting to perform a similar disease-enrichment analysis ranking

genes based on the overall status from enhancer, transcribed, promoter and open

chromatin data.

“Manuscript I” and “Manuscript II” exemplify how integrative approaches

offer the possibility to handle more and varied data while being capable to provide

insights about data relationships in better ways, making it easier to understand

processes or situations. Currently, visualization tools for multi-omics data integration

remain few and limited, often requiring a considerable manual effort and the use of

multiple tools in order to obtain satisfactory outputs. Further extending this attempt

to creating routines for more integrated work, we developed IDARE2(1), described

in “Manuscript III”, a tool for automatically generating metanodes depicting user-

provided multi-omics data including a Cytoscape app for mapping those metanodes

into networks that can be collapsed into sub-networks, such as those defined by

metabolic pathways, easier to navigate and analyze and inter-exchangeable through

clicking on connector nodes. IDARE2 image metanode generation is extremely

versatile, allowing for multiple different input types, which will be automatically

arranged into a grid based on user-defined data types and space filling. Upon input

data upload, the image generation is done over the HPC facility of the University

of Luxembourg [564] without any required human action. After receiving an e-mail

notification, the generated metanodes can be downloaded and mapped onto the

(1)http://idare-server.uni.lu/
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respective network using IDARE2 Cytoscape app, which then allows for data in-

spection and network analysis, including with other Cytoscape functionalities and

apps. Although several freely available tools for mapping data (most often expres-

sion) onto pathways exist [527, 565–568], hardly any of them provides the flexibility

for data inputs as IDARE2 with custom metanode generation and full integration

with network visualization. IDARE2 is thereby an easy-to-use intuitive tool that

will aid researchers visualizing and understanding their data, increasingly complex.

We believe that routines such as IDARE2 custom metanode generation and rapid

network visualization will become standard steps in biological data analysis in the

near future.

5.2 Adipocyte-related work

Here we studied the differentiation process of adipocytes, known to become

impaired with obesity and metabolic syndrome [547]. While the study of adipocyte

functioning has provided valuable insights including therapeutic targets, in regards

to its association to complex diseases such as obesity, T2DM and metabolic syn-

drome, in the majority of cases, dietary habits and lifestyle are the major causes

for developing such diseases, in particular those habits already during childhood.

Therefore, the most effective methods for decreasing the incidence of such diseases

include creating awareness among the population and educating for diverse and

equilibrated nutrition with abundant exercise.

Currently, more importance goes beyond adipocyte differentiation itself, to-

wards comparing the regulation and metabolism of adipose tissue in lean versus

obese subjects, with and without T2DM, metabolic syndrome and other related

disorders. With clinical data already available at a large-scale, we believe this

comparison should be relatively smooth and could provide valuable insights into

the regulatory and metabolic alterations occurring during the progression from an

healthy lean individual to an overweight diabetic patient, including through simula-

tion of different lifestyles, diet and therapeutics. Our integrated analysis could serve

as example or basis for such approaches.

On the interface between cell identity and dynamic adaptation to stimuli,

recent work by Fisher et al. [569] elegantly exposes the dynamic genomic response

of SGBS adipocytes to TNF stimulation mediated by NFκB (RELA, p65 subunit). The

authors show an induction of inflammatory genes associated with newly established

super-enhancers at the expense of specific genes with cofactor loss from adipocyte

super-enhancers. This phenomenon offers a bridge between the inflammatory state

and insulin resistance, shedding light into the mechanisms likely taking place in low

grade chronic inflammation states such as obesity, in which pro-inflammatory signals
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lead to adipocyte dysfunction including impaired insulin metabolism [547], possibly

through similar mechanisms of adipocyte-super-enhancer silencing upon cofactor

redistribution. Furthermore, the authors provide evidence for a cell type-specific

repression mechanism in which NFκB selectively redistributes cofactors from high

occupancy enhancers, suppressing super-enhancer-associated cell identity genes,

which they show also with public data for another four cell lines (A549, IMR90, HeLa

and HUVEC), proposing the selective cofactor redistribution from high occupancy

enhancers as a general mechanism involved in transcriptional repression associated

with activation of signal-dependent transcription factors, namely nuclear receptors.

This observation further expands our notion of a dynamic genome regulation, largely

revoking a static and rigid idea of chromatin.

5.2.1 Modelling adipocyte metabolism and adipocyte models

During the course of this thesis, two curated adipocyte models were published:

one in the context of a multi-tissue model from adipocytes, hepatocytes and my-

ocytes, by Bordbar et al [570] in 2011, pioneeringly showing the awareness of

the authors for the need of integrative approaches modelling multiple organs; and

the second in the context of a comprehensive proteomic dataset used to build

an adipocyte-specific metabolic model, by Mardinoglu et al. [571] in 2013. Both

Bordbar et al. and Mardinoglu et al. used their models to study clinical cases com-

paring non-obese versus obese diabetic patients and lean versus obese patients,

respectively.

Therefore, in Bordbar et al., transcriptomic data from the muscle, liver and

adipose tissue of diabetic and non-diabetic gastric bypass surgery patients, in

fasting state, was obtained and used to build context specific networks for those

patients, using GIMME [518], an algorithm mapping transcription data onto a

reconstruction and removing reactions associated with absent transcripts, and FVA

to further remove reactions that cannot carry flux and determine the flux range

of the remaining. The specific multi-tissue models contain between 587 and 705

intracellular reactions and show differences at several pathways and important

individual reactions for the obese non-diabetic versus obese-diabetic patients,

including reactions of metabolites elevated in the blood of diabetic obese, such

as fatty acids and lactate, with many active reactions from fatty acid oxidation and

carnitine shuttle and inactive lactate dehydrogenase in the hepatocyte and myocyte

models of the diabetic obese patients (liver and muscle are unable to utilize lactate

as a carbohydrate source).

In Mardinoglu et al. proteome data was used to derive a set of proteins and

respective enzymes present in adipocytes. Subsequently, transcriptomic data from
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obese- and non-obese patients (304 patients in total) were used to incorporate

differences in lean and obese metabolism in the model (209 female, 95 male)

with manual addition of reactions to generate a connected network (in which each

reaction can carry flux) which they named iAdipocytes1809, containing 1809 genes,

6160 reactions and 4550 metabolites, a number much larger than those observed in

the multi-model of Bordbar et al., including adipocyte-specific metabolic data and a

comprehensive review of lipid metabolism with 59 fatty acids. The model was used

to predict lipid droplet formation showing impaired metabolism of NEFA and large

differences in lipid droplet formation and acetyl-coA metabolism in lean subjects

compared to obese subjects.

While both models can be freely obtained, manual curation and ID conver-

sions would be necessary to compare them. A manual reconciliation step to merge

these two models also with those we derived for SGBS cells and inspecting to which

level the SGBS models capture adipocyte metabolism would be useful to derive

a more complete model and to assess to which extent our approach is valuable.

Such reconsolidated model could prove useful for developing comprehensive and

predictive models for testing metabolic syndrome related clinical cases. Or at least

considering the reactions in these models for future studies. Indeed, our SGBS

models would need literature curation and additional experimental data in order to

validate the presence of the reactions based on gene expression, and also to guar-

antee no absent reactions occur during adipogenesis. In this context, metabolomics

measurements including the uptake rates of exchange metabolites would allow to

further constrain the model, while the uptake of metabolites not present in the cell

culture medium could be set to a null flux.

5.2.2 BCAAs and adipocytes

The association between obesity, T2DM and insulin resistance is known

from long [Stern1986 , 536, 537, 540], without however having been possible to

fully dissect cause and effect order of events, due to the complex setting of these

morbidities.

Elevated plasma levels of BCAAs in obese and diabetic patients have been

reported for many years [572–574], the causes and mechanisms remaining largely

unknown. More recently, the observation that the decrease in the plasma levels of

BCAAs following gastric bypass surgery was one of the strongest factors relating

with improved insulin resistance further lead researchers to pursue the understand-

ing of the role of BCAAs and their catabolism in the setting of obesity and metabolic

syndrome [575, 576].

In 2012, Newgard proposed a model in which BCAAs and fatty acids (FAs)
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synergize for the setting of metabolic diseases in a high fat diet [577], with a

decreased BCAA catabolic capacity by the adipose tissue in obesity (e.g. de-

creased BCAT2 and BCKDH expression and enzymatic activity, respectively), while

increased in muscle, leading to increased plasma levels of the BCAAs and incom-

plete degradation intermediates, namely C3 and C5 acyl-carnitines with reduced

efficiency of fatty acid and glucose oxidation.

As the carbohydrate and fatty acid burden increase with excessive food intake,

the progression of a lower BCAA catabolism by adipose tissue increases, further

worsening insulin resistance. Newgard also suggests the insulin-sensitizing effects

of PPARγ agonists might also relate with its effects in restoring the expression of

BCAA catabolic genes.

In our integrated analysis of SGBS adipocyte differentiation, metabolic mod-

elling based on the gene expression between pre-adipocytes and adipocytes pre-

dicted an activation of the BCAA pathway upon differentiation. In our in vitro setting

where the SGBS cells are limited to glucose, amino acids and known supplements

from the media, throughout the twelve day course of the differentiation, it is likely that

cells take up BCAAs, essential amino acids, for cellular functions, namely protein

turnover but also possibly via their catabolism for the generation of acetyl-coA (from

isoleucine and leucine) and propionyl-coA (isoleucine and valine), which could be

precursors for fatty acid synthesis, and acetoacetyl-coA (leucine), which could be

used for cholesterol synthesis, in agreement with a differentiation-induced predicted

activation of the cholesterol synthesis pathway based in our metabolic modelling, or

an intermediate in ketone body formation.

Interestingly, our integrated analysis of the regulatory and metabolic networks of

adipocytes allowed us to realize the combinatorial control by PPARγ and C/EBPα

as well as miRNA-29a and miRNA-222 in DBT, member of the BCKDH complex

from the BCAA degradation pathway, while other two subunits of the complex,

BCKDHB and DLD appear targetted by the three TFs in study, PPARγ, C/EBPα

and LXRα, supporting a strong regulation on the BCAA degradation rate limiting

step which might well underlie the observed decreased catabolism of BCAAs in

adipose tissue of obese individuals.

Interestingly, miRNA-29a has been shown to be up-regulated in diabetic rats

[485] with over-expression leading to insulin resistance in 3T3-L1 adipocytes.

In similar lines, more recently, Bagge et al. [578] showed on human beta-cells

that glucose up-regulates miRNA-29a which in turn decreases glucose-stimula-ted

insulin secretion, suggesting the implication of miRNA-29a in the progression from

impaired glucose tolerance to type 2 diabetes.

Additionally, miR-222 has recently been reported as a negative regulator of

adipogenesis in primary hMSCs [579], in agreement with our observations in SGBS
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cells.

Therefore, these findings together with our finding of miR-29a targeting DBT

(with miR-222) request for an assessment of whether obesity up-regulates miR-29a

(and miR-222) in humans, which in turn could underlie the reduced catabolism of

BCAAs in the adipose tissue of obese subjects.

5.2.3 Adipocyte-browning could improve energy expenditure

Brown adipose tissue, recently shown to be present and active in small depots

of adult humans [412], has acquired much interest as a contributor for body energy

expenditure, with raised hopes against obesity and metabolic syndrome.

A curated metabolic model for brown adipose tissue is currently unavailable,

and a rigorous model building and curation process to derive a precise model could

be very useful to test and simulate the ranges of energy dissipation achieved by

activated brown-adipose tissue and the conditions in which it would benefit an

individual, a topic which is still largely discussed in the community [580, 581].

Such task was envisaged during the course of the thesis, to compare white

and brown adipocyte metabolism and regulation and derive adipocyte models for

the two. Due to the scarcity of human brown-adipocyte data available at the time

planned for that task and based on interesting results from other work, focus was

given to studying the link between high regulatory load and disease association.

Comparing white and brown adipocyte differentiation, their regulation and

meta-bolism and link to disease is therefore a very interesting and promising en-

deavour in regards to finding the potential of brown-adipocytes, or perhaps more

indicated, of browning, to increase energy expenditure and reduce the burden from

obesity and co-morbidities [424, 582, 583]. The comprehensive adipocyte model by

Mardinoglu et al. could be a starting point.

5.2.4 Perspectives regarding adipose tissue

Adipose tissue is much more than a storage organ, considerably influencing

body homeostasis. Despite many years of research focussing in adipocytes, a

resource where to integratively explore and simulate the physiology and metabolism

of the adipose tissue in concert with the organism is still missing. As said above,

indeed a shift towards multi-tissue or whole organism coupled models is likely to

occur in the coming years, allowing to understand how the different tissues influence

each other and integrate their functions within the body.
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5.3 Work related with high regulatory load genes and link

to disease

Here we investigated the link between the transcriptional control of a gene

and its likelihood to be disease-associated, taking advantage of public ChIP-seq

data from the genome-wide binding of TFs or from the location of active enhancers

across multiple cell types. Indeed, we observed a general principle that genes

under higher regulatory control enrich for disease association across cell

types, here shown both via the number of associated TFs and enhancers.

In fact, disease-associated variation converges in regulatory DNA, systemati-

cally perturbing TF recognition sequences [25, 584, 585], with 90% locating outside

of coding regions and 60% of human autoimmune variants locating within active

enhancers of immune cells [561]. In this sense, genes being controlled by more

enhancers would have a higher chance of the enhancers containing a SNP and it

could be that an accumulation of individual low impact SNPs across regulatory re-

gions, including enhancers, of genes under high regulatory load could synergistically

contribute to a disease phenotype, relating with their higher association to disease.

Enhancers evolve faster than coding regions and the evidence is for evolution being

mostly driven by changes in gene regulation [586–588]. Indeed, the enrichment

for disease-associated polymorphisms has been shown for highly interconnected

genes in disease specific networks [589], derived from a protein-protein interaction

network and differentially expressed genes in 13 complex diseases.

We also observed enrichment for disease association based on genes for

which the evidence was not genetic variation, such as “altered expression” and

“biomarker”. And when looking at the expression of genes based on the disease

association type, they all indeed had an average higher expression compared to

the mean of all disease genes, itself already 1.65-fold higher than that of all genes.

Therefore, besides (and coupled) with a higher regulatory load, a higher expression

also characterizes disease genes.

However, as shown in Figure 5 of Manuscript II (page 130), the overlap

between top high regulatory load and top highly expressed genes is modest (16.6%).

Therefore, a clear next step is to test if highly expressed genes alone enrich for

disease association, to test the enrichment with genes that are both HRL and highly

expressed and compare them in terms of the individual diseases enriched.

In addition, we also showed a higher average participation in KEGG pathways

and a > 2-fold betweenness centrality (the latter of liver high regulatory load genes

in a liver disease network, Figures 6 and S5 of Manuscript II, pages 131 and 144,

respectively), showing the central role of HRL genes in biological networks possibly

as signal integrators [306].
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We then looked at the 3’UTR length of HRL genes in comparison to other

genes (Figures 7 and S6 of Manuscript II, pages 132 and 145, respectively),

observing a 39% increase on the average length (across the 139 samples) with

more binding sites for diverse miRNA families, suggesting a concomitant higher

post-transcriptional regulation. However, this higher 3’UTR length of the HRL genes

does not seem to derive from those genes that are also disease-associated, based

on an average 3’UTR length of 1695 nt for the HRL genes in all samples versus an

average of 1650 nt for those HRL genes in all samples that are disease-associated

(basically not different).

One could then think of methods to prioritize genes for disease association,

and here we highlight the high regulatory load as one promising approach. Gathering

and assessing a large panel of other properties, such as high expression, high

betweenness centrality, degree or yet other network measures, number of miRNA

binding sites and others, could be useful to build a combination of features that would

overall better predict disease-associated genes, and improve current outcomes.

When testing the set of high regulatory load genes across samples with a

set of human gene orthologs from mouse lethal genes, an enrichment for these

lethal orthologs could be observed among the high regulatory load genes, thereby

enriched for disease-associated and essential genes.

In 2014, Benayoun et al. [590] have shown that the H3K4me3 breadth

marks cell identity genes and is associated with higher transcriptional consistency.

The concept of H3K4me3 “breadth” is very similar to that used for defining super-

enhancers, large clusters of many enhancers characterized by a continuous signal

of marks such as Mediator or the H3K27ac. Indeed, as for super-enhancers and

cell identity genes, the authors also report broad H3K4me3 deposition on genes

essential for the identity and function of a cell type. It would therefore be interesting

to know the extent of their overlap and what characterizes their differences in general

terms.

In our analysis, we do take into consideration the H3K4me3 mark presence

nearby the TSS of a gene in order to include it in further analysis, but unfortunately

didn’t look at the H3K4me3 breadth as it had not been reported to have a functional

role at the time of data processing. Therefore, performing peak calling on the

H3K4me3 data using super-enhancer calling settings would allow us to derive the

broad peaks of the H3K4me3, which could be compared to those from H3K27ac.

Additionally, one could also rank genes based on the H3K4me3 number of peaks,

as done for the H3K27ac for the high regulatory load peaks, and perform enrichment

for disease association as well. And even taking the set of genes that associated to

both broad H3K4me3 and H2K27ac and comparing to previous. These are all very

interesting analysis which unfortunately couldn’t be concluded in time.
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The tool GREAT [532] was used to assign TF or enhancer peaks to genes,

based on their “Basal + extension” rule, which defines a basal regulatory domain

per gene containing a basal domain from 5 kb upstream and 1 kb downstream from

the genes TSS which is extended in both directions to the nearest gene’s basal

domain, no longer that 1000 kb. While this setting is likely to capture more realistic

scenarios that a one-to-one peak-to-nearest-gene selection, the extent to which it

captures real interactions remains unknown. In our setting, by using the H3K4me3

mark to filter out genes in closed chromatin, we take one step into the direction of

decreasing false positive associations. In order to obtain experimental evidence

for short and long-range regulatory interactions with gene promoters, which could

regulate their expression, chromosome conformation capture carbon copy (5C)

could be applied, a high-throughput technique to detect looping interactions from

chromosome conformation capture (3C) ligation products [591]. Indeed, 5C maps

were generated for GM12878, K562 and HeLaS3 cell lines from the ENCODE

project, revealing only ≈ 7% of looping interactions to be with the nearest gene

[321], which clearly points out that associations only to the nearest gene are

oversimplified and could fail to reveal regulatory mechanisms.

Comparison to SE-associated genes

Super-enhancers, broad clusters of enhancers, have recently been estab-

lished to associate with cell identity and key function genes, harbouring transcrip-

tional hotspots with extensive TF co-occupancy and transcriptional activity, and

also associated with genetic variants involved in disease [181, 187, 188, 299, 306,

592]. Therefore, a pertinent question would be whether the disease association

enrichments are mainly due to SE-associated genes. As shown in Figure 5 A

of Manuscript II, page 130, this is not the case, with HRL-non-super-enhancer-

associated genes still enriching for disease association, with similar significance

levels.

On average, 67.9% of super-enhancer-associated genes were included in

the top bin of enhancer load from the respective sample, while a lower average

of 24.5% of HRL genes are super-enhancer-associated in the respective sample

(ranging from 13.5 to 37.9%), a value owing to the lower number of super-enhancer-

associated genes (ranging from 300-900) compared to our defined top 10% genes

with highest enhancer load (which we considered to define the set of HRL genes

per sample, ranging from 1200-1800 genes per sample).

An identical analysis ranking genes based on the length of associated peaks

or even combining both the number and length of associated peaks as a surrogate

for the enhancer load would be an interesting check for our current results and
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could prove an asset in the field, being more permissive than the super-enhancer

definition, which might be too restrictive based in the enrichments obtained for

HRL-non-SE-associated genes, while possibly less affected by technical artifacts or

pitfalls.

In fact, the individual disease association enrichments using as input genes

associated to super-enhancers reveals a lower number of diseases with a statistically

significant enrichment across samples, likely due to the lower set size. In some

cases, SE enriched for tissue-related diseases for which statistically significant

enrichment with all HRL genes was not achieved, such as for late onset Parkinsons’s

disease based on super-enhancer data from the substantia nigra.

We observed a low overlap of the genes with highest enhancer load across

the 139 samples considered, with an average Jaccard index similarity < 30% for

the genes in the top enhancer load bin for any sample pairs, reflecting the cell

type relatedness and exclusivity degree of the set of genes with more enhancers

in each cell type or tissue, which could then relate with cell type or tissue specific

functions. These results are in agreement with those found by the authors of the

Roadmap Epigenomics Consortium article describing 111 reference epigenomes

(refer to article’s Figure 7, page 325), showing a rather cell type-specific subset of

enhancers across multiple cell types [317].

Overall, in what compares to SE, HRL genes define a larger set, which could

contribute to the observed higher number of diseases enriching per sample based

on HRL genes. As testified by a lower overlap of genes in the top enhancer load

bin per sample (Jaccard index similarity), the set of HRL genes per sample does

conceal cell type uniqueness. We therefore consider the setting of HRL as we

used here, or based on peak length as for SE but ranking each gene, or even a

combination of peak length and size to rank genes based on the regulatory load,

useful as a readout of the likelihood of a gene to be disease-related. Thereby, the

HRL could be used for prioritizing novel candidate genes for disease association.

5.4 Perspectives and future work

Developments on metabolic network contextualization methods

Besides the method by Shlomi et al., used within this thesis to predict the

metabolic activity of SGBS adipocytes throughout differentiation based on their

gene expression, several other metabolic network contextualization methods have

been developed (Supplementary file III, non exhaustive listing and description). One

of them, published the same year as Shlomi et al. is GIMME [518], which tackles

the same problem in simpler setting using linear programming instead of MILP,
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at the cost of requiring an objective function to maximize for, in order to derive a

consistent network with highest similarity to the expression data and fulfilling the

specified objective function. GIMME was the method used by Bordbar et al. to

derive their myocyte-hepatocyte-adipocyte model based on expression data and

objective functions used as maintenance lower bounds for all cell-specific and multi-

tissue type simulations, defined based on published data. As an objective function

in context of humans is not easily defined based on the high cellular specialization

and diversity of processes, we used Shlomi’s method instead of GIMME for deriving

SGBS-specific metabolic models based on their gene expression, not requiring an

objective function. Nevertheless, we could have adapted human objective functions

from published specific models, for instance from HepatoNet [502], in context of

the SGBS adipocyte differentiation, or maximizing for triacylglyceride synthesis and

lipid droplet formation. As we observed an activation of genes from the cholesterol

synthesis pathway, predicted to become active, cholesterol synthesis could also

possibly be included into the objective function, including additional experimental

measurements to more precisely specify cellular maintenance tasks.

One of the limitations of Shlomi’s method is an elevated computation time,

increasing with the number of reactions highly and lowly expressed (in regards

to those moderately expressed), reaching several hours for networks with few

thousand reactions such as Recon1.

Newer methodologies further explore the evidence from omics data to derive

context-specific metabolic models, based on variable mathematical formulations.

Methods relying on simpler linear programming problems are quicker deriving

context-specific models from diverse inputs. In particular, FASTCORE [593], de-

veloped within our group, remains one of the fastest methods for deriving minimal

consistent metabolic models from a generic reconstruction based on a defined set

of core reactions.

The accuracy of the resulting models in representing the metabolic activity

of the respective cellular system directly depends on the quality and extension of

the selected core set. A recent comparison between methods for integration of

transcriptomic data into constraint-based models of metabolism highlights that none

could robustly outperforming others [594], although a consistent comparison of

methods used to predict metabolic activity in human cells is still lacking.

Currently developing methods tackle issues such as the strength of statistical

evidence for the expression values, integration with recent technologies such as

RNA-seq, siRNA screens and SNP data. Indeed, no unique standard metabolic

modelling approach as yet emerged, the choice of methods still largely dependent

on the biological system in cause, data type and quality, and of course, biological

question.
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5.4 Perspectives and future work

Nevertheless, FASTCORE-like methods allowing for deriving context-specific

sub-networks at the second scale, hold promise to evolve and establish as method

of choice within the community, with varied modules tailored for each different

data type that can be related to genes, enzymes, reactions or metabolites. In this

context, coupling fast prediction of metabolic activity within personalized medicine,

monitoring and accompanying the individual throughout the years, could reveal

very promising for enhancing treatments, made feasible through FASTCORE-like

mathematical formulations.

With the current availability of public expression and multiple other data from

diverse clinical settings, including related with metabolic syndrome but also all

major types of human diseases, deriving a multi-tissue organ modelling framework,

extending Bordbar et al. and Mardinoglu et al. models, and also including processes

beyond intermediate metabolism, such as signalling and transcriptional regulation as

well as coupling to clinical data, ultimately containing connected individual models

of all body organs and modules for particular processes, should become more

and more feasible, and would then allow us to integratively model and simulate

human physiology in detail and at an unprecedented scale. Such framework of a

“virtual human” model, compiling the well-known facts of human pathophysiology

and providing truly systemic simulation of test cases might become standard in the

future, possibly even with the generation of one “virtual human” model per person,

from birth and continuously updating and integrating all clinical episodes. Such a

model could then be tested and simulated in parallel to the person’s needs in order

to predict affected functions or personalized drug response.

Efforts towards more integrated and global modelling are already ongoing

[595–600], including pharmacokinetic and pharmacodynamic integrative frame-

works.

In regards to gene prioritization for association to disease, here we present

the regulatory load on a gene as a promising readout of the likelihood for a gene to

be disease-associated. As we exposed above, finding a combination of features

best indicative of this likelihood would possibly greatly help us finding the network

of genes mostly contributing for a disease. In regards to the regulatory load, both

based on TFs and enhancers, whose binding or location are person and condition

dependent, this would imply a case-by-case assessment, in order to obtain a

confident readout.

In summary, we present an integrated analysis of human adipogenesis and

show that genes under high regulatory load enrich for disease association. In the

first case, focus was given to the gene regulatory and metabolic networks, exposing
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5 Discussion and perspectives

the combinatorial regulation of TFs and miRNAs on lipid metabolism disease genes.

In the second case, we show the cell type-selective enrichment for disease of the

high regulatory load genes, which appear in more KEGG pathways, have higher

betweenness centrality and longer 3’UTR regions with more binding sites for diverse

miRNA families than other genes.

Our systems biology approaches allowed us to provide insights about complex

processes and could serve as example and be further improved in future studies.
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Obesity is an ever-growing epidemic where tissue homeostasis is influenced by the differentiation of adipocytes
that function in lipid metabolism, endocrine and inflammatory processes. While this differentiation process has
beenwell-characterized inmice, limited data is available from human cells. Applyingmicroarray expression pro-
filing in the human SGBS pre-adipocyte cell line, we identified geneswith differential expression during differen-
tiation in combination with constraint-based modeling of metabolic pathway activity. Here we describe the
experimental design and quality controls in detail for the gene expression and related results published by
Galhardo et al. in Nucleic Acids Research 2014 associated with the data uploaded to NCBI Gene Expression
Omnibus (GSE41352).

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

Direct link to deposited data

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41352.

Experimental design, materials and methods

Cell differentiation and experimental design

Gene expression levels during adipocyte differentiation were
obtained by stimulating the SGBS pre-adipocyte cell line with a mix of
differentiation inducing compounds and collecting RNA samples at 0,
4, 8 and 12 h and on days 1, 3 and 12 of adipogenesis for hybridization
on Illumina HT-12 microarrays. Triplicate samples were prepared
following the differentiation protocol modified from [2] (exception is
12 h time point that has only duplicate samples) as shown in Table 1.
SGBS cells differentiatewithin 10–12 days as determined bymicroscop-
ic analysis (Oil red O staining). At this time point the cells are filled with
small sized lipid droplets and are most responsive, whereas at later
time points (20 days) the lipid droplets fuse and cells are less active
(personal communication, Dr. Martin Wabitsch).

Specifically, SGBS cells were cultured in Dulbecco's modified Eagle's
medium (DMEM)/Nutrient Mix F12 (Gibco) containing 8 mg/L biotin,
4 mg/L pantothenate, 0.1 mg/mg streptomycin and 100 U/mL penicillin
(OF medium) supplemented with 10% FBS in a humidified 95% air/5%
CO2 incubator. The cells were seeded into 10 cm plates, which were
coated with a solution of 10 μL/mL fibronectin and 0.05% gelatine in
phosphate-buffered saline. Confluent cells were cultured in serum-
free OF medium for 2 days followed by stimulation to differentiate
with OF media supplemented with 0.01 mg/mL human transferrin,
200 nM T3, 100 nM cortisol, 20 nM insulin, 500 μM IBMX and 100 nM
rosiglitazone (Cayman Chemicals). After day 4, the differentiating cells

Genomics Data 2 (2014) 246–248

Specifications [standardized info for the reader]; where applicable, please follow the
Ontology for Biomedical Investigations: http://obi-ontology.org/page/Main_Page

Organism/cell
line/tissue

Human/SGBS pre-adipocyte/adipose tissue

Sex Male
Sequencer or
array type

Illumina HumanHT-12V3.0 expression beadchip

Data format Raw and analyzed data
Experimental
factors

Time point of differentiation to adipocytes. Cells were
cultured 2 days in serum-free OF medium prior to
differentiation

Experimental
features

Time series of differentiation (20 samples, 7 time points
in duplicate or triplicate). SGBS pre-adipocyte cells originate
from patient with SGB syndrome. See Wabitsch M. et al.
Int J Obes Relat Metab Disord. 2001 for more details on
differentiation protocol and origin of cells.

Consent See Wabitsch M. et al. Int J Obes Relat Metab Disord. 2001 [2]
Sample source
location

See Wabitsch M. et al. Int J Obes Relat Metab Disord. 2001 [2]

⁎ Corresponding authors.
E-mail addresses: thomas.sauter@uni.lu (T. Sauter), merja.heinaniemi@uef.fi

(M. Heinäniemi).
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were kept in OF media supplemented with 0.01 mg/mL human
transferrin, 100 nM cortisol and 20 nM insulin.

Gene expression analysis

Total RNAwas extracted using TriSure (Bioline). 1 mL of TriSure was
added per a confluent 10 cm dish to lyse the cells. RNA was extracted
with 200 μL chloroform and precipitated from the aqueous phase with
400 μL isopropanol by incubating at −20 °C overnight. The longer
isopropanol incubation allowed the precipitation of microRNAs and
other small RNAs from the same samples. The total RNA samples were
processed according to the manufacturer instructions to prepare cDNA
that was hybridized on microarrays (Turku Centre for Biotechnology,
Microarray and Sequencing Facility, Turku, Finland). Total RNA integrity
was confirmed using an Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Santa Clara, CA, USA).

Data processing and normalization

The raw data files were processed and quality controlled using the
R/Bioconductor lumi package. Raw and normalized expression values
are available via GEO (GSE41352). Control probe data was included
and used to background correct the signal values with the lumiB
“bgAdjust” method. We provide this data and sample data in a format
that is directly compatible with the lumi analysis package through our
web resource at http://systemsbiology.uni.lu/idare.html. The data was
then transformed with the “vst” method and normalized with robust
spline normalization (rsn) method. The probe intensity value distribu-
tion and sample relation are plotted in Figs. 1 and 2, with sample nam-
ing described in Table 1. No outliers were detected based on data value
range at this step and the samples clustered according to the biological
sample group. The code that can be used to download processed data
from GEO or to process them from the files that we provide through
our website is available (see Additional Data File 1).

Statistical analysis

The negative probe signals were used to filter non-expressed genes.
Only genes that had a detection p-value b 0.05 within all samples of at
least one time point were selected for statistical analysis, resulting in a
total of 12756 detected probes. The statistical analysis was performed
using the R/Bioconductor limma package. The F-test was used to assess

Table 1
Microarray sample description from the SGBS pre-adipocyte differentiation experiment
(GSE41578). GEO sample identifiers are presented for the 20 samples prepared, as well
as their differentiation time point and replicate number.

Sample name GSM identifier Title Time Replicate

Sample 1 GSM1015366 SGBS_day0_1 0 h 1
Sample 2 GSM1015367 SGBS_day0_2 0 h 2
Sample 3 GSM1015368 SGBS_day0_3 0 h 3
Sample 4 GSM1015369 SGBS_4h_1 4 h 1
Sample 5 GSM1015370 SGBS_4h_2 4 h 2
Sample 6 GSM1015371 SGBS_4h_3 4 h 3
Sample 7 GSM1015372 SGBS_8h_1 8 h 1
Sample 8 GSM1015373 SGBS_8h_2 8 h 2
Sample 9 GSM1015374 SGBS_8h_3 8 h 3
Sample 10 GSM1015375 SGBS_12h_1 12 h 1
Sample 11 GSM1015376 SGBS_12h_2 12 h 2
Sample 12 GSM1015377 SGBS_day1_1 Day 1 1
Sample 13 GSM1015378 SGBS_day1_2 Day 1 2
Sample 14 GSM1015379 SGBS_day1_3 Day 1 3
Sample 15 GSM1015380 SGBS_day3_1 Day 3 1
Sample 16 GSM1015381 SGBS_day3_2 Day 3 2
Sample 17 GSM1015382 SGBS_day3_3 Day 3 3
Sample 18 GSM1015383 SGBS_day12_1 Day 12 1
Sample 19 GSM1015384 SGBS_day12_2 Day 12 2
Sample 20 GSM1015385 SGBS_day12_3 Day 12 3 B

A

Fig. 1. Probe intensity plots for the 20 SGBS differentiation samples in GSE41578. A) Box
plots of raw probe intensities. B) Box plots of normalized probe intensities indicate the
absence of outliers and comparable data mean intensities.

Fig. 2.Hierarchical clustering of the SGBS differentiationmicroarray samples. The dendro-
gram shows high similarity between replicates and grouping based on differentiation time
progression.
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significance of overall dynamic response over the differentiationwhile a
two-tailed t-test was performed to compare specific time points to day
0 undifferentiated cells. In both analyses Benjamini–Hochberg adjusted
p-value b 0.01 was considered statistically significant. In total, 1936
Refseq transcripts changed their expression more than 2-fold up or
down during the differentiation time series. The code that can be used
to filter non-expressed genes and to perform the statistical analysis is
available (see Additional Data File 1).

Several of these genes were metabolic genes, represented by 2-fold
more differentially expressed genes compared to other gene categories
with similar numbers of genes (extracted from the GO Online SQL
Environment, as of 12th of August 2013: cell projection, envelope,
locomotion and receptor activity).

Analysis of metabolic genes in Recon1

The annotation data from Recon1was obtained and checked against
the current EntrezGene and Refseq annotations (hg19 Refseq; Feb 02
2012). The reaction to gene mappings were updated with current
gene IDs (see Table S1). Withdrawn IDs and pseudogenes present a dif-
ficulty in the Recon1annotation. As therewere only few such genes (see
Table S1), they were left out from visualizations and assigned expres-
sion level 0 in modeling. LPIN1 was missing and due to its central role
in adipocytes, it was added to the triacylglycerol pathway reaction
catalyzed by Phosphatidic Acid Phosphatase (PPAP).

The expression profiles of metabolic genes (from Recon 1 [3]) or TFs
(from [4]) were clustered for visualization using self-organizing maps
(GEDI software [5]) and AutoSOME [6] as instructed in the tool docu-
mentation. The settings to reproduce the results presented in [1] were
the following: GEDI grid size was adjusted based on input gene number
and settings were tuned in order to minimize data missing grid points
(gene density map) (see Table S2). AutoSOME GUI was used following
the description in the manual without data filtering. Clustering was
done for columns (samples) on “precision”mode, with the “Fuzzy Clus-
ter Network” option and network visualization with Cytoscape [7].
Enriched pathways of the human metabolic reconstruction [3] were
determined using a hypergeometric test.

A consistent version of the generic human metabolic model Recon1
[3] was used as modeling platform for prediction of network activity
distributions. The Recon1 model was downloaded from the BiGG data-
base [8] (04.11.11) and the consistent version was derived using the
function “reduceModel” from the COBRA toolbox 2.0 [9], which resulted
in the exclusion of 1273 reactions (34%) of the initial model (Table S3).
To include the microarray data as soft-constraints for reaction activity
prediction, the probes were mapped to Entrez Gene IDs. First, continu-
ous log2 normalized expression values for the probes were discretized
into three categories: lowly expressed (−1), moderately expressed
(0) and highly expressed (1) based on the mean expression ± 0.5
∗ standard deviation cutoffs across all arrays. Then, one unique
discretized value per gene was selected taking the rounded discretized
mean of all probes for a gene. Each gene was then assigned to the
Recon1 reaction based on gene–protein-reaction associations.

Discussion

Herewe describe a time series dataset of human SGBS pre-adipocyte
differentiation. This dataset is comprised of whole transcriptome gene
expression profiling data derived using the Illumina BeadArrays. We
demonstrated differential expression that was particularly prevalent
among metabolic genes. Moreover, discretization of the metabolic
gene expression levels allowed using them as soft-constrains for meta-
bolic activitymodeling. Further, this dataset is part of a GEO SuperSeries
(GSE41578) and we have used it in combination with next-generation
sequencing data andmicroRNA expression profiles to associate putative
regulators to themetabolic genes in [1]. To further analyze thedata in an
integrative manner, we introduced genemetanodes and theweb portal
IDARE (Integrated Data Nodes or Regulation) in [1] for interactive data
exploration of various data typeswithin themetabolic network context,
available at http://systemsbiology.uni.lu/idare.html, including a de-
tailed user guide. The data could be similarly analyzed to interrogate
the regulation of other pathways. Results from the data have increased
our understanding of human adipogenesis.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2014.07.004.
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Transcription factors (TFs) represent key factors to establish a cellular phenotype. It is known that several TFs could
play a role in disease, yet less is known so far how their targets overlap. We focused here on identifying the most
highly induced TFs and their putative targets duringhumanadipogenesis. Applying chromatin immunoprecipitation
coupledwith deep sequencing (ChIP-Seq) in thehuman SGBS pre-adipocyte cell line,we identified geneswith bind-
ing sites in their vicinity for the three TFs studied, PPARγ, CEBPα and LXR. Herewedescribe the experimental design
and quality controls in detail for the deep sequencing data and related results published byGalhardo et al. in Nucleic
Acids Research 2014 [1] associated with the data uploaded to NCBI Gene Expression Omnibus (GSE41578).

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

Specifications [standardized info for the reader] where applicable,
please follow the Ontology for Biomedical Investigations: http://
obi-ontology.org/page/Main_Page

Organism/cell line/tissue Human/SGBS preadipocyte/adipose tissue
Sex Male
Sequencer or array type Illumina Genome Analyzer II
Data format Raw and analyzed data
Experimental factors ChIP-antibody used
Experimental features Genome-wide binding or chromatin marker level

(6 samples, including input control). SGBS preadipocyte
cells originate from a patient with SGB syndrome. See
Wabitsch M. et al. Int J Obes Relat Metab Disord. 2001 [2]
for more details on differentiation protocol and origin of
cells

Consent SeeWabitschM. et al. Int J Obes Relat Metab Disord. 2001
[2]

Sample source location SeeWabitschM. et al. Int J Obes Relat Metab Disord. 2001
[2]

Direct link to deposited data

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41578
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41629
http://www.ncbi.nlm.nih.gov/sra?term=SRP016497

Experimental design, materials and methods

Cell differentiation and experimental design

Chromatin was collected at day 0 and day 10 of adipogenesis for ChIP.
SGBS cells differentiate within 10–12 days as determined by microscopic
analysis (Oil Red O Staining). At this time point the cells are filled with
small sized lipid droplets and are most responsive, whereas at later time
points (20 days) the lipid droplets fuse and cells are less active (personal
communication, Dr. Martin Wabitsch).

Specifically, SGBS cells were cultured in Dulbecco's Modified Eagle's
Medium (DMEM)/Nutrient Mix F12 (Gibco) containing 8 mg/l biotin, 4
mg/l pantothenate, 0.1 mg/mg streptomycin and 100 U/ml penicillin
(OF medium) supplemented with 10% FBS in a humidified 95% air/5%
CO2 incubator. The cells were seeded into 10 cm plates, which were
coated with a solution of 10 μl/ml fibronectin and 0.05% gelatine in
phosphate-buffered saline. Confluent cells were cultured in serum-
free OF medium for 2 days followed by stimulation to differentiate
with OF media supplemented with 0.01 mg/ml human transferrin,
200 nM T3, 100 nM cortisol, 20 nM insulin, 500 μM IBMX and 100 nM
rosiglitazone (Cayman Chemicals). After day 4, the differentiating cells
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were kept inOFmedia supplementedwith 0.01 mg/ml human transfer-
rin, 100 nM cortisol and 20 nM insulin.

Chromatin immunoprecipitation

Nuclear proteins were cross-linked to DNA by adding formaldehyde
directly to the medium to a final concentration of 1% for 8 min at room
temperature. Cross-linking was stopped by adding glycine to a final con-
centration of 0.125Mand incubating for 5min at room temperature on a
rocking platform. The medium was removed and the cells were washed
twice with ice-cold PBS. The cells were then collected in lysis buffer (1%
SDS, 10 mM EDTA, protease inhibitors, 50 mM Tris–HCl, pH 8.1) and the
lysates were sonicated by a Bioruptor UCD-200 (Diagenode, Liege,
Belgium) to result in DNA fragments of 200 to 500 bp in length. Cellular
debris was removed by centrifugation and the lysates were diluted 1:10
in ChIP dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA,
167mMNaCl, protease inhibitors, 16.7mMTris–HCl, pH 8.1). Chromatin
solutionswere incubated overnight at 4 °Cwith rotationwith antibodies
against H3K4me3 (4 μl per IP of 17–614, Millipore, Billerica, MA, USA),
PPARγ (mixture of 0.5 μl per IP of sc-7196x, Santa Cruz Biotechnologies,
Santa Cruz, CA, USA and 5 μl per IP of 101700, Cayman, Ann Arbor, MI
USA), CEBPα (5 μl per IP of sc-61, Santa Cruz Biotechnologies), and
LXRα (5 μl per IP, kind gift from Eckardt Treuter, Karolinska Institute,
Stockholm, Sweden). The LXR antibody recognizes also LXRβ that
maintains a constant low level of expression during differentiation. The
immuno-complexes were collected with 20 μl of MagnaChIP protein A
beads (Millipore) for 1 h at 4 °C with rotation. Non-specific background
was removed by incubating theMagnaChIP protein A beads overnight at

4 °C with rotation in the presence of BSA (250 μg/ml). The beads were
washed sequentially for 3 min by rotation with 1 ml of the following
buffers: low salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA,
150 mM NaCl, 20 mM Tris–HCl, pH 8.1), high salt wash buffer (0.1%
SDS, 1% Triton X-100, 2 mM EDTA, 500 mM NaCl, 20 mM Tris–HCl, pH
8.1) and LiCl wash buffer (0.25 M LiCl, 1% Nonidet P-40, 1% sodium
deoxycholate, 1 mM EDTA, 10 mM Tris–HCl, pH 8.1). Finally, the beads
were washed twice with 1 ml TE buffer (1 mM EDTA, 10 mM Tris–HCl,
pH 8.1). The immuno-complexes were then eluted by adding 500 μl of
elution buffer (25 mM Tris–HCl, pH 7.5, 10 mM EDTA, 0.5% SDS) and
incubating for 30 min on rotation. The cross-linking was reversed and
the remaining proteins were digested by adding 2.5 μl of proteinase
K (Fermentas) to a final concentration of 80 μg/ml and incubating over-
night at 65 °C. The DNA was recovered by phenol/chloroform/isoamyl
alcohol (25:24:1) extractions and precipitated with 0.1 volume of 3 M
sodium acetate, pH 5.2, and 2 volumes of ethanol using glycogen as
carrier. Immunoprecipitated chromatinDNAwas then used as a template
for real-time quantitative PCR or for library preparation and sequencing
(performed at EMBL core facility).

Data processing and alignment

Sequencing reads were quality controlled using the FASTQC soft-
ware v.0.10.0 (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). The quality scores were consistently high along the read length
and the samples had overall goodquality based onmultiplemetrics (see
Supplementary data file 1, Figs. 1–5). Possible clonality in the PCR step
of library preparation was evaluated by counting reads mapping per
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Fig. 1. Analysis of sample clonality. Histograms of clonal read depth are shown for the ChIP-seq samples. The bars indicate the number of reads per unique position. In an ideal ChIP-seq
experiment there is a high fraction of single reads per position. Panels A–E show data of differentiated SGBS cells, and panel F shows data of preadipocytes. A. PPARg, B. CEBPa, C. LXR, D.
H3K4me3, E. Input, F. H3K4me3 preadipocyte.
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genomic position (Fig. 1). This revealed somedegree of clonal amplifica-
tion in the samples for PPARγ and LXR. Therefore, we chose to include a
stack collapsing step to the preprocessing. The fragment length was
estimated based on distance between reads mapping to positive and
negative strands at peak locations (Fig. 2) and agreed well in each sam-
ple with the expected size of approximately 200 bp. When examining
the read base pair content (Figs. 3 and 4), a deviation from the expected
GC-content was observed in the input sample of SGBS cells and this
samplewas replaced in the downstreamanalysis by a new input obtain-
ed from similarly differentiated cells. The slightly higher GC-content
in H3K4me3 peaks is expected as these reads derive from promoter
proximal regions that have typically higher GC-content than the rest
of the genome.

Specifically, the FASTX software v.0.0.13 (http://hannonlab.cshl.edu/
fastx_toolkit/index.html) was used to remove read artifacts and those
reads that had low quality base pair calling (minimum quality score of
phred 10 across the read length was required) and to collapse read
stacks. Subsequently, reads were aligned to the hg19 human genome
using the Bowtie software v0.1.25 [3] with the following settings: one
mismatch was allowed, maximum three locations in the genome were
allowed, and the highest quality match was reported. This resulted in
9608582 mapped reads for PPARγ, 19889853 for CEBPα, 15375177 for
LXR, 12253403 for adipocyte H3K4me3, 12550706 for preadipocyte
H3K4me3 and 18109349 for input. A script that downloads the deposit-
ed reads from the NCBI SRA database and produces aligned reads with
these settings is provided (see Additional Data File 2).

Analysis of ChIP-seq signal

The H3K4me3 histone mark is often found at active transcription
start sites (TSS). We were interested to assign each gene to H3K4me3-
positive vs -negative categories. For this purpose, the mixture modeling
approach implemented in the EpiChIP software v.0.9.7 [4] was applied.
The results have been presented elsewhere [1] and a thorough user-
guide is available from the tool website (http://epichip.sourceforge.net/
tutorial.html). As instructed in the user guide, differently sized windows
around the TSS regions were quantified to choose a proper window size.
The region−750 to +1250 centered at Refseq TSS coordinates had the
highest amount of signal and was therefore chosen for signal quantifica-
tion. Twodistributionswere clearly visible: the higher values correspond-
ing to actual chromatin marker signal distribution separated from the
background distribution. The software then assigns a probability for
each TSS region that indicates whether it corresponds to the signal distri-
bution.We employed the default settings and used the noise, unclassified
and signal results to compare the preadipocyte and the adipocyte TSS
activity.

TF peak detection was performed using the Quest software v.2.4
[5]. To allow configuring all settings, we turned on the advanced
mode. Parameters were generated using the command QuEST_2.4/
generate_QuEST_parameters.pl -bowtie_align_ChIP sample.bowtie
-bowtie_align_RX_noIP input.bowtie -gt genome_table_hg19 -ap
sampleFolder -ChIP_name sampleChIP –advanced. Default settings
were otherwise applied except for the mappable genome fraction

−400 −200 0 200 400
0

20
00

0
40

00
0

60
00

0
80

00
0

Relative distance between reads (bp)

T
ot

al
 r

ea
d 

pa
irs

−400 −200 0 200 400

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

Relative distance between reads (bp)

T
ot

al
 r

ea
d 

pa
irs

−400 −200 0 200 400

0
20

00
0

60
00

0
10

00
00

same strand
opposite strand

Relative distance between reads (bp)
−400 −200 0 200 400

0
20

00
0

40
00

0
60

00
0

same strand
opposite strand

Relative distance between reads (bp)

T
ot

al
 r

ea
d 

pa
irs

T
ot

al
 r

ea
d 

pa
irs

T
ot

al
 r

ea
d 

pa
irs

T
ot

al
 r

ea
d 

pa
irs

−400 −200 0 200 400

0
50

00
0

10
00

00
15

00
00

20
00

00

same strand
opposite strand

same strand
opposite strand

opposite strand

opposite strand

Relative distance between reads (bp)
−400 −200 0 200 400

Relative distance between reads (bp)
0

50
00

0
10

00
00

15
00

00
20

00
00

same strand

same strand

A B C

D E F

Fig. 2.Analysis of fragment length. The relative distance of readsmapping to ChIP-seq signalmaximal from the two strands (positive and negative) is shown for the ChIP-seq samples. In a
typical ChIP-seq experiment the peaks from opposite strands are 100–300 bp separated. Panels A–E show data of differentiated SGBS cells, and panel F shows data of preadipocytes. A.
PPARg, B. CEBPa, C. LXR, D. H3K4me3, E. Input, F. H3K4me3 preadipocyte.

232 M. Galhardo et al. / Genomics Data 2 (2014) 230–236



(set to 0.88) and enrichment (ChIP enrichment set to 15 and ChIP to
background enrichment to 2.5). The final peak lists were filtered to
remove peaks with q-value (fdr) above 0.001 (− logQvalue N 3). Based
on examining the signal wiggle files, cut-offs for low-occupancy (enrich-
ment N 15) and high occupancy (enrichment N 30) binding sites were
defined. Finally, using the UCSC Table Browser, we obtained a file
(group: Repeats, track: RepeatMaster) corresponding to satellite
repeats (#filter: rmsk.repClass= ‘satellite’) and removed peaks overlap-
ping these regions.

TF motif detection by theMEME-ChIP software [6] was performed
using the high occupancy peaks.Weused the setting -nmotifs 10 -minw
6 -maxw 30 and matched the motifs found to the JASPAR 2009 CORE
database. MEME analysis using 600 randomly chosen trimmed (central
100 bp) input sequences revealed the respective TF motif as top motif
present in the sample in each case (Fig. 6). The canonical binding
sites matched to the TF analyzed were: MA0065.2 PPARG::RXRA
and MA0065.1 PPARG::RXRA for PPARγ peaks; CEBPα: MA0102.2
(CEBPA), MA0102.1 (Cebpa) for CEBPα peaks; while a close match to
motif reported by Feldman et al. [7] was found for LXR. This indicates
that the antibody collection and downstream analysis were successfully

performed. A script to run themotif analysis is provided (see Additional
data file 2).

Discussion

Here we describe deep sequencing data obtained from human SGBS
preadipocyte differentiation. This dataset is composed of data derived
using the Illumina Genome Analyzer II. We demonstrated genome-wide
binding pattern of key adipogenic TFs that were shown to co-occupy sev-
eral loci. Further, this dataset is part of a GEOSuperseries (GSE41578) and
we have used it in combination with gene expression data to associate
putative target genes in [1]. To further analyze the data in an integrative
manner, we introduced the web portal IDARE (Integrated Data Nodes
or Regulation) in [1] for interactive data exploration of the results within
the metabolic network context, available at http://systemsbiology.uni.lu/
idare.html, including a detailed user guide. Direct links to our ChIP-seq
track hub which can be used to visualize the signal at any genomic
loci are available from this website. We also provide results on motif
analysis presented in this paper that can be used for further analysis
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of combinatorial TF binding. Results from the data have increased our
understanding of the TF-mediated control of human adipogenesis.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2014.07.002.
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Fig. 4. Nucleotide frequencies along the read length. The frequency of each nucleotide along the read is plotted for each ChIP-seq sample. The frequencies of A and T are typically very
similar to those of G and C. Gene proximal areas typically have higher GC-content and this is reflected in the H3K4me3 samples that have peaks nearby transcription start sites. Panels
A–E show data of differentiated SGBS cells, and panel F shows data of preadipocytes. A. PPARg, B. CEBPa, C. LXR, D. H3K4me3, E. Input, F. H3K4me3 preadipocyte.
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Fig. 5.Quality control data for discarded sample. One input sample did notmatch the other samples in terms of the quality results. As in Figs. 1–4, analysis of sample clonality is shown inA,
analysis of fragment length in B, GC-content in C and nucleotide frequencies along the read length in D.
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Fig. 6. TF de novomotif analysis. The topmotifs detected in PPARg (in A), CEBPa (in B) and LXR (in C) peaks are shown. Letter height indicates information content in bits. Those positions
with high information content are typically well conserved between binding sites and correspond to protein–DNA contacts.
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Chapter 1

The IDARE Webserver for

integrated OMICS node generation

The IDARE web server (found at http://idare-server.uni.lu/) provides an easy to use interface to

allow the automated generation of images comprising multiple sources of information. In this section we

highlight the most important features of the user interface and explain what the different fields are for.

The layout of the webserver interface can be seen in Figure 1.1

1

2

Figure 1.1: This is the Webinterface of the automated image node generation software. The upper area (1)
contains the fields to enter the user data as detailed in Secion 1.1. The lower area (2) covers all settings
for specific properties of the generated nodes and allows the upload of data files for processing which are
explained in Section 1.2.
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A B C D

E F
Figure 1.2: The Datafields for input data. The Files to be uploaded are selected in Field A. The Dropdown
Selectors B and C allow the selection of the type of data and the colorscheme used (explained in detail in
Table I). Field D allows the supply of a description of the dataset while the dropdowns E and F define
what type of images are generated and what format (single or dual-id) is used (see 1.2.1).

Field Description
File (A) The files containing the different data sets that will be used for the creation of the

graphical nodes.
DataType(B) The type of data in the File. There are currently 5 different types of data that

can be processed which are detailed in Section 1.2.2
ColorScheme (C) The Colorscheme used for filling the entry representations. If data is used that

is around 0 (and not too skewed to one side) the image generator tries to set the
middle color to 0.

Description (D) The description provided here will be used as the header of the legend for this
dataset.

Image Format (E) The format of the images generated. Either PNG or SVG (support vector graph-
ics).

Data Format (F) Whether a 1 Column or 2 Column Item ID will be assumed. This has to be the
same for all datasets (see Section 1.2.1)

Table I: The Options on the User interface of the image generation server.

1.1 User Data Input

User data is divided into a couple of categories and the only strictly necessary data is the name and email

address. The latter will be used to inform and contact the user and provide updates regarding the image

generation. The generation time for the images is dependent on the number of datasets and the number

of entries in the datasets. It commonly takes about 5 minutes for one Dataset of 1000 entries.

1.2 Project Data Files and Properties

There are Multiple options associated with the datasets that can be used when transmiting data to the

server. The different options are listed in Table I. Figure 1.2 gives an overview of the options available in

the interface.

1.2.1 File Format

In general, the image generation server can use two types of input files:

1. Excel Spreadsheets

2. CSV Files with values separated by tabulator.

The system expects the first row to contain information on the different datapoints of the supplied data.

These will be used as labels for the legend of the respective dataset. There are two different ways for

2



(a) A Spreadsheet for the griditem data type with textual data.
The names of the different nodes are in the first column, and
the pointnames in the first row. The empty rows indicate that
there are 5 unused items between the first and the last, which
allows alignment of data.)

1 2

A

IDENTIFIER
A: Some data for gridded
items
A.1: preadipK4 A.2: adipK4

Color Description:
: Off : On

(b) A node image (Top) and
the legend image for Grid-
data from 1.3a

Figure 1.3: An example of the data generating a graph node and the resulting node legend

labeling the nodes. The default option is, that the node labels will be the entries in the first column

(starting from row 2). For use in the cytoscape app these identifiers have to match to one column of

the generated network so that they can be matched to the appropriate nodes in the network. The second

option for labeling is that one column containing the cytoscape node ids is provided and the second column

contains the labels that will be displayed on the node images. This is particularly important since often

published networks use more computer readable identifiers that are hard to interpret by a user. It allows

the user to use gene symbols as labels while interacting with a network that e.g. only contains ENSEMBLE

IDs, making visual inspection easier. The remaining file should consist of either up to five different values

(e.g. ’on’, ’off’, ’unknown’) or numeric values. These values will be used to generate the nodes. Empty

entries will be interpreted as missing values and the respective positions will not be printed in the generated

images. If white is also a color in the selected colorscheme, there will be no difference between a node with

a value mapped to white and without a value. If there is a completely empty column, this column will

still be included in the resulting nodes (see Figure 1.3).

This can be used to match two datasets which have values that only partially overlap. An example

would be two time series where one series has timepoint 1h,2h,4h, and 8h, while the other has 1h,4h,6h and

8h. In this instance adding an empty row behind 4h in Dataset 1 and one after 1h in dataset 2 will lead to

matched positions. There is one Dataset Type that is different: GraphData. For graphs with more than

one line, only excel sheets can be used. This is necessary, as the sheets in an excel file will be interpreted

as independent datasets for each line on the graph and no sheets are available for csv. An example for a

GraphData file is presented in Figure 1.4.

1.2.2 Data types for images

There are five different types of data implemented at the moment:

1. ItemData

2. ItemGridData

3. TimeSeriesData

4. HeatMapData

5. GraphData

An overview of the properties is provided in Table II. ItemData is the simplest type of data and where

each column will be represented by a circle. The System assumes, that the order in which these items

3



(a) A Spreadsheet containing numeric data used for the
graph data type . The names of each different condition
is noted in the Sheet name, the First Row contains the
Timepoint names (or actual numbers), while each column
contains a Node id (which it will be mapped to in a net-
work) and a node name. The first row and the first two
columns have to be the same in all sheets of the spread-
sheet (if no label column is supplied, only the first column
has to be identical)

A

IDENTIFIER
TimePoint1 TimePoint2 TimePoint3

2.0e+00

9.8e+01

A: This is an example for
Graph Data
: First Condition

: Second Condition

: Third Condition

(b) A node image (Top) and the
legend image for the data from
1.4a

Figure 1.4: An example of the data generating a graph node and the resulting node legend

Data Type Description Properties

ItemData Data that is individual and for which the different entries are
commonly unconnected.

Circles, Edge

ItemGridData Itemized Data that is in a specific Grid Circles, Center
TimeSeriesData Data that is connected and displayable in one row Boxes, Center
HeatMapData Data that can be rearranged but is somewhat connected and dis-

played in the style of a heatmap
Boxes, Center or Edge

GraphData Data that is displayed as a line graph. A similar scale is necessary Graph, Center

Table II: A short description of the currently available types of data visualisations.

are represented is not important and will place them at any position that is left after placing all other

datasets. ItemGridData is similar to item data, generating one circle per column in the dataset file. The

difference is, that the System assume that there is an order to this data and will place it into one of the

central rows. TimeSeries data is similar to ItemGridData but the representation is done with connected

boxes making the connection between the different values more obvious. HeatMapData is also using boxes

but can be placed at any position convenient for the system. In this respect it is similar to ItemData. The

final data type is GraphData. This type of data will generate a graph with one line plot for each sheet in

the provided excel sheet. If the Column IDs are numeric values it will use these values to place the points

at the appropriate positions on the graph.

1.2.3 Processing and Results

Once the jobs are submitted the user will be informed of the progress by email and a download link will

be provided once the files are generated.

4



Chapter 2

The IDARE2 Cytoscape Application

The IDARE2 cytoscape app was designed to allow the mapping of the images produced by the image

generation webserver onto cytoscape networks. It can be downloaded directly from the idare webserver

at http://idare-server.uni.lu/IDARE.zip. This allows the use of the vast amount of apps available

for network analysis in cytoscape while visualising experimental data in an easy to use, context specific

fashion. The app contains two main modules:

1. The subnetwork extractor tool and

2. the image mapping tool and

This chapter will detail the two tools and their possibilities and give guidance to their use. In addition, a

small helper function specific to SBML Files in COBRA format is provided.

2.1 The Subnetwork extractor tool

One issue often found in large networks is that visualisation becomes difficult due to the enourmous

amounts of interactions, leading to the classical image of the network-hairball. While some properties

might still be visible on that level, a detailed view of a subnetwork often allows a better interpretation

of the observed fluxes through a network. With biological models, there is commonly known information

of pathways which form connected subnetworks. It is easy to restrict a network to the reactions found in

such a pathway if only that specific pathway is of interest to the researcher. In doing so, it is however

often problematic to keep track of branching pathways, which leads to a loss of the overview.

The subnetwork extractor allows the user to extract subnetworks while keeping connections to the

general network. This is achieved by creating links between different subnetworks that point to the

position of the linked metabolite in the other network. Thus it is possible to follow the course of flux, or

the general network structure by following the links generated. The method is applicable to any bi-partite

network, that can be divided into “compound” and “interaction” nodes.

The following figures provide an example of the application of the subnetwork extractor tool. In essence,

the user selects one column of the Cytoscape network table which has to contain the information which

class each node belongs to (Fig. 2.1).

This information is also detailed in Table I.

Then the classes representing compounds and interactions, respectively, are selected from the entries in

that column. If there are further values in that column, those are ignored for definition of the subnetworks.

However, nodes will be included in the networks if they are connected to any of the subnetwork nodes and

not defined to be in another subnetwork.
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Figure 2.1: On the left: The property selection screen for the column used for compounds and interactions
and the identifiers for the compounds and interactions. Right: The user is asked to select which row is
considered for the unique identifiers in the network.

Property Default Description
IDARENodeType sbml type The type of a node used by IDARE (important for com-

pound/interaction selection)
IDARENodeName sbml id The id of a node used by IDARE (images are matached to these

IDs)
IDARELinkTargets - This column defines which other node a linkernode is linking to.

Only read during loading.
IDARELinkTargetID - This is the ID of the node for linking purposes. Only read during

loading.
IDARETargetSubsystem - The name of the target Subsystem of a Linker Node.

Table I: Cytoscape columns used by IDARE for data management

A second column has to be selected that will be used to determine the membership of an interaction

in a given subnetwork. This column will also be used to determine the available subnetworks.

Finally, the user is presented with a selection screen (see Figure 2.2) , containing all compounds and

all subnetworks. This selection screen allows the definition of compounds, which should not become part

of the final subnetworks (like e.g protons or water, which are abundant and make layouting and visual

inspection difficult). It also allows the definition of compounds which should not be considered when

creating links between subnetworks. This is useful if considering e.g. metabolites like glyceraldehyde-3-

phosphate. While removing it from the pathways would lead to gaps in the flow, branching would lead

to the inclusion of an enourmous amount of links. While this can be desireable the tool assumes that

very common compounds are not supposed to branch and the most common are to be removed. However

the final choice of compounds to be removed/declared as non branching can be done by the user in the

selection screen.

In addition, the selection screen allows the user to select which subnetworks should be generated. When

all selections are made, the subnetwork generator will create one additional network view for each subnet-

work created. It will also generate linker nodes for each combination of subnetworks sharing branching

compounds. Double clicking on one of these links will automatically open the respective network view,

centered on the compound in the opened view corresponding to the compound that was connected to the

link in the origin network.

6



A

B

C

D

Figure 2.2: Field A: The Selection of the column used to determine the subnetworks (The default selected
item is “SUBSYSTEMS” if it is present. According to this selection, Field D will adjust the available
networks. Field B is the selector for the column used to select a layouting algorithm for the newly created
subnetworks. Field C provides the user with the options which compounds to consider in subnetwork
generation (for either linking or in general)
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2.2 Image mapping tool

A

B

Figure 2.3: The legend displayed when se-
lecting an image node. A: a node represen-
tation with Identifiers for each field used.
B: Descriptions of the fields.

The second tool provided by the app is the image mapping

tool. There are two parts of this tool, an image storage and a

visual mapping function. The images can be loaded from the

archive generated by the webserver using the function Apps

→ IDARE → Load Metanodes (which can be seen in figures

...). Multiple Node files can be loaded and will be managed

by the IDARE app. Upon loading, the user is asked to define

which column to use to map the IDs.

If the app encounters images for nodes which are already

associated with an image the new image will override the old

one. When loading images the system will try to determine

whether the current network is already set up for IDARE. I.e.

it will check, whether IDARE-specific columns exist in the

network table which are used to match images and determine

layout properties. If the network is not set up (or not com-

pletely set up), the user will be asked to provide information

for the setup.

This information encompasses:

1. The column containing the id that the images are

mapped against.

2. The column containing the information about the type

of the node.

3. The identifiers in the column specified in (2) that stand

for compounds and interactions, respectively.

While only the first is strictly necessary for the image map-

ping, the IDARE Visual style will assume certain columns to

be present and it is necessary to initialize these. After loading

the images, the app will map them directly on the nodes in-

dicated by the image names. It will also associate each node

with a legend that will be displayed in the cytoscape results

panel, when the respective node is selected. The legend will

contain detailed information about the fields of the node (see

Figure 2.3).

2.3 The IDARE Visual Style

The IDARE Visual Style is closely linked to the image mapping tool. It is necessary to apply the mappings

between images and nodes. In addition, it applies more appropriate styles to the linking nodes, displaying

only the name. Finally there are some layou choices made for nodes: Nodes with the type reaction are

visualised as blue squares, species are visualised as red circles, genes are visualised as yellow diamonds and

proteins are visualised as green hexagons. In addition, undirected edges will be marked by arrows at both

ends and directed edges by an arrow at the target node. This makes the visual style focused on metabolic

networks. However, the user is free to adapt the style to her needs.
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2.4 COBRA specific SBML reader

The COBRA SBML specification defines several fields in the notes section of SBML files which are specific

to metabolic reconstructions. In particular those fields include information about genes (GENE ASSOCIATION

and GENE LIST). To visualize metabolic models, this information is very useful, as it will give a link be-

tween the level of expression data and metabolism. Unfortunately the normal SBML import of Cytoscape

completly ignores (and even discards) any information that is not directly associated with species and

reactions. Thus the supplied SBML Annotation task allows to retrieve this information from an SBML

file and add it to the model. It will also add information from all other COBRA fields like CHARGE,

FORMULA, AUTHORS, EC Number or SUBSYSTEM. Especially the latter is very useful when trying

to create subnetworks as it often contains the common definitions of metabolic pathways.
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