On four Koszul-Tate resolutions
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Abstract

We suggest a D-geometric definition of a Koszul-Tate (KT) resolution for a DGDA-
morphism (thought of as the projection onto an on-shell function algebra). Here DGDA
denotes the category of differential non-negatively graded algebras over linear differential
operators D acting on functions of a smooth base scheme. Such a D-geometric KT resolu-
tion does always exist: no locality, regularity, or reducibility assumptions are needed. In
the case of a smooth affine base, a D-geometric KT resolution can be obtained from the
functorial cofibrant replacement functor on DGDA that has been explicitly constructed in
[BPP15b]. Also the latter resolution exists without any of the mentioned restrictive hy-
potheses. It turns out that the classical KT resolution constructed in coordinates [Barl0],
for any regular on-shell irreducible gauge theory (as the Tate extension of the Koszul res-
olution of a regular surface), as well as the compatibility complex KT resolution built in
coordinates [Ver02], under regularity and off-shell reducibility conditions (existence of a
finite formally exact compatibility complex), are KT resolutions in the D-geometric sense.
The relationships between the classical and the cofibrant replacement KT resolutions, as
well as between the classical and the compatibility complex KT resolutions, are studied.
In the appendix, we construct from scratch some of the knowledge needed to study PDE-s
and corresponding resolutions in the D-algebraic and the physical settings, as well as in
the jet bundle formalism. For the model categorical approach, we refer to [BPP15a] and
[BPP15b].
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When Fx is a sheaf over a topological space X and U C X is an open subset, we write

F(U) for Fx(U) = T(U, Fx).
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For any unital ring R, we denote by D¥ the k-disc chain complex

(k) iq (k1) (0)

DF:ii.—50—0—R—> R —0—---—0, (1)
and by S¥ the k-sphere chain complex
& (k) (0)
Segi++—0—0—R—0—---—0 . (2)

Moreover, we set
I={ip:58"t > Dt k>0}

and
J={C:0—= Dk kE>1},

where i, (; are the canonical chain maps.

2 Preliminaries

This paper is the third of a series of works on the BV-formalism. In [BPP15a| and [BPP15b|
we proved the following

Theorem 1. The category DGDA of differential non-negatively graded commutative unital al-
gebras over the ring D = Dx (X) of total sections of the sheaf Dx of differential operators of a
smooth affine variety X, is a finitely (and thus a cofibrantly) generated model category (in the
sense of [GS06] and in the sense of [Hov07] ), with S(I) = {S(wx) : tx € I} as its generaling set
of cofibrations and S(J) = {S((x) : (x € J} as its generating set of trivial cofibrations, where
S denotes the graded symmetric tensor algebra functor. The weak equivalences are the DGDA-
morphisms that induce an isomorphism in homology, the fibrations are the DGDA-morphisms
that are surjective in all positive degrees p > 0, and the cofibrations are exactly the retracts of
the relative Sullivan D-algebras.

Further, we describe in these articles explicit functorial cofibration-fibration factorizations,
as well as explicit functorial fibrant and cofibrant replacement functors. We then use the latter
to build a model categorical Koszul-Tate resolution for D-algebraic on-shell function algebras.

3 D-geometric KT resolution

Let X be a smooth scheme and let Ox (resp., Dx) be the sheaf of rings of functions
(resp., differential operators) of X. Denote by qcCAlg(Ox) (resp., qcCAlg(Dx)) the category
of commutative unital Ox-algebras (resp., commutative unital Dx-algebras) that are quasi-
coherent as Ox-modules. In the following, we refer to the objects of this category as Ox-
algebras (resp., Dx-algebras). The forgetful functor has a left adjoint [BD04]

J : qcCAlg(Ox) — qcCAlg(Dyx) ,

called the jet functor.
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Proposition 1. Let 7 : E — X be a vector bundle of finite rank over X and denote by Of
the structure sheaf of the scheme E. Then O% := 1,0 € qcCAlg(Ox) and thus J>(0%) €
qcCAlg(Dx).

The latter can be interpreted as the D-geometric counterpart of the function sheaf Oy~ of
the infinite jet bundle of a smooth vector bundle. See Appendix 7.3 for additional information,
as well as for the proof of Proposition 1.

The algebraization of a scalar partial differential equation (PDE) acting on sections of a
smooth vector bundle E may be viewed as a function F' € O(J*FE) of J°E. The function
algebra O(X°°) of the infinite prolongation ¥ C J*°FE (also called the ‘stationary surface’ or
the ‘shell’) of this equation is the quotient of the algebra O(J*°E) by the ideal I of all functions
that vanish on ¥°°. Hence, we think about an ideal Z C .,700((’)?() as a scalar polynomial PDE
acting on sections of 7 : E — X and about J*°(O%¥)/T as the sheaf of corresponding on-
shell function Dx-algebras. The latter ideal is of course a Dx-ideal, i.e., an Ox-ideal and a
Dx-submodule that is quasi-coherent as Ox-module. Our goal is to resolve this Dx-algebra.

In the following, we write J instead of J Oo((’)g). We will explain below that in classical
Koszul-Tate resolutions [HT92, Ver(02|, the natural type of differential operators are the ‘total
or horizontal differential operators’, which can be identified with the sheaf J[Dx]:= J ® Dx
of rings of differential operators with coefficients in 7. Moreover, as mentioned in [BPP15b],
a Koszul-Tate resolution of R := J/Z, or, of the canonical Dx-algebra morphism f : J — R,
should be a DG Dx-algebra, as well as a J-algebra, or, still better, a DG J[Dx]-algebra.
Hence, in addition to the category DGqcCAlg(Dx) of differential non-negatively graded quasi-
coherent commutative unital Dx-algebras, which we studied in [BPP15a, BPP15b|, we will in
the sequel also consider the category DGyqcCAlg(J[Dx]), with self-explaining notation. We
suggest to the reader, who considers himself as not familiar with this topic, to skim Appendices
7.3.4 and 7.3.5, which contain some details that will be freely used in the sequel.

The computations of [BPP15b| suggest the following D-geometric definition:

Definition 1. Let X be a smooth scheme, let A be a Dx-algebra, and let ¢ : A — B be
a DG Dx-algebra morphism. A Koszul-Tate resolution (¢ KTR for short) of ¢ is a DG
A[Dx]-algebra morphism ¢ : C — B, which is a quasi-isomorphism in the category of DG
A[Dx]-modules, and whose source C is of Sullivan type. Here, C is of Sullivan type means
that C admits an increasing filtration Co C C1 C ... by DG Dx-subalgebras, such that there is
a DG Dx-algebra morphism A — Cy (we set C_1 := A) and that Cy, (k> 0) is isomorphic as
DG Dx-algebra to Cp, ~ Cr_1 @ SV, where Vi is a locally projective graded Dx-submodule of
Cr. such that de, Vi, C Cr—1 .

Remark 1. Observe first thal a quasi-isomorphism in the category of DG A[Dx]|-modules
is a morphism that induces o bijection in homology, i.e., is an A-linear quasi-isomorphism
in the category of DG Dx-modules. Further, the differential on Cy—1 ® SV}, is de, and it is
completely defined by the facts that de, is a degree —1 graded derivation and that Cy_q is a DG
Dx -subalgebra of Cy, .
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The requirement that C be equipped with an increasing filtration by DG Dx-subalgebras
Cr (k > 0) and that there exist a DG Dx-algebra morphism jg : A — Cp, is equivalent to the
condition that C be filtered by a sequence Cy C C; C ... of DG A[Dx]-subalgebras. Indeed,
since jo : A — Cp, as well as the canonical inclusions i : Cx,_1 — Cx (kK > 1), are DG
Dx-algebra morphisms, we have DG Dx-algebra morphisms jy = iy o0...041 075 : A — C,
that provide a filtring sequence Cy C C; C ... of DG A[Dx]-subalgebras. Conversely, such
a sequence gives a DG Dx-algebra morphism A 3 a — a <1¢, € Cy. Hence, a resolution of
Sullivan type is the same as an A-semi-free resolution [BD04|. It follows [BD04| that the next
proposition holds.

Proposition 2. Let X be a smooth scheme. If A is a Dx-algebra, any DG Dx-algebra
morphism A — B admits a Koszul-Tate resolution. In particular, if m: E — X is a finite rank
vector bundle and if J := J°°(Og), any DG Dx-algebra morphism J — B admits a KTR; for
instance, if T is a Dx-ideal, the Dx-algebra morphism J — J /I has a KTR.

Remark 2. Let us stress that the D-geometric KTR s defined in the algebraic geometric
setting, over any smooth scheme X, and for any DG Dx-algebra map with arguments in a
Dx-algebra — thought of as morphism from infinite jet space functions to on-shell functions
of some partial differential equation — . Howewver, in fact, no equation is considered, and the
D-geometric KTR does always ezist, although, unlike the more classical situations discussed
below, no locality, no reqularity, and no reducibility assumptions have been made.

4 Cofibrant replacement KT resolution and D-geometric KT
resolution

The ‘classical’ Koszul-Tate resolutions [HT92| and [Ver02] are ‘local’ results, see below. If
in the context of the preceding section, we assume locality, in the sense that the underlying
smooth scheme X is smooth affine, or is even a smooth affine algebraic variety, we can replace
sheaves by global sections, see [BPP15a].

Let now 7 : E — X be a smooth morphism of smooth affine algebraic varieties. The
jet algebra J := J>(O%(X)) is a D-algebra, D = Dx(X). If I C J is a D-ideal, ie., a
scalar polynomial PDE acting on the sections of m, the quotient J/I is the D-algebra of ‘on-
shell’ functions. In view of [BPP15b|, the canonical DGDA-morphism ¢ : J — J/I admits a
‘cofibration - trivial fibration’ decomposition given by the functorial ‘Cof - TrivFib’ factorization
of the cofibrantly generated model structure of DGDA, see Theorem 1:

J— J@S8V = J/I . (3)

Theorem 2. The cofibrant replacement (3) of J/I in the undercategory J | DGDA [BPP15b],
or, better, the morphism J @ SV — J/I is a D-geometric Koszul-Tate resolution of the mor-
phism ¢ : J — J/I in the sense of Definition 1.

Indeed, the constructions in Section 4 of [BPP15b]| directly imply that the minimal relative
Sullivan D-algebra J — J ® SV is clearly of Sullivan type, and the DGDA-morphisms ¢ : J 3
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j=j®lp e JoSV and ¢: J 3 j— [j] € J/I allow to endow the two target algebras J@SV
(with multiplication ¢) and J/I (with multiplication *) with natural DGJ[D]A-structures

jaT =(j®1lp)eT and jalj']=[]=[j].

It thus suffices to show that the DGDA-morphism ¢ : J®SV — J/I is J-linear (see also Remark
1). The latter is obvious from the definition [BPP15b] and the properties of ¢. Indeed,

q(j<aT)=q((j®1o)oT) =q(j ® 1o) *q(T) = ¢(j) x ¢(T) = [j] x q(T) = j < q(T) .

Remark 3. The context for the cofibrant replacement KTR is again algebraic geometric, but a
locality assumption is necessary, in the sense that we must work over a smooth affine algebraic
variety X. Moreover, we start from a D-ideal I of the jet D-algebra J associated to a morphism
E — X - thought of as some partial differential equation — . Again no regqularity and no
reducibility hypotheses are needed. The KTR is the cofibrant replacement of J/I in J | DGDA.

5 Classical and D-geometric KT resolutions

Remark 4. In the following, we use without reference results and notation of Subsection 7.1
and Subsection 7.2.

5.1 Regular on-shell irreducible gauge theory

We consider a regular irreducible gauge theory, i.e., a field theory, whose dynamical
equations are the Euler-Lagrange equations of some Lagrangian £, which admits non-trivial
Noether identities (i.e., non-trivial gauge symmetries in characteristic form) and satisfies the
regularity and irreducibility assumptions 1-5 of Subsection 7.2.3. It follows that we work
locally, in a trivialization of a smooth rank r vector bundle w : E — X over a coordinate
patch of a smooth manifold of dimension n. The fiber (resp., base) coordinates are denoted
by u = (u®) (resp., z = (x')), with a € {1,...,r} (vesp., i € {1,...,n}).

The assumptions 1-5 imply that the considered regular gauge theory is irreducible in the
sense that

Proposition 3. In a reqular irreducible gauge theory, there exists an irreducible set of non-

trivial Noether operators.

More precisely, a gauge theory admits, by definition, non-trivial Noether identities N D
dua L = 0, so that the D d,. L are not independent. More precisely, at least one of the functions
NZ € F(m) of the infinite jet space J*°(m) of 7, does not vanish on the constraint surface
¥ C J*°(7), which is defined by the total derivatives D6, L = 0 of the algebraized Euler-
Lagrange equations d,«£ = 0. The hypotheses 1-5 entail that the D$d,.L can be separated
into independent and dependent equations E, and EaA. Further, the dependent equations
En = F{E,, where F{ € F(m), are the total derivatives Ex = DEE(; of a finite number of
dependent equations F5 = Fg’Eh (0 € {1,...,K}), and the Noether identities En — F{E, =0
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associated to the Ea are the total derivatives Dg(E(; — FYEp) = 0 of the Noether identities
Es — F g’Eb = 0 associated to the Ejs (this hypothesis is called the irreducibility assumption
for the considered gauge theory (IA)). We write the latter Noether identities

R%, D5.L=0 (5e{l,....K}). (4)

It is easy to see that they are non-trivial, i.e., that, for any 0, there is at least one coefficient
R$ . that does not vanish on the constraint surface ¥ C J*°(w) (note that the tuple of the
D&6,4L is given by the action of an invertible matrix J on the tuple made of the E,, Ea (we
sometimes assume for simplicity that this matrix is identity)).

A compatibility operator (roughly, non-trivial linear total differential relations between
the equations) can itself admit a compatibility operator (relations between the relations).
Similarly, Noether identities can be related by so-called first-stage Noether identities, which
satisfy second-stage Noether identities... It is naturel to refer to the existence of non-trivial
higher-stage Noether identities as the reducibility of the considered gauge theory. Since we deal
in this text with an irreducible gauge theory, no non-trivial first-stage Noether identity should
exist, i.e., any linear total differential operator (Sé e Sé()Dg such that Sng oR§ Dy =0
should be trivial, should vanish. Such an operator vanishes if and only if all its coefficients
vanish. In the present approach to the Koszul-Tate resolution, ‘trivial’ (resp., ‘non-trivial’)
means that all the coefficients vanish (resp., at least one coefficient does not vanish) on .
Hence, we actually deal with on-shell irreducibility. This means that

S4DS o R§, DY ~0 must imply that Sj~0 (Vée{l,....,K}). (5)

It can be shown |Barl0| that this on-shell irreducibility condition really holds — in view of the
above irreducibility assumption (IA).

In view of (4) and (5), the linear total / horizontal differential operators Ry = R§ DS are
the announced irreducible set of non-trivial Noether operators.

5.2 Classical KTR as Tate extension of the Koszul resolution of a regular
surface

The Koszul-Tate resolution of the algebra C°°(X) of functions of the constraint surface
is a generalization of the Koszul resolution of a regular surface, see Subsection 7.2.1. The
difference between the case of a regular surface ¥ C R™ and the case of a constraint surface
¥ C J°(m) in a regular irreducible gauge theory, is the existence of the irreducible set of
non-trivial Noether operators R, or, still, of the Noether identities Rf  Ddy,e L = 0 and their
extensions

DP RS D25, L=0. (6)

It turns out that, to kill the homology in higher degrees, we must introduce additional gener-
ators that take into account these extensions. More precisely, we do not only associate degree
1 generators ¢5* to the equations D36« L = 0 of X, but we assign further degree 2 generators
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Céﬁ* to the relations (6). The Koszul-Tate resolution of C*°(X) is then the chain complex,
whose chains are the elements of the free Grassmann algebra

KT = F(r) ® S[¢2*,Co* (7

and whose differential is defined, in analogy with the Koszul differential of a regular surface,
by
Okt = Db £ Ogge + D RS, D3 0o (8)

where we substituted ¢} to d,.L and where the total derivatives have to be interpreted in the
extended sense that puts the ‘antifields’ ¢* and C* on an equal footing with the ‘fields’ ¢.
This means that D,: must be defined as

Dyi = 8y + ¢L g + G Dgar + cgﬁ*acg*

Note that the replacement in dgr of the §,«L by the ¢} is necessary to get a degree —1
operator and that this replacement lends naturalness to the extended interpretation of the
total derivatives. The bosonic antifield C* is referred to as the Tate part of the Koszul-Tate
complex (KT, dkr).

The homology of (KT, dkT) is actually concentrated in degree 0, where it coincides with
C*°(Y). Indeed, the 0-cycles are the functions F(m) and the 0-boundaries are the

pp. (Z Fg¢g*) = FID3SeL~0.

In view of the regularity assumption 2 in Subsection 7.2.3, the equations Ej play the same role
as the equations f? play in Subsection 7.2.1, so that the ideal I(X) of those functions of F ()
that vanish on ¥ is made of the combinations ) F*E,. Therefore, not only any 0-boundary
belongs to I(X), but, conversely, any function of I(X) reads

ZFuE _Zpa ha DYl = dkr (ZFa ~1ya g*)

and is therefore a 0-boundary. It follows that Ho(KT) = F(m)/I(¥) = C*®°(X). To show that
the homology vanishes in higher degrees, one needs the antifield C*, as well as the irreducibility
assumption (IA).

In fact, the above irreducible set of non-trivial Noether operators Rj is generating,
in the sense that any Noether operator (N ... N7)D2, i.e., any total differential operator (e.g.,
from F(m, ) to F(m)) such that N DSy« L = 0, uniquely reads

N2 DS = 59 D) o R DE + M5 DE6,,L D3 (9)
where the coefficients belong to F(7) and satisfy S5 % 0 and M(La;] = Mgm]. Hence, in

a regular irreducible gauge theory, any Noether operator (N'... N") coincides on-shell with
a composite (S° o R}... S0 RY) of the irreducible set of Noether operators with some total

differential operators. This result is actually a quite straightforward corollary of the fact that
H{(KT) =0.
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5.3 Change of perspective
In the classical Koszul-Tate complex KT = F ® S, where F = F(7) and

T=PRrR o PR-C}*
a,a 3,6

the tensor products are over R and (KT, dkr) is viewed as a chain complex in the category of
F-modules.

However, the algebra F can be endowed with a D-module structure. Since we work in
fixed coordinates, any D € D uniquely reads D =}, < Da(z)05, for some integer k& € N
and functions D, € O := C*(X). As observed in Subsection 7.3.2, the action of D on F' € F
is defined by

D-F=C(D)F =) Da(x)DSF, (10)
|| <k
where C denotes the horizontal lift. It is easily seen that this definition actually provides a
D-module structure, since, for any composable linear differential operators A; € Diff (1, 72)
and Ay € Diff (12, 73) between vector bundles n; over X, the horizontal lifts

C(A1) € CDiff (3, (m), 7 (112))  and  C(Ag) € CDiff (w3, (12), 75 (13))
satisfy
C(AQ ©) Al) = C(Ag) OC(A1> .

This result holds for any vector bundle 7 : ' — X, in particular for the trivial one we fixed
at the beginning of Subsection 5.1 — see [KV98|.

It is clear that this D-module structure and the O-algebra structure of F are compatible
in the sense that vector fields act as derivations. Hence, F is a D-algebra. Moreover, the ideal
I(Y) is an O-ideal and a D-submodule, hence a D-ideal. As for the submodule structure, note
that if F' € I(¥) and D € D, one has

(D-F)ls = (C(D)F)|z = (C(D))[sFlz =0,

see Subsection 7.1. Finally, the quotient C*°(¥) = F/I(X) is a D-algebra for the action
D -[F] = [D - F] and the multiplication [F][G] = [FG]. It follows that the passage

¢p: F>3F— [FleC®X)

to the quotient is a D-algebra map. However, not only differential operators act on C*°(X),
also jet functions do act: it suffices to set F' < [G] := [F|[G] = [FG]. This F-algebra and the
former D-algebra structures on C'*°(X) are compatible, so that C*°(X) is an F[D]-algebra.

Since F is a D-algebra, hence an O-algebra, it is natural to replace ¥ by the free non-
negatively graded O-module

v=@po ¢sepo-c
«,a 8,6
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over the generators ¢5* and C’g * of degree 1 and 2, respectively. Just as the variables u% or
@2 are algebraizations of the derivatives 0%¢® of the components of a section ¢ of a vector
bundle E — X (fields), the generators ¢5* and Cf * symbolize the total derivatives D¢
and Dg C5 of the components of sections ¢* and C* of some vector bundles 73 F; — J*F
and 7} Fy — J>°F (antifields). Hence, the ¢%* and C(’?* can be thought of as horizontal jet
space coordinates of 7} F} and 7 F». These coordinates may of course be denoted by other
symbols, e.g., by 0% - ¢ and a8 . C5, provided we define the D-action as the action Dg ¢y
and D2 C5 by the corresponding horizontal lift. This is not only in accordance with (10), but
leads to appropriate interpretations when the ¢7-s and the Cj-s are the components of true
sections, as well as when interpreting the total derivatives in the above-mentioned extended
sense that puts antifields on the same level as fields:

0% - ¢r == DSt = ¢2* and 92 -Cp =DIC; =Cy*. (11)

a

Eventually, the best choice for the underlying module 2 or V is the free non-negatively

V=@ s;ePD-C;
a 0

over the components of the antifields ¢* and C*. The F-module of Koszul-Tate chains then
reads

graded D-module

KT = F ®r S0 = F ®o SoV , (12)
where the RHS is also a graded D-algebra.

Any element c of this graded D-algebra reads non-uniquely as a finite sum
c= S F(D"-1)... (A%,

where F € F and D* A°® € D, and where we omitted the tensor products. The Koszul-Tate
differential dxT, which is well-defined on KT, acts as a graded derivation and s thus completely
known, if it is known on the D* - ¢ and the A° - C5 . For any D = D, 0y, we have, in view of
the definitions given above,

Sk (D-¢5) = Do 6kr(0y ;) = Da 0xr(95") = DaDydye £ = D+ (6ye L£) = D-6kr(¢y) - (13)
Similarly, we get

0xr(D - C5) = Da dxr (95 - C5) = Da 6x1(C5*) = DaDg (Ris D76,) = DaDg (Ris ¢3") -
The extended total derivative DS of R(‘;ﬁ d)aﬁ* is a sum of terms of the type

D' Ry D¢y = (95" - Ri) (952 - 677)

so that, in view of the definition of the D-action on the tensor product of F and SpV', we find
that
D3 (Rjs 6,") = 0 - (Ris ¢4) -
Eventually,
dxt(D-C5) =D - dxr(Cy) . (14)
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5.4 Classical KTR viewed as D-geometric KTR

In the following, we apply, without further reference, [BPP15b, Lemma 1] that allows to
construct non-split relative Sullivan D-algebras (RSDA-s), as well as DGDA-morphisms from
such a Sullivan algebra to another differential graded D-algebra. For convenience, we recall
this lemma in Subsection 7.3.1.

Let Vi : =&, D - ¢; . To endow the graded D-algebra
C1:=F ®o SoVi (15)
with a differential graded D-algebra structure d, we set,

dé? = byl € F, (16)

a

extend d to V; by D-linearity, and equip C; with the differential d given by
d(F(D - ¢g) (A-¢p)) := (Fd(D - ¢3))(A - ¢p) — (Fd(A-¢3))(D - ¢g)

where we omitted the tensor products and considered, to increase clarity, an element of degree
2. Then the natural DGDA-morphism ¢ : (F,0) 3 F — F ® 1p € (C1,d) is a RSDA. Since dkr
is also a graded derivation that is D-linear in the sense of Equation (13) and coincides with d
on the generators ¢, the RSDA is actually a DGDA-morphism

Z:(.F,O)BF'—)F@l(QE(Cl,(gKT). (17)

Consider now the D-algebra C*(X) = F/I(X) and the DA-morphism ¢ : F — C>®(X).
To define a DGDA-morphism
q1 ch — COO<E) s (18)

it suffices to set

0i(¢3) =0 € (C®(2)1 N0~ (6(de})) (19)

to extend ¢ by D-linearity to Vi, and to define ¢; in degree 0 by ¢;(F) = [F] and in degree
> 1 by g1 = 0. As for Condition (48), note that ¢(d¢}) = [0y« L] = 0, in view of the definition
of Y.

An anew application of Lemma 1 in [BPP15b]|, where the role played above by (F,0) (resp.,
V1) is now assumed by (C1,0xr) (resp., Vo := @;D - C5), endows the graded D-algebra

Co:=C1 ®o SoVs (20)
with a differential graded D-algebra structure d that, similar to d above, is fully defined by

dC3 = R§, (05 - ¢%) € (C1)1 N oy {0} (21)

Indeed, we have
OxT(R%, (0% - ¢%)) = R%, D6, L=0.

a
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To compare the differential d with the differential kT, note that d is extended to V5 by
D-linearity and that its value on ¢ = F(D - ¢};) (A - C5) (V - CF), for instance, is

de= oxr(F(D-¢)) (A-C5) (V- C7)
—(F(D-¢g) d(A - G5)) (V- C7)
—(F(D-¢3) d(V-C7)) (A-C5) -

As 0k is a graded derivation that is D-linear in the sense of Equation (14) and coincides with
d on the generators Cf, we get d = dkr on Cz. Hence, the DGDA-morphism

7:(C1,0kT) D¢~ c®1p € (Co, dkT) (22)

is a relative Sullivan D-algebra.

Start now from the DGDA-morphism ¢;, and define a DGDA-morphism
qo - CQ — COO(E) (23)

by setting
@(C3) =0€ (C™(2)2n0 a1 (0xr CF)) ,

extending g2 by D-linearity to Vo and by defining g2 in degree 0 by g2(F') = [F] and in degree
> 1by g =0.

Since V = V; @ V, as graded D-module, the graded D-algebras SpV = So (Vi @ V3) and
SoV1 ®p SoVe are isomorphic. Hence, the same holds for the graded D-algebras

KT = F®0 SoV and Coy=F Q0 SoVi @0 SoVs .

It follows that joe : (F,0) — (KT,dkT) is a DGDA-morphism and thus allows to endow
(KT, dxr) with a DGF[D]A-structure — see Example 1.

Theorem 3. The classical Koszul-Tate resolution (KT,0kr) is a D-geometric Koszul-Tate
resolution of the D-algebra map ¢ : F — C°°(X), in the sense of Definition 1 (in the smooth
setting ).

Proof. Most of the proof is given in the preparation that precedes the theorem. For instance,
it is clear from what has been said that KT ~ Cy admits an increasing filtration C; C Co C
Co C ... by DG D-subalgebras, such that there is a DG D-algebra morphism F — C; (we
set Co := F) and that C; (k > 1) is isomorphic as DG D-algebra to Cx ~ Cr—1 ®0 SoVk,
where V}, is a free graded D-submodule of Ci such that dgTVi C Cr_1 : KT is of Sullivan
type. We already mentioned that KT ~ Cy and C*°(X) are DGF|[D]-algebras. It now suffices
to show that the DGDA-morphism ¢ := ¢ : KT — C*°(X) is F-linear and induces an F- and
D-linear bijection gy of degree 0 between the graded module Hq(KT) and the module C*(X)
concentrated in degree 0. First, ¢ is F-linear, as, if F,G € F, we obtain

Faq(G) = Fa[G] = [FG] = ¢(FG) .
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Hence, the induced map ¢; has the required properties, except, maybe, bijectivity. In degree
> 1, the homology He(KT) vanishes, just as C°°(X). In degree 0, the homology is given by
C>(X) = F/I(X), where F (resp., I(X)) are the 0-cycles (resp., 0-boundaries), and ¢;[F] =
q(F) = [F] is the identity. O

5.5 Classical KTR versus cofibrant replacement KTR
Recall that the classical KT resolution (KT, d0xT) is the DGF[D]A
KT =F®o SoV ,

where V is the free graded D-module with homogeneous basis

U e G5

(the degrees of the generators are 1, 2), endowed with the degree —1, F- and D-linear graded
derivation defined by

0xT(¢y) = due L and Ok (C5) = Rf, (97 - ¢3) -

The results of [BPP15b], applied (formally) to the DGDA-map ¢ : (F,0) — (C*°(X),0), show
that the cofibrant replacement KT resolution (X7, dx7) is the DGF[D]A

KT =F ®o SoV,
where V is the free graded D-module with homogeneous basis

UL, 000008 000}

for all f € C*°(X) and ‘numerous’ o,, (n > 0) that are described in [BPP15b, Theorem 5| and
in the proof that precedes this result (the degrees of the generators are 0, n+1, n+1,...,n+
1,...). Here dxc7 is the degree —1, F- and D-linear graded derivation defined by

o7 (Ip) =0 and Sxr(IE ) =0 .

When using the just mentioned description in [BPP15b, Theorem 5|, one sees rather easily
that the map ¢, defined by

i(5) =15 .p o €V and i(Cy) =1 €Va,
(¢2) (8ya £,0) () <Rga(8g.ﬂzéua£,0)>70)
is a DGF|D]A-morphism
i (KTv 5KT) - (’CT, 6/C7—) :
It was clear a priori that the very general functorial cofibrant replacement KT resolution

(KT,dkc7) would be ‘much bigger’ than the classical KT resolution (KT, k) that is subject
to regularity and irreducibility conditions and far from being functorial.
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6 Compatibility complex and D-geometric KT resolutions

6.1 Triviality, regularity and off-shell reducibility assumptions

In this and the following subsections, we describe some ideas of [Ver02] adopting a slightly
different standpoint and using, as above, results and notation of Subsection 7.1.

The preceding section reminded us of the smooth geometric frame of the classical KT-
resolution, as well as of the choice of fixed coordinates. Further, we started from field theo-
retic Euler-Lagrange equations, with Noether identities relating them, and we made precise
regularity and on-shell irreducibility assumptions.

In the present case, the setting will be as well smooth geometry and, just as in the classical
approach, we will work locally, although some aspects are developed in a coordinate-free man-
ner. Our springboard will be any not necessarily linear PDE, for which we formulate regularity
and off-shell reducibility conditions.

More precigely, let 7 : E — X and p; : F1 — X be smooth vector bundles of ranks r
and 71, respectively, over a smooth manifold of dimension n. Take a not necessarily linear
formally integrable PDE X0 c J¥(r) of order k, which is implemented by a not necessarily
linear differential operator D € DOy (7, p1): ¥° = keryp, where ¢)p € FB(J*(7), Fy) is the
representative fiber bundle morphism of D. Recall (from Subsection 7.1) that

DO (m, p1) ~ FB(J* (), F1) ~ Fi(m, p1) := T(mi(p1)) C Tl (pr)) =: T(R1) = Ry

(in the sequel, we often denote a vector bundle over X by a Greek minuscule, its pullback
over J*°(7) by the corresponding Latin capital, and the module of sections of the latter by
the same calligraphic letter). As usual, we denote by ¥ C J°°(7) the infinite prolongation of
Y0 C J¥(7): ¥ = ker )%, where ¢% € FB(J*(mr), J>(p1)) is the infinite prolongation of p.

We now recall the locality and regularity hypotheses used in [Ver02|. In fact, the author
assumes that 3 is contained in a small open subset U C J°(7), in which there exist coordinates
(x%,u2). Also in the bundle p; fiber coordinates — indexed by A € {1,...,71} — are fixed. In
addition to these triviality conditions, he formulates a regularity requirement for . Just
as for the classical KT-resolution, it is assumed that some equations of ¥ can be chosen as
first or last coordinates of a new system (of course, the equations of ¥ read in the considered
trivializations D9, = 0, for alla € N* and A € {1,...,71}.) More precisely, the neighborhood
U of ¥ is assumed to be a trivial bundle over 3, in the sense that there is an isomorphism
®:U — X x V, where V is a star-shaped neighborhood of 0 in R%, such that the coordinates
v=(v!,v% ...)in V are precisely certain equations of ¥ (not necessarily all of them): for any
a, there is an o, € N” and a A\, € {1,...,7r1}, such that v* = Dg‘“z/}i‘)“. This means that the
fiber coordinates v(k) of a point k € X, which are obtained by projecting ®(x) on the second
factor V, vanish. In addition, as in any trivialization, the projection of ®(k), k € X, on the
first factor ¥, is simply k.

Although in the following we systematically consider the open subset U C J*°(r) instead
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of the whole jet space, we do not always insist on this restriction (and even write for simplicity
sometimes J°°(7) instead of U).

The latter regularity condition has the same fundamental consequence as in Subsections
7.2.1 and 5.2: a function F' € F vanishes on X if and only if it is a finite sum of the type

F = ZFaavka‘Dgawgﬂ )

with F,, », € F. In other words, a function F' € F belongs to the ideal 1(X) if and only if it
reads F' = U(¢p), for some ¥ € CDiff(Rq, F).

In Subsection 5.1, we assumed on-shell irreducibility, i.e., we assumed that there are no
on-shell first stage Noether identities. More precisely, there does exist a generating irre-
ducible set of Noether operators R§ Dg, or, still, a horizontal linear differential operator
Ay € CDiff(n} (p1), 75 (p2)). In particular, we have R§ D30, L =0, for all 6 € {1,..., K},
or, equivalently, Aq(d,eL) = 0. Note that the LHS of the algebraized Euler-Lagrange equations
0y L = 0 is the representative morphism ¢ p of a not necessarily linear differential operator
D € DO(m, p1). The universal linearization of the latter is a horizontal linear differential opera-
tor £p € CDiff (m} (m), w5 (p1)). When linearizing the identity Aq(¢p) = 0, we get Ajolp = 0.
Since A; is generating, it does not vanish and, for any operator V € CDiff (7} (p1), 75 (p5)),
such that V(¢p) = 0, there is an operator O € CDiff (7% (p2), 7% (p5)), such that V = Oo Ay,
see Equation (9). Hence, roughly speaking, the restriction Ajl|y is an on-shell compatibility
operator for {p|y, and the mentioned on-shell irreducibility means that there is no on-shell
compatibility operator for Aqly, see Equation (5).

We now come back to the context of [Ver02]. The restricted linearization ¢p|s of the
considered operator D admits a compatibility operator Ay, € CDiff(R1]s, R2|s). One of the
first results in [Ver02| states that Ay, can be extended to an operator A; € CDiff(R1, R2), such
that A1(¢)p) = 0. Just as any other horizontal linear differential operator, the extension A;
admits a formally exact compatibility complex. However, the latter is a priori neither finite,
nor are its F-modules R; modules of sections of vector bundles. One of the main assumptions
of [Ver02] is that there exists a finite formally exact compatibility complex

A _
Ry AL R, B2 2p 0, (24)

whose F-modules R; are all modules R; = I'(R;) = I'(7%,(pi)), where the p; : F; — X are rank
r; smooth vector bundles, and whose arrows are horizontal operators A; € CDiff(R;, Ri+1)-
This hypothesis is of course an off-shell reducibility condition.

6.2 KTR induced by a compatibility complex

Formal exactness implies in particular that, when applying the horizontal infinite jet func-
tor J°° to the complex (24), we obtain an exact sequence of F-modules:
T -y

Ag_2

T (R1) ﬁ T®(R2) —=2... == T™®(Ry-1) — 0. (25)
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Next we use the left exact contravariant Hom functor Homz(—, F), what leads to the exact

sequence ~ ~
- _szol . —oquoz
Homz(J*(R1),F) «— Homgzp(J>*(Ra),F) +—
ol i
“— Hom}-(joo(Rk_l),]:) +—0 (26)

of F-modules. The identification of representative morphisms with the corresponding differ-
ential operators finally gives the exact sequence

CDIff(R1, F) 2! CDiff (Ro, F) 2222 ... 242 CDiff(Ry_1, F) «— 0 . (27)
The completion
. —0Ag 2 . —0Ag_3 —oA1 . —(¥p)
0 — CDiff(Rg—1,F) — CDiff(Ry—2,F) — ... — CDiff(R;,F) — F — 0

(28)
of the latter sequence by —(¢p) is a complex of F-modules for the natural grading given by
the subscripts of the R;. This complex, which is exact in all spots, except, maybe, in degrees
0 and 1, is actually made of F[D]-modules. Indeed, in view of Equation (101), we have

FID] := F® D ~ CD(J™(n)) := CDiff(F, F) ,

so that the F[D]-action is given by left composition (except for F). Hence, the arrows of this
complex are F[D]-linear maps and the complex itself is a differential graded F[D]-module

(CDiH(R., .F), 5KT) S DG.F['D]M ,

where dkr is the direct sum of the maps in (28). The graded symmetric tensor algebra functor
Sr sends this underlying module to the free differential graded F[D]-algebra

(KT, dkT) := (SF CDiff (R, F),dkT) € DGF[DIA , (29)

whose differential is a degree —1 graded derivation of the graded symmetric tensor product.
The latter complex is the Koszul-Tate complex, in the sense of [Ver02|, associated to the
considered partial differential equation.

The homology space Hy(KT) is easily computed and the above sequences suggest that the
higher homology spaces might vanish. Indeed, the module of O-cycles is F and the module
of 1-chains is CDiff(R1,F). Due to the above-mentioned fundamental consequence of the
regularity condition, the ideal I(X) coincides with the image of —(¢p), i.e., with the module
of O-boundaries. Hence, we get Ho(KT) = C°(X).

To prove that the homology spaces H,(KT), p > 1, do vanish, it suffices to show that the
KT complex (29) coincides — as claimed — with the KT complex defined in [Ver02] and to use
the corresponding result therein. The algebra of KT chains is defined in [Ver02| as the graded
polynomial function algebra Pol(J*°(R,)). As usual, the polynomial functions Pol(J*(R,))
are the smooth functions F(J*°(R,)) that are polynomial along the fibers of the considered
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bundle — here J*(R,) — J*°(7). Just as the polynomial functions of a vector bundle G — X
are defined by
Pol(G) :=T(SG*) ~ SpI'(G*) = So Homp(I'(G), O) ,

the polynomial functions considered here are defined by
Pol(J®(R,)) := SrHomz(T®(Rs), F) ~ Sr CDiff (Re, F) .

Hence, the KT chains of [Ver02| and those defined above do coincide. Moreover, the KT
differential is defined in [Ver02] as an odd evolutionary vector field § of J*°(R,). Such a
graded derivation, when restricted as here to Pol(J*(R,)), is completely defined by its values
on the polynomial functions that are linear along the fibers, i.e., on Homz(J>(R), F) =~
CDiff (Rs, F) — and by its values on F. But on V; € CDiff(R;, F) (resp., F' € F), this
evolutionary field is given by §(V;) = V0 A;_1, if ¢ > 2, and by 6(V1) = Vi(¢¥p) (resp.,
d(F) = 0) [Ver02, Proposition 5.]. Hence, the odd derivations § and dkT coincide, the KT
complexes (Pol(J*(R,)),d) and (KT, dkT) coincide, and so do their homologies.

6.3 KTR induced by a compatibility complex versus classical KTR

We compare the coordinate KT complex (KT, dxr) for Euler-Lagrange equations in a regu-
lar and on-shell irreducible gauge theory (Section 5) with the coordinate KT complex (KT, dkT)
for a not necessarily linear PDE subject to regularity and off-shell reducibility conditions (Sec-
tion 6).

First, we focus on the KT chains. Since
C: F @0 Diff (I'(pe ), O) — CDiff (R, F)
is an F-module isomorphism (Equation (100)), we get
KT ~ Sr (F @0 Diff (T'(ps), 0)) ~ F @0 So Diff (I'(ps), O) .

Since we actually work in fixed coordinates, a linear differential operator D from sections of a
graded vector bundle p, : @f;ll F; — X to functions of X reads

D= (DL()... DX " (a))a2 . (30)

i.e., is nothing but an (r; + ... + rg_1)-tuple of operators in D, or, still, an element of the
non-negatively graded free D-module

j=1 A=

—_

over formal generators v*(j) of degree j. Hence, we finally obtain the F-module isomorphism

KT ~ F @0 SoV . (31)
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Whereas the complex KT contains antifields ¢* and C* — with components ¢; and C§ that

correspond to the considered equations and the irreducible relations between them — , the
complex KT must contain antifields v(1),v(2),v(3), ... whose components correspond to the
equations 1 p, relations Aj(—) between them, relations Ay(—) between relations, ... Hence,

the KT-chains (31) are defined along the same lines than the KT-chains (12).

Also other aspects of the two approaches are analogous. Just as the antifields ¢* and C*
have been interpreted as sections of vector bundles 7w} F; — J*°(7), i € {1,2}, the v(j) will be
viewed as sections of the vector bundles 7} F; — J>°(w), j € {1,...,k—1}, i.e., of the bundles
Rj — J°°(x). In other words, the formal parameters v*(j) are seen as tuples v*(j)(z%, ul),
where A € {1,...,r;} and where (z%,u) are the base variables. Further, the fundamental
definitions (11) will be maintained in the present context:

05 - v (j) = DEMj) = v3(j) - (32)

Just as derivatives of sections of a vector bundle over X can be interpreted as sections of the
corresponding infinite jet bundle, the preceding total derivatives D5 of sections v (5) (2, ud)
of the bundle R; — J>°(m), or, even, Ry — J°°(m), can be viewed as sections v[’}(])(x’,ug) of
the horizontal infinite jet bundle J>°(R,), with fiber coordinates vé\(j) and base coordinates
(z',ul). Hence, the second equality in (32) provides the appropriate result in case the formal
parameters v (j) are true sections.

Eventually, we previously introduced the lifts of differential operators 0,¢ acting on X-
functions f(z') € O(X) to horizontal differential operators

D, = axz + u?aé?ug (33)

acting on J°°(7)-functions

F(z',ul) € F(n) .

Similarly, we lift horizontal differential operators D ¢ to extended horizontal differential oper-
ators

Do = Oy + uf,Oua + ugﬁ(j)%(j) (34)
that act on J°°(R,)-functions
(@', ug, v3(4)) € F(J=(Ra)) -

Therefore, the second equality (32) is in accordance with the extended interpretation D5 of
Dy.

We still have to compare the KT differentials dxT and dxp. As mentioned above, the
differential dkT is completely defined by its values on

CDiff(Re, F) ~ Homz(J>®(Ra), F) =~ Pol' (J®(R,))

and its values on F. Here superscript 1 means of course functions that are linear in the
fiber coordinates vg (7). In the considered fixed coordinates, such a differential operator V,
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its representative morphism v and the corresponding linear jet bundle function read (with
obvious notation)

Folet ut b)) = S0 TG ) ) | w6y |- (35)
B8 .

Since dkT vanishes on F, it is completely defined by its values on the vg‘(j), exactly as dg

is fully defined by its values on the ¢§* and the C(’?*. Note still, before proceeding, that
the identifications for horizontal linear differential operators CDiff (R, R;+1) valued in a not
necessarily rank 1 bundle, are exactly the same, except that the row of coefficients V;}(j) is

replaced by a matrix of coefficients VgA (7 +1,9).

In view of these definitions and identifications, we have
Skt (v3(1)) = Sk (DZv(1)) = DF(4p) (36)
— which is entirely similar to the definition
oxr(¢g") = Dg (due L) -
For j € {2,...,k — 1}, we find
Skr(v3(7)) = dr( DI (3)) = DI (A0 = 1)) =

D (&Y (.5 = D) ug) DYo*(j—1) ) = DE (AV (5,5 — D))’ ul) v(G—1)) ,

in view of the above remark on matrix coefficients. When interpreting the v4(j — 1) as purely
algebraic fiber coordinates of the horizontal jet bundle, rather than as sections of the latter,
we must write

dkr(v3(7) = DF ((A3“G.j — D)a',ul) (G -1) ) = DI (8A,,) - (3D)
For j = 2, we thus find

Sr(v3(2)) = D (A2(2,1) DIv(1)) (38)
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where we omitted the variables (2!, u%) — which is fully analogous to the definition

bkr(C) = D (RE, Do} ) -

We conclude with the observation that the KT differential
k—1
= A = A
okt =) D} (%) Oyt DI (SAH) O (5) (39)
BA j=2 BA

is the evolutionary vector field, or symmetry of the Cartan distribution, that is obtained as
the prolongation dx to the horizontal jet bundle J%(R,) — J(7) of the vertical vector field

k—1
X=3"0 0+ D3 FA, L O
A

=2 A
of the bundle Ry — J°(m) with coefficients in
Pol'(J*®(R,)) C F(J*(R,)) ,

see Equation (117).

6.4 KTR induced by a compatibility complex viewed as D-geometric KTR

Just as in Section 5, the canonical map ¢ : F 3 F — [F] € C*°(X) is a D-algebra and even
an F[D]-algebra map.

In the proof that the above Koszul-Tate resolution (KT, dkT) is a D-geometric Koszul-Tate
resolution of ¢, in the sense of Definition 1, one of the difficulties will be to switch between
the different viewpoints we used so far:

Poll(joo(R.)) gy Homf(j‘x’(R.),]:) ~ CDiff (Re, F) ~ F ®0 Diff (T'(ps),0) ~ F @0 V
(40)
with

T
-
5

<

=1 \=

<
Il
—

If we set (x,u) = (z°,u2), these isomorphisms of F-modules read, in the considered coordinate
context,

VA (. 0) v3() = V3@ w) 03 () (@, w) = V3G (@,w) DI (v2() (1)) =

V3G () 02 (X)) = VA () 82 - 0 () (41)

where the vg‘ () are the polynomial variables, the components of the argument in J°°(R,), in
Re, and in I'(ps ), as well as the formal parameters of V, respectively (except in the last case,
they are just arguments). In fact, all these F-modules are F[D]-modules, i.e., are endowed
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with a compatible D-action (in the sense that vector fields # € D act as derivations on the
F-action). Note first that the F-module isomorphism F[D] ~ CDiff(F, F) acts between two
associative unital R-algebras (the statement is obvious for the RHS and comes from Equations
(153) and (154) for the LHS), and respects units and multiplications. Hence, F[D]-modules
are the same than CDiff (F, F)-modules. We already mentioned that this provides a canonical
F|[D]-module structure on CDiff (R, F), given by left composition. Since F ®@¢ Diff (I'(ps), O)
and F ®p V are tensor products of D-modules, they are D-modules, and, as the F- and
D-actions are compatible, they are F[D]-modules. Finally, using the F-module isomorphism

Y : CDiff(Rq, F) 3 A = tha € Homz(T®(Ra), F) ~: Pol'(J*(R,)) ,

we can push the F[D]-structure on the source forward to the target, thus making ¢ an F[D]-
module isomorphism. It is easily seen that the last two F-module isomorphisms in (40) are
also isomorphisms of F[D]-modules. For the next to last isomorphism C : F ® A — F CA,
consider any linear differential operator in F[D] ~ CDiff(F, F), e.g., to simplify, the operator
UV=G®60ob ~GCHoCH, and verify that ¥ - C(F @ A) = C(¥ - (F ® A)). The last
isomorphism is confined to the coordinate setting and is straightforwardly checked. More
generally, when writing out the coordinate version of the actions of an operator ¥ = 9% ~ D¢
on the isomorphic module elements of Equation (41), we find

DV D22vg ~ DAV gy (2, 1) ~ D2V DO2HF (p(z, 1))
DAY 9028 (p(z)) ~ DOV 922 HB Ly | (42)

respectively, where we omitted all not absolutely necessary indices and where we simply wrote
formulas of the type 03'f 09%¢g instead of the full binomial formula.

Above we introduced the KT resolution obtained from a compatibility complex in terms of
horizontal differential operators and expressed it later mainly in the polynomial language. To
compare this resolution with our D-geometric definition, we have to use the formal parameter
approach

KT =F ®o SoV

that we already put forth in Equation (31). In other words, we will apply the identifications
(41) and (42). As mentioned above, the Koszul-Tate differential dxt is fully defined by its
values on the polynomial variables vg) (7), i.e., on the elements a8 (j) of the free D-module
V. For j =1, we get from (36) and the definition of the D-action of F that

Ok (9] - v (1)) = DF(¢¥p) = 07 -4 = 8y - Sk (vA(1)) -
In the case j € {2,...,k — 1}, one obtains
bkt (97 -0 () = D (84, ) -
However, the polynomial ng_l is of the form Vv, and Equation (42) shows that

a5 - (Vuy) = Djv D:f%v = Dg(vvv) :
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Finally,
SkT(07 - 0*(5) = 97 - FA,, = 95 - ok (v(4)) -

More generally, we have
Okt (D - v*(f) = D -k (v*(4)) (43)

forany D € D, any j € {1,...,k—1},and any A € {1,...,r;}.

Since any element ¢ of the graded D-algebra KT reads non-uniquely as a finite sum

c= S F(Dy (1) - v (). (D (k= 1) - 0™ (k 1)),

where I € F and D), (j) € D, and since the Koszul-Tate differential T, which is well-defined
on KT, acts as a graded derivation, it can be completely computed from its above values on the

v ().
The following stepwise construction of the differential graded F[D]-algebra (KT,dkT) is

along the lines of the similar construction of (KT, dk), see Subsections 5.4 and 7.3.1. We will
mainly insist on differences and new aspects.

Let V1 := @)L, D-v*(1). To endow the graded D-algebra
C1:=F ®o SoVi (44)
with a differential graded D-algebra structure d, we set
dv (1) ==y € F, (45)

extend d to V4 by D-linearity, and equip C; with the differential d given by Equation (148).
Then the natural DGDA-morphism ¢; : (F,0) 3 F'— F ® 1o € (C1,d) is a RSDA. It is easily
seen that dkT coincides on C; with d, so that the RSDA is actually a DGDA-morphism

’Ll:(f,O)BFHF(@l@E(Cl,(;KT). (46)
Consider now the DA-morphism ¢ : F — C*°(3). To define a DGDA-morphism
¢ :C = CF(X), (47)

it suffices to set
q1(v}(1)) =0 € (C®(£))1 N0~ ($(dv™(1))) (48)

to extend ¢ by D-linearity to Vi, and to define ¢; in degree 0 by ¢;(F) = [F] and in degree
> 1 by g1 = 0. As for Condition (48), note that ¢(dv*(1)) = [¢)}] = 0, in view of the definition
of 3.

An anew application of the same lemma, with (F,0) (resp., V1) replaced by (C1,0kT) (resp.,
Vo = @Y%, D - v*(2)), endows the graded D-algebra

Cy :=C1 ®o SpVa (49)
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with a DGDA structure d that is again fully defined by
dv?(2) == A, = AX(2,1) DY vk (1) = AJ*(2,1) 97 -v*(1) € (C1)1 N6, +{0}

where we used the notation introduced in (38) and one of the identifications (42). Indeed, we

have
SkT(AM(2,1) 07 - vM(1)) = AJ*(2,1) 0 - ok (vM(1)) =
AJH(2,1) 07 -y = AJ(2,1) DY(¥h) = A} (¥p) = 0.

x

We extend d to V5 and Cy in the standard manner. As dxt is a graded derivation that is
D-linear and coincides with d on the generators v*(2), we get d = 6kt on Cy. Hence, the
DGDA-morphism

12 (C1,0kT) 2 c— c® 1o € (C2, dkT) (50)

is a relative Sullivan D-algebra.
We then define a DGDA-morphism

qo CQ — COO(E) (51)
by setting
g2(v}(2)) = 0 € (CF(2))2N 0™ a1 (kT v*(2)))

extending g2 by D-linearity to Vo and by defining g2 in degree 0 by g2(F') = [F] and in degree
> 1by g2 =0.

The next application of Lemma 1 in Subsection 7.3.1 starts from the DGDA (Cq, dkT) and
the free non-negatively graded D-module V3 := @\%, D - v (3). To equip the GDA

C3:=Ca ®0 SoV3 (52)
with a DGDA structure 0, we set
00 (3) := FA, = AY(3,2) DY vH(2) = AJ(3,2) 07 - v*(2) € (C2)2 N5, +{0} .

Indeed,
SkT(AM(3,2) 07 - vM(2)) = AJ(3,2) 0 - ok (v"(2)) =
A(3,2) 0] - (AR(2,1) 95 -v¥(1)) ~ AJH(3,2) 0] - (A(2,1) D (v”(1)(z,u))) =
AN(3,2) D (AF(2,1) DS (v"(1)(z,u))) = Ay (Av(1)) =0.

It is easily checked that 0 = dkT on Cs: the DGDA-morphism
13 : (CQ,(SKT) Sec—c®1lp € (C375KT) (53)

is a relative Sullivan D-algebra.
Finally, we define a DGDA-morphism

qs : Cs — COO(Z) R (54)
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again by setting
g3(1X(3)) = 0 € (C=(2))3 N 0™ (g2(6kT v*(3)))

and defining g3 in degree 0 by ¢3(F') = [F] and in degree > 1 by ¢3 = 0.

Similarly, we define iteratively, for any j € {4,...,k — 1}, a DGDA-morphism
1 1 (Cj—1,0kT) = (Cj,0KT)

that is a relative Sullivan D-algebra, using the generators v*(j) and the compatibility relation
Aj_10A;_5 =0, as well as a DGDA-morphism

qj:C; — C2(Y),

which vanishes, except in degree 0, where it sends F' to [F].
Since V.= V1 @ ... ® Vi_1, the graded D-algebras SpV = Sp(V1 & ... @ Vi_1) and
SoVi ®o ... R0 SpVi_1 are isomorphic. Hence, the same holds for the graded D-algebras
KT =FRoSoV and Cr_1=F R0 SoV1 R0 ...R00 SoVi_1 .

It follows that 21 0...01% : (F,0) — (KT,dkT) is a DGDA-morphism and thus allows to
endow (KT, dkT) with a DGF[D]A-structure — see Example 1 (the same as the one we obtained
above).

Theorem 4. The Koszul-Tate resolution (KT,dkT) induced by a compatibility complex is a
D-geometric Koszul-Tate resolution of the D-algebra map ¢ : F — C°°(X), in the sense of
Definition 1 (iin the smooth setting).

Proof. See analogous proof in Subsection 5.4. O

7 Appendix

7.1 Non-linear partial differential equations in the jet bundle formalism

The goal of the present subsection is to construct from scratch a number of concepts that
are of importance in the Geometry of PDEs. The text is written in the differential geometric
setting of smooth vector bundles 7 : E — X over a smooth manifold, as well as, partially, in the
corresponding algebraic context of modules P over a commutative unital associative R-algebra
O. Of course, in case there exists an underlying geometric situation, we have O = C*°(X)
and P =TI'(w). Additional details can be found, for instance, in [KV98|.

7.1.1 Jets and differential operators

Consider a differential equation (DE)

Q;Z)(tv Qb(t), dt¢7 s 7df¢) =0 ’ (55)
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with self-explaining notation. When defining the k-jet of ¢(t) by

ik = (6(t), di, ..., dFo)

we may rewrite this DE as
1/1(7f,u,u1,...,uk)]m5 =0.
Here (t,u,uq,...,u;) are independent variables of the so-called k-jet space. Roughly speaking,
the (purely) algebraic equation
Yt u,ug, .. ug) =0 (56)

defines a hypersurface X" in the k-jet space (or, better, since ¢ plays a distinguished role,
a subbundle X0 of the k-jet bundle), and a solution of the considered DE is nothing but a
function ¢(t) such that the graph of its k-jet is located on XY (‘graph’ means here the image of
j*¢). This is one of the key-aspects of the jet bundle approach to partial differential equations
(PDE-s) — which will be formalized in the following.

Let m: E — X be a smooth vector bundle of rank rk(7) = r over a smooth n-dimensional
manifold. For k € N, the k-jet j* ¢ at m € X of a local smooth section ¢ € I'(r) of 7 that is
defined around m (the latter condition will be understood in the following), is the equivalence
class of all local sections of 7, such that in any trivializing chart (z,u) = (2%, u®) of 7 around m,
the local coordinates of these sections coincide at x(m), together with their partial derivatives
at z(m) up to order k (it actually suffices that they coincide in one trivializing chart). We
define the k-jet set J*(m) of by

JH(m) = {jk¢:me X, ¢ €T (n)}.

The k-jet set is a smooth finite rank vector bundle 7 : J¥(7) — X — the k-jet bundle.
Indeed, any trivializing chart (z%,u%) of 7 induces a trivializing chart (z¢,u) of m, defined
by
' (jm) = 2'(m) and (o) = 05 am) -

where @ € N” and |a| < k. For k < ¢, there is a ‘truncation’ vector bundle (epi)morphism
Tge » JE(m) — JF(7), so that (J¥(7), k) is an inverse system. The limit of this diagram is the
oo-jet space T : J®(m) — X together with the natural projections 7y, : J®(7) — J*().
Coordinates (z%,u2) of J*°(r) can be obtained from coordinates (z,u®) of 7, as above, by
defining an infinite number of coordinates ul that correspond to the partial derivatives 05 of
the components ¢* = u®(¢p(x)) of the sections ¢ of m. We denote the algebra of smooth
functions of J*(7) by F;, = Fi(m). The canonical epimorphisms 7y, induce inclusions Fj, C
F¢. The colimit of this direct system is the algebra F = J, Fi (we will also write F(r),
Foo, OF Foo(m)) of smooth functions of J*°(7). It follows that any smooth function of J°° ()
is a smooth function of some J*(7). Note eventually that j* : I'(r) — T'(m) and that
j° : I(m) — TI'(7) (in fact, we should, as above, consider the case k = oo separately, as a
limit case; however, here and in the following, we refrain from presenting these details).

We will use jet bundles to define differential operators between sections of vector bundles.
Let 7’ : E" — X be a second vector bundle and take the pullback bundle 7} (7’), k € N, see



On four Koszul-Tate resolutions 26

B ——
7|_Z(ﬂ_/) ‘ -y
JE () ™ x

Figure 1: Pullback bundle

Figure 1. Consider now the Fj(m)-module of sections I'(mj (7). If 7’ : X xR — X, the latter
can be naturally identified with F (7). This justifies the notation Fy(m,n’) := I'(mj(7")). We

denote the composite of
Y € Fi(m,7') € C®(J*(r), i E')

and p € C®(m; E', E') also by . Hence, 1) € C®(J*(r), E'), and, for any point j¥¢ € J*(x),
we have ¥(j% ¢) € E! i.e., ¥ is a fiber bundle morphism 1 € FB(J*(x), E’). We thus get an
isomorphism of C°°(X)-modules:

D(r} (")) = Fi(m,7") ~ FB(J*(n), E') . (57)
Since, for every section ¢ € I'(w), the composite of
j*¢ € T(my) € C*(X, J*(m))
and 1 is a section ¢ o (j*¢) € T'(7'), we see that 1) € Fj (7, ') implements a map
D:T(m) 3 ¢ D(¢) =9 o (j*¢) eT(r),

such that the value D(¢)|,, only depends on j¥ ¢. We therefore say that D is a not necessarily
linear differential operator of order k between 7 and 7’ .

Definition 2. A (not necessarily linear) differential operator D € DOy (w,n’) of order k
from w to @' is a map D : T'(w) — ['(x) that factors through the k-jet bundle, i.e., that reads

D =14po(j*-), (58)

for some section or fiber bundle morphism p € Fy(m,n') ~ FB(J*(n), E'). This morphism,
which is visibly unique, is the representative morphism of D .

In trivializations of 7 and 7’ over the same chart (U, x) of X, such a k-th order differential
operator reads

(2, 050") = Yh(z,ul) kg, (a€{L,...,xk(m)},be{1,...,7k(x")}, |a| < k). (59)

If both ranks are 1 and we write v (resp., t) instead of ¢)p (resp., z = (x!,...,2")), we recover

Dt d(1), dih, ., dyd) = Y(t,uun, . ug) ey (60)
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(see beginning of 7.1.1).

The composite of a differential operator D € DOg(w, 7’) and a differential operator D’ €
DOy(n’, 7") is a differential operator D' o D € DOyo(m, 7).

The set DOg(m, 7') is a C°°(X)-module. There is a canonical C°°(X)-module isomor-
phism

DOy (m, 7') ~ Fp(m, ') ~ FB(J*(7), E') . (61)

The natural surjective morphisms me, k < £, give rise to inclusions DOg(m, ') C DOy(m, 7'),
thus leading to an increasing sequence of C°°(X)-modules. The colimit is the filtered C*°(X)-

module
DO(m,7') = JDO;(,7') (62)
of all differential operators from 7 to 7.

If, for r,7" € R and ¢, ¢" € I'(7), we have
D(r¢ +1'¢") =r D(¢) + 1 D(¢') ,

the differential operator D is said to be linear. We denote the C°°(X)-submodule made of the
linear differential operators of order k (resp., of all linear differential operators) from 7 to 7’
by
Diffg(m, 7') C DOg(m,n’) (resp., Diff(w,n’) C DO(m, 7)) .
In trivializations of m and 7’ over the same chart (U, z) of X, a linear differential operator
D of order k reads

w%(x,ag 4 = Qﬁ%(:z,ugﬂjm, (ae{1,...,tk(m)},b e {1,....vk(7")},|a] < k), (63)

where the ¥ are C°(z(U))-linear in the derivatives, i.e.,
Uhlw,089%) = > My (2)056" .
lal<k

In fact, a differential operator is a linear operator D € Diffy(r,n’') if and only if its
representative morphism is a vector bundle morphism p € VB(J*¥(r), E') (not only a fiber
bundle morphism), i.e., a C*°(X)-linear map 1p € Homgeo(xy(I'(7), T'(7’)) (denoted by the
same symbol). This passage from the vector bundle map to the linear map between sections
allows to replace D(—) = 1p o (j%—), see (58), by D(—) = (¢¥p o j*)(—) . Therefore,

Proposition 4. A linear differential operator D € Diffy(w,n’) is an R-linear map D :
[(w) — [(x) that factors through the k-jet bundle, i.e., that reads

D=ypoj*, (64)

for some (and thus unique) vector bundle or C°°(X)-module morphism ¢p € VB(J*(n), E') ~
Homeeo (xy(T'(m), T'(7')). Hence the isomorphisms of C°°(X)-modules

Difty,(m, ') = VB(J¥(rr), E) =~ Homgeo (x) (D(m), T(7)) (65)
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and
Diff (7, 7") ~ VB(J>*(7), E") ~ Homgeo (x)(T'(700), T'(7")) . (66)

We close the present section with the remark that, in the case m =7/ =pry : X xR — X,
the differential operators Diff (7, 7’) act on functions C*°(X), and that we then write D(X)
instead of Diff (pry, pry); in other words:

Remark 5. We denote by D(X) the associative unital R-algebra of linear differential operators
acting on functions C*°(X) of a smooth manifold X.

7.1.2 Partial differential equations and their prolongations

A second fundamental feature is that one prefers replacing the original system of PDE-s
by an enlarged system, its prolongation, which also takes into account the differential conse-
quences of the original one. More precisely, if ¢(t) satisfies the original DE (55), we have, for
any £ € N,

dy (O(t, 6(1), ded, .., d9)) = (0 + w10y + u2duy + .. )"t u,un, - up) | jpre, =

D; (w(t7u7u17'--7uk))|jé€+ﬁ¢EO, VTSE (67)

Let us stress that the ‘total derivative’ Dy or ‘horizontal lift’ D; of d; is actually an infinite
sum. The DE (55) and the system of DE-s (67), have clearly the same solutions, so we may
focus just as well on (67). The corresponding system of algebraic equations

(Di) (tyuy uty e ooy Uy U1y - v oy Upr) = 0, Vr < (68)

defines a ‘surface’ ¥¢ in the (k + £)-jet space. A solution of the original DE (55) is now a
function ¢ such that the graph gr(j*T¢) is a subset of X¢. The ‘surface’ X is referred to as
the ¢-th prolongation of the considered DE or differential operator.

To grasp the interest in differential consequences, consider for instance the integration
problem 0, F = f; (i € {1,...,n}) in R™ — where notation is obvious — . The differential con-
sequences of this (system of) PDE(s) include the equations 0,;0,: F = 0, f; (1,7 € {1,...,n}),
hence, they include the compatibility conditions 0,; fi = 0, f;.

In the case k = £ = 1, the equation of 0 C J! (resp., of X! C J?) is
Y(t,u,u) =0 (resp., (¢, u,ur) =0 and (D) (¢, u,ur,u2) =0),
(see (68)). Hence, 3! is the set of points jZ ¢ € J? such that j} ¢ € X and

(O + 1041 + U23u1¢)|j§0¢ = 3t1/1|jtl0¢ + dilegOuthljr 4 + d§¢‘toau1¢|j,}o¢ =0.

0

The last requirement means that the tangent vector (1,d;|,,d?¢|i,) at to of the curve
(t,p(t),dsop) € J* is an element of the vector space

Tji6%  0blyy ot utbljy g w0, Py o w1 = 0
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that is tangent to X0 at jtloqb. Thus,
St ={j2 ¢ € J?: gr(j'¢) is tangent to X at j} ¢} . (69)

Observe that the equations of X% and %! show that X is not necessarily a smooth manifold
and that w1 : ¥ — X0 is not necessarily a smooth fiber bundle.

We now define partial differential equations and their prolongations in a coordinate-free

manner.

Definition 3. A partial differential equation ( resp., a linear partial differential equation)
of order k (k > 0) acting on sections ¢ € I'(m) of a vector bundle 7, is a smooth fiber (resp.,
vector) subbundle m, : 0 — X of J¥(n). The (-th prolongation of X° (0 < ¢ < c0) is the
subsel

2l = (¢ e T () - gr(5%p) is tangent up to order £ to X0 at jF ¢} (70)

of J¥T4(x) . A (local) solution of X° is a (local) section ¢ of T such that gr(j*¢) c X0,

Note that the definition of the prolongation means that the points j*+¢¢ of ©¢ provide /-th

order approximations gr(j¥¢) of possible solutions of 30 .

Remark 6. 1. In the following we always assume that the considered equation X0 C J* ()
is formally integrable (see also Subsection 7.1.6), i.e., that

e the prolongations X are smooth manifolds (0 < £ < c0), and

o the maps Mo o1 : 27— X8 (0 < 0 < oo) are smooth fiber bundles.

2. Let us stress as well that it follows from Definition 3 (see also introduction to the present
subsection 7.1.2) that ¢ is a solution of X° if

gr(j* ) c ¥, (71)

for some 0 < ¢ < oo, and that, conversely, we have (71) for every £, if ¢ is a solution.

A PDE (resp., a linear PDE) X° of order k in 7 is implemented by a differential
operator D € DOy (m,7') (resp., D € Diffy(m, 7)), if 3° = ker¢p, where ' : B/ — X is a
vector bundle and where ¢p € FB(J*(r), E') (resp., ¥p € VB(J¥(r), E')) is the representative

morphism of D . In this case, the differential operator j¢ o D is of order k + ¢ and acts from 7

to . Its decomposition
j oD =1e,p o jFH (72)

corresponds to Equation (67). In the sequel we write
vp S () = () (73)

for the representative morphism ¢, of the {-th prolongation 4o D of D. It is now clear
that

¢ = ker v (74)
i.e., that the ¢-th prolongation of the equation is given by the ¢-th prolongation of the corre-
sponding differential operator (see Equation (68)).
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7.1.3 Cartan distribution

An important aspect of 7, : J¥(7) — X, k > 0, is that any of the points xx € J¥(r) is
the value at 7y (ki) = m of a section j¥¢ € I'(my) that is implemented by a section ¢ € T'(7).
This suggests the idea of a possible foliation and, at the infinitesimal level, of distribution. It
is thus natural to consider the tangent spaces at s, to the n-dimensional manifolds gr(j*¢),
¢ € T'(), that pass through kg, i.e., with j* ¢ = kj . Such a tangent space is obviously given
by

im(T, 3" ¢) C T, (JF (7)) .
We now counsider the vector subspace C,’jk spanned by the preceding images, for all sections ¢
such that j* ¢ = Ky, with m = (k) . The assignment

Ch: JF(m) 3 ki > CF C T (JF () (75)

is the Cartan distribution C¥ = C*(r) of J*(rx). If we are in the presence of a PDE X0 C
JF(m) on 7, we also define the Cartan distribution C*(X°) of X9 by

CHEY) 203 Ky = CE NT, 20 C T, 50 (76)

In local coordinates (z%,u2) of J*(r), the parametrization j¥¢ of gr(j*¢) reads j¥¢ : x —
(2%, 09¢%), with i € {1,...,n},a € {1,...,7},|a] < k. Hence, the derivative T},j%¢ is given

by
I,
(axiagﬁba)aa,i ’

so that its image, expressed in the basis (9,1, dya ) of Ty, (J*(r)), is made of the linear combi-
nations of the vectors

Opi+ 3 D 000" Dug, i€ {1 ,m) (77)
a=1|a|<k

(of course, the coefficients are evaluated at x = x(m) and the base vectors are taken at kg ).
The space C’,jk of the Cartan distribution of J¥(r) is obtained similarly, except that ¢ runs
through the sections that satisfy j¥ ¢ = k.

For instance, in the case k = n = r = 1, the space C;l is spanned by the vectors that are
tangent at s to the curves jl¢ : t = (t,¢(t),dip) € J', with jt11¢ = k1 (we set t1 1= m1(K1)),
i.e., by the vectors

(1, diBley, dZ2Bley) = Oliy + dedley Ouliy + drlty Ous iy =

(8t +u10y + u28u1) |(51,df¢|tl) = Dt§1|(n1,d%¢\t1) = Dtso‘fﬂ + d?¢|t18u1 ‘51 ) (78)

or, still, by the vectors
D70, and Oyl (79)

since, if ¢ varies, the value d?¢|;, runs through R. More generally, we have the
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Proposition 5. Let m: E — X be a vector bundle of rank r over a manifold of dimension n .

k

k =CE (m) is generated by the vectors

For any k > 0 and any ki, € J(), the Cartan space C

r
ngk—1|ﬁk — 8x1 + Z Z u?aauaa ‘K/k and aug ‘fik- )

x'L
a=1 |a|<k—1
ie{l,...,n}h,ae{l,....;r},|a| =k, (80)

where (z',ul) is a trivializing chart of J*(n) around (ki) . In the limit case k = oo, the
Cartan space C2°_ is generated by the total derivatives

Dyiln., i€{l,...,n}. (81)

Let ki € J¥(m), k > 1, and set 7 (k1) = m and mp_1 x(k1) = Kk_1. In view of (77), the
vectors D§k71|nk span the tangent space im(7},,j*"1¢) at sr_1 to the graph gr(j¥~1¢) of the
section j*~1¢ such that j,’fp = Kk . Observe that this n-dimensional subspace of Tﬁkflefl(W)
is completely defined by j* ¢ = k3, and does not depend on the considered section ¢ (see also
Equation (78)): we denote it by Rﬁk and refer to it as the R-space at k,_q defined by k.
Equations (78) and (80) allow to understand that the Cartan space C,’jk and the R-space Rﬁk
are related by

(Top 1) (RE,) = Ci, - (82)
It is quite obvious that the difference (82) between the R-spaces and the Cartan spaces, i.e., the
existence of the extra generators 0ya (@ € {1,...,r}, | = k), makes the Cartan distribution
C* = Ck(m) non-integrable. Indeed, take, to simplify, again the case k =n =r = 1. In view of
(82), the bracket [D0, 8y, ] = [0 + w18y, Dy, ] = —8y of local vector fields in C' is not located
in C'. We easily understand that this difference disappears at the limit k = oo and that the
Cartan distribution C*° = C*(r) is n-dimensional and integrable (indeed [D,i, D, ;] =0).

Consider now a PDE X0 C J¥(7) of order k on m (as mentioned before, we systematically
assume that the considered PDE-s are formally integrable).

Remark 7. In the sequel, we deal with limits, e.g., infinite prolongations X°°. To simplify
notation, we omit the sub- and superscripts oo, whenever no confusion arises, thus writing %
(resp., k,C,...) instead of ¥°° (resp., Koo, C, ... ).

The algebra of functions of the infinite prolongation ¥ C J*°(7) of X0 is the quotient
algebra F(X) = F(m)/I(X), where I(X) is the ideal of F(7) made of those functions of J*° ()
that vanish on . If X9 is implemented by a differential operator D ~ p (what we assume),
the prolongation ¥ is locally given by equations D&% = 0, where |a| > 0,b € {1,...,tk(7)},
and ¢% € Fi () (see Equations (74) and (68)). Hence, the ideal I(X) reads

-HE)=={§:PAbD§w%}, (83)

where the sum is finite and F,, € F(m). Since D, I(X) C I(X), the total derivatives act on
F(X) and their restrictions D,:|y;, are thus vector fields of X. It follows that, for any x € X,
we have D,i|, € T,X, so that

Cr = Cp(m) C TS . (84)
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Just as we defined above the Cartan distribution of ¥° C J¥(r), we define the Cartan distri-
bution of ¥ C J*°(m) by

CE): X223k Ch(X) =Ch(m)NTX. (85)

In view of (84), we get
C(¥) =C(m)ls . (86)

Moreover, not only C(w), but also the Cartan distribution C(X) = C(m)|s is n-dimensional
and integrable.

From the construction of the Cartan distribution and Remark 6, it is quite clear that:

Proposition 6. The mazimal dimensional ( n-dimensional) integral manifolds of the Cartan
distribution C(m) (resp., C(X)) are the graphs gr(j°°¢) of the infinite jets of the local sections
¢ € Dioe(m) (resp., the local solutions ¢ € Tipe(m) of X°).

Hence, the set of maximal dimensional integral manifolds in (X,C(X)) can be identified
with the set of solutions of X°. Since all relevant information about the original PDE X° is
thus encrypted in the pair (X, C(X)), the partial differential equation X is frequently identified
with the ‘diffiety’ (X,C(X)). Diffieties, i.e., ‘manifolds equipped with a geometric structure’
play a basic role in secondary calculus, i.e., calculus on the solution space of a PDE, in the
sense that all objects of secondary calculus turn out to be cohomology classes of differential
complexes growing on diffieties.

7.1.4 Cartan connection
Horizontal vector fields

Since
C(m) : J®°(m) 2 k = Cy(m) C TxJ>(m),
where C.(7) is the tangent space at x to the graphs gr(j>¢) of the sections j*°¢ that pass

through k at m = m (k) , the following statements are rather obvious:

o 1T : Cu(m) = T, X is a vector space isomorphism (it is easily seen that this derivative
sends Dyils t0 Oyilr(x))-

e The F(m)-module CO(7) :=I'(C(m)) (resp., OV(m)) of sections of the subbundle C(7) C
T J*°(7) (resp., of meo-vertical vector fields of J°°(7)) is a submodule of the F(7)-module
O(m) of vector fields of J°°(m). More precisely, we have

O(r) =CO(m) & O () . (87)

This suggests the idea of connection, i.e., of a C°°(X)-linear lift (map with the obvious pro-
jection property)
C:0(X)260—COecCO(). (88)
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Indeed, its suffices to set, for any k € J°°(m) with projection 7o (k) = m,

(CO) e := (TyToo)  0m € Cu(m) C T, J>®(7) . (89)
This connection C on J*°(w) is the Cartan connection induced by the Cartan distribution
C(m) on J>®(m).

As, in trivializing coordinates (zf,u2) of J%(7) over U around m = 7o (), the Cartan
space Cx(m) is generated by the D,:|., the horizontal vector fields H € CO(w) are locally
generated over functions of J°°(m) by the total derivatives D :

H|, vy = > H (@' ug) Dy (50)
J
Since Ty (Dyi|k) = Opi|m, a vector field 0|y =3, 07 (2%)0,; is lifted to
(CON ot 0y = Zeﬂ : (91)

Let us also mention, for the sake of completeness, that a vector field T € O(x) (resp., a vertical
vector field V € ©Y(m) ) locally reads

T\ﬂ;(U) = ZTj(xi,ug)axj + %Tg(xi,ug)au% (resp., V‘n;}(U) = %Vé’(wi,ug)8u%) .
J

(92)
We are now able to rewrite the definition of a horizontal lift C6 in a useful way. If 6 € O(X)
and F' € F(n), and if ¢ is a local section in I'(7) that is defined around m € X, we get

(1°0)* ((COYF)|m = ((COVF)|jeee = ((CO)jzeoF) ljzeo = ((TTo0) ™ 0m)F) |jece =

Indeed, the isomorphism (T'ms )~ ! sends a partial derivative to the corresponding total
derivative. Observe also that, although the function F' o j*°¢ depends on ¢, its derivative
O (F 0 j°¢)|m depends only on j0¢. Hence, the

Proposition 7. For any 0 € ©(X), F € F(x), and ¢ € I'oe(m), we have

(10)"((COVF) = 0((50)"F) . (93)

It is clear that we could define the Cartan connection (89) by means of (93), and that
Equation (93) is the generalization of Equation (67).

We already explained that [CO(7),CO(m)] C CO(w). Moreover, it immediately follows
from (93) that C[0,0'] = [CA,CH']. In other words, the integrable Cartan distribution of J°°(m)
induces a flat Cartan connection on J°°(w) — X. Further, the increasing sequence C(©(X)) C
CO(m) C O(m) is a sequence of Lie subalgebras. Eventually, if ¥ is the infinite prolongation
of a PDE on 7, we set CO(X) :=I'(C(X)), where C(X) is the Cartan distribution of 3. This
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F(¥)-module is locally generated by the D,i|s,. When restricting the lifts C6 to X, we get a
connection C : O(X) — CO(X), the Cartan connection on ¥, which is flat as well. Hence, the
integrable Cartan distribution of 3 induces a flat Cartan connection on X — X, which is the
restriction of the connection on the infinite jet space.

Horizontal differential operators

Total differential operators (TDOs)

W = YW ) D (94
B

are known to be of primary importance in Field Theory. The fundamental property is that
TDOs act not only on F(m), but also on F(X). This is of course due to the fact that total
derivatives restrict to (horizontal) vector fields of ¥ (see Equation (84)), and is not true for
ordinary differential operators

’]I':E T”(:pi,ug)...08;/§o...oaﬂ/'gﬁo... (95)
/uﬁ
v

of J*°(m). An interesting subclass of TDOs are the lifts

CA =) A°(2')DJ (96)
B

of linear differential operators A =} 4 AP(21)98 acting on C°°(X). These lifts can be defined
exactly as the lifts of base vector fields in (93).

Note first that differential operators act usually not only on functions C*°(X) (resp., on
F(m) (functions of J*°(m))), but act between sections I'(n) (locally: R™-valued functions on
‘X’) of rank 7 vector bundles n : Ey, — X (resp., between sections F(m,nx) = I'(7, (nk))
(locally: R"-valued functions on ‘J°°(m)’) of the bullbacks 7} (nx) : 75, (Ex) — J°(mw) of
these bundles). Hence, the

Definition 4. Let 7 : E — X and n, : B, — X (k € {1,2}) be vector bundles. The lift
of a linear differential operator A : I'(n1) — I'(n2) is the linear differential operator
CA : F(m,m) — F(m,n2) (of same order) defined by

(IF9)*((CA)S) = A((77¢)"S) (97)
where S € F(m,n1) and ¢ € T'ioc(7).
The difference with lifts

Co =Y 07(z')D,; € CO()

of vector fields is that the horizontal or C-vector fields CO(m) had been defined before the lifts
C6. Here, i.e., for lifts CA of differential operators, we still need to find the proper definition of
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C-differential operators C Diff (7%, (m1), 75 (n2)). In view of (90), these C-differential operators
should locally be the TDOs
U => 0’(a',ul)Df
B

see 94. Since, for any F € F(m) and any ¢ € I'(w), this model C-differential operator ¥
satisfies

(TF)oj®¢ =" (¥70j®¢) (DIF)0j®¢) = (870 j®¢) 0(Foj®¢) = Uy(Foj>¢),
B B

we have
(JZO)(VF) = ¥y ((179)F) ,

where the RHS W, (see its definition) is a not necessarily linear differential operator in ¢ € T'(7)
with values Wy in linear differential operators on C°°(X). This motivates the

Definition 5. A linear differential operator U : F(mw,m) — F(mw,m2) is a C-differential
operator V¥ € CDiff (7% (n1), 75 (m2)), if, for any ¢ € I'(w), there exists a linear differential
operator Wy : T'(m) — T'(n2), such that, for any S € F(m,m), the equality

(JZP)*(WS) = Wy ((179)"5) (98)
holds.

This definition captures correctly our intuition of C-differential operators. Since it is clear
from its definition that the lift C of differential operators respects composition, we have, locally,

Yt ug)DE =Y WP (el ug)C(oy) -
E 8

It can be shown [KV98| that this result is global:

Proposition 8. Any ¥ € CDiff (7} (m), 7k (n2)) reads

U=> wcAg, (99)
5

where the sum is finite, where WP € F(n), and where Ag € Diff(n1,19). In other words,
C-differential operators are generated over F(m) by lifts.

Moreover, just as TDOs, C-differential operators can be restricted to the infinite prolonga-
tion ¥ of a PDE. More precisely [KV98],

Corollary 1. For any C-differential operator ¥ : F(m,n1) — F(m,n2) and any infinite pro-
longation ¥ C J°°(m), there is a linear differential operator Vs, : F(X,m) — F(X,n2) such
that, for every s € F(m,m), we have ¥x(slx) = (¥s)|x .

Finally, we have the important
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Corollary 2. There is a canonical F(m)-module isomorphism

C : F(m) ®ceo(xy Diff (1, m2) — CDiff (75, (), 75 (112)) (100)

between the linear differential operators with coefficients in the jet space functions and the
corresponding C-differential operators. In particular, in the case of the trivial line bundle

m = 12, we get the isomorphism
C: F(m) ®@ceo(x) D(X) = CD(J>()) . (101)

Proof. Observe first that the action of a differential operator F' ® A, with F' € F(7) and
A € D(X), on a function f € C*°(X) is naturally defined by

(F@A)(f)=F ((Af)omss) .
The action (F @ A)(s), A € Diff(n1,72) and s € (1), is defined similarly:
(F®A)(s) = F (As) 0 7o) - (102)
The map
C : F(m) @coe(x) Diff (1,m2) 3 F @ A = F CA € CDiff(x% (), 7o (n2)) (103)

is obviously a well-defined and F(x)-linear. To prove injectivity, assume that F' (CA)(S) =0,
for all S € T'(w’,(n1)), in particular, for all S = so7ms, s € I'(n1). It follows from (97) that

(F0j*¢) As = (F ((As) 0 7og)) 0j%¢ =0,

for all s,¢. Eventually, (102) allows to conclude that FF ® A = 0. As for surjectivity, recall
that any C-differential operator ¥ reads Zﬁ \IlﬁC'Aﬁ, and note that 25 P Ag is a preimage
of U. O

Let us summarize in coordinate language what we achieved so far. Consider a PDE
YOz, 0%¢%) = 0,b ,

whose LHS sends sections ¢ = (¢%(z)), € I'(7) to sections ¢ = (¢°(x))p := (¥°(2?, 0%¢%)), €
['(m1). We take into account the linear differential consequences

A b, 9%¢7) = ZMB,) L9%) =0, Ve

of this equation, where A € Diff(n;,72). The latter condition can be rewritten in the form

(CA) ¥ &) ligeo = ZMBb DS P (2 ul) |06 = 0, Ve

thus leading to a C-differential operator CA € C Diff (7} (1), 7%, (n2)). Just as the value

W0(@', 05¢) m
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at m € X (in fact we mean here the coordinates of m; the same notational abuse will be
tolerated in the sequel) of the image of ¢ = (¢%(z)), € I'(m) by a differential operator in
DOy(m,n1) only depends on the values 95 ¢%|,, of the coefficients of the ‘Taylor expansion’ of
¢ at m up to order k, the value

> Ni(a' ug)Df ¢t ug)
E

at k € J(m) of the image of ¢ = (*(2%,u2)), € (% (m)) by a C-differential operator in
C Diffg (7}, (n1), 7% (n2)) only depends on the values DI yb(at, ul)|, of the total or horizontal
derivatives of ¢ at k up to order k. In fact, the C-differential calculus is similar to the ordinary
differential calculus. For k € N U {cc}, the horizontal k-jet 7S at x € J(7) of a local
section S € T'(w’ (1)) that is defined around « is the equivalence class of all such local sections,
whose coordinate forms in a trivializing chart (2, u2, v®) around  coincide at x, together with

their total derivatives at x up to order k.

Remark 8. In the following, if 7 : E — X and p : F — X are two vector bundles, we set
R:=7}(p) and R :=T(R) =T'(n% (p)).

o0

The set
JEH) = {FFS : k€ J®(7), S € Hi}

is a vector bundle Hy ; : J*(Hy) — J*(7), called the horizontal k-jet bundle. A trivializing

chart (zf,u%,v?) of Hy induces a trivializing chart (xi,ug,vg) of Hy, given by

2'(7nS) = 2 (k), ug (705) = ug (k). v(7hS) = DIS"| . (104)

taare’)

As already suggested here above, the C-differential or horizontal differential operators
U e CDlﬁk(Hl, HQ)

are those
U € Hompg (H1, Ha)

that factor through the horizontal k-jet bundle J*(H;), i.e., that read ¥ = 1) o 7*, for some
(and thus unique) vector bundle map

(VNS VB(HLk , Hg) ~ Hom]:(w)(r(jk(Hl)),'Hg) .

Actually, the whole theory of jet bundles can be transferred to horizontal jet bundles [Ver(02].
Indeed, it follows from what has been said that, in the coordinate setting, horizontal jet bundles
are just jet bundles with extra coordinates u in the base.
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7.1.5 Classical and higher symmetries I and II
Classical symmetries 1

The concept of symmetry is of fundamental importance in many fields of Science and
deserves special attention. The notion is quite straightforward — at least in elementary situ-
ations. For instance, when thinking about an axial symmetry of a plane domain S, we get
a permutation p such that p(S) = S. Similarly, a symmetry of an equation X° C J*(r)
should be a fiber bundle automorphism (or, just a diffeomorphism) v of J*(7) such that

$(2%) =x°. (105)

However, since the essential structure of J*(r) is the Cartan distribution C* (i.e., the infinitesi-
mal object that encodes jet prolongations of sections), it seems natural to ask that a symmetry
respect the Cartan distribution (or, better, that its tangent map does).

In the following, we focus on automorphisms of J¥(m) that respect C*, thus omitting
Condition (105) at the first set-out. We refer to such automorphisms as Lie automorphisms
of m;. In particular, we may ask whether it is possible to build a Lie automorphism of m; as
a prolongation of an automorphism of 7.

Prolongations of diffeomorphisms and vector fields

It is easily seen that, if U = (v, %) is a fiber bundle automorphism of m : E — X, we can
prolong it to a fiber bundle automorphism ¥ := (¢, ) of 7y : J¢(x) — X. Tt actually
suffices to recall that wqbwal € I'(n), for any ¢ € T'(w) (as elsewhere in this text, we do
not insist here on the possibility that ¢ might be defined only locally), and to consider the
well-defined fiber bundle automorphism

§ 2 THT) 3 G > Gl oy () € T () -

It is easily seen that the lift j*¥ is a Lie automorphism, i.e., that, for any s, € J(r), the
inclusion

(T d")(Cr,) € Cli (106)

Ty

holds. Indeed, if r; = jf,¢ and if (Ty, j°¢)(vm) (vm € T X) denotes an element of CL , we
have

(T, §0) (T 3°6) (vm) = Ty (3 (6%5)) (Tmtbo vm) € Cle -

Let us still mention that the prolongation jé : J¢(m) — J4 () of ¥ : JO(7) — JO(n) is really
a lifting, in the sense that mo o j¢ = ¥ o my,.

Instead of considering finite automorphisms or diffeomorphisms, we can take an interest
in infinitesimal ones, i.e, in vector fields. Note that a vector field = € ©(m), i.e., a field of
m: E — X (we avoid writing ©(m), since this notation is used instead of the more precise
O(70)), is a m-projectable vector field if and only if Tm =, = & , for all e € E, i.e., if and
only if there is a vector field £ € ©(X) that is w-related to Z. It is well-known that this means
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that 7 intertwines the flows ¢F and ¢§ ,i.e., that mo¢F = wf o (assume for simplicity that
the flows are globally defined). In other words, ¥F = (@ZJE ,F) is a l-parameter group of fiber
bundle isomorphisms of 7 : F — X, and it can thus be prolonged to a 1-parameter group of
Lie isomorphisms j/0F = (wf,jewta) of mp : JY(7) — X. The latter implements a vector field
§*Z € O(m;) — the f-jet prolongation of the projectable vector field = € ©(m) — . In other
words, the lift j*= is given by

()jt,0 = dilr=0iy . (V7 EU) -

and the flow of the prolongation j*Z of = is the prolongation jF of the flow of =, and it is
thus made of Lie isomorphisms. The explicit coordinate computation of the lift of

E=) A0+ B’ u")0p =Y A0y +ubds) + > (B — Aub)d,.  (107)
j b J b

leads to

- <r-1
== Z ADET Y Y DE(B )au% (108)
b |B|<t—1
|[Kru73]. Note that the first term (resp second term) of the lift is obtained by extending the
total derivatives D—0 in (107) to D— =1 (resp., by adding new terms whose coefficients are the
corresponding total derivatives of the coefficients in (107)).

Hence, any fiber bundle automorphism of m (resp., any projectable vector field of m) can
be prolonged to a fiber bundle automorphism of 7, (resp., a vector field of 7) that respects
(whose flow respects) the Cartan distribution C¢. The result can be generalized to arbitrary
diffeomorphisms ¢ : JO(7) — JO(7) (resp., vector fields = € O(mp)). More precisely, any
diffeomorphism (resp., vector field) of 7 can be lifted to a diffeomorphism (resp., vector field) of
7y that (whose flow) respects the Cartan distribution. We refer to such distribution respecting
diffeomorphisms and vector fields as Lie transformations and Lie fields, respectively (in the
case of JO(7), any vector in T, E is tangent to a section, so C0 = T, F, and Lie transformations
(resp., Lie fields) are just diffeomorphisms (resp., vector fields)). The lift to m; of an arbitrary
vector field of g, i.e., of

==Y A u), + Y B u)dp = > A0y + ubde) + Y (B — ATub)d,. (109)
j b J b

is locally given by the same formula (108) as before [Vit11]. Even more generally, any Lie
transformation (resp., Lie field) of 7 can be lifted to a Lie transformation (resp., Lie field)
of any mp4. Conversely, any Lie transformation (resp., any Lie field) of 7, is the lift of a
diffeomorphism (resp., a vector field) of w, at least if rk(m) > 1, [KV98], [Vit1l].

Classical symmetries 11

In view of what has been said above, a symmetry of an equation X° C J¥(r) is a
Lie transformation 1 of J¥(r) such that (X% = X° As mentioned before, we do in this
text usually not insist on possible local characters. For instance, we could consider here local
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symmetries of X0 C J*(n), i.e., Lie transformations 1 of an open subset & C J*() such
that (U N X% = U N X% Also the notion of infinitesimal symmetry of an equation
¥0 ¢ Jk(x) is now clear. It is a Lie field 7 of J¥(x) that is tangent to X9, i.e., such that
1. € T,.X0, for all kK € X0,

Higher symmetries 1

Let us recall that we systematically assume that the considered equations are formally
integrable. Just as a Lie transformation (resp., a Lie field) of J* () lifts to a Lie transformation
(resp., a Lie field) of any J*+¢(r), a symmetry (resp., an infinitesimal symmetry) of £° C J*(7)
lifts to a symmetry (resp., an infinitesimal symmetry) of any X¢ C J*+(7) (the converse is
true as well) [KV98, Prop. 3.23|. Hence, a symmetry (resp., an infinitesimal symmetry) of X°
induces a symmetry (resp., an infinitesimal symmetry) of ¥ := %°°. To avoid diffeomorphisms
of infinite dimensional spaces, we consider in the following only infinitesimal symmetries and
call them just symmetries. Further, we will study not only the symmetries of ¥ that are
implemented by symmetries of £° (such induced symmetries are Lie fields, i.e., the derivatives
of the diffeomorphisms obtained from their flows respect the Cartan distribution), but ‘all
symmetries’ of ¥ (such ‘higher symmetries’ will respect the Cartan distribution in a generalized
sense).

Recall that a symmetry of ¥ = X is a vector field T € ©(m) of J°°(7) that is tangent
to 3 and that is Lie. A higher symmetry of ¥ (or simply a symmetry of ¥ whenever no
confusion is possible) is a vector field 7" € ©(m) that is tangent to ¥ and respects the Cartan
distribution C = C(w) of J*°(m), not in the preceding sense that the derivatives of its flow
respect C, but in the sense that

[T,CO(m)] C CO(r), (110)

where CO(m) = I'(C()) is the space of Cartan fields.
Symmetries of the Cartan distribution

Just as above, where we omitted first Condition (105), we will forget now temporarily the
tangency condition, and study infinite jet space vector fields that satisfy the Cartan condition
(110). These fields will be called in the following symmetries of C. In view of the Jacobi
identity, the space O¢(7) of symmetries of C is a Lie R-subalgebra of ©(7). Since C is integrable,
Cartan fields CO(w) are trivially symmetries of C, and, by definition, they thus form a Lie
ideal of ©¢(m). The quotient

sym(7) := O¢(m)/CO()

is the Lie algebra of proper symmetries of C. In view of the Cartan connection (87), we
have the direct sum decomposition

Oc(m) = CO(r) @& EO(n) , (111)

where

EO(m) ={T € ©“(n) : [T,CO(m)] C CO(m)} . (112)
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It follows that

sym(r) ~ EO(n) , (113)
i.e., that any proper symmetry of C is naturally represented by a vertical symmetry, or, still,
by an evolutionary vector field.

Vertical vector fields V' € ©Y(rw) are characterized by the property T (V) = 0, i.e., by
the property V(f) =0, for all f € C*°(X). Indeed,

V(f)=V(fome) =df(Tmes (V)) = (T7es (V))(df ) -

If Ve ®’n), we get

[V,COI(f) = V(CO(S)) —COV(S)) =V(0(f) =0,

for any 6 € ©(X) and any f € C*(X), so that [V,C(O(X))] C ©¥(x). On the other hand,
since Cartan fields CO(r) are generated over F by lifts C(©(X)), the symmetry or evolutionary
condition [T, CO(m)] C CO(m) is equivalent to [1,C(O(X))] C CO(m), for all T' € O(r). Hence,
for V € ©Y(m), the evolutionary condition is equivalent to

[V,C(0(X))] € ©°(r) NCO(r) = {0} .

Since lifts C(©(X)) are locally generated over C°°(X) by total derivatives, the symmetry
or evolutionary condition reads, locally and for vertical fields V, [V,D,:] = 0, or, still,
[V, D,:](ul) = 0, i.e., since Dyi = 0, + u?ﬁf)u% so that Diul = uf

)

Via = V(uia) = V(Dyiug) = Dyi(V(ug)) = Dy V' -

(10}

In other words, V' € ©Y(7) is a local symmetry or evolutionary field if and only if its coefficients
satisfy
Ve =DuVe. (114)

This shows that evolutionary vector fields V' € EO(7) are completely determined (locally, by
their coefficients V%, i.e., globally) by their restriction V|z, € Der"(Fop, F).

Hence, there is a 1:1 correspondence between EO(7) and Der”(Fy, F). It is worth to further
elaborate on this idea. Let X € Der(Fy, F). Locally, this is a vector field X of J%(7) with
coefficients in functions of J*°(m):

X=) A ul)dy+Y B2 ul)dpy => A0y +ul0,e)+ Y (B'— Aub)d,, . (115)
j b J b

Such a field can of course be prolonged to a field of J°°(7) in the way specified by formula (108),
exactly as in the particular cases (107) and (109) — except that £ = oo here. The prolonged
vector field (108) is the sum of a term in CO(w) (horizontal fields are locally generated over
F by total derivatives) and a term in EO(7) (see Equation (114)). In particular, if we start
from X € Der’(Fp, F), i.e., locally, from

X =Y B(z",ul) 0, (116)
b
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we obtain the evolutionary vector field

ox =Y DJB’ Oy, € BO() . (117)
b,8

Note that a local vertical derivation (116) is the same as a local section B = (B®(x%,u2)), of

*
[e.e]

75 (7). The point is that this isomorphism

Der?(Fo, F) ~ T'(mi (m)) = F(m,m) =: 2(m) (118)
holds globally and that the local evolutionary fields (117), computed from the global X €
Der’(Fo, F), can be glued to provide a global evolutionary field 6 € EO (7).

It is noteworthy that the 1:1 correspondence
0:x(m)> X — oy € EO(m) (119)

allows to push the F(m)-module structure of s(m) forward to EO(7) (this multiplication is
different (!) from that of vector fields of 7 by functions of 7) and to pull the Lie algebra
structure of EQ(m) back to s(m).

Eventually, the 1:1 correspondence § allows introducing a linearization of a not necessarily
linear differential operator D € DO(7,n’) ~ ¢p € F(m, ') between two vector bundles 7 and
7', For any X € s(m), one can extend the action on F(m) of dx € EO(7) to an action on
F(m, 7). Locally, this claim is obvious — the point is that the extended action is actually a

global one. The operator
lp: () > X — IpX = dxtbp € F(m,n') (120)

is the so-called universal linearization operator of D. In view of (117), we have

(pX = Sxthp = Z%% DXt (121)
b,8
In fact, the partial derivatives 3u% (b € {1,...,rk(m)}) act on the components ¢}, (a €
{1,...,tk(n")}) of ¥p. In other words, the coordinate expression of the linearization operator
is
lp = Zﬂ: (au%%)a’b D?, (122)

where a (resp., b) refers to the row (resp., column). The linearization of any (not necessarily
linear) differential operator
D € DO(m, ")

is a (linear) horizontal differential operator

(p € CDiff(n, (7)), i (7)) . (123)

» oo

Observe also that the coefficients 8uzé¢p of the linearization of D ~ ¢p or of keryp = 30 are

coefficients of the equation of the tangent space of X°.
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Higher symmetries II

To upgrade an evolutionary vector field V € EQ(r) of J%(7) to a symmetry of X0 (a
proper generalized symmetry of the equation X°), we must (see classical symmetries of %)
still add the requirement that V,, € T,,J°°(7) be tangent to the prolongation ¥ C J°°(7) when
Kk € X: Vi, € T:X, for all k € 3. In other words, the considered evolutionary field is a symmetry
of the equation X% if and only if it acts on functions F(X) of the infinite prolongation ¥ of
30, The space of all symmetries of X0 is a Lie R-algebra that we denote by EQ(X).

To finish this review of symmetries, we ask what classical and higher symmetries mean lo-
cally, in coordinates, in the case the considered formally integrable equation X° is implemented
by a differential operator D ~ 1p, i.e., £ = ker¢p .

Let first 7 € O(my) be a Lie field that is tangent to X°. This Lie field is (if rk(7) > 1) the
lift 7 = j*Z of a vector field Z € O(mp). Further, the tangency property means locally that,
for any k;, € X0, we have

Ly, = 1 (Wn(sk+ b)) — () =0 (124)

This is exactly the concept of infinitesimal symmetry used in Physics (it means that the
infinitesimal transformation induced by = transforms a solution into a solution up to terms of
order > 2 in the infinitesimal parameter).

Consider now X € x(w), as well as the corresponding proper symmetry dy € EO(7)
of C. As mentioned, this field is a symmetry dxy € EO(X) of X° if and only if it acts on
F(X) = F(m)/I(X), where I(X) is the ideal made of those functions of F(7) that vanish on
Y. Let U run through an open cover of J>°(7m) by coordinate patches. Locally I(X) is given
by

1)y = {3 Fua DEVH}

where the sum is finite and the coefficients are functions in F(m) defined on U. Hence, the
symmetry condition dxI(3) C I(X) means that, for any U of the considered cover, we have

0= (OxI(2))vrs = (6x Y Faa D§UH)urs = Y Faalurn (62 Divh)|uns =

> Faalvns(DS 629%) [vns = Y Faaluns DY (6x¢%)|vns |

where we used (114) and the fact that horizontal differential operators restrict to F(3). Even-
tually, if X0 is, as assumed, implemented by D, the X%-symmetry condition for dy is

(bx¢p)ls =0, (125)

or, still,

since £p is a horizontal differential operator and can thus be restricted. In other words, if we
denote the restrictions of the linearization ¢p (resp., of the generating section X') by ¢x (resp.,
Xy), we get the
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Proposition 9. Let X0 be a formally integrable PDE in w, implemented by a differential
operator and with infinite prolongation 3. An evolutionary vector field dx generated by X €
sx(7) is a symmelry 0y € EO(X) of X0 under the necessary and sufficient condition that

Xy, € ker Uy . (127)

7.1.6 Compatibility complex, formal exactness, formal integrability

Compatibility complex and formal exactness

An overdetermined system is a system of linear equations that are not independent, so
that the existence of a solution is subject to compatibility conditions.

The simplest example of an overdetermined system is a system of linear equations
LX = C, where L € gl(p xn,R), X € R" and C € RP, whose rank p(L) # p. This means
that, between the (LHSs of the) equations, i.e., between the rows L;, of L, there do exist non-
trivial linear relations. In the following, we assume for simplicity that there is exactly one such
relation, Ly, = Z?;i AjLj., with A\; € R. This existence of non-trivial linear relations
between the equations is equivalent to the existence of a non-zero linear operator, in the
considered case, a non-zero linear operator A = (\1,...,\,—1,—1) € gl(1 x p,R), such
that Ao L = 0. Hence, the existence of a solution X requires that C' satisfies the compatibility
condition C' € ker A, ie., C, = Z?;% AjC;. In this case, the original system reduces to
L'X = ', with self-explaining notation, and, in view of our assumption, we have p(L') = p—1.
Of course, a homogeneous system always reduces. The most general solution then depends
on n — (p—1) > 0 parameters, so that C' € im L and the complex

R" — RP — R

1S exact.

Another basic example is integration in R™, which corresponds to the system of linear
PDEs dg f = w, where dg : C°(R") — Q!(R") is the de Rham differential. The non-trivial
linear partial differential relations

0,3 Oy f — Dyi0yi f =0 (128)

between the PDEs can be equivalently written as d; dyg = 0, where the non-zero linear
partial differential operator d; is the de Rham operator on 1-forms:

C>(R™) 2% QL(R") -4 Q(R) |
The existence of a solution implies that the compatibility condition w € ker d; holds. Since the
complex is exact, we then have w € imdy, i.e., the considered PDE admits a solution.

More generally, let D € Diff (7, 7') be a linear differential operator between smooth sections
of vector bundles 7 : E — X and 7’ : E/ — X over a manifold X. The linear (homogeneous)
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PDE implemented by D ~ p is called overdetermined, if there exists a non-zero linear
differential operator A € Diff(7/, 7”), such that

T(r) 2 0(x') 25 T(")

is a complex (of C°°(X)-modules). We then say that A is a compatibility operator for D,
if the pair (A, 7”) is universal in the obvious sense.

Just as the original operator D can be overdetermined (non-trivial linear differential rela-
tions between the corresponding equations — compatibility operator), a compatibility operator
A can itself be overdetermined (relations between the relations — new compatibility operator).
This then leads to a compatibility complex of the original operator D :

I(r) 2 T() 25 T(") 25 1(") 2% ...

In fact, any D € Diffy(m, 7’) admits a compatibility complex in the abelian category Mod(O)
of modules over O = C°°(X), but not necessarily in the non-abelian category rC*VB(X)
of finite rank smooth vector bundles over X. Indeed, for any k1 € N, the algebraized ki-
prolongation kal € Homo (I (mg 4k, ), ['(m,, ) of D admits a cokernel ¢ € Homo(T'(7y, ), P2) in
Mod(Q), which represents a differential operator Ay € Diffy, (7', P2). Since v is the cokernel
of 1/)%, the operator A; satisfies Ajo D = ojf1 oD =1 o ¢g o jFtk = 0. In fact A; is
universal and is thus a compatibility operator of D. When turning the crank again and again,
we obtain a compatibility complex of D:

I(r) 2 D(r') 2% Py 22 py 23 (129)

Here we actually use the algebraic approach — in the frame of O-modules — to differential oper-
ators, see for instance [KV98|, [GKP13b|, [GKP13a]. However, the O-modules Pa, P, ... are
not necessarily projective of finite rank, i.e., they are not necessarily modules I'(z”), T'(z""), . ..
of sections of vector bundles.

In the following, we stay within the setting of algebraic differential operators and consider
a diagram of the type we just used to construct a compatibility operator:

Ai* Ai
— Pi—1 - P; — Pit1 —
“ky 14k +e kil -0
o | 7| i (130)
i+t
A1

N
— JhtR () T P) =S THPi) —
Here Pi_l,PZ','PZ‘+1 are O-modules, A;,_1 € Diﬁki,l(Pi—lapi)y A; € Diﬁki(Pi7Pi+1)7 { €N,
and J¥(P) is the algebraic counterpart of I'(J*¥(P)), where P — X is a vector bundle and
JF(P) is the ordinary k-jet bundle (‘algebraic counterpart’ means that, in the geometric case

P =T(P), we have J*(P) = ['(J*(P))).
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The bottom row of (130) is made of prolonged algebraized operators, or, still, prolonged
formal operators (acting on formal derivatives). The study of formal operators is referred to
as the formal theory.

It is clear (see above) that one of the main questions in the context of compatibility
complexes is exactness (exactness of the top row in (130)), i.e., ‘the question whether the
considered equation admits a solution whenever the compatibility condition is satisfied’. The
question of exactness can of course also be considered in the (simpler) formal theory (exactness
of the bottom row).

More precisely, a compatibility complex (top row) is called formally exact, if the corre-
sponding formal complex (bottom row) is exact, for any ¢ € N. In this case, the main task is
to look for criteria for (true) exactness of the original (top row) complex.

We will not investigate the latter problem. On the other hand, it is important to know
that [KV98], for any sufficiently large k; € N, the compatibility complex (129) is formally
exact, for any operator D. We actually have the

Proposition 10. Any linear differential operator D € Diff(m,n') admits a formally exact
compatibility complex. The same is true for any horizontal linear differential operator D €

C Diff(n5, (1), 75 (1))

Formal integrability

Let us now briefly comment on formal integrability of a linear partial differential equation
¥ or linear differential operator D.

The first observation is that the category rC>°VB(X) is not Abelian. Indeed, kernels, like
e.g., X = ker w%, are not necessarily vector bundles over X. The reason is that, if ¢ : £ — E’
is a map of vector bundles over X, the rank p(¢,,) of the linear map ¢, : E, — E! may
vary with m € X. Then, the kernel kerv := [], %
varying dimension rk(E) — p(1,,). However, if the rank p(¢) is constant, it is easily seen that
the kernel ker) is a vector bundle over X. Therefore, it is natural to ask that D ~ ¥p be
regular, i.e., that the rank p(@b%) be constant, for any ¢ € N, or, still, that ¢ = ker QND be a
vector bundle over X, for any ¢ € N.

ker v, is a bundle of vector spaces of

The second remark is that, if D is of order k, the prolongation ¢ is the kernel in J*+¢(E)
of the differential consequences wgD up to order ¢ of the equation ¥p = 0. It follows that any
solution in J¥TH1(E) of the system 5™ = 0 (differential consequences up to order £ + 1)
projects by T ¢ kte+1 to asolution in J¥T4(E) of the system ¢}, = 0 (differential consequences
up to order ¢):

7T]€+g7k+g+1zz+1 C .

On the other hand, any family j%t¢ (m € X) of solutions of 1% = 0 can be extended to a

family jEH+1¢ (m € X) of solutions of 5™ = 0. Of course, the best situation is when any
solution of 1%) = 0 can be extended to a solution of @bg'l =0, i.e., when

(+1 _ ol
That ko412 =27 .
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We thus understand that the existence of extended formal solutions, i.e., formal integra-
bility, is a simplifying requirement.

Actually we say that a linear differential operator D ~ ¢ p is formally integrable, if it is
regular and if extended formal solutions do exist, i.e., more precisely, if ¢ is a vector bundle,
for all £ € N, and the vector bundle map 744 p4¢41 : Y1 5 3¢ s surjective, for all £ € N. In
the present text, all partial differential equations X", even those that are not implemented by
a differential operator, are assumed to be formally integrable in the sense of Remark 6
[KV98g|.

7.2 Remarks on gauge theories

Much of what will be said in this text about regular irreducible gauge theories can be better
understood with the Koszul resolution of a regular surface and some aspects of electromag-
netism in mind. In the following, we use without reference results and notation of Subsection
7.1

7.2.1 Koszul resolution of a regular surface

Let ¥ be an embedded p-dimensional submanifold of R™. This means that, for each x € X,
there is an open neighborhood 2 C R™ such that ¥ N € is described by a regular cartesian
equation f € C*°(Q,R""P). By ‘regular’ we mean that the equations f® € C*°({},R) are
independent, i.e., that the rank p(0,f) is equal to n — p, for all z € ¥ N Q. Assume for
simplicity that the first n — p columns of the Jacobian matrix are independent and use the
decomposition x = (2/,2”) € R"P x RP. Then, locally, in the neighborhood of 3, we have
f=f@,2") & 2 =2(f,2"). Tt follows that, locally, in the new coordinates (f,z"), the
equation of X is f =0, or, still, f® =0, for all a.

To avoid obscuration by technicalities, we often ignore in the sequel such local
aspects (thus following [Bar10], which is our main reference for the Koszul-Tate resolution of
shell functions in a regular irreducible gauge theory).

One of the fundamental consequences of regularity is the structure of the ideal I(X) made
of those smooth functions C*°(R"™) that vanish on X. It is clear that any linear combination
F =3 Fuf®, Fy € C>®(R"), of the equations belongs to I(X). Conversely, if F' € I(X), we
get, working in the new coordinates (f,z"),

1
F(f,:n”):/o dy (F(tf,2" dt_Zf“/ (8paF) (tf, 2" ZFf“

We are now prepared to recall the construction of the Koszul resolution of the function
algebra C°(X) of
Y:f'=0,Vaec{l,...,n—p}, (131)
where the f% are the first coordinates of an appropriate coordinate system (f,z”) of R™. The
Koszul resolution of C*°(X) is then the chain complex made of the free Grassmann algebra

K =C*([R") @ S[¢"]
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on n— p odd generators ¢** — associated to the equations (131) — and of the Koszul differential
Sk =Y [*Oger . (132)
a

Of course, the claim that this complex is a resolution of C°°(X) means that the homology of
(K, k) is given by
Hy(K)=C>*(¥) and Hp(K)=0,Vk>0. (133)

At least the result concerning the 0-homology space is quite clear. Indeed, in degree 0, the
cycles are the functions in C°°(R™) and the boundaries are the elements of

ki) Foo™}={d) R [} =1,
b a
so that Hp(K) = C*(%).

7.2.2 Electromagnetism - an Abelian gauge theory

In Minkowski space R3!, and with respect to any intertial observer or coordinate system,
the behavior of the electromagnetic field (E, B) = (E(z,y, z,t), B(z,y, z,t)) is governed by
Maxwell’s equations, which read in the vacuum,

L L L T B
V-E=0,V-B=0,VAE=-8B, VAB= 58, (134)
C

where c is the celerity of light. The second and third equations can be equivalently written as

B=VAA and E=-VF-§A. (135)
Here, A = ff(:c, y,z,t) and F = F(x,y, z,t) are the vector and scalar potentials, respectively.
In the sequel, we use the space-time coordinates z! = z, 22 = vy, 23 = 2, and z* = ct.

The principle of Special Relativity, as well as experimental facts, show that, if the considered
coordinates change, the components

-1
A = A1, Ay = Ay, A3 = As, and Ay = TF

transform according to the 1-form transformation law
AN - a;[;l"x,l/A;, 9

so that A=A, dz* = A, dz" is a form A € Q}(R31).

The Minkowski space R®! with the flat Minkowski metric is the local model of a Lorentzian
4-manifold X. When working in a local chart domain U of X, we usually view 4 as a form

AcQlU)®g,

valued in g = u(1) = iR. Since g is the Lie algebra of the unitary group G = U(1) = S!,
the potential A is a local connection 1-form in a trivialization (U, ®) of a principal G-bundle
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L over X. It is easily seen that the freedom of choice concerning the (clearly not unique
antiderivative (see (135)) or) potential A is given by

By = Ay + 00, (136)

where 6 is an arbitrary function. Therefore, if the considered trivialization (U, ®) or observer
changes to (U’,®"), what corresponds to a smooth transformation

t:UNU =G, (137)

the form A will change to 5. However, since the matrix t is a number in the present case, the
relation (136) between A and B is exactly (the coordinate form of) the transformation law

B=t"'At+t1dt (138)

of the local connection 1-form of a connection 1-form w of the principle bundle L. The
function 6 chosen by a given observer, or even the observer itself, is called a gauge, and the
transformation (136) of this gauge is a gauge transformation. In Mathematics, an observer
or his trivialization are often regarded as a gauge, a transformation like (137) is referred
to as a gauge transformation, and Equation (138) is the transformation law — under gauge
transformation — for local connection 1-forms.

If we use the preceding conclusion that the electromagnetic potential is nothing but a
connection w € Q'(L) ® g on a G-bundle L — X over a Lorentzian manifold (X, g), as a
principle of electromagnetism, a number of known results come automatically. Indeed, a short
computation shows that the local form

FeQ*U)®g
of the curvature Q of w, which is here given by F = d A, i.e., in coordinates, by
Fow = Oun Ay — O A,

is exactly the electromagnetic tensor. Hence, under a gauge transformation, the electromag-
netic tensor changes according to the transformation law

F =t'Ft

for local curvature 2-forms. Since, as mentioned, t is a number here, we get 7' = F, i.e., we
see that the electromagnetic tensor is gauge invariant, or, still, that the electromagnetic field
is a physical observable. Moreover, the obvious equation d F = d? A = 0 straightforwardly
leads to

OpxFup + Opn Fux + O Fryy =0,

which is easily seen to be equivalent to the Maxwell equations (135). Hence, these Maxwell
equations follow automatically from general properties of connections and are thus of geometric
nature.
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The two remaining equations can be found, in a trivialization (U, ®) of L over a local
orthonormal coordinate chart (U, (z!, 22, 23, 2%)) of (X, g), as the dynamical equations of the
fundamental potential field A, via variational calculus. The indices of the components of local
tensor fields, in particular those of the components A, (resp., F,) of A (resp., F), can be
lifted by means of the ‘metric’ g — which in the considered coordinates is given by the diagonal
matrix (1,1,1,—1). Take now the Lagrangian £ defined by

1
L= —1]—““”.7-"”” .
The corresponding Euler-Lagrange equations read
O F'" =0, or DpF"=0,

depending on whether we view £ as a function of R®! or, since it is essentially given by
O Ay ~ Ay, as a function of the first jet bundle of T*R*!. These equations are equivalent
to the first and fourth Maxwell equations, which are thus dynamical ones.

Electromagnetism is a prototypical example of a (an Abelian) gauge theory (since its
structure or symmetry group G is Abelian).

7.2.3 Regular irreducible gauge theories

In field theory, fields are sections ¢ € I'(m) of a vector bundle 7 : E — X. Since
we consider here gauge theories from the standpoint of Physics, we work systematically in a
trivialization of E (fiber coordinates u = (u!,...,u") — we will sometimes write u® instead
of u) over a coordinate patch of X (coordinates » = (x!,...,2")), or we just assume that
E =R"xR". The dynamics of the considered field theory is given by a distinguished functional

S acting on compactly supported sections ¢ € I'(7),

St = [ £t ut)lprpda e R,
X

where the Lagrangian £ is a function £ € F(m_1) of the (k—1)—jet bundle of 7 (jet bundle
coordinates (%, u%)) such that £(z%,0) = 0 (it suffices to set F(z,u2) := F(a',u®) — F(a",0),
for any F' € F, to see that F = C®(X) @ F, where the functions in F vanish on the zero
section). Equivalently, we may use the corresponding Euler-Lagrange equations

(Sua£|]k¢ = (—Dx)a&%ﬁ’ﬂ% = O 5 (139)
where 40 is the algebraized FEuler-Lagrange operator, see Subsection 7.1.
The extended algebraized Euler-Lagrange equations

D26yl =0 (140)

define the constraint surface 3 in the infinite jet space J°°(m). The solutions ¢ of the original
Euler-Lagrange equations (139) are those compactly supported sections ¢ € I'(7) that satisfy
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the condition (j*°¢)(X) C ¥. If a function f € F(m) of J°°(7) vanishes on X, i.e., if f € I(¥),
we write f ~ 0.

As for any system of linear equations, we may find linear relations between the considered
equations (140), i.e., relations of the type

NID%§u L =0, (141)

with N} € F(m). It is easy to write such relations, if we use coefficients in I(X), i.e., that
vanish on the ‘shell’ ¥. Indeed, for any functions nl% € F(r) (that are antisymmetric in
a,b), we have the linear relation n[ab]aubﬁ Oue L = 0 between the equations 0y« L = 0. What
we actually have in mind are non-trivial linear relations, i.e., relations of the type (141), but
with at least one coefficient N¢ ¢ I(X) (on-shell reducibility). We refer to such relations as
non-trivial Noether identities.

A deep result, which is already present in elementary Mechanics, is the 1:1 correspondence
between, roughly speaking, ‘symmetries of the action’ (resp., ‘gauge symmetries’) and con-
served currents (resp., Noether identities). It motivates the definition of a gauge theory as
a field theory (see above) with non-trivial Noether identities.

The efficient investigation of gauge theories is subject to some regularity conditions that we
now describe. More precisely, the regularity conditions for ‘irreducible’ gauge theories
can be formulated as follows:

Assumption 1. For any ¢ € N, the LHSs D% 6,. L of the equations of ¥, up to order k+ ¢
(i.e., since L € F(mi_1), we consider derivatives DS up to order £), can be separated into two
packages E, and Ea (of course, the ranges of (a,a) and of (a,A) are the same) (we could
even only ask that the D%d,.L and the (Eq4, Ea) be related by an invertible matrix, i.e., that

D6yl = MOE, + MY Ep

where the matrix M = (M2, M&?), with row index («, a), is invertible; however, to simplify,
we ignore this matrix in the following, just as we ignore, as mentioned before, a number of
local aspects).

Assumption 2. The functions E, € F(m4¢) are independent. This is the actual regular-
ity condition (see Subsection 7.2.1). In other words, we assume that (locally — but we ignore
this restriction) the E, = Fy(2%,u2) can be chosen as the first variables of a new coordinate
system (2%, Eq, u”®) in JE(r):

(2", ul%, ul®) < (2%, Eq,ull®) .

Assumption 3. The functions Ea are linear consequences of the functions FE,: Ea =
FREq, with F{ € F(mjte). It follows that Ea = 0, if E; = 0: the E; (resp., Ea) are the
independent (resp., dependent) equations.

To illustrate what has been said, we consider the example of electromagnetism. Depending
on whether we interpret the A, and their derivatives d,».4,, as functions of the base R®!, or,
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on the contrary, as independent variables A,,, A, in the jet space, we must view the following
operators 0, as partial derivatives 0, or as total derivatives D, .
The non-extended Euler-Lagrange equations read

o4, L =0,F"=0,0"A" — MO, A” = —0,04 A" + 8;0; A* — OFO A* — M A" (142)
where 1 < p,v <4 and 1 <7< 3. As a consequence, we get the non-trivial Noether identity
0404, L = 0404, L+ 004, L=0. (143)

Here ‘identity’ means, depending on the chosen interpretation, that the equality holds for all
sections A and all base points x, or, equivalently, for all points of the jet space. Of course,
Identity (143) implies the identities

8(51,52,53,54)6u5,4”[’ = 8(51752,!33754)84&445 + 8(51,ﬁ2,53,54)8i5,4i£ =0, (144)

where J(g1 g2 g3 31y means 85 or Dg, depending on the chosen standpoint.
Equation (142) splits into

5Aj£ = —8484.Aj + 81'82'./4]‘ + 83‘(94.,44 — 83‘(92'./41‘ = —Aj;44 + ./47“ + ./44; 45 — -Ai;ij

and

dOa, L = 0404 A4 — 0;0; A4 — 0404 A4 + 040; A = —Auii + Aizai -

These non-extended algebraized Euler-Lagrange equations allow us to compute Aj; 44 and Ay 11
in terms of the other jet space variables and the new coordinates F; := j4,L and Fy := d4,L.
Hence, Ej;, E4 belong to the first package E, of independent equations that can be chosen as
first coordinates of a new system.

However, the derivatives D364, L, where a # 0, are not independent, in view of (144):
the Dg D164, L are dependent equations Ea . The challenge resides in the proof that all the
other equations D36 4, L are independent equations F,. This is actually a consequence of some
geometric facts.

Assumption 4. The dependent equations Ea are total derivatives of a finite number
of dependent equations Ej = F§Eb, i.e., there is a finite number of generators FEs by
derivation: Fa = DgE(;.

In the case of electromagnetism, for instance, there is a unique generator, namely Fs =
D, 1da,L.

Assumption 5. Note that the differences En — FR Eq = 0 are non-trivial Noether identi-
ties. We assume that, if Fa = Dng, the derivative Df of the Noether identity F5— Fg’Eb =0
is the preceding Noether identity associated to Ea . If we write this requirement out, we find
an invertibility condition for some matrix, which is called the irreducibility assumption of
the considered gauge theory.

Observe that the latter hypothesis is satisfied in electromagnetism.
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7.2.4 Higher symmetries 111

In this subsection, we explain the concepts of symmetry of the Euler-Lagrange equations,
symmetry of the action, and gauge symmetry, in the context of a regular irreducible gauge
theory. As usual, we denote the coordinates of the considered trivial bundle 7 : £ = R"xR" —
X =R" by (z*,u®) and the Lagrangian of the theory by £(z*,u2).

As mentioned above, a vector field X of J(w) with coefficients in functions of J°(r)
(see Equation (115)) can be prolonged to a field of J*°(x) in the way described by Equation
(108) (with ¢ = oo). This prolongation j°X € ©(m) is the sum of a horizontal vector field
AJD,; € CO(r) and an evolutionary vector field 6x € EO(r).

In conformity with the symmetry conditions (124) and (125), which ask that the prolon-
gation of the considered vector field annihilates the algebraized equation on-shell, we say that
the generalized vector field X € Der(Fy, F) is a symmetry of the Euler-Lagrange
equations d,e Lk, = 0,Va, if

0x(0ye L) = 0 ,Va . (145)

As said before, the requirement means that the infinitesimal transformation induced by X
transforms a solution into a solution up to terms of order > 2 in the infinitesimal parameter.

As for the concept of symmetry of the action, remember first a well-known fact of La-
grangian Mechanics. The gauge transformation (136), or, more precisely, the transformation

F'=F—-00, A=A+V0,

where 6 is a function of time and positions, modifies the generalized electromagnetic potential
U=e(F—v- ff), where e is the charge and ¥ the velocity of the considered particle, and thus
leads to different Lagrangians £ and L£’. However, it is easily seen that the latter differ by
the total derivative £’ — £ = d;j of a function j of time and positions, and that the Euler-
Lagrange equations associated to £ and £’, hence, the dynamics, are therefore the same. This
observation can be extended to the present field theoretic context. Two Lagrangians £, L' € F

implement the same Euler-Lagrange equations if and only if they differ by a total divergence:
Sl =06ul!, Ya < L —L=Djj, jeF.

This indicates that two action functionals Sy and S/, which are defined by Lagrangians £ and
L', coincide (on all compactly supported sections) if and only if the underlying Lagrangians
L, L differ by a total divergence. It is thus natural to identify the space of action function-
als Sy with the space of classes [£] of functions £ € F considered up to total divergence.
Alternatively, an action can be viewed as a class [£dx], where dz = dz!...d 2" and where

Ldz ~ Ldz + D,ij' dz .
A symmetry of the action is now a generalized vector field X, such that

SxLda] = [0] .
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This definition only makes sense, if we define how the prolongation dx acts on the differential
form dx and show that its action on [£dz| is well-defined. We confine ourselves here to
mentioning that the symmetry condition finally reads

6%£ = Dzi]i s

where j* € F, i.e., just requires that dx£L be a total divergence. Moreover, any symmetry of
the action is a symmetry of the Euler-Lagrange equations (but the converse is not true).

Eventually, a gauge symmetry is a symmetry
X(f) = A (', ul) 0y + B (", ul)0yp = A7 (0ys + ub0p) + (B® — ATub)0, (146)
of the action, whose coeflicients
A= Al(f)= ALDgf and B’ = B’(f)=B3D]f
are the values of some total differential operators on an arbitrary / a varying function f € F.

Symmetries of the action (resp., symmetries of the action obtained as value of a gauge
symmetry on a specific / a fixed function f € F) are often termed as global symmetries
(resp., local symmetries). Further, we call symmetry in characteristic form a symmetry
given by a vertical generalized vector field

X = C%z',u)d,, € Der®(Fo, F) .

For all types of symmetry (symmetry of the Euler-Lagrange equations, symmetry of the action,
or gauge symmetry), any symmetry X (see Equation (146)) provides a symmetry

X = (B"— A}

ub

in characteristic form (note that X’ is a symmetry, since dx = dx).

7.2.5 Noether’s theorems

Einstein qualified Noether’s result as a monument of mathematical thinking. The tight
relationship between symmetries and conserved quantities is part of each course in Classical
Mechanics. More precisely, Noether’s theorems claim that there exists a 1:1 correspondence
between (equivalence classes of) symmetries of the action in characteristic form and (equiv-
alence classes of) ‘conserved currents’, and that there exists a 1:1 correspondence between
gauge symmetries in characteristic form and Noether identities.

The latter correspondence is via formal adjoint operators. More precisely, if N$ DS 6,0 L =0
is a Noether identity, we consider the total differential operator N with components N% =
N2D2, and define the corresponding gauge symmetry in characteristic form X (f) = C%(f)0ya
as the adjoint Nt of N, ie.,, by C*(f) = N®"(f) = (—D)* (N2 f). The converse associa-
tion is similar. It follows that non-trivial Noether identities correspond to non-trivial gauge
symmetries in characteristic form.



On four Koszul-Tate resolutions 55

7.3 Partial differential equations and algebraic D-geometry
7.3.1 Construction of non-split relative Sullivan D-algebras

For convenience, we recall Lemma 1 of [BPP15b| that is needed in the main part of this
text.

Lemma 1. Let (T,dr) € DGDA, let (gj)jcs be a family of symbols of degree nj € N, and let
V= ®jeJD - g; be the free non-negatively graded D-module with homogeneous basis (g;)je..

(i) To endow the graded D-algebra T ® SV with a differential graded D-algebra structure
d, it suffices to define
dg; € Tp,—1 Nd7' {0}, (147)

to extend d as D-linear map to V, and to equip T ® SV with the differential d given, for any
teTy, vi € Voo ooy v € Vi, by
dt®@v©...0u) =

k
dr(t) @v1 O ... O v + (—1)P D (1) Zi<e Mtk d(vy) @01 O ... L. O v, (148)
/=1

where * 1s the multiplication in T. If J is a well-ordered set, the natural map
(T,dr)2t—t®1p € (TRSV,d)

18 a RSDA.

(i) Moreover, if (B,dg) € DGDA and p € DGDA(T, B), it suffices — to define a morphism
q € DGDA(T X SV, B) (where the differential graded D-algebra (T X SV, d) is constructed as
described in (1)) — to define

a(9;) € Bn, Ndg'{pd(g))} , (149)
to extend q as D-linear map to V', and to define g on T @ SV by

qtRv1 O...0uvg) =p(t) *q(vy) *...xq(vg) , (150)
where x denotes the multiplication in B.
7.3.2 Jet functor
We now give some explanations about the construction of the jet functor
J : qcCAlg(Ox) — qcCAlg(Dx) .

For simplicity, we assume that the smooth scheme X is a smooth affine algebraic variety, so
that we can substitute global sections to sheaves — but the same proof goes through in the
general case. We denote by O (resp., D) the algebra Ox(X) (resp., Dx(X)).
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The functor J°° must be left adjoint to the forgetful functor For, i.e., for B € OA =
CAlg(O) and A € DA := CAlg(D), we must have

Hompy (T B, A) ~ Homp, (B, For A) , (151)

functorially in A, B. The construction of J*°B is quite natural. We start from the D-module
D ®p B, and consider the D-algebra So(D ®p B) over D ®p B. Since Equation (151) suggests
the existence of an O-algebra morphism B — J*°B, we define J°°B as the quotient of the
D-algebra So(D ®o B) by a D-ideal such that the natural inclusion

i:B2b—1®be So(D®o B)

becomes an O-algebra morphism 7oi : B — J°° B when composed with the natural projection
7. Since an O-algebra morphism is an O-linear map (a condition that is automatically verified)
that respects the multiplications and the units, we must ensure that

1o ) =r1eb)or(1leb)=r(1®b)o(1xl)) and r(1®1lg)=mnr(1),

where 1 (resp., 1g) denotes the unit in O (resp., B) and where ® is the symmetric tensor
product (we denote the product of two residue classes by the same symbol). Hence, we
consider the D-ideal K generated by the elements

D-(1®b)o(1al)-1 b)) € So(P®oB) and D-(1®1p—1)€ So(D®o B),

where D - denotes the action by an arbitrary differential operator D € D.
It now suffices to show that

J®:0OA> B J®B :=80(D®o B)/K € DA

possesses the adjointness property (151).
If f: J°B — A is a D-algebra morphism, the map

f:B3b— f(n(1®b)) € ForA

is obviously an O-algebra morphism.
Conversely, let g : B — For A be an (-algebra morphism. The map

§:D®0B>D®b— D-(g(b) € A

is a well-defined D-module morphism. Since So(D ®o B) is the free D-algebra over the D-
module D®e B, the D-module morphism g can be uniquely extended to a D-algebra morphism
g:So(D®p B) — A. As g vanishes on K (note that g(1) = 14, where 14 is the unit in A),
it descends to the quotient J°°B. Hence the searched D-algebra morphism g: J*B — A.

Let now 7 : F — X be a smooth morphism of smooth affine algebraic varieties. The
total sections OX(X) of the pushforward OF by 7 of the structure sheaf O of E form an
O-algebra, whose image J := J>°(O%(X)) by the jet functor is a D-algebra. This algebra is
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the D-geometric counterpart of the function algebra F = F(m) of the infinite jet space J°°(m)
of a smooth vector bundle 7 : E — X.

To gain insight into this statement, consider the example 7 : E = R? 3 (t,z) —t € X = R.
To compare this differential geometric situation with our former algebraic geometric setting,
we define O = Ox(X) := R[t] and B := O%(X) = Op(E) := R[t,z]. Tt is easily seen that
the symmetric algebra So(D ®o B) coincides with the polynomial algebra R[t, 9} ® 27], where
1,7 € N. When dividing the ideal K out, we obtain

J=R[t, 2,0, @x,0?@x,..] .

Indeed, the initial generator 0; ® x2 (resp., O; ® 1p), for instance, coincides in the quotient
with

her*=0-(1®z)®(1®x)) (resp., R 1p=0;-1).
This generator is thus a polynomial in 9; ® z and 1 ® = ~ z (resp., is thus equal to 0, since
O¢ acts on the element 1 of the D-module ©O) and can therefore be omitted in the quotient.
Hence, the announced result. When setting () := oF @ x, we get

J = R[t,x,x(l),x@), U
i.e., we obtain the polynomial function algebra of the jet space J°°(7).

Observe eventually that the vector field 0; acts on a function in J as a derivation, see
above, and that by definition 9; - 2® = z*+1)_ This means that

O - x® = (8 + WMo, + 228,y +...)z® = Dy z® |

where D; is the total derivative. In other words, the action of a differential operator of the base
on a function in J coincides with the action of the corresponding total differential operator.

7.3.3 Proof of Proposition 1

Let 7 : E'— X be an affine morphism of schemes (i.e., a locally ringed space morphism
I = (m,7%) : (E,OFp) — (X,0x) such that there is an affine cover of X whose preimages by 7
are affine), in particular a vector bundle. In the following, we consider the sheaf Op € Sh(E)
as sheaf OF := m,0p € Sh(X), where m, denotes the direct image of sheaves. It is known
[Har97] that 7, induces an equivalence of the categories qcMod(Op) and qcMod(Ox)NMod(O%)
with self-explaining notation. It follows that O% € qcMod(Ox). Moreover, OF is clearly a
unital commutative ring and thus an algebra Of( € qcCAlg(Ox). Indeed, such an algebra
is a commutative monoid in qcMod(Ox), i.e., it is an object in qcMod(Ox) that carries an
associative unital commutative multiplication, which is a morphism in qcMod(Ox). These
conditions are obviously satisfied for OF. As for Ox-linearity, note that, if V C X is open,
f€0x(V)and F € OF(V) = Og(r~1(V)), the ring morphism 7* : Ox (V) — Op(r~1(V))
allows to define the Ox-action by f-F := «#(f)x F, where « is the ring multiplication. Hence,
the multiplication * is Ox (V)-bilinear, i.e.,

1 0% (V) ®oy(v) OX (V) = OX(V)

is Ox (V)-linear, and this presheaf morphism induces a sheaf morphism x : 0¥ ®p, O% — OF.
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7.3.4 Differential operators with coefficients in a D-algebra

Let X be a smooth scheme and let A € qcCAlg(Dx) with multiplication % (let us recall
that Dy is generated by the sheaf Ox of functions and the sheaf ©x of vector fields). We
denote the action on a € A by f € Ox (resp., 8 € Ox) by f-a (resp., Vgpa). An element
f € Ox is viewed as element in A via the identification f ~ f-14. Hence,

fra=f-Qa*xa)=(f-la)rxa~ fxa. (152)
The ring A[Dx] of differential operators with coefficients in A is the Dx-module
ADx] = A®o, Dx

endowed with the associative unital R-algebra structure e defined, for a,a’ € A, § € O, and
D € Dx, by
(a®1p)e(d ® D)= (axad')® D (153)

and
(lg®0)e(d®@D)=(Ved)®@D+d @ (0oD). (154)

This multiplication is canonically extended to a first factor of the type
a® (fobhol)=(axf)R1lp)e(lax0)e(l4x0).

It is straightforwardly checked that the usual relations like, e.g., 8 06" = 6" 06+ [6,6'], do not
lead to any contradiction. Moreover, the embedding

Ada—a®lp € ADx]
is an associative algebra morphism (i.e., A is a subalgebra of A[Dx]), whereas the embedding
Ox 30— 14®0 € ADx]
is a Lie algebra morphism (i.e., O is a Lie subalgebra of A[Dx]). These inclusions satisfy
Hea—aef=Vya
and fef = fof, and extend to an associative algebra morphism
Dx>Dw—14®D € ADx] .

Consider now an algebra A € qcCAlg(Dx), i.e., a commutative monoid in the symmetric
monoidal category (qcMod(Dx), ®oy, Ox). In the following, it is understood that all modules
are left modules. An A-module in the category qcMod(Dx) is an object M € qcMod(Dx)
together with an A-action, i.e., a Dx-linear map pu : A ® M — M that satisfies the usual
action conditions. Of course, Dx-linearity is equivalent to Ox- and © x-linearity. Let m € M
and set a <m := pu(a ® m). Since

f-la@m)=(f-a)@m=ac(f -m)



On four Koszul-Tate resolutions 59

(resp.,
Vo(a@m)=(Vga) @m+a® (Vom) ),

Ox-linearity (resp., © x-linearity) of p means that
f-(aam)=(f-a)am=a<(f-m) (155)
(resp.,
Vo(a<am) = (Vga)<m+a<(Vegm)). (156)

In view of (152), Condition (155) means exactly that
f-m=/f<am. (157)

Remark 9. In the following, it will be understood that Ox C A and that the Ox-action on
A (resp., on M) coincides with the A-action.

The compatibility between the A- and Dx-actions of an A-module in the category of Dx-
modules then reduces to the condition (156) requiring that vector fields act on < as derivations.

The next result can be found for instance in [BD04].

An A-module in the category qcMod(Dx) is the same as an A[Dx|-module that is quasi-
coherent as Ox-module.

Indeed, an A[Dx]-action ¢ on M provides an action a <m =~ (a ® 1p) ©m and an action
Drm ~ (14 ® D) om; conversely, an A-action < and a Dx-action > on M allow to define an
action

(a@D)om=((a®1p)e(ly®@D))om~(aeD)om=a<(D>m). (158)

More precisely, assume for instance that we are given an A-module in qcMod(Dx ), and define
o from < and > as indicated in (158). In view of (155), this action is well-defined on A[Dx] =
A®p, Dx, and in view of (156), we get, when taking (154) and (158) into account,

(1u®0) e (a®10))om=(14®0)0(a®1lo)om) .

The remaining verifications are left to the reader.

Let now M, N be two A[Dx|-modules that are quasi-coherent as Ox-modules, i.e., two
A-modules in qcMod(Dx ). A morphism f: M — N is just an A- and Dx-linear map. Hence,

Proposition 11. Let X be a smooth scheme and let A € qcCAlg(Dx). The category
qcMod(A[Dx]) of Ox-quasi-coherent A[Dx|-modules and the category Modgemoq(py)(A) of A-
modules in qcMod(Dx ) coincide.

If M,N € qcMod(A[Dx]), the A-module M ® 4 N is a Dx-module for the canonical Ox-
and O y-actions; the A-action is Dx-linear, so that M @4 N € qcMod(A[Dx]). In fact, the
category (qcMod(A[Dx]), ®4,.A) is symmetric monoidal.
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7.3.5 DG algebras over differential operators with coefficients in a D-algebra

A commutative monoid 2l in (qcMod(A[Dx]), ®4,.A) is a (quasi-coherent associative unital
commutative) A[Dx]-algebra. More precisely, just as a Dx-algebra is an Ox-algebra and a
Dx-module such that vector fields © x act as derivations, an A[Dx]-algebra is an (associative
unital commutative) A-algebra and an A[Dx]-module 2 € gqcMod(A[Dx]) such that vector
fields ©x act as derivations. In other words, an A[Dx]-algebra is an .A-algebra (say with
A-action < and multiplication %) and a Dx-module 2 € qcMod(Dx ) such that vector fields act

as derivations on < and on *. Similarly,

Definition 6. A differential non-negatively graded .A[Dx]|-algebra is a differential
graded commutative A-algebra, as well as a differential graded Dx-module Ao € DGqcMod(Dy ),
such that vector fields act as derivations on the A-action on e and on the multiplication of
e . A morphism of DG A[Dx]l-algebras is a morphism of DG Dx-modules that is A-linear and
respects the multiplications and the units. The category of DG A[Dx]|-algebras and morphisms
between them will be denoted by DGqcCAlg(A[Dx]) .

In other words, a DG A[Dx]-algebra is a DG A-algebra, as well as a DG Dx-algebra, such
that the A-action and the Dx-action are compatible in the sense that vector fields ©x C Dx
act on the A-action < as derivations.

Example 1. Let A be, as above, a Dx-algebra. Any DG Dx-algebra morphism f : A — B,
allows to endow B, with a DG A[Dx]-algebra structure, i.e., to view Be as an object Be €
DGqcCAlg(A[Dx]). Indeed, it suffices to set

a<b:= f(a)*g b,

with self-explaining notation. Verifications are straightforward (see also Remark 9). In partic-
ular, A can be interpreted as DG A[Dx]-algebra with A-action < given by the A-multiplication

*A -
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