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Abstract

Type systems were invented in the early 1900s to provide foundations for Math-
ematics where types were used to avoid paradoxes. Type systems have then been
developed and extended throughout the years to serve different purposes such as ef-
ficiency or expressiveness. The A-calculus is used in programming languages, logic,
mathematics, and linguistics. Intersection types are a kind of types used for building
semantic models of the A-calculus and for static analysis of computer programs.

The confluence property was used to prove the A-calculus’ consistency and the
uniqueness of normal forms. Confluence is useful to show that logics are sensibly
designed, and to make equality decision procedures for use in theorem provers.
Some proofs of the A-calculus’ confluence are based on syntactic concepts (reduction
relations and A-term sets) and some on semantic concepts (type interpretations).
Part I of this thesis presents an original syntactic proof that is a simplification of
a semantic proof based on a sound type interpretation w.r.t. an intersection type
system. Our proof can be seen as bridging some semantic and syntactic proofs.

Expansion is an operation on typings (pairs of type environments and result
types) in type systems for the A-calculus. It was introduced to prove that the prin-
cipal typing property (i.e., that every typable term has a strongest typing) holds
in intersection type systems. Expansion variables were introduced to simplify the
expansion mechanism. Part II of this thesis presents a complete realisability se-
mantics w.r.t. an intersection type system with infinitely many expansion variables.
This represents the first study on semantics of expansion. Providing sound (and
complete) realisability semantics allows one to study the algorithmic behaviour of
typed A-terms through their types w.r.t. a type system. We believe such semantics
will cast some light on the not yet well understood expansion operation.

Intersection types were used in a type error slicer for the SML programming
language. Existing compilers for many languages have confusing type error messages.
Type error slicing (TES) helps the programmer by isolating the part of a program
contributing to a type error (a slice). TES was initially done for a tiny toy language
(the A-calculus with polymorphic let-expressions). Extending TES to a full language
is extremely challenging, and for SML we needed a number of innovations. Some
issues would be faced for any language, and some are SML-specific but representative
of the complexity of language-specific issues likely to be faced for other languages.
Part IIT of this thesis solves both kinds of issues and presents an original, simple,
and general constraint system for providing type error slices for ill-typed programs.

We believe TES helps demystify language features known to confuse users.
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Chapter 1

Mathematical definitions and

notations

Natural numbers

Let 7, 7, m,n, p,q be metavariables ranging over N, the set of natural numbers.

Metavariables
If a metavariable v ranges over a class C, then the metavariables v, (where x can

be anything) and the metavariables v, v”| etc., also range over C.

Sets
Let s range over sets. If v ranges over s, then let ¥ range over P(s), the power set

of s.

Disjunction
Let dj(s1, ..., s,) (“disjoint”) hold iff for all 4, j € {1,...,n}, ifi # j then s;Ns; = @.

Let s1 W sy be s1 U s if dj(s1, s2) and undefined otherwise.

Relations

Let (z,y]) be the pair of x and y. If rel is a binary relation (a pair set), let (x rel y)
iff (z,y) € rel, let the inverse of rel be rel™ defined as {(xz,v) | (y,z) € rel}, let
dom(rel) = {x | (x,y) € rel}, let ran(rel) = {y | (z,y) € rel}, let s < rel = {(x,y) €
rel | x € s}, and let s S rel = {(x,y)) € rel | x & s}.

Functions

Let f range over functions (a special case of binary relations), let s — s = {f |
dom(f) C s Aran(f) C s'}, and let 2 — y be an alternative notation for (z,y) used
when writing some functions. Let fi + fo = o U (dom(fy) < fi). Let fiBfs be fi U f
if i Uf is a function and undefined otherwise. If fi,fo € s; — P(sy) then let
hUfy={x— UL |z €dom(fi) Ndom(fy)} Udom(f) < fi Udom(fi) < fo.

Tuples
A tuple ¢ is a function such that dom(¢) C N and if 1 < j € dom(¢) then j —

1 € dom(t). Let t range over tuples. If v ranges over s then let o range over

1
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tuple(s) = {t | ran(t) C s}. We write the tuple {0— xq,...,n—x,} as (xq,...,T,).
Let @ append tuples: (x1,...,2;)Qy1,...,y;) = (T1,..., 2, Y1,...,Y;). Given n
sets S1,...,8p, let s1 X -+ X s, be {{x1,...,2,) | Vi € {1,...,n}. x; € s;}. Note
that sq x « -+ X s, C tuple(s; U---Usy,).

Inference rules
An inference rule is a pair premises/conclusion which states that if the premises are
true then the conclusion must be true as well. In the literature, an inference rule is

often written as follows:
Yyr - Yn
— (1

which means that if y; for all 4 € {1,...,n} are true then z is true. This rule is

named (r). Such a rule is sometimes written as follows:
Myt A ANy, =

In this document we also sometimes write such a rule as follows:
(re <y AN Ay,

The rule name is sometimes omitted in such rules.



Chapter 2

Introduction

2.1 History of the A-calculus

In the nineteenth century, due to the lack of precision of natural languages and the
discovery of some controversial results in analysis [79], mathematicians and logicians
became interested in a more precise formalisation of Mathematics. Frege [138, 79
was the first to set solid logic foundations. He, among other things, presented a
formalisation of the concept of a function. The development of formal systems by
Frege and his contemporaries led to the discovery of some paradoxes. The paradox in
Frege’s work, found by Russell [121], was due to the problem of self-reference. This
problem is inherent to the fact that any function can be applied to any function (in
particular to itself). In order to solve this problem, Russell [121] defined a theory
of types where types are used to restrict the application of functions.

One of the great achievements in the movement led by Frege, Russell, Curry, etc.,
aiming at the formalisation of Mathematics has been the design of the M-calculus® by
Church [21]. In 1932, Church [21] introduced a system for “the foundation of formal
logic”, which was a formal system for logic and functions. The set of terms of this
system was defined as a superset of the set of terms of the Al-calculus. In addition,
Church introduced two sets of postulates. The first one called “rules of procedure”
allowed, among other things, dealing with conversion of A-terms (these rules are
presented in Sec. 3.2). The second set contained the “formal postulates” which were
logical axioms. However, this system and some of its subsystems turned out to
be inconsistent as shown by Kleene and Rosser [91]. Nevertheless, the subsystem
dealing only with functions turned out to be a “successful model for computable
functions” [5]: the actual A-calculus is a generalisation of this earlier system.

This earlier system led to the actual A-calculus. Church defined the computable
functions as the A-definable ones. Also, it turned out that the set of computable

functions defined by Turing via his machines is equivalent to the set of A-definable

'Barendregt [5], Rosser [120], and Cardone and Hindley [18] provide extensive introductions to
the A-calculus.
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functions [136] and also to Godel’s recursive functions [51]. These proposals are
nowadays often referred as Church-Turing’s thesis or as Church’s thesis. As ex-
plained by Kleene [90], it is called a thesis and not a theorem because “it proposes
to identify a somewhat vague intuitive concept with a concept phrased in exact
mathematical terms, and thus is not susceptible of proof”.

As Barendregt stresses in the introduction of his book [5], this theory presents
functions as rules, and not as sets of pairs, in order to deal with their computational
aspects. As explained by Kamareddine, Laan, Nederpelt [79], the A-calculus turned
out to be a generalisation of the definition of functions given, e.g., by Russell [144]
(“propositional functions”). The A-calculus is nowadays used in programming lan-
guages, logic, mathematics, and linguistics.

The A-calculus allows one to compute thanks to rules often referred to as re-
duction or conversion rules. These rules were extensively studied and one of the
main result was the proof of the confluence of (-reduction [24] which is the main
computation rule of the A-calculus. Confluence is the property that was originally
used to prove, among other things, the consistency the A-calculus (the theory built
upon [-reduction and a-conversion) because it allows one to prove that there ex-
ists at least two closed different A-terms. Confluence is sometimes referred to as
the Church-Rosser property. It was also originally used to prove the uniqueness of
normal forms [24].

In the early 1940s, Church added simple types, which are the types built upon
ground types and the arrow type constructor, to the A-calculus in a system with
logical axioms to deal with logic and functions [23]. Church’s approach was to
directly annotate A-terms: type-free A-terms are replaced by typed A-terms. Curry
followed another approach. He considered the combinatory logic [31] which is a type-
free calculus that can be regarded as a variant of the A-calculus. His type system
associates types with type-free terms via a typing relation [30, 31]. As explained by
Barendregt [6], these two “approaches to typed lambda calculus correspond to two
paradigms in programming”. In a system a la Curry, given a type-free A\-term, if a
type can be associated with the term w.r.t. the typing relation of the system then
a type inference algorithm can infer a type for the term. It is also the case for ML-
like programming languages such as SML [106, 107] or for Haskell-like programming
languages [77].

Since the introduction of these systems by Church and Curry, various type sys-
tems for the A-calculus have been developed and extended to serve different purposes
such as efficiency or expressiveness. For example, the type systems of the A-cube [6]
allow one to express concepts such as polymorphism (which means that terms can
have more than one type), type constructors (e.g., SML datatypes), dependent types
(which means that types are depending on terms). There are several advantages of

having a notion of types in a programming language. For example, they allow:
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checking static correctness, e.g., find type inconsistencies; efficient implementations
by generating information used for optimisations at compilation, e.g., “the type of
a data determines its memory size and layout” [100]; modularity, e.g., thanks to
signatures in SML or interfaces in Java.

Let us mention that there is a strong connection between type theory and proof
theory known as the Curry-Howard isomorphism [76, 123]|. This isomorphism allows
one to consider, e.g., simple types as propositions. As a matter of fact, there is a
correspondence between the minimal propositional logic and the simply typed A-
calculus (other such correspondences exit). The Curry-Howard isomorphism is often

referred to as the proofs-as-programs, formulae-as-types correspondence.

2.2 Structure of this Chapter

The rest of this introduction is structured as follows. Sec. 2.3 introduces the untyped
A-calculus and some of its variants: the Al-calculus and the An-calculus. We also
introduce properties of A-calculi such as the confluence property. Sec. 2.4 presents
notable typed A-calculi: the simply typed A-calculus, some intersection type systems,
and the Hindley-Milner type system. Sec. 2.5 presents two methods of reasoning
involving A-calculi (or similar functional systems): realisability and reducibility.
Finally, Sec. 2.6, summarises the contributions of the present thesis as well as its

structure.

2.3 The untyped A-calculus and some of its vari-

ants

The A-calculus and its variants are defined on term sets and reduction relations.
First, Sec. 2.3.1 presents various term sets and Sec. 2.3.2 some reduction relations.
Then, Sec. 2.3.3 introduces different A-calculi of interest based on these terms sets
and reduction relations. Finally, Sec. 2.3.4 presents properties of A-calculi such as

confluence and normalisation.

2.3.1 Sets of terms

Let z, y, z range over Var, a countable infinite set of term variables (or just variables).

The set of terms of the A-calculus is defined as follows:
M,N,P.Q,ReAN:=x| (Ax.M)| (MN)

We assume the usual convention for parentheses and omit them when no confusion
arises. In particular, we write M M - - - M, instead of (- -- (M My)My) - -+ M,,_1) M,
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let el be a binary relation on A.

M rel N My rel My M,y rel My
M rel M (refl) N rel M (sym) M rel My (tr)
P rel Q Q rel Q) P rel P'
NP el A ) Qe pg 2PV PO rel PO (2PP2)

Figure 2.1 Closure rules

We call a term of the form (Az.M) a A-abstraction (or just abstraction) and a term
of the form MN an application.
We write fv(M) for the set of the free variables occurring in M. The function fv

is defined as follows:

fv(z) ={z}
fv(Ae. M) =fv(M) \ {z}
fv(MN) =fv(M)Ufv(N)

We say that a term is closed if no free variable occurs in it, i.e., M is closed iff
fv(M) = @. Let closed(M) be true iff M is closed.

Fig. 2.1 present some closure rules in A: rule (refl) is the reflexive closure rule
(w.r.t. A), rule (sym) is the symmetric closure rule, rule (tr) is the transitive closure
rule, and rules (abs), (app1), and (app,) are the compatible closure rules.

The a-conversion is the symmetric, reflexive (w.r.t. A), transitive, and compati-

ble closure of the following rule (for readability issues, we define substitution below):
Ax. M =, \y.M|x = y], where y does not occur in M

We take terms modulo a-conversion.
The substitution of the free occurrences of a = by N in M, denoted M[z := NJ,

is defined by recursion on M as follows:

zly = M] - {f | i)ft}xlejwyise
(Ax.N)[y := M] =X z.Nz = z]ly := M], if z € fv(Az.N) U fv(y) U fv(M)
(NlNg)[y = M] :Nl[y = M]Ng[y = M]

We let M[zy := Ny,...,z, := N,| be the simultaneous substitution of N; for all
free occurrences of z; in M for i € {1,...,n}.

The term set A7, which is a subset of A, is defined as follows: for each x € Var,
zisin Ay, if x € fv(M) and M € A; then (Ax.M) is in A; and if M, N € A; then
(MN) is in Aj.
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2.3.2 Reduction relations

The [-reduction, i.e., the binary relation —g, is the main evaluation process of the

A-calculus. It is defined as the compatible closure of the following rule:
(B) : Ae.M)N —3 M|z := N]

The (3I-reduction, i.e., the binary relation — gy, is a restriction of the S-reduction

defined as the compatible closure of the following rule:
(BI) : (A\x.M)N —pr M[z := N|, where x € fv(M)

The h-reduction, i.e., the binary relation —, is also a restriction of the (-
reduction defined as the least relation closed by rule (app,) (defined in Fig. 2.1) and
the following rule:

(h) : Ae.M)N —p, M|z := N|

This reduction is called the weak head reduction.
The n-reduction, i.e., the binary relation —,, is defined as the compatible closure

of the following rule:
(n) : Ae. Mz —, M, where z ¢ fv(M)

This reduction expresses the concept of extensionality in the A-calculus (see Baren-
dregt’s book [5]). The idea behind the n-reduction is that Az.Mz where x & fv(M)
and M are computationally equivalent in the sense that they compute the same
result when applied to the same argument.

The @n-reduction, denoted —g,, is defined as the relation: —g U —,,.

For r € {3,531, h,n}, the term on the left-hand-side of the rule (r) is called a
r-redex (or just redex when no ambiguity arises) and the one on the right-hand-side
is called r-contractum (or just contractum when no ambiguity arises). Note that
BI-redexes and h-redexes are S-redexes. A fn-redex is either a S-redex or an n-redex
(and similarly for 8n-contractums).

Note that the relation —gs; is a subset of the relation —g. Let r € {3, 51, h}.
If (A\e.M)N —, Mz := N| and = € fv(M) then (Ax.M)N is called a I-redex,
otherwise it is called a K-redex. Therefore, $1-redexes are all I-redexes.

Let r € {3, BI, h,n, Bn}. We define the equivalence relation =, as the symmetric,

reflexive (w.r.t. A) and transitive closure of the following rule:
M= N if M-—,N

We use —* to denote the reflexive (w.r.t. A) and transitive closure (rules (refl)
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and (tr) as defined in Fig. 2.1) of —,. If M —* N then we say that M reduces to
N or that there is a r-reduction from M to N. Also, N is called a reduct of M. If
the r-reduction from M to N is in k steps, i.e., if there exists M, ..., My such that
M —, My —, -+ —, My and M = N, we write M —* N. A term (Az.M')N" is a
direct r-reduct of (Ax.M)N iff M —* M’ and N —7 N'.

2.3.3 Important \-calculi

The theory X consists of the equations M = N between A-terms such that M = N.

The Al-calculus is defined in different ways in the literature. It is defined by
Church [21] on the term set A and the reduction relation — g% It is defined by
Barendregt [5] on the term set A; and the reduction — ;3. We could also consider the
term set A; and the reduction — 3. The three corresponding theories are equivalent,
and are all called AI.

The An-calculus is defined on the term set A and the — g, reduction relation. The
corresponding theory is called An. This theory is built upon the A-terms and the
equivalence relation stemming from the 8n-reduction, i.e., the relation =g,. When
considering the fn-reduction without ambiguity, we sometimes write A-calculus in-

stead of An-calculus.

2.3.4 Residuals, developments, confluence and normalisa-
tion

A B-residual of a -redex is an occurrence of the propagation of the redex through
a (-reduction (it is defined, e.g, by Barendregt [5, Def. 11.2.4]). For instance
the two occurrences of (Az.x)y in ((Az.x)y)((Az.x)y) are residuals of the redex
(Az.z)((Ax.z)y) in (Az.zz)((Az.z)((Az.x)y)) w.r.t. the following reduction:

(Az.zr)(Ar.2)(Ar.2)y)) = Azar)(Ar.2)y) —5 (Az.2)y)(Az.2)y)

Although, to the best of our knowledge the definition of (-residuals is a well
established concept, it does not seem to be the case for fgn-residuals. Different
definitions can be found in the literature: the gn-residuals as defined by Curry and
Feys [31] or the A-residuals as defined by Klop [92].

A development is the reduction of an initial set of redexes in a term and of its
residuals w.r.t. the reduction. A development is said to be complete if all the redexes
of the initial set of redexes and their residuals have been reduced.

The confluence property is detailed below in Sec. 3. Let us mention here that it

is a property satisfied by the A-calculus (w.r.t. the S-reduction) which states that if

2Church [21] defines abstractions as follows: “if x is a variable and M is well-formed then A\x[M]
is well-formed”.

3Barendregt [5] defines the theory AI as follows: “The theory AI (“the AI-calculus”) consists
of equations between AI-terms provable by the axioms and rules of A restricted to Aj.”

8
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a term reduces to two different terms then these two terms can reduce to the same
term, i.e., for each M, if M; —% My and M, —% Ms; then there exists M, such
that My —% M, and Mz —7 M. Developments have often been used to prove the
confluence of the A-calculus. The confluence of the A-calculus was first proved by
Church and Rosser in 1936 [24]. Therefore, this property is often referred to as the
the Church-Rosser property and will sometimes be abbreviated as CR in this thesis.

A term is a normal form if it cannot be reduced further. Normal forms w.r.t.
the (-reduction are of the following form: A\zq....Ax,,.yM; ... M, where n,m > 0
and where each M; is a normal form. We say that a term M is weakly normalisable
(abbreviated as WN) if there exists a reduction from M to a normal form. We
say that a term M is strongly normalisable (abbreviated as SN) if each reduction
starting from M terminates in a normal form. The strong normalisation property is
sometimes referred to in the literature as the termination property. The confluence

of the A-calculus was originally used to prove the uniqueness of normal forms [24].

2.4 Some notable typed \-calculi

To avoid introducing too many notations, in this section we reuse some metavariables
to range over different sets in different subsections. For example, ¢ is defined in
Sec. 2.4.1 to range over simple types, in Sec. 2.4.2 to range over intersection types,
and in Sec. 2.4.3 to range over type schemes. In order to avoid any confusion, when
reused outside these sections, we will specify from which system they are taken from.
Throughout this document we follow Carlier and Wells [20] and write type judge-
ments as M : (I' b U), where I' is a type environment and U a type, instead of
' M : U (meaning that the triple (M, T",U) belongs to the typing relation I).

2.4.1 The simply typed A-calculus

Russell [121] first introduced types to avoid paradoxes in his formal system. Russell
type theory enforced a hierarchy of types that precludes the self-reference issue to
occur. Types are nowadays largely used in programming languages to, e.g., ensure
a certain “safety” property on programs. For example, often one wishes to forbid
a function on integers to be applied to, say, a string, because among other things
the application does not have a well defined meaning. Therefore, types can then
be used, among other things, to restrict the application of functions. As mentioned
above, type systems have several advantages, such as efficiency or modularity.

One of the notable type systems that followed Russell’s idea of using types to
avoid the self-reference issue was the simply typed A-calculus. Church writes [23]:
“The simple theory of types was suggested as a modification of Russell’s ramified
theory of types by Leon Chwistek in 1921 and 1922 and by F. P. Ramsey in 1926”.
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Church [23] provides his own “formulation of the simple theory of types” based on the
A-calculus. This formulation is nowadays one of the two widely known formulations
along with Curry’s one. Let us first focus on Church’s version of the simply typed
A-calculus.

Church [23] defines two ground types ¢ and o where ¢ is said to be the type of
individuals and o the type of propositions. Moreover, if ¢ and 7 are types then
o—7 is a type. Church uses a and (8 to range over simple types, but we shall not
use his notation because of the use of a and (3 in conversion rule names. Moreover,
Church writes (o7) instead of o—7. Once again we do not use his notation, but
instead use the more common arrow notation. Then, Church defines his typed A-
calculus by defining a well-formedness relation on typed formulae. Along with this
well-formedness relation, Church defines a notion of type assignment. A subset of
the well-formed formulae (Church also considers extra typed constants for negation,
conjunction and universal quantification) is as follows: each typed variable z, is
well-formed and has type o, if M is well-formed and has type 7 then A\z,.M is
well-formed and has type o—7, and if M is well-formed and has type c—7 and N is
well-formed and has type o then M N is well-formed and has type 7.

Let us now present Curry’s version of the simply typed A-calculus but in the -
calculus setting as presented by Barendregt [6] rather than in the combinatory logic
setting. First, let us define the set SimpleTy of simple types and the set SimpleTyEnv

of simple type environments as follows:

a € TyVar (countable infinite set of type variables)
o,7 €SimpleTy  :=a|o->T
I' &SimpleTyEnv =Var — SimpleTy
The simply typed A-calculus a la Curry can then be defined as the binary relation
F_ which is the smallest relation closed by the following rules:

INz)=0 Mb_ (T,o-»7) Nk, (T o) MbE, (TU{z—o0o},1)
z k. (T, o) MN k. (T',71) Ae.M b (T,0-1)

The simply typed A-calculus satisfies CR and SN [5], and is denoted A_..

2.4.2 Intersection type systems

Coppo and Dezani [26] introduced intersection type systems to type more terms
than in the simply typed A-calculus and to characterise normalisable terms. Pot-
tinger [117] was the first to achieve such a characterisation. The word “intersection”
in “intersection type” comes from the fact that, if types are interpreted by sets (a set-
theoretical semantics), usually, an intersection type is interpreted by the intersection
of sets. The authors proved that each typable term in their system is normalisable
(in WN) and that the normalisable terms of the AI-calculus all have a type in their

system. Also, their system restricted to the Al-calculus satisfies subject reduction

10
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and expansion (fI-equivalent terms can be typed with the same type). Without
this restriction their system satisfies only subject reduction (if a term is typable in
their systems then all the reducts of this terms are typable with the same type).
Coppo, Dezani and Venneri [28] defined another intersection type system that we
shall call CDV* which satisfied both subject reduction and expansion w.r.t. the -
reduction. They also obtain a characterisation of the normalisable terms (in WN) in
their system. Similarly, Krivine [96] characterises the strongly normalisable terms
by the terms typable in his system D and characterises the weakly normalisable
terms by a subset of the terms typable in his system DS2.

Let M be the intersection type constructor. Intuitively, if a term M can be
assigned a type o ' 7 then it can usually be assigned the type o as well as the
type 7. An intersection type can be seen as a list of types that can be assigned
to a term. They are used to express a finitary kind of polymorphism where types
(usages of terms) are listed rather than obtained via quantification. For example,
a program of type (0—o) M (7—7) can be a program computing a term of type
o from a term of type o as well as a program computing a term of type 7 from
a term of type 7. The same code can be used for the two types o—oc and 7—7.
The polymorphism of an intersection type is said to be finitary as opposed to the
infinitary parametric polymorphism [124, 17| supported by for all type schemes
such as in system F [49, 50], because a program to which is assigned an intersection
type works “uniformly” (the same code is used for different types) on the finite list
of types given by the intersection. These kinds of polymorphism contrasts with
the “ad-hoc” polymorphism which is, e.g., the polymorphism of overloading (e.g.,
given an overloaded operator, different functions might be used for different types
on which the operator is overloaded). The universal quantifier “v” is well known to
express polymorphism as in system F designed by Girard [49, 50]. As explained by
Carlier and Wells [20] there are many advantages in using intersection types over

the V quantifier, such as:

e Urzyczyn [137, Theorem 3.1], found a term which is not typable in the sys-
tem Fu: (Az.z(z(Af u. fu))(z(A.Ag.gv)))(Ay.yyy) but which turns to be ty-

pable in the rank-3° restriction of intersection types.

e Wells [142] proved that type inference in system F is undecidable. Kfoury
and Wells [88] defined an intersection type system for which every finite-rank

restriction has a decidable type inference.

4Coppo, Dezani and Venneri presented in the same paper [28] two different type systems, the
second one being a restriction of the first one. Their second system is similar to the one of their
earlier system [27]. Sometimes CDV is used to refer to their first system [4] and sometimes to refer
to their second system [20]. We shall refer to CDV as their first system.

5The notion of rank is, e.g., explained by Carlier and Wells [20].

11
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e Wells [143] proved that system F does not have principal typings® for all terms.
Kfoury and Wells [88] proved that every finite-rank restriction of their inter-

section type system has principal typings.

Since Coppo and Dezani first intersection type system, many other intersection
type systems have been designed. Barendregt, Coppo, and Dezani [8] designed the
BCD intersection type system, proposed a term and type interpretations where terms
are interpreted in A-models [73], and proved the soundness and completeness of their
semantics w.r.t. the BCD system. These two results allows them to obtain that the
interpretation of a term is in the interpretation of a type iff the term is typable by
the type in BCD. Their proof is based on the construction of a particular model of
the A-calculus called filter model where filters are type sets closed under some rules
such that intersection introduction, i.e., if o and 7 are types in a filter then o N 7
has to be in the filter as well, where N is their notation for the intersection type
constructor. They prove that their filter model is a A-model. Hindley [69] proved a
similar result but using a term models which interprets terms by terms.

Some intersection type systems involve a constant type often written w as a 0-ary
version of the intersection types. This type expresses a universality in the sense that
this type does not contain any information. When types are interpreted by subsets
of a certain set (the domain of the model), this type is usually interpreted by the
universe of discourse (the whole domain itself).

Let us present Krivine’s system D [96]. We will use a slightly different notation.
For example, Krivine uses A as the intersection type constructor. We use the symbol
M instead. The set TyVar of type variables is the same as in Sec. 2.4.1. First, let
us define the set InterTy of intersection types and the set InterTyEnv of intersection

type environments as follows:

o,7T€E€lInterTy  t=a|o-7|oNT

I' €&lnterTyEnv =Var — InterTy

The intersection type system D can be defined as the binary relation Fp which

is the smallest relation closed by the following rules:

Iz)=o0 Mtp (T,o0-7) NbEp (T, 0) Mbp (TW{z—o},T1)
xzbp (T, 0) MN bp (T, 7) Ax.M bFp (T, 0-7)

M Fp (T, 0) M tp (T, 7) Mbp(Tyo) Mbp (T,7)
Mbp (D,onT) Mbtp (TyomT) Mbtp (TyomT)

SWells [143] explains that “a typing t is defined to be principal in some system S for program
fragment M if and only if ¢ is at least as strong as all other typings for M in S, where a typing ¢;
is defined to be stronger than typing to if and only if the set of terms that can be assigned t; in S
is a subset of the set of terms that can be assigned 2 in S”.

12
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2.4.3 ML-like programming languages

ML is a higher-order impure functional programming language” originally designed,
as part of a proof system called LCF (Logic for Computable Functions), to perform
proofs of facts within PPA (Polymorphic Predicate A-calculus), a formal logical
system [52, 53]. ML is a typed programming language based on the A-calculus
with let-expressions which allow one to generate local bindings. Let-expressions
are usually more or less of the form let x = expl in exp2 where exp1l and exp2 are
expressions. Such a let-expression binds x to expi in exp2. Nowadays ML is used
to refer to a collection of programming languages which share common features,
such as SML or Caml. As explained by Milner et al., Standard ML (SML) [106,
107] is the result of the re-design and extension of ML. SML has formally defined
static and dynamic semantics [106, 107]. Also, SML (and similar programming
languages such as OCaml, Haskell, etc.) has polymorphic types allowing considerable
flexibility, and almost fully automatic type inference, which frees the programmer
from writing many explicit types. We say “almost fully” because some explicit types
are required in SML, e.g., as part of datatype definitions, module types, and type
annotations sometimes needed in special circumstances®. Milner’s W algorithm [32)]
is the original type-checking algorithm of the functional language core ML, which
is the A-calculus extended with polymorphic let-expressions. Given an expression e
and a type environment [' covering the free variables of e, if e is typable then W
outputs a type o of e and a substitution sub. The type o is the principal type of e
w.r.t. the application of sub to I'. If e is not typable, an error is reported.

Let us now present Damas and Milner’s type system [32, 33|, also known as the
Hindley-Milner type system and therefore called HM. First we define the set of terms

of core ML as follows:
e€ MLExp:=z | (Az.e) | (e1e2) | (let x = €1 in e9)

The set TyVar of type variables is the same as in Sec. 2.4.1. Let us now define
the set HMTy of simple types, the set HMTyScheme of type schemes, and the set

HMTyEnv of type environments as follows:

¢t € PrimitiveTy (countable infinite set of primitive types)
7 € HMTy t=a || moT

o € HMTyScheme ::=7 | Va.o

I' e HMTyEnv =Var — HMTyScheme

"ML has functional as well as imperative programming features: functions are first-class objects
and expressions can have side effects (e.g., references, exceptions). Therefore, we say that ML is an
imperative functional-like programming language, or an impure functional programming language.

8Explicit types are sometimes required, e.g., for “flexible” record patterns as in the function
fn {x,...} => x, which would be used to select a field named x in any record that contains at
least a field named x.

13



Chapter 2. Introduction

Damas and Milner write Va; - - - a,,. 7 for the type scheme Va,. ---Va,.7. They

also define the relation > on type schemes as follows: o > o' iff 0 = Va;---a,. 7

/

/.7 and 7' = [1;/a;]T for some types T1,..., 7, and the a/ do not

and o/ =Va;---a
occur free in o, where [1;/a;]7 is Damas and Milner’s notation for the simultaneous
substitution of each occurrences of a; by 7;, for i € {1,...,n}, in 7. Damas and
Milner call ¢’, a generic instance of o.

The HM type system can be defined as the binary relation Fyy which is the

smallest relation closed by the following rules:

INz)=0 ebum (I',o)  a does not occur free in T’
——— (TAUT EN
xtpm (T, 0) (TAUT) e Fum (T, Va. o) (GEN)
ebum (Iyo1) 01> 00 er Fum (I, 11—72) €2 Fum (I, 71)

INST COMB
e Fum (T, 02) ( ) erez Fum (L, 2) ( )
etum (T +{z—7},72) (ABS) e1 Fum (T,0)  eabpm T+ {x—o0o},7) (LET)

Ax.e Fam (F,T1—>T2> let x = €1 in e Fum <P,T>

2.5 Some methods of reasoning involving \-calculi

In this section we discuss two closely related methods of reasoning involving A-
calculi (or similar functional systems): realisability which is a method originally
developed to provide semantics to intuitionistic systems dealing with arithmetic,
and reducibility which is a semantic method based on type interpretation to prove

the normalisation of functional theories.

2.5.1 Realisability

Kleene’s original realisability method [89] was a “systematic method of making the
constructive content of arithmetical sentences explicit” [135]. His method associates
Godel numbers of partial recursive functions with sentences of the first order in-
tuitionistic arithmetic. This system is Heyting arithmetic, often referred to as the
theory HA which is the intuitionistic predicate logic with equality, natural numbers,
and the primitive recursive functions [135, Ch. 3]. Informally, there exists a Godel
number of a recursive function that realises a formula if the formula is true in HA.
Such a number is called a realiser and can be seen as “a witness for the construc-
tive truth” [74] of the realised formula. For example, Kleene [89] defines, among
other things, that “If a realizes A, then 2° - 3% realizes AV B. Also, if b realizes
B, then 2' - 3° realizes AV B”, where A and B are closed formulae and where - is
the multiplication function on natural numbers. A realizer of a disjunction encodes
the information that for a disjunction A V B to be true one has to either be able
to provide a proof of A or a proof of B. Implications are realised as follows: “The
formula A D B is realized by the Goédel number e of a partial recursive function

¢ such that, whenever a realizes A then ¢(a) realizes B” [89], where A and B are

14



Chapter 2. Introduction

closed formulae and where D is the logical implication symbol. Van Oosten [113] ex-

4

plains that Kleene “wished to give some precise meaning to the intuition that there
should be a connection between Intuitionism and the theory of recursive functions”.
However, Rose [119] disproved Kleene’s intuition that realisability mirrors intuition-
istic reasoning. Realisability was found useful, among other things, “for proving
underivability and relative consistency results of intuitionistic formal systems” [38].

Variants of Kleene’s realisability, often referred to as “recursive” or “numerical”
realisability, have been developed throughout the years. Kreisel’s modified realisabil-
ity [95] is such a variant. Asperti and Tassi [3] explain that modified realisability is
a variant of Kleene’s realisability “essentially providing interpretations of HA“ into
itself”. Van Oosten [113] explains that “HA“ is “Godel’s T with predicate logic””.
Godel’s system T can be regarded as an extension of the simply typed A-calculus
with natural numbers and recursion. Asperti and Tassi add that with the modified
realisability interpretations “each theorem is realized by a typed function of system
T”. For example, “if the type of realizers of A is o, and the type of realizers of B is
7, the type of realizers of A — B is (0 = 7)” [113], where = is the functional type
constructor.

Kreisel was not the only one interested in realisability and nowadays there exist
many notions of realisability used in various areas. Van Oosten [113] writes about
realisability: “Quite apart from the huge amount of literature to cover, there is the
task of creating unity where there is none. For Realizability has many faces, each of
them turned towards different areas of Logic, Mathematics and Computer Science”.
Similarly, Hofstra [75] writes: “In the area of research known as realizability, we have
the interesting phenomenon that there are many different realizability definitions,
but no definition of realizability. What this means is that we have many instances
of realizability interpretations [..] but that there is no clear answer to the question
of what constitutes a notion of realizability.”?

Realisability in general is closely related to the Curry-Howard isomorphism.
Serensen and Urzyczyn [123] write (where “this interpretation” refers to Kleene’s
realisability semantics): “One can see the Curry-Howard isomorphism [..] as a syn-
tactic reflection of this interpretation. It shows that a certain notation system for

denoting certain recursive functions coincides with a system for expressing proofs.”

2.5.2 Reducibility

Reducibility is a method based on realisability semantics [89], developed by Tait [130]
in order to prove the normalisation of some functional theories. The idea of Tait’s
reducibility method is to interpret types by A-term sets closed under some properties.

Since its introduction, this method has gone through a number of improvements and

9We use “[..]” in quotes to show that parts of citations have been omitted.
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generalisations to prove properties of the A-calculus and to characterise properties
of the A-calculus w.r.t. type systems. For example, Girard [50] designed a similar
method based on reducibility candidates which are sets of A-terms satisfying some
properties. Also, Krivine [96] uses reducibility to prove the strong normalisation
of the terms of his intersection type system called system D. Koletsos [93] uses
reducibility to prove that the set of simply typed A-terms satisfies CR w.r.t. -
reduction (for more details on CR see Sec. 3.1 and for more details on Koletsos’
proof see Sec. 3.6). Gallier [44, 43, 45, 46] also uses reducibility to, e.g., characterise
sets of A-terms closed under some properties in terms of typability in type systems
such as the intersection type system D. Although it is well known that §-reduction
satisfies CR, reducibility proofs of CR are in line with proofs of SN and hence, one

can establish both SN and CR for some calculus using the same method.

2.6 Contributions and structure of this thesis

The present thesis is composed of three parts all revolving around intersection type
systems and the study of some of their aspects. Part I emerged from the study
of intersection type systems to prove properties of the untyped A-calculus. Part II
constitutes a study of the semantics of intersection type systems. Part III evolved
from a system using intersection types as a tool for doing type error reporting and
type inference. Let us now detail each of the three parts and their contributions.

Part I is based on a publication by Kamareddine and Rahli [84]. It presents two
proofs of the confluence of the A-calculus using a purely syntactic method, i.e., not
based on type interpretations. These two proofs share the same proof scheme. The
first proof is w.r.t. S-reduction and the second one is w.r.t. gn-reduction. These two
syntactic proofs are derived from a semantic one based on sound type interpretation
w.r.t. an intersection type system. Various simplifications to the original method
led to the simplification of the considered type system and finally to its discarding.
It turned out that in this case intersection types constitute a powerful tool unnec-
essary to prove the confluence of the A-calculus: only a small portion of the initially
considered intersection type system was necessary to prove the confluence of the
A-calculus.

Part II is based on three papers by Kamareddine, Nour, Rahli, and Wells: a
workshop paper [83], a conference paper [82] and a journal paper submitted to
Fundamenta Informaticae [81]. It presents a complete realisability semantics w.r.t.
a type system with infinite number of expansion variables. It also describes the
steps that led us to this semantics. Expansion is a powerful operations on typings in
type systems for the A-calculus. Unfortunately, to the best of our knowledge, there
has been no study of semantics of intersection type systems with expansion. Our

semantics provides a first step in the study of the semantics of intersection types
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with expansion and therefore in the study of the semantics of expansion.

Part III is based on a technical report by Rahli, Wells and Kamareddine [118].
It presents a type error slicer (TES) for the SML language. Modern programming
languages such as SML, Haskell, or OCaml rely on type systems which allow (almost
fully) automatic type inference, freeing programmers from explicitly writing types.
Also, these type inference algorithms allow one to detect some programming errors at
an early stage (at compile-time). As a matter of fact, types are used to automatically
check the well-defined behaviour of pieces of code, for a certain notion of behaviour.
Unfortunately, it is well known that type error reports provided by compilers for
higher-order programming languages such as SML can be intricate. An issue being
that programmers tend to lose their time by trying to decipher type error reports
and by manually tracking down their type errors. TES helps the programmer by
isolating the part of an ill-typed program contributing to a type error (a slice). The
presentation of our TES is divided into two major parts. In a first part, we present a
core of our TES. We present a new, original, and simple constraint language and its
use in a type error slicer for a small subset of SML which contains interesting core
and module features such that datatypes and open declarations. In a second part we
present other interesting features of our TES necessary to handle more of the SML
programming language, such as some signatures and functors. We also discuss issues
w.r.t. the implementation of our TES. Concerning this part, we have achieved both:
(1) the formalisation of a type error slicer for SML which handles many interesting
features of the language; (2) and an implementation of our TES which handles most
of the SML language. Note that the first version of TES developed by Haack and
Wells [56, 57| for a tiny core language (the A-calculus augmented with polymorphic
let-expressions) made use of intersection types. It turned out that their system was
not scalable on real size programs. To solve this issue, we have moved on to a TES
that makes use of for all type schemes instead of intersection types. Interestingly,
one of our latest innovation was to reintroduce the use of intersection types in order
to handle SML’s functors.

These three parts are not presented in chronological order. The first project
we have carried out was the study of a semantics of expansion. We have then
developed a proof method to prove the confluence of the A-calculus. This was part
of a larger project aiming at studying general methods to prove properties of the
A-calculus using reducibility. Last but not least, we have developed a type error
slicer for the SML language. This last project represents the major contribution to
the present document. The three parts do not rely on one another. These three
parts are presented in an incremental complexity order. Part I concerns only the
untyped A-calculus. In Part II we add types to the untyped A-calculus. We consider
intersection types. Finally, in Part I1I we consider a more complicated polymorphic

type system: a variant of a portion of SML’s type system.
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Chapter 3

The confluence property and its

main proofs

3.1 Confluence

The confluence property is a property satisfied by the A-calculus stating that if
M, =g M, then there exists M;z such that M; —5 M; and M, —5 M;. It can
equivalently be defined as follows: if M; —% My and M, —% Ms then there exists
M, such that M, —7 M, and Ms; —7 M,. Confluence is not restricted to the \-
calculus and can be more generally defined in the term rewriting systems setting [10].
We will however restrict ourselves to the context of the A-calculus. The confluence
of the A-calculus (w.r.t. the g-reduction) was first proved by Church and Rosser [24],
and is therefore often referred to as the Church-Rosser property. We will use the
terms confluence and Church-Rosser without distinction.

Confluence is also satisfied when considering #n-reduction instead of S-reduction.

Given a binary relation 7 on terms, if whenever M; —* M, and M; —) Ms,
there exists M, such that My —* M, and Mz — My, then we say that M, satisfies
or has the Church-Rosser property. We also sometimes write that M; has r-CR. We
define CR" = {M | M has r-CR}. Let CR = CR”.

Confluence was among other things used to prove the consistency of the A-
calculus and the uniqueness of normal forms as first proved by Church [22]. This
property has been extensively studied in the literature since its first proof. We
describe below some of its proofs. First, we show how it allows one to prove the

consistency of the A-calculus.

3.2 Consistency

To the best of our knowledge, Church was the first one to provide a proof of the con-

sistency of the A-calculus in 1935 [22]. Church considers the AI-calculus augmented
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with a special symbol ¢ which is used in his paper as an equality test (a condi-
tional). Church considers a rule for a-conversion, two rules for [-conversion and
four rules related to the equality test. Church defines substitution as follows: “The
expression S{, M is used to stand for the result of substituting N for x throughout
M?”. Church’s seven conversion rules are stated as follows (in these rules we use the

syntax of A-terms as presented in Sec. 2.3.1 instead of using Church’s notation):

I To replace any part Az.R by Ay.S5; R, where y is any variable which does not

occur in R.

IT To replace any part (Az.M)N" of a formula by S M, provided that the bound

variables in M are distinct both from z and from the free variables in N.

IIT To replace any part S{ M (not immediately following A) of a formula by
(Ax.M)N, provided that the bound variables in M are distinct both from

z and from the free variables in V.

IV To replace any part §(M, N) of a formula by Af.\z.f(fx)?, where M and N

are in normal form and contain no free variables and M conv-1 N3.

V To replace any part §(M, N) of a formula by A\f.\z.fz?*, where M and N are
in normal form and contain no free variables and it is not true that M conv-I
N.

VI To replace any part Af.Az.f(fx) of a formula by §(M, N), where M and N

are in normal form and contain no free variables and M conv-I N.

VII To replace any part Af.Az.fz of a formula by (M, N), where M and N are
in normal form and contain no free variables and it is not true that M conv-I
N.

Then Church defines an encoding of the natural numbers (except 0, because
Church considers a variant of the Al-calculus) into the A-calculus. He chooses
AfAzx.fr to stand for 1, Af. \x.f(fz) for 2, etc. As a matter of fact, the natu-
ral numbers are defined as abbreviations for the corresponding A-terms and used as
such below. Note that Af.Az.z usually stands for 0 but this term is not a AI-term.
Note also that Church uses a slightly different notation than the one defined in
Sec 2.3.1. For example, we write Af.Az.fx when Church writes Afz.f(x).

The first rule (rule I) corresponds to the a-conversion rule. The second rule

(rule IT) corresponds to the S-reduction. The third rule (rule III) corresponds to the

LChurch writes (Az.M)N as {\z.M}(N).

2The term Af.\z.f(fz) is the Church numeral 2.

3Church defines M conv-I N as follows: “We are using the notation M conv-I N to mean that
N is obtainable from M by a sequence of applications of Rule 1.”, which is to check whether that
two expressions are a-convertible.

4The term \f.\z.fz is the Church numeral 1.
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(-extension which is the inverse of the (-reduction relation. The fourth and fifth
rules (rule IV and V) are to check whether two terms in normal forms are equivalent
modulo a-conversion. If two normal terms are equivalent modulo a-conversion then
0 is used to derive 2’s encoding. If they are different then ¢ is used to derive 1’s
encoding. In Church’s formalism, 1 stands for false and 2 stands for true. Church
stresses that this choice is arbitrary and that the “viewpoint taken is that formal
logic requires nothing of the ideas of true and false except that they be distinct”.
The two last rules (rules VI and VII) are the inverse rules of rules IV and V.

Church encodes the logical negation by the term: A\z.6 — [§(z,1) 4+ 2 x §(x, 2)],
denoted by ~ and where —, +, X are the usual encodings of addition, subtraction
and multiplication. He also defines an encoding of conjunction. Note that using
Church’s encoding of negation one obtains [22, Theorem IV]: ~ 1 reduces to 2, i.e.,
the negation of false reduces to true; ~ 2 reduces to 1, i.e., the negation of true
reduces to false; and ~ n, such that n > 3, reduces to 3 (because only 1 and 2 have
a logical content)®.

Church then proves that “There is no formula P such that both P and ~ P are
provable” [22, Therorem VIJ.

This result is obtained using the Church-Rosser property and because the en-

codings of 1 and 2 are distinct closed A-terms.

3.3 1936: Church and Rosser [24]

Church and Rosser aim at proving the following result [24, Theorem 1]:
if M =p1 N then there exists P such that M —5;, P and N —5;, P

where =37, is =gy U =4 and M —g;, N it M =, M', M" —3; N', and N’ =, N.

Let us now describes the main lines of Church and Rosser’s proof.

Church and Rosser define residuals, developments and complete developments.

Then, they prove the developments’ termination as well as the complete devel-
opments’ confluence [24, Lemma 1]. These two results set the basis to prove the
Church-Rosser theorem.

They use another important result [24, Lemma 2] which states among other
things that if the reduction of a redex r in A; results in By, and A1 —g1q A2 —p1a
As —pra -+ (a possibly infinite reduction), and for all k, By is the result of a
terminating sequence of contractions on the residuals of r in A then for all k,

By, =p1 Bii1.

®Note that, e.g., the term Az.6(z,1) would not be a suitable encoding of the logical negation
because the negation of any natural number greater or equal to 3, which do not have any logical
content in Church’s formalism, would be convertible to 1 (i.e., false).
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They can then state the confluence of the A-calculus w.r.t. the gla-equivalence
relation. Proving this theorem consists in replacing the reductions A; —gra -+ —g1a
A, and A; —31, B (“a peak with a single reduction”) by the reductions A, — Bl C
and B —J%;, C' (“a valley”). The point being that such a C' can always be found.

Based on their first theorem (the confluence theorem), Church and Rosser ob-
tained another important result about normal forms: the uniqueness of the normal
forms modulo a-conversion [24, Corollary 2].

The last paragraph of Church and Rosser’s paper [24] is devoted to the untyped
A-calculus (and not only the Al-calculus). The same results are claimed to be true

as well in this unrestricted setting but no proof is given.

3.4 1972: Tait and Martin-L6f [102, 5, 131]

The famous method developed by Tait and Martin-Lof is based on the parallel
reduction. A parallel reduction is a new reduction relation based on the -reduction,

denoted =3 below, and defined as follows:
T =4
o \e.M =g .M if M =45 M
o MN =35 M'N"if M =3 M" and N =5 N’
o Ae.M)N =43 M'[x:=N'lif M =5 M and N =3 N’

This parallel reduction also provides a definition of developments: M =5 M’ is
a development. Note that because of the two last rules, this reduction leaves the
choice whether or not to reduce the occurrence of a redex.

For example, ((A\z.z)(Az.z))(Az.x) =5 (Ar.z)(Az.x))(Ax.z) is a parallel reduc-
tion, as well as ((Az.z)(Az.x))(Az.x) =5 (Azx.z)(Az.x). However, one cannot reduce
(Ax.z)(Az.z))(Az.z) to Az.x via a parallel reduction (because (Az.x)(Az.x) is not
an abstraction).

This reduction is called “parallel” reduction because if a redex is formed during
a reduction, then the redex reduced during the reduction and the redex formed
during the reduction cannot both be reduced in a parallel reduction. For example,
the redex (Az.2)y, is formed during the reduction: (Az.zy)(Az.2) —p (Az.2)y. But
one cannot reduce (Az.zy)(Az.z) to y via a parallel reduction.

The Church-Rosser property is then proved to be satisfied w.r.t. this new reduc-
tion. This can be proved by an induction on terms or using the complete develop-
ments (i.e. a complete parallel reduction where the last rule of the definition of the
parallel reduction is used as much as possible). Finally, by proving the equivalence
between —7 and the transitive closure of =5 they prove that the untyped A-calculus

satisfies the Church-Rosser property (w.r.t. the -reduction).
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3.5 1978: Hindley [68]

To the best of our knowledge Hindley was one of the first to provide a proof of the
finiteness of developments w.r.t. Gn-reduction [68, Sec. 1|. Hindley [68] first starts
by giving a proof for the f-reduction (and not only for the GI-reduction as Church
and Rosser did [24]). His proof tends to be more precise than the former ones.

At that time, as claimed by Hindley, “all the proofs of the Church-Rosser theorem
for A-calculi, slick or clumsy, turn out to be based on reductions of residuals, and
the finiteness property is one of the two main underlying facts which make all such
proofs work”. Note that it is not the case anymore that the finiteness result is
required to prove the Church-Rosser property [48, 94, 84].

In his introduction, Hindley claims that his proof of the finiteness of develop-
ments uses the confluence of the developments when others need the finiteness prop-
erty to prove confluence. To prove the finiteness result, Hindley provides a method
to transform any development of a term into another “equivalent” one (Hindley de-
fines a notion of equivalence between reductions) such that the length of the latter
one provides a bound of the length of the former one.

Though very similar to the proof provided by Church and Rosser, Hindley’s proof
is much more detailed. For example, the replacement of a sequence of reductions by
another one (the “equivalence” of two sequences of reductions) is left unproved by
Church and Rosser.

3.6 1985: Koletsos [93]

Koletsos proved the Church-Rosser property of the terms typable in the simply
typed A-calculus using the reducibility method (see Sec. 2.5.2). Koletsos provides
an interpretation of types based on a predicate called “monovaluedness”. Koletsos
considered typed A-terms as Church [23] does. In this section only, we consider —
and CR to be the relation —3 and the set of (simply typed) terms satisfying the
Church-Rosser property.

Let 0 be a ground constant type. Following similar definitions [6], Koletsos
defines the set of simple types as follows: o,7,p € Ty 2= 0 | 0 — 7 (Koletsos’
definition differs from other definition by the fact that he considers only one ground
type because only one is needed in his proof).

First, let us mention that Koletsos writes M () for the application of M to
N when we write (MN). We will use (MN) (or MN using the convention for
parentheses defined in Sec.2.3.1) instead of M(N) in this section.

We will now present a variant of Koletsos’ syntax of simply typed terms. We will
slightly depart from Koletsos’ definition because of some ambiguity in his language.

O—>O:L.O

For example, Koletsos allows Az.x to be a valid term. The issue is that 2°7°
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and z° are two different terms and that there is an implicit type associated with
the abstracted x which is not explicitly stated. The above term is then ambiguous
because the abstracted x can only bind one of these: z°7°, 2° or 27 where o & {0 —
0,0}. When defining his abstractions, Koletsos explains that an abstraction Az.M
of type o—7 is built from a variable x of type ¢ and a term M of type 7. However,
x’s type is not made explicit in the abstraction. Church [23] enforces such abstracted
variables to be annotated by their type. We will therefore add type annotations to
abstracted (untyped) term variables. Instead of the above term we would then write
Az070 2°70(2%) to bind the first occurrence of z in the application.

The set Var of term variables is the one defined in Sec. 2.3.1. Our variant of
Koletsos’ definition of the simply typed A-terms is as follows (a and b are defined
to range over simply typed A-terms): let x7 be a term of type o; if a is a term of
type 7 then let (Ax?.a) be a term of type ¢ — 7; and if a is a term of type 0 — 7
and b is a term of type o then let (ab) be a term of type 7. Note that if ¢ # 7 then
x? and x7 are two different terms.

For each type p and term a of type p, the monovaluedness predicate is defined

by induction on p as follows:

MON°(a) iffa € CR
MON’""(a)iff a € CR and for every term b of type o, MON?(b) = MON"(ab)

Koletsos” method is equivalent to the one consisting in defining a type interpre-
tation as a function which associates with each type o a term set [o], such that
MON?(a) iff a € o], as is done in many other works following Koletsos’ [94, 84].

We now define a variant of Koletsos’ definition of substitution used, e.g., by his
first axiom ((-reduction) to generate his reduction relation: let a,-[b] be defined as
the replacing of all the free occurrences of z7 in a by b (Koletsos” definition does
not involve the type annotation 7). Note that because b does not have to be of type
7 then a,-[b] is not always a simply typed A-term. For example, (2°7°°)0-0[y°] is
(y°y°) which is not a simply typed A-term. Such a type restriction could be explicitly
enforced. However, substitution is only used when the substituted variable and the
term that substitutes the variable have the same type.

Then, Koletsos proves two important results:

o If ¢« € CR and (if for each Az?.b such that a —* Az?.b then MON”(\z?.b))
then MON”(a).

e If g is a term of type o and for every term b, MON" () implies MON?(a,-[b])
then MON™ 77 (\z7.a).

The first result allows one to prove among other things that for each term variable
z and each type o, MON?(z7). The second result proves the saturation [96] of the

type interpretation based on the monovaluedness predicate.
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Finally, using these results, Koletsos trivially obtains the confluence of the set

of simply typed A-terms by an induction on the structure of terms.

3.7 1988: Shankar [122]

Shankar’s paper [122] is a notable paper because of the formalisation and proof of
the Church-Rosser property in the Boyer-Moore theorem prover®. Shankar’s proof is
similar to Tait and Martin-Lo6f’s one. In order not to have to deal with a-conversion,
the proof is carried out using the de Bruijn [34] notation for the A-calculus (as is
often the case when using a theorem prover). The proof is then carried out into the
usual notation. Shankar claims that using the Boyer-Moore theorem prover some
of the proofs were proved automatically (“The proofs of several of the lemmas that

were proved automatically would tax most humans”).

3.8 1989: Takahashi [131]

Takahashi’s method is based on Tait and Martin-Lof’s parallel method. She proves
that the method extends easily to the (n-case. Even if different from the devel-
opments defined for example by Curry and Feys [31]7, Takahashi’s method (as for
Tait and Martin-Lo6f’s method) consists in defining a new parallel reduction (non
overlapping reductions) which is useful to develop a term without defining residuals.
The usual gn-reduction is then trivially proved to be the transitive closure of the
parallel gn-reduction. Then, the proof of the Church-Rosser property of the untyped
A-calculus w.r.t. the parallel gn-reduction leads to the proof of the Church-Rosser
property of the untyped A-calculus w.r.t. the fn-reduction. The Church-Rosser
property of the untyped A-calculus w.r.t. the parallel gn-reduction is obtained using
complete developments (i.e., complete parallel Sn-reductions which maximise the
number of redexes reduced in a parallel reduction): if M reduces to N by a parallel
On-reduction then N reduces to P via a n-parallel reduction where P is the unique

term (modulo a-conversion) obtained from M by a complete parallel fn-reduction.

3.9 2001: Ghilezan and Kuncak [48]

Ghilezan and Kuncak’s proof can be depicted by the diagram in Fig. 3.1. We present

the method and the different relations and functions it uses below. This method is

6The Boyer-Moore theorem prover is based on a first order, quantifier free logic of recursive
functions

"For example, if x € fv(\y.M) then A\z.(\y.M)x reduces by a parallel Bn-reduction to \y.M
by reducing the n-redex Az.(Ay.M)z. Hence, (Az.(Ay.M)x)N reduces by a parallel Bn-reduction
to My := NJ]. There is no corresponding development as defined by Curry and Feys, because
(Ay.M)N is not a residual of (A\x.(A\y.M)z)N after reduction of the n-redex Az.(Ay.M)z.
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Figure 3.1 The method of Ghilezan and Kuncak for the confluence of —;

thoroughly explained by Ghilezan and Kuncak [48] and Kamareddine and Rahli [84].
The method consists of the following steps:

e The formalisation of a development: —; (I in Fig. 3.1). A development is de-

fined as follows: all the redexes in a term are frozen®

using two “distinguished”
term variables (using the function ¥); some of the frozen redexes are unfrozen
(using the reduction relation 0); some of these unfrozen redexes are §-reduced;

all the redexes are unfrozen (the “distinguished” term variables are removed).

e The proof of the confluence of the developments using a simple embedding of
the developments into the simply typed A-calculus and thanks to the proof
of typability of the frozen terms (where all the redexes are frozen) into the
simply typed A-calculus. The confluence of the typable terms in the simply
typed A-calculus is a well known result (see, e.g., Koletsos’ proof mentioned

in Sec. 3.6) and provides the confluence of the developments.

e Asin many other approaches, S-reduction is proved to be the transitive closure

of developments. This provides the confluence of the untyped A-calculus.

8Informally, we say that a redex (Az.M)N is frozen when it is transformed into another similar
term where the redex does not exist anymore and such that there exists a method to obtain back
the original term from its frozen version.
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This method provides an embedding of developments into the well known sim-
ply typed A-calculus for which many properties have already been proved (such as
confluence or strong normalisation). The defined developments can easily be proved
to be equivalent to the usual ones as defined in Barendregt’s book [5]. The ad-
vantages of this method over the similar method of Barendregt [5, Sec. 11.2] which
uses a labelled calculus is that it does not make use of the finiteness of develop-
ments, does not introduce new symbols (Barendregt uses extra labelled A’s to define
a new relation that uses the labels to distinguish between redexes to reduce or leave
unreduced) and is based on an already well known background: the simply typed
A-calculus. We do not present Barendregt’s proof [5, Sec. 11.2] of the confluence
of his untyped A-calculus using a labelled calculus, even though his proof is older
than Ghilezan and Kuncak’s proof, because the two proofs share the same steps
(proof schemes). We therefore concentrate on Ghilezan and Kunc¢ak’s proof and
provide below (in Sec. 5.2.2) a short comparison with one of our own method [84]
(the method provided in Ch.4).

3.10 2007: Koletsos and Stavrinos [94]

Koletsos and Stavrinos’ proof is similar to Ghilezan and Kuncak’s proof. They
share the same proof scheme. However, Koletsos and Stavrinos’ result is based on
the embedding of their developments into Krivine’s intersection type system D [96]
instead of the simply typed A-calculus (as in Ghilezan and Kuncak’s method [48]).
Their formalisation of developments is more complicated (and sophisticated) than
that of Ghilezan and Kuncak in the sense that they handle occurrences of redexes
explicitly (even though not fully formalised) when Ghilezan and Kunéak handle them
implicitly (without explicitly referring to instances of redexes). Also, their definition
of developments is simpler than that of Ghilezan and Kuncak in the sense that the
calculus on which developments are based, is simpler: Koletsos and Stavrinos use

one term variable to freeze redexes when Ghilezan and Kuncak use two.

3.11 2007: Kamareddine, Rahli and Wells [85]

We have adapted, extended and formalised the work done by Koletsos and Stavri-
nos [94]. We adapted it to the case of the Al-calculus and extended it to the case
of the An-calculus, using a formal definition of occurrences of redexes (we dealt
with them formally and not intuitively as Koletsos and Stavrinos did [94]). In this
work we tried to use a definition of developments based on residuals which are as
close as possible to Klop’s A-residuals [92]. We failed in formalising the concept of

A-residuals as defined by Klop and came up with a new definition that we believe
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can be regarded as less restrictive than the “common” one as defined by Curry and
Feys [31] (called Bn-residuals) and more restrictive than Klop’s one.

Let us now present the method we have used to prove the confluence of the
A-calculus w.r.t. the An-calculus. First, On-redexes are explicitly defined as paths
in A-terms. Then, developments are defined as a reduction relation between pairs
of a A\-term and a set of redexes in the term such that only the mentioned redexes
are allowed to be reduced. A single step of a development is then a pair of pairs as
follows: ((My,D,), (Ms,Py)) where P, is a set of paths to redexes in M, reducing
one of these redexes leads to Ms, and P, is the set of residuals of p;. Developments
are defined via an embedding into a parametric calculus (based on the A-calculus)
where a distinguished variable (the parameter) is used to freeze some redexes. Our
embedding associates a term in our parametric language with each pair of a A-term
and a set of redexes in the term. The frozen redexes are the ones that do not
occur in the redex set. We proved that the terms of this parametric calculus are all
typable in Krivine’s system D. We obtain that our parametric calculus is confluent
by first proving that each typable term in Krivine’s system D is in CR?". We obtain
the confluence w.r.t. the #n-reduction of the terms typable in Krivine’s system D by
using a reducibility method where types are interpreted by saturated sets of A-terms
(a set s is usually said to be saturated if whenever M[z := N]M;--- M, € s then
(Ae.M)NDM --- M, € s) and especially where type variables are interpreted by CR?"
(itself saturated). We can then prove the soundness of the type interpretation which
is that if a term is typable in system D then it is in the interpretation of the type
and because each type is interpreted by a subset of CR? then each typable term is
in CR?". From the confluence of our parametric calculus and using results on the
embedding of our developments into our parametric calculus, we prove the confluence
of our developments. Finally, we can prove that the reflexive and transitive closure of
our developments is equal to the reflexive and transitive closure of the #n-reduction,

which gives us the confluence of the A-calculus w.r.t. the Gn-reduction.

3.12 2008: Kamareddine and Rahli [84]

We then set out to simplify our method based on the intersection type system D [85]
by basing our approach on the simply typed A-calculus instead and also by handling
redexes implicitly rather that explicitly. It turns our that formalising redex occur-
rences and reduction of redex occurrences involves heavy technicalities that are not
necessary to prove the confluence of the A-calculus. We came up with a method
very similar to the method designed by Ghilezan and Kuncak [48]. Then, the ob-
servation that only a few of the types of the simply typed A-calculus were needed
in the method led us to a first simplification. We then observed that instead of

introducing a type machinery, interpreting types by sets of A-terms, and then prov-
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ing the soundness of the interpretation, we could obtain a much simpler result by
directly considering sets of A-terms (the interpretations of the types and not the
types themselves). We therefore completely discarded the use of a type system from
our method. The side effect of the obtained method is that it is not based anymore
on the well known framework of the simply typed A-calculus and it is therefore
not anymore a reducibility method (see Sec. 2.5.2). But since the power of this
framework turned out not to be needed, the advantage is that we removed from the
method the burden of the syntax coming along with the definition of the simply
typed A-calculus. From a semantic method based on reducibility (we say a semantic
method because it involves interpreting types), we have obtained a simple syntactic
method (where no interpretation is needed anymore). The obtained method shares
some resemblance in its scheme with Barendregt’s method [5, Sec. 11.2]. However,
we believe our proof to be simpler for the same reasons that Ghilezan and Kuncak’s
method is simpler than Barendregt’s one (see Sec. 3.9). Our method is also simpler
than Barendregt, Bergstra, Klop and Volken’s method [7, 5]. It is also easily gener-
alisable into a new proof of CR for gn-reduction. Our simplification of a semantic
proof resulted in a syntactic proof which is projectable into a semantic method (by
interpreting sets of terms by types) and can therefore be used as a bridge between
syntactic and semantic methods.

Our method to prove the confluence of A-calculus w.r.t. 8- and n-reductions is
detailed in Sec. 4.

3.13 Summary of the proof methods of the Church-
Rosser property

In the literature, most of the proof methods to establish the confluence of the \-
calculus or its variants use the following scheme already detailed in the previous

sections:
e Provide a definition of developments.
e Prove the confluence of the defined developments.

e Prove the confluence of the considered calculus using a correspondence between

the reduction relation of the calculus and developments.

The simplest method is the syntactic method designed by Tait and Martin-Lof (see
Sec. 3.4). Their proof is based on a new reduction called parallel reduction. Let
us note that in their method the concept of residuals is not as clear as in our

formalisation of developments [84].
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The more difficult step is usually to prove the developments’ confluence. Earlier
works [48, 94] proved interesting embedding of developments into well known frame-
works such as the simply typed A-calculus or system D, using known properties of
these systems (such as the Church-Rosser property). It is interesting to see that
some of these proofs can easily be extended to the Sn-reduction [85, 84].

30



Chapter 4

From a semantic proof to a

syntactic one

Many CR proofs use the notion of developments [7, 48, 94, 85]. Both Koletsos and
Stavrinos [94] as well as Kamareddine and Rahli [85] use a complicated handling of
developments. On the other hand, Barendregt et al. [7], Ghilezan and Kuncak [48]
as well as our method presented below are based on some simpler and sufficient
notions of developments. These notions of developments are technically less involved
because, as in the so called method of parallel reductions [102, 131], they do not
deal with residuals. Because our method presented below does not make use of a
type system and does not deal with residuals, it can be regarded as a simplification
of Koletsos and Stavrinos’ method [94] as well as a simplification of Kamareddine,
Rahli and Wells’ method [85]. It can also be regarded as a simplification and a
generalisation of the work done by Barendregt et al. [7] because it does not involve
a new calculus and does not use the finiteness of developments, and also by Ghilezan
and Kuncak [48] because is does not make use of a type system.

Let us provide a detailed description of our method. Proofs can be found in

Appendix A.

4.1 Saturation, variable, abstraction properties

We consider the terms and reductions as presented in Sec. 2.3.
Def. 4.1.1 defines the three sets of terms SAT, VAR, and ABS.

Definition 4.1.1. Let the set SAT of the sets satisfying the saturation property be
defined as follows: SAT = {s C A | M[z := N] € s = (Az.M)N € s}.

Let the set VAR of the sets satisfying the variable property be defined as follows:
VAR={sCA|(n>0ANMie{l,...,n}. M; €s))=>azM---M, € s}.

Let the set ABS of the sets satisfying the abstraction property be defined as
follows: ABS={sC A | M € s= Ix.M € s}. O
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Lemma 4.1.2 presents different well known results concerning the A-calculus
(w.r.t. the § and the fBn-reductions) as well as results concerning the sets SAT,
VAR, and ABS. Lemma 4.1.2.1 is a well known result concerning the (G-reduction
as well as the fgn-reduction. Lemmas 4.1.2.2 and 4.1.2.3 are well known results
regarding the free variables of the terms in a reduction (5 as well as (7). Lem-
mas 4.1.2.4 and 4.1.2.5 characterise some (n-reductions. Lemma 4.1.2.6 provides a
characterisation of non-direct reduces of -redexes. Lemma 4.1.2.7 characterise (3
and fn-reductions of [-redexes. Finally, the main result is Lemma 4.1.2.8 which
states that the set of terms satisfying CR (w.r.t. 5 as well as On) satisfies the satu-
ration property, the variable property and the abstraction property.

Lemma 4.1.2. Let r € {3,6n}. The following hold:
1. If M = N and P —* Q then M[x := P] —! N[z := Q).
2. fv(M[z := NJ]) C fv((Az.M)N).
3. If M —* N then fv(N) C fv(M).

4. If \e.M —7%, N then either N is of the form Ax.M' such that M —%, M' or
M —%, Nz such that x € fv(N).

5. If v & (M) and Mz —J, N then there exists P such that M —7 P and
either N is of the form Px or P is of the form Ax.N.

6. If n >0, Q is of the form (Az.M)N, Q —* P and P is not a direct r-reduct
of Q then (a) k> 1, (b) if k =1 then P = M[z := N| and (c) there exists a
direct r-reduct (Az.M')N" of Q) such that M'[z :== N'| =} P.

7. Let n > 0 and (A\x.M)N —* P. There exists P' such that P —} P’ and
Mz .= N] =} P'.

8. a) CR" € SAT b) CR" € VAR c) CR" € ABS O

4.2 Pseudo Development Definitions

REMARK 4.2.1. Various approaches to prove the Church-Rosser property, use a
function which freezes redexes in terms using new variables or constants [48, 94, 96].
We noted that this can lead to problems.

For example, Ghilezan and Kuncak [48] use two distinct term variables called
f and g and introduced as “predefined constants”. They then assume that “terms
from A do not contain constants f and ¢”. It is then not clear whether f and g
are supposed to be taken as not belonging to the untyped A-calculus or whether

a new set A is defined to exclude terms involving f and g. The second seems to
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be the case. The issue is that their freezing function ¥ (similar to our function W,
defined below and which is used to prevent redexes from being reduced) is proved
to be a function from A to Ay where Aq is defined as follows: Ay = {M € A |
Jzy,..., 2, Lo,z : 0,...,2, : 0 & M : 0}, which is the set of terms in A which
are typable in simply typed A-calculus, and where 0 is a ground type and Iy is a
predefined type environment assigning types to f and g. Hence, by their definition,
Ay C A. It is obvious that their function ¥ does not associate a term in Ay with
each term in A since ¥ adds some f and g to the terms (for example V(xz) = fzx,
but fxx & A, so frx & Ay).

Moreover, typing environments (contexts) are defined as sets of type assignments
of the form z : ¢ where x is a term variable and ¢ is a simple type. Later, some
contexts are built with type assignments of the form f : ¢, but f is not defined as a
term variable. More generally, the introduction of a new variable or a new constant
implies that the considered type system has to be defined on the new calculus.

This idea behind such variables is that when freezing the redexes of a term then
one wants to use a variable that does not occur in the term. However one cannot
use a unique variable from the set of term variables because one can always find a
term in which this variable occurs free. We solve this issue by defining parametrised
sets of A-terms as well as parametrised freezing and unfreezing relations.

]

We call current redex any occurrence of a redex in a given term M. For example,
(Azr.x)y is a current redex in (Azx.x)yy. We call potential redex an application which
is not a current redex in a given term M but which is the occurrence of a redex
in the term obtained after at least one reduction step from M. For example, yx is
a potential redex in (Ay.yx)(Az.z). As done by Krivine [96] and many others after
him [48, 94, 85], we use a term variables to freeze current or potential redexes in
terms. The parametrised calculi with parameter ¢, a term variable in Var, presented
in Def. 4.2.2 are the “frozen” calculi based on the A-calculus where some reductions
are frozen by the use of c¢. For example, in A?, (Az.xy)(Az.2) —5 (A2.2)y —3 y, but
(Az.cxy)(Az.2) —p5 c¢(Az.2)y which does not reduce further. It is easy to see that for
all ¢ € Var, AP C AP" C A. (We define a family of term sets for each ¢ € Var.)

Definition 4.2.2 (A% AP7).
T,y €Var. =Var\ {c}
M,N,P,Q,ReA? :=x|(\z.M)|((Az.M)My) | ((cMy)My)
M,N,P,Q,ReAN ==z | \z.M) | (A\z.M) M) | ((cMy)My) | (cM)
In A? and A?7s definitions (in the variable production rules), = € Var...
Because we let x,y range over Var and Var., when it is ambiguous, we will make
explicit whether x is taken from Var or from Var.. The same goes for M, N, P, ), R.
]
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Def. 4.2.3, introduces the freezing function which allows one to freeze the po-
tential redexes of a term. Unlike definitions in the literature [48, 94, 96, 85|, our
function (the third clause below) does not freeze the current J-redexes. Further-
more, our definition does not freeze any of the current or potential n-redexes. For
example, in A?", M of the form A\x.(\y.czz)z does not contain any n-redex but con-
tains a potential 7-redex, since M —g Ax.czx and Az.czz is an n-redex. As we will

see below, there is not need to freeze n-redexes.
Definition 4.2.3 (V.). The parametric freezing V.. function is defined as follows:
1. U(z) ==
2. V. (Ax.N) = Ax. VU (N), where x # ¢
3. If P is a A-abstraction then ¥.(PQ) = V. .(P)¥.(Q)
4. If P is not a A-abstraction then V.(PQ) = c¥.(P)V.(Q). O

Note that we do not enforce that W, only applies to terms M such that ¢ & fv(M).
For example, ¥.(c) = ¢ € A’. We will see later that given a term M we only apply
function W, to M for a ¢ ¢ fv(M). The function W is a function that takes two
parameters: a term variable and a term.

Def. 4.2.4 introduces the parametric reduction relation —, used to remove the
¢’s from a term. This reduction can be regarded as a simplification of the reduction
—, defined by Ghilezan and Kuncak [48]. (We define a family of reduction relations
for each ¢ € Var.)

Definition 4.2.4 (—.). Let the c-reduction relation —. be the least compatible

relation on A closed under the rule:
(¢):eM —. M

As usual —7 is the reflexive and transitive closure of —.. O

In Def. 4.2.5, we introduce our (-developments (the reduction relation —1) as

well as our fn-developments (the reduction relation —»).

Definition 4.2.5 (Developments: —1, —3).  Let (d,r) € {(1,3),(2,6n)}.
M —y N3P, U,(M) —* PAP —* N Ac g f(MN)

As usual, —7 is the reflexive and transitive closure of —4. (Note that — is reflexive,
but in order not to have to introduce a new symbol for its transitive closure, we

consider —7.) O
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Developments are not parametric because a development of a term is obtained
by picking a variable that does not occur free in the term, by freezing the potential
redexes of the term using this free variable, by reducing the frozen term, and by
finally removing all occurrences of the picked free variable.

Def. 4.2.6 defines the parametric set of terms A, built over the parameter c
using application. (We define a family of term sets for each ¢ € Var.) Such terms
contain only ¢’s and no abstraction. This set of terms is especially needed to state
Lemma 4.2.7.7. The particularity of such terms being that they can be completely

erased by the c-reduction when applied to a term (see Lemma 4.2.7.5).
Definition 4.2.6. d € A, ::=c| dd O

Let us now provide some results on the reduction relation —.. Lemma 4.2.7.1
stresses the relation between the freezing function and the unfreezing relation —.:
one can always undo the freezing done by the freezing function using the unfreezing
relation. Using Lemmas 4.2.7.4 and 4.2.7.6, one can deduce that if one c-reduces a
term in A" then the reduct cannot be in A.. For example, one cannot obtain ¢ by
c-reducing a term in AP". Lemma 4.2.7.7 characterises c-reductions. Lemma 4.2.7.10

is a sort of weak confluence property w.r.t. —.
Lemma 4.2.7.

1. W (M) =% M.

2. If M =% N then fv(M) \ {c} = fv(N) \ {c}.

3. (M) \ {c} = (W (M) \ {c}.

4. NPNA. = =A""NnA..

5. If d € A, then dM —} M.

6. If M —: N then M € A, iff N € A..

7. Let M —: N. If M = x then N = x. If M = \x.M; then N = \x.N;
such that My —* Ny. If M = MM, then either My € A, and My —% N or
N = N1N2 and Ml —>: N1 and M2 —>: NQ.

8. If M = M', N =% N" and x # c then M|z := N| =% M'[x := N'|.
9. Ifc ¢ tv(M) and M —% N then M = N.
10. If M = N, M —: P and ¢ & fv(N) then P —% N. O
Proof.
1,8,10 By induction on the structure of M.

35



Chapter 4. From a semantic proof to a syntactic one

3 Corollary of Lemma 4.2.7.1 and Lemma 4.2.7.2.
4 Let M € AP". We prove by induction on the structure of M that M & A.,.
5 By induction on the structure of d.

6 =) By induction on the length of the reduction M —7 d.

<) By induction on the reduction d —* N.

7,9 By induction on the length of the reduction M —} N. O

4.3 A simple Church-Rosser proof for 5-reduction

Koletsos and Stavrinos [94] gave a proof of the Church-Rosser property for the set of
terms typable in an intersection type system called system D [96] w.r.t. S-reduction
and showed that this can be used to establish the confluence of their S-developments
without using strong normalisation. Ghilezan and Kuncak [48] gave a proof of the
Church-Rosser property for the set of terms typable in the simply typed A-calculus
w.r.t. S-reduction and showed that this can be used to establish the confluence of
their §-developments without using strong normalisation.

The first aim of the work presented in this section was to simplify the proof of
Koletsos and Stavrinos [94]. During this simplification, we obtained a proof that
bore some resemblance to the proof of Ghilezan and Kuncak [48]. A second simplifi-
cation of our proof started with the observation that in both proofs of Ghilezan and
Kuncak [48] and of Koletsos and Stavrinos [94] only a few types were really needed
and that one can actually completely get rid of the type system. We considered
two type interpretations based on the sets CR® and CR® and interpreted the few
needed types by sets of terms satisfying simple properties: saturation, variable and
abstraction (see Def. 4.1.1). Since the calculus used by Koletsos and Stavrinos to
prove the confluence of developments is simpler than the one used by Ghilezan and
Kuncak, a third simplification which led to our actual simple proof has been to come
back to the use of a calculus similar to the one used by Koletsos and Stavrinos as
well as Krivine [96] before them (see Def. 4.2.2). As mentioned above, our proof is
carried out in an untyped setting but one can relate the first part of the method to
a reducibility proof using, e.g., the type system D. Out proof can also be related to
Barendregt, Bergstra, Klop and Volken’s proof [7, 5].

The second aim of this section is to provide a framework for our main result:
the extension of our proof to Bn-reduction where we give a purely syntactic proof of
Church-Rosser for gn-reduction (see Sec. 4.4) which is projectable into a semantic

proof (based on type interpretation).
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Lemma 4.3.1 states a result on A? which we call “soundness” because it is a
simplification of an earlier soundness result of a type interpretation (as part of a re-
ducibility method) such that the needed part of our type interpretation corresponds
to sets of terms satisfying the saturation, variable and abstraction properties pre-
sented in Def. 4.1.1.

Lemma 4.3.1 (Soundness). If M € A?, fv(M)\ {c} = {z1,..., 2.}, for all i €
{1,...,n}, M; € s and s € VARNSAT N ABS then M[zy := My,...,x, = M,] €
s. U

Proof. By induction on the structure of M. O
Using Lemma 4.3.1, we can prove that each term in A? has 3-CR.
Corollary 4.3.2. A? C CR. O

Proof. Let M € AP and fv(M) \ {c} = {z1,...,7,}. By Lemma 4.1.2.8, CR €
SAT "VARNABS and zy,...,z, € CR. So by Lemma 4.3.1, M € CR. O

Lemma 4.3.3 states that the freezing function associates a term in the language

AP with each term of the untyped A-calculus (in which ¢ does not occur).
Lemma 4.3.3. If ¢ & fv(M) then W.(M) € AP, O
Proof. By induction on the structure of M. O

Let us now prove some result concerning the calculus based on A? and the j3-
reduction. Lemma 4.3.4.2 states that terms in A? can only B-reduce to terms in
AP, Because frozen (-redexes can occur in terms in A? (e.g., c(A\z.z)y € A?),
Lemma 4.3.4.3 states that each term in AY can always c-reduce to a version where
only its current [3-redexes are frozen. Lemma 4.3.4.4 states that our c-reduction can

always remove all the ¢’s in a term in A? (termination of our c-reduction).
Lemma 4.3.4. Let M,N € A? and x € Var...

1. M[z:= N] €A’

2. If M —% N then N € AP,

3. If M =% N and ¢ € fv(N) then M —7 U (N).

4. There exists N such that ¢ € fv(N) and M —% N. O

Proof. Ttems 1, 3 and 4 are by induction on the structure of M. Item 2 is by
induction on the length of the derivation M —7 N. O

Lemma 4.3.5 states that we can simulate any (-reduction of a term in A? from

any of its (partially or totally) “unfrozen” versions.

37



Chapter 4. From a semantic proof to a syntactic one

Lemma 4.3.5.

1. If M, € Af, My, —5 Ny and M, —) My then there exists Ny such that My — g
N2 and N1 —>z Ng.

2. If My € Af, M, —7 Ny and My —) M, then there exists Ny such that Mo —%
N2 and N1 —>z Ng. O

Proof. 1. by induction on the structure of M;. 2. by induction on the length of the
reduction M; —>§ Np using Lemma 4.3.5.1. O

Lemma 4.3.6 is a key lemma of simulating a reduction by developments. It states
that the reflexive and transitive closure of —4 is equal to the reflexive and transitive

closure of —;.
Lemma 4.3.6. M —3 N < M —] N. O
Proof.

=) Let M —% N. We prove that M —7] N by induction on the size of the
reduction M —7% N.

<) Let M —] N. We prove that M —7% N by induction on the size of the
derivation M —7 N. O

Lemma 4.3.7 states the confluence of the S-developments.
Lemma 4.3.7.

1. If M —1 My and M —y Ms then there exists Ms such that My, —1 M3 and
My — Ms.

2. If M —5 My and M —7 M then there exists Mz such that My —5 M3 and
M2 —>>{ M3. |:|

Proof.

1 By definition, there exist Pp, P such that W.(M) —% P, V(M) —5 P,
Py —% My, Py, =% My and ¢ & fv(M) U fv(M;) U fv(M;). By Lemma 4.3.3,
(M) € AZ. So by Corollary 4.3.2, there exists Ps such that Py —% Ps and
Py —7% P3. By Lemma 4.3.4.2, Py, P», P3 € A?. By lemma 4.3.4.4, there exists
Mj such that P3 —% M3 and ¢ & fv(M;). By Lemma 4.3.4.3, P, —* W (M)
and P, —% U.(M;). By Lemma 4.3.5.2, there exist ()1, Q such that Py —

Q1, Ps =% Qq, V(M) —% Q1 and U.(Ms) —% Q2. By Lemma 4.2.7.10,

Q1 — M3 and Q) —; Ms. So My —1 M3 and My —1 Ms.

2 By Lemma 4.3.7.1 U
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The confluence of the untyped A-calculus w.r.t. S-reduction is now proved using

the confluence of the 3-developments and the equality between —% and —7.
Theorem 4.3.8. A = CR. O

Proof. CR C A is trivial, we only prove A C CR. Let M,M;,My; € A such
that M —5 My, and M —5 M,. By Lemma 4.3.6, M —] M; and M —7 Ms.
By Lemma 4.3.5.2, there exists Mj3 such that M; —7 Ms; and My —] M;. By
Lemma 4.3.6, M, —% M3 and M, —% Ms. O

4.4 A simple Church-Rosser proof for gn-reduction

Now that we have stated the principal steps of our method to prove the Church-
Rosser property of the untyped A-calculus w.r.t. §-reduction, we will generalise
it to Bn-reduction following exactly the same steps and using the A?" language.
This generalisation can be regarded both as a simplification and an extension of
methods by for example Ghilezan and Kuncak [48], Kamareddine and Rahli [85],
Barendregt [5, Sec. 11.2], and Barendregt et al. [7].

Lemma 4.4.1 states a result on A" which we call “soundness” for the same reason

as for the similar Lemma 4.3.1.

Lemma 4.4.1 (Soundness). If M € AP fu(M)\ {c} = {z1,..., 2.}, for all i €
{1,...,n}, M; € s and s € SAT N VAR N ABS then M[zy := My,...,x, = M,] €
s. U

Proof. By induction on the structure of M. O

Using lemma 4.4.1, we can now prove that each term in A?" has 3n-CR.
Corollary 4.4.2. A% C CR™". O

Proof. Let M € AP" and fv(M)\ {c} = {x1,...,2,}. By Lemma 4.1.2.8, CR?" ¢
SATNVARNABS and z,...,z, € CR?". So by Lemma 4.4.1, M € CR%", O

Lemma 4.4.3 states that for each term of the A-calculus one can choose a variable
¢ that does not occur in the term and which can be used to freeze the term to obtain

a term in A?7. This result is trivial because A? C AP".
Lemma 4.4.3. If ¢ & fv(M) then W.(M) € AP
Proof. By Lemma 4.3.3, W.(M) € A?. Since A? C AP" then W (M) € AP O

Let us now prove some result concerning the calculus based on A7 and the 3n-
reduction. This lemma is similar to Lemma 4.3.4. Lemma 4.4.4.2 states that the
terms in A7 can only Bn-reduce to terms in in AP". Lemma 4.4.4.3 differs from
Lemma 4.3.4.3 by the fact that terms in A% can be of the form c¢M where M € A"
while this is not possible in A? (and similarly for Lemma 4.4.4.4).
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Lemma 4.4.4. Let M, N € A’ and z € Var.,..
1. M[z:= N] € AP
2. If M —%, N then N € A",
3. If M =% N and ¢ € fv(N) then M —% U (N).
4. There exists N such that ¢ € fv(N) and M —% N. O

Proof. Ttems 1, 3 and 4 are by induction on the structure of M. Item 2 is by

induction on the length of the derivation M —j, N. O

Lemma 4.4.5 states that we can simulate any Bn-reduction of a term in A%" from

any of its (partially or totally) “unfrozen” versions.
Lemma 4.4.5.

1. If My € Af", My, —g, N1 and My, —. M, then there exists Ny such that
M2 —7Bn N2 and Nl —>: NQ.

2. If My € Af" such that M —%7 Ny and My — My then there exists Ny such
that My — by Ny and Ny —} Nj. O

Proof. 1. By induction on the structure of M;. 2. By Lemma 4.4.5.1. O

Lemma 4.4.6 is a key lemma of the simulation method of a reduction by devel-
opments. It states that the reflexive and transitive closure of —g, is equal to the

reflexive and transitive closure of —».
Lemma 4.4.6. M —j N < M —;5 N. O
Proof.

=) Let M —% N. We prove that M —3 N by induction on the size of the

reduction M —%7 N.

<) Let M —3 N. We prove that M —7 N by induction on the size of the
derivation M —3 N. O

It is then easy to deduce the confluence of the Bn-developments.
Lemma 4.4.7.

1. If M —o My and M —o My then there exists Ms such that My, —o M3 and
My —o Ms.

2. If M —35 My and M —5 My then there exists Ms such that My —% Ms and
M2 —>§ M3. |:|

40



Chapter 4. From a semantic proof to a syntactic one

Proof.

1 By definition, there exist P;, P, such that W¥.(M) —%5, D1y U.(M) —%, P2,
P, —* My, P, —* My and ¢ & fv(M) U fv(M;) U fv(M;). By Lemma 4.4.3,
U.(M) € AP1. So by Corollary 4.4.2, there exists P such that P, —%, Ds
and P, —%7 P;. By Lemma 4.4.4.2, P, P, P; € Af". By lemma 4.4.4.4,
there exists Mz such that Py —% M3 and ¢ ¢ fv(M3). By Lemma 4.4.4.3,
P —* V. (M) and P, —} V.(M;). By Lemma 4.4.5.2, there exist @, Q2
such that Py —* Qq, P3 —% Qo, V.(M;) —7, @1 and U (M) —7, Q2. By
Lemma 4.2.7.10, Q)1 —% M;3 and Q3 —} Ms. So M; —9 Mz and My —o Ms.

2 Easy by Lemma 4.4.7.1. O

The confluence of the untyped A-calculus w.r.t. Gn-reduction is then proved using

the confluence of the Jn-developments and the equality between —7% and —73.
Theorem 4.4.8. A = CR"". O

Proof. CRP" C A is trivial, we only prove A C CR?. Let M, M, M, € A such
that M —>;§77 My, and M —>E,7 M;. By Lemma 4.4.6, M —5 M; and M —35 M.
By Lemma 4.4.7.2, there exists Mj3 such that M; —5 Ms and My —5 M;. By
Lemma 4.4.6, M, —>En M3 and M, —%7 Ms. O
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Chapter 5
Comparisons and conclusions

In this chapter we compare our method to two other methods (based on type sys-
tems) to prove confluence [48, 94]. We also compare our developments to those of
Tait and Martin-Lof. In this section and only in this section, we consider the con-

fluence property w.r.t. S-reduction. In Fig. 3.1 and 5.1, an arrow labelled with ¢, o

*
c)

or ( stands for —7, —7 or —7} respectively. An arrow labelled with ¥ or ¥, stands
for the application of the function with the same name to the term at the arrow’s

start.

5.1 Ghilezan and Kuncak’s method [48]

5.1.1 Highlighting of Ghilezan and Kuncak’s method

Fig. 3.1 presents Ghilezan and Kuncak’s proof method [48] for the confluence of
the untyped A-calculus w.r.t. S-reduction. Their proof, based on the embedding
of the developments into A_,, uses the confluence w.r.t. another reduction —; (a
development) whose transitive closure is equal to —7. The reduction — is defined

1

as 7o —>§ ot where:

e The relation 7 is defined as the composition —} oW.

e The relation —, is the compatible closure of the rule (o) : f(g(A\x.M))N —,

(Ax.M)N. This relation is their unfreezing relation.

e U is recursively defined on the terms of the A-calculus as follows: ¥(x) = z,
U(Azx. M) = g(Ax.¥(M)) and W(MN) = fU(M)V(N), where f and g are two

constants (see Remark 4.2.1). This function is their freezing function.

The relation 7 allows one to freeze some [-redexes and the potential F-redexes (the
other applications) of a term. As a matter of fact, 7 does more, because ¥ does
more by encapsulating the A-abstractions using g. This technicality is needed by

Ghilezan and Kuncak to prove the typability of a defined set of terms in A_,. The
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1

reduction 77! is similar to our own unfreezing relation —. (see Def. 4.2.4) and to

Krivine’s erasure function [96], which “unfreezes” the redexes in a term.

5.1.2 Ghilezan and Kunc¢ak’s simple and sufficient notion of

developments

By definition of M —; P (a development), there exist M; and P; such that
V(M) =5 My —j P and U(P) —7 Py (left part of Fig. 3.1). By definition of
M —; @, there exist My and @, such that W(M) —; My —7 Q1 and ¥(Q) —; Q1
(right part of Fig. 3.1). Because M; can be different from My, a confluence lemma
for the unfreezing relation reduction —, (mark @ in Fig. 3.1) and a commutation
lemma for the reductions —; and —7% (marks @ and @ in Fig. 3.1) are needed.
The central part of Fig. 3.1 (mark @) corresponds to the well known result of the
confluence of the terms typable in A_,. Koletsos [93] proved the confluence of their
frozen language using a reducibility method based on a type interpretation of the
types of the intersection type system D.

The reduction —; designed by Ghilezan and Kuncak [48] defines a development
without explicitly specifying the set of redexes allowed to be reduced by the devel-
opment (as done, e.g., by Barendregt et al. [7] which differs from other approaches
where redexes are explicitly handled like those of Barendregt [5, Sec. 11.2] or Hind-
ley [68]). Let us consider the reduction M —; P (unfolded above). First, the
function W freezes all the redexes in M. Then, —7 allows one to unfreeze some of
the frozen redexes in W(M) and therefore allows one to select a set of redexes in
M which are allowed to be reduced without explicitly naming them. The reduc-
tion M; —7 Pp reduces some of the allowed redexes and their residuals. Finally, in
U(P) —* Py, P is the totally unfrozen version of P; and the reduction —? selects
the set of residuals of the set of redexes in M; w.r.t. M; —% P, without explicitly
referring to them.

This implicit way of dealing with occurrences of redexes is simple and sufficient
enough to prove the confluence of the A-calculus. Other approaches handle occur-
rences of redexes in a more complicated way. For example, Krivine [96] or Koletsos
and Stavrinos [94] deal with occurrences of redexes explicitly but only informally. It
turns out that a formalisation of their approaches is much more complicated than
it seems at first [85]. Ghilezan and Kuncak [48] do not face the same issue. The re-
duction —? allows one to unfreeze some redexes without explicitly specifying them.
In Ghilezan and Kuné¢ak’s approach, as in Barendregt et al.’s approach [7], a de-
velopment of a term is defined without explicit control on the set of occurrences of
reduced redexes. It turns our that in Church-Rosser proofs such a control is unnec-
essary. One only needs to be able to freeze potential redexes and therefore allow the

development of a term to reduce the current redexes of the term and their residuals.
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5.1.3 Comparison of Ghilezan and Kuncak’s method with

other methods

Although Ghilezan and Kunc¢ak [48] consider a simpler definition of developments
than the “common” one (as defined by Barendregt [5]), their proof method scheme
is exactly the one followed by Koletsos and Stavrinos [94]. Koletsos and Stavrinos
consider the following “common” definition of developments: there exists a devel-
opment from M to N iff (M, s1) —7 (IV, so) where M —7% N, s, is a set of redexes
in M, sy is the set of residuals of s; in N, and —% is a new (complex) reduction
relation based on —7. Their proof of the confluence of developments uses, among
other things, the following claim: if (M, s1) —} (V, so) then there exists s, such
that (M, sy U sg) —% (N, se U sy), where sz is a set of redexes of M. It is useful
to prove that if (M,s1) —3 (M, s)) and (M, sq) —% (Ma,s)) are two develop-
ments of M then there exist | and sj such that (M, s; U so) —% (M, s) U s5) and
(M, s9 U s1)) =5 (Ma, s, U s) which allow one to develop the same redex set. This
corresponds to Ghilezan and Kuncak’s proof of —,’s confluence, which is useful to
obtain the reductions (W(M) —% My —; Mz —5 P, and W(P) —; Py —; P,) and
(W(M) —; My —5 My —% Qz and W(Q) —% Q1 —; Qa).

Let us now present some differences between Ghilezan and Kuncak’s method and
that of Barendregt et al.:

e Ghilezan and Kuncak do not use the finiteness of developments when Baren-

dregt et al. do;

e Ghilezan and Kuncak base their result on a well known result (the conflu-
ence of the simply typed A-terms) to give a simple proof of the confluence of

developments when Barendregt et al. have to prove everything;

e Ghilezan and Kuncak do not really introduce new terms when Barendregt et al.

do: underlined terms are introduced to prove the confluence of developments.

Barendregt et al. also give a definition of developments without explicitly naming
occurrences of redexes (no occurrence set is explicitly defined), introducing among
other things, a second abstraction A\. There exists a simple correspondence between
the calculus with this second abstraction and the “frozen” calculus obtained via the
freezing function introduced by Krivine and reused in the present document as well
as in many other works [96, 48, 94, 85]. Informally, on can turn an underlined term
as defined by Barendregt et al. into one of our frozen terms (which can be obtained
using our function ¥, on A-terms) by turning all the underlined A-abstractions into
non-underlined A-abstractions and by then applying ¥. on the obtained term. One
can turn a frozen term in A?, obtained by applying . to a A-term, into an underlined

term by underlining each A such that the corresponding A-abstraction is applied to a
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Figure 5.1 Our method for the confluence of —1

term into an underlined one and by removing all occurrences of ¢. Their underlined

(B-reduction corresponds then to the f-reduction in our frozen language.

5.2 Our method

5.2.1 Highlighting of our method

Fig. 5.1 presents our method to prove the confluence of the A-calculus. By definition
of M —, P (Def. 4.2.5), there exists P, such that W.(M) —% P, and P, —} P, such
that ¢ & fv(M)Ufv(P)Ufv(Q) (mark @ in Fig. 5.1). By definition of M —4 @, there
exists )y such that W.(M) —% Q1 and @ —; @ (mark @ in Fig. 5.1). Moreover
P, —* VU (P)and Q1 —; V.(Q) (By Lemma 4.3.3 and Lemma 4.3.4). So, because P
and W.(P) might be different (as for ; and ¥.(Q)), as Ghilezan and Kuncak [48],
we need a commutation result for the reductions —j and —7 (see Lemma 4.3.5).
Then, the whole diagram commutes because P, R; and (), all c-reduce to the same
term R (by Lemma 4.2.7.10 and lemma 4.3.4.3). As in Fig. 3.1, the central part
(mark @) in Fig. 5.1) is due to the confluence of our frozen terms (typable in A_, for
Ghilezan and Kuncak and typable in system D in our case even though we do not

use this fact).
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5.2.2 Comparison with GGhilezan and Kuncak’s developments

Our method is also based on a simple definition of developments, where first, all
current J-redexes are left unfrozen and where all potential F-redexes (all the other
applications) are frozen. In the present document we define two simple develop-
ments: — for the 3 case and — for the Gn case. In that way, we do not need
Ghilezan and Kuncak’s reduction — to unfreeze some redexes in order to perform
some [-reductions. Even though we do not need this reduction relation, it does
not seem possible to get rid of the work done by this reduction. Indeed, our choice
implies the introduction of some other material which turns out to be similar to the
reduction —7*. Both methods need the introduction of similar material but used at
different places in our methods. The reduction —7 is used by Ghilezan and Kuncak
to unfreeze some redexes in order to allow some reductions to occur whereas we
use the reduction —7 to, among other things, unfreeze some redexes which become
frozen after some reductions.

As one can observe when comparing Fig. 3.1 and Fig. 5.1, because occurrences
of redexes are not explicitly handled in our methods, a freezing function can either
freeze all current redexes of terms or leave them all unfrozen. If all the redexes
are frozen, a reduction such as —, is needed before being able to perform some
reductions (seeq Figure 3.1). In this case some technical results are needed such as
the confluence of —,. If all current redexes are left unfrozen, because a term whose
current redexes are all unfrozen does not necessarily reduce to a term whose current
redexes are all unfrozen, some technical results on a reduction such as —, (in our

method, on the c-reduction) are also needed as explained above (see Figure 5.1).

5.2.3 Conclusions on our method

Finally, although our work derives from the one done by Koletsos and Stavrinos [94]
and Kamareddine, Rahli and Wells [85], it turned out that it is also a simplification
and generalisation of the work done by Ghilezan and Kuncak [48] and Barendregt
et al. [7]. Because our method resemble Ghilezan and Kunc¢ak’s method the most,
we have adopted some of of their notations and focused on comparing our method
with theirs.

Thus, the two improvements of the present document can be regarded as the
simplification of the work done by Ghilezan and Kuncak [48] by getting rid of the
type machinery and the extension of the defined method to the (n-reduction.

As explained above, the main lines of our method are as follows:
e Defining simple developments;

e Proving the confluence of a simple calculus w.r.t. the considered reduction (3

or An) using a method based on saturated sets (e.g., reducibility in Ghilezan
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and Kuncak’s method);
e Proving the confluence of the defined developments;

e Proving the equality between the reflexive and transitive closure of the devel-

opments and the reflexive and transitive closure of the considered reduction;

e Proving that the untyped A-calculus satisfies CR w.r.t. a given reduction,

simulating the considered reduction using developments.

5.3 Comparison with Tait and Martin-Lof’s method

Tait and Martin-Lof’s proof [102, 5] (and its extensions by, e.g., example Taka-
hashi [131]) of the confluence of the untyped A-calculus is, to the best of our knowl-
edge, the simplest. Our method started from the semantic framework (based on a
type interpretation) when we attempted to simplify and generalise existing seman-
tic proofs. It turned out that our simplification and generalisation of such semantic
proofs led to the method presented in this document which does not require types
anymore. Hence, the type interpretation and the reducibility argument are no longer
used in our method. Thus, our method shifted from the semantic camp to the purely
syntactic one. Nonetheless, our method can still be projected into a semantic method
(something that is not obvious for methods like those of Tait and Martin-Lof, and
Takahashi). We therefore consider our work to be a bridge between the syntactic
and semantic methods. There is another notable difference with our method: our
developments allow strictly more reductions than those of Takahashi (for both the

[ and (1 cases) as we establish in this section.
Definition 5.3.1 (Takahashi [131]). Let r € {§3, fn}. We define =, as follows:

o M =, M

Ae. M =, Ae.Nit M =, N

e MN =, M'N"if M =, M" and N =, N’

A M)N =, M'[z == N'|if M =, M" and N =, N’
o \e. Mz =5, N if v & fv(M) and M =3, N O

Let us now prove that developments as defined by Takahashi (and Tait and

Martin-Lof for the (-case) are developments w.r.t. our notion of developments.
Lemma 5.3.2.

1. If M =3 N or M =3, N then fv(N) C fv(M).
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2. Let M, N such that ¢ & fv(M)Ufv(N). If M =3 N then M —; N.

3. Let M, N such that ¢ & fv(M)Ufv(N). If M =5, N then M —y N. O

Proof. 2. Let M =43 N. The proof is by induction on the size of the derivation of
M =43 N and then by case on the last rule of the derivation.
3. Let M =3, N. The proofis by induction on the size of the derivation of M =3, N

and then by case on the last rule of the derivation. O

REMARK 5.3.3.

1. We have M = (Az.zx)((Az.2)y) —1 y((Az.2)y) because by definition of a (-
development (—1): U (M) = (Az.cxz)((Az.2)y) —5 c((Az.2)y))((A\z.2)y) —4
cy((Az.2)y) —¢ y((A\z.2)y), where ¢ & {z,y,z}. But, we do not have M =4

y((Az.2)y).

2. We have M = Az.y((Az.z)x) —2 y because by definition of a #n-development
(—2): V(M) = Av.cy((Nz.2)x) —p5 Ax.cyz —, cy —. y, where ¢ & {x,y, z}.
But, we do not have M =g, y. O
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Chapter 6

Introduction

6.1 Expansion

6.1.1 Introduction of the expansion mechanism

FExpansion was introduced at the end of the 1970s as a crucial procedure for calcu-
lating principal typings for A-terms in type systems with intersection types (see
Sec. 2.4.2), allowing support for compositional type inference. Coppo, Dezani,
and Venneri [27] introduced the operation of expansion on typings (pairs of a
type environment and a result type) for calculating the possible typings of a term
when using intersection types. As a simple example, there exists an intersection
type system S where the A\-term M = (Az.x(\y.yz)) can be assigned the typing
¢, = ({z—a}, (((a—=b)—b)—c)—c), which happens to be its principal typing in S.
The term M can also be assigned the typing ®; = (s{z+> a1 Mas}, ((((a1—=by)—by) M

((ag—by)—bg))—c)—c), and an expansion operation can yield ®, from ®;.

6.1.2 Expansion variables

Because the early definitions of expansion were complicated, E-variables were in-
troduced in order to make the calculations easier to mechanize and reason about.
For example, in System E [19], the typing ®; presented above is replaced by ®3 =
({z—ea}, ((e((a—b)—b))—c)—c), which differs from ®; by the insertion of the E-
variable e at two places (in both components of the ®3), and ®, can be obtained from
®3 by substituting for e the ezpansion term E = (a := aq,b := b1)M(a := ag, b := by).

Carlier and Wells [20] have surveyed the history of expansion and also E-variables.
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6.2 Type interpretation

6.2.1 Designing a space of meanings for expansion variables

In many kinds of semantics, a type T is interpreted by a second order function [T,
that takes two parameters, the type 1" and also a valuation v that assigns to type
variables the same kind of meanings that are assigned to types. To extend this idea
to types with E-variables, we need to devise some space of possible meanings for E-
variables. Given that a type €T can be turned by expansion into a new type S;(7")M
So(T'), where Sy and Sy are arbitrary substitutions (which can themselves introduce
expansions), and that this can introduce an unbound number of new variables (both
E-variables and regular type variables), the situation is complicated. Because it is
unclear how to devise a space of meanings for expansions and E-variables, we instead
restrict ourselves to E-variables and develop a space of meanings for types that is
hierarchical in the sense that we can split it w.r.t. a certain concept of degree.
Although this idea is not perfect, it seems to go quite far in giving an intuition for
E-variables, namely that each E-variable occurring in a typing associated with a \-
term, acts as a capsule that isolates parts of the A\-term. As future work, we wish to
come up with a higher order function that interprets types involving expansion terms
by sets of A-terms. We believe this function would help regarding the substitution

mechanism introduced by expansion in terms of A-expressions.

6.2.2 Owur semantic approach

The semantic approach we use in the current document is a realisability semantics
in the sense that it is derived from Kreisel’s modified realisability and its variants,
where “a formula “z realizes A” can be defined in a completely straightforward way:
the type of the variable x is determined by the logical form of A” [113],  being the
code of a function. Our semantics is strongly related to the semantic argument
used in reducibility methods as used and developed by Tait [130] and many others
after him [96, 93, 44, 43, 45, 46]. Atomic types (e.g., type variables) are interpreted
as saturated sets of A-terms, meaning that they are closed under [-expansion (the
inverse of fB-reduction). Arrow types are interpreted by function spaces (see the
semantics provided by Scott in the open problems published in the proceedings of the
Lecture Notes in Computer Science symposium held in 1975 [13]) and intersection
types are interpreted by set intersections. Such a realisability semantics allows one
to prove soundness w.r.t. a type system S, i.e., the meaning of a type T contains
all closed A-terms that can be assigned 7" in S. This has been shown useful for
characterising the behaviour of typed A-terms [96]. One also wants to show the
converse of soundness which is called completeness, i.e., every closed A-term in the

meaning of 1" can be assigned 7" in S.
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6.2.3 Completeness results

Hindley [70, 71, 72] was one of the first to investigate such completeness results
for a simple type system and he showed that all the types of that system have the
completeness property. He then generalised his completeness proof to an intersection
type system [69]. Using his completeness theorem based on saturated sets of A-
terms w.r.t. An-equivalence, Hindley showed that simple types were “realised”! by
all and only the A-terms which are typable by these types. Note that Hindley’s
completeness theorems were established with the sets of A-terms saturated by [n-
equivalence. In the present document, our completeness result depends only on the
weaker requirement of G-equivalence, and we have managed to make simpler proofs
that avoid needing n-reduction, confluence, or SN (although we do establish both
confluence and SN for both 3 and (7).

6.2.4 Similar approaches to type interpretation

Recent work on realisability related to ours include that by Labib-Sami [97], Farkh
and Nour [40], and Coquand [29], although none of this work deals with intersection
types or E-variables. Similar work on realisability dealing with intersection types
includes that by Kamareddine and Nour [80], which gives a sound and complete
realisability semantics w.r.t. an intersection type system. This system does not
deal with E-variables and is therefore different from the three hierarchical systems

presented in this document.

6.3 Towards a semantics of expansion

Initially, we aimed to give a realisability semantics for a system of expansions pro-
posed by Carlier and Wells [20]. In order to simplify our study, we considered the
system with expansion variables but without the expansion rewriting rules (with-
out the expansion mechanism). In essence, this meant that the type syntax was:
T eTyu=a|w|Ti=Ty | Ty N1, | €I where a is a type variable ranging over
a countably infinite type variable set TyVar and e is an expansion variable ranging
over a countably infinite expansion variable set ExpVar, and that the typing rules

were as follows:

'We say that a A-term M “realises” a type T if M is in T’s interpretation. Hindley’s semantics
is not a realisability semantics but it bears some resemblance with modified realisability. One of
Hindley’s semantics is called “the simple semantics” and is based on the concept of model of the
untyped A-calculus [73]. Our type interpretation is also similar to Hindley’s[69].
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To provide a realisability semantics for this system, we needed to define the
interpretation of a type to be a set of terms having this type. For our semantics
to be informative on expansion variables, we needed to distinguish between the
interpretation of 7" and e€T'. However, in the typing rule (e-app) presented above,
the term M is unchanged and this poses difficulties. For this reason, we modified
slightly the above type system by indexing the terms of the A-calculus giving us the
following syntax of terms: M = 2' | (MN) | (Ax*.M) (where M and N need to
satisfy a certain condition before (M N) is allowed to be a term) and by slightly
changing our type rules and in particular rule (e-app):

M:(TFU)
Mt :(el'F eU)

(e-app)

In this new (e-app) rule, M+ is M where all the indices are increased by 1. Obviously
these indices needed a revision regarding 3-reduction and the typing rules in order to
preserve the desirable properties of the type system and the realisability semantics.
For this, we defined the good terms and the good types and showed that these
notions go hand in hand (e.g., good types can only be assigned to good terms).

We developed a realisability semantics where each use of an E-variable in a
type corresponds to an index at which evaluation occurs in the A-terms that are
assigned the type. This was an elegant solution that captured the intuition behind
E-variables. However, in order for this new type system to behave well, it was
necessary to consider Al-terms only (removing a subterm from M also removes
important information about M as in the reduction (Az.y)M —p y where M is
thrown away). It was also necessary to drop the universal type w completely. This
led us to the introduction of the A[M-calculus and to our first type system F; for
which we developed a sound realisability semantics for E-variables.

However, although the first type system F is crucial to understand the intuition
behind the indexing we propose, the realisability semantics we proposed was not
complete w.r.t. F; (subject reduction does not hold either). For this reason, we
modified our system F; by considering a smaller set of types (where intersections
and expansions cannot occur directly to the right of an arrow), and by adding
subtyping rules. This new type system 5 has subject reduction. Our semantics
turned out to be sound w.r.t. k5. As for completeness, we needed to limit the list
of expansion variables to a single element list. This completeness issue for 5 comes

from the fact that the natural numbers as indexes do not allow one to differentiate
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between the types e;T" and esT if ey # e5. Again, we were forced to revise our type
system. We decided to restrict our A-terms by indexing them by lists of natural
numbers (where each natural number represents a difference expansion variable).
We updated the type system F5 in consequence to obtain the type system 3 based
among other things on the following new (e-app) rule:
M:(TFU)
M*i: (el - eU)

(e-app)

where i is the natural number associated with the expansion variable e and where
M is M where all the lists of natural numbers are augmented with ¢. This new
rule (e-app) allows us to distinguish the interpretations of the types e;7T and eyT
when e; # ey. Furthermore, our A-terms are constructed in such a way that K-
reductions do not limit the information on the reduced terms (as in the A[N-calculus,
(G-reduction is not always allowed, and in addition we impose further restriction on
applications and abstractions). In order to obtain completeness in presence of the
w-rule, we also consider w indexed by lists. This means that the new calculus
becomes rather heavy but this seems unavoidable. It is needed to obtain a complete
realisability semantics where an arbitrary (possibly infinite) number of expansion
variables is allowed and where w is present. The use of lists complicates matters
and hence, needs to be understood in the context of the first semantics where indices
are natural numbers rather than lists of natural numbers. In addition to the above,
we have considered three saturation notions (in line with the literature) illustrating

that these notions behave well in our complete realisability semantics.

6.4 Road map

Sec. 7.1 gives the syntax of the indexed calculi considered in this document: the
M N-calculus, which is the AI-calculus with each variable annotated by a natural
number called a degree or indexr, and the \*¥-calculus which is the full A-calculus
(where K-redexes are allowed) indexed with finite sequences of natural numbers. We
show the confluence of 3, #n and weak head h-reduction on our indexed A-calculi.
Sec. 7.2 introduces the syntax and terminology for types used in both indexed cal-
culi. Sec. 7.3 introduces our three intersection type systems with E-variables F;
for i € {1,2,3}, where in the first one, the syntax of types is not restricted (and
hence subject reduction fails) but in the other two it is restricted but then the sys-
tems are extended with a subtyping relation. In Sec. 7.4.1 and Sec. 7.4.2 we study
the properties of our three type systems including subject reduction and expansion
with respect to our various reduction relations ([, 3n, h). Sec. 8.1 introduces our
realisability semantics and show its soundness w.r.t. each of the three considered

type systems (and for each reduction relation). Sec. 8.2 establishes the challenges
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of showing completeness of the realisability semantics designed for the first two sys-
tems. We show that completeness does not hold for the first system and that it
also does not hold for the second system if more than one expansion variable is
used, but does hold for a restriction of this system to one single E-variable. This is
already an important step in the study of the semantics of intersection type systems
with expansion variables since a single expansion variable can be used many times
and can occur nested. Sec. 8.3 establishes the completeness of a given realisability
semantics w.r.t. 3 by introducing a special interpretation. We conclude in Sec. 9

and proofs are presented in Appendix B.
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The MY and MY calculi and

associated type systems

7.1 The syntax of the indexed A-calculi

Definition 7.1.1 (Indices). We introduce two kinds of indices: natural numbers
for our first semantics and sequences of natural numbers for our second semantics.
Let Ly = tuple(N). We let I, J, range over indices. The metavariables I and J will
range over N when considering the AIN-calculus and over Ly when considering the
A¥-calculus (both these calculus are defined below). Let L, K, R range over Ly. We
sometimes write (ny,...,Ny) as (N, ..., nmy) or as (n;)1<i<m Or as (n;),. We denote

@ the empty sequence of natural numbers (@ stands for ()). Let :: add an element

to a sequence: j i (ny,...,ny) = (j,n1,...,ny). We sometimes write Li@QL, as
Ly :: Ly. We define the relation < and > on Ly as follows: Ly < Ly (or Ly = Ly) iff
there exists Lz € Ly such that Ly = Ly :: Ls. O
Lemma 7.1.2. < is a partial order on Ly. O

The set Var is the same A-term variable set as defined in Sec. 2.3.1.

We define below two indexed calculi: the AIM-calculus (whose set of terms is M,
as well as My for notational reasons) and the A\*-calculus (whose set of terms is
M3). As obvious, indices in AI™N are simple but only allow the I-part of the calculus.

We let M, N, P,Q, R range over any of M;, My, and M3 (we make explicit
when a term is taken from either one of these sets). We use = for syntactic equality.
We assume the usual definition of subterms (see Barendregt [5] and Krivine [96])
and the usual convention for parentheses and their omission (see Sec. 2.3.1). We
also consider in this part an extension of the function fv that gathers the indexed
A-term variables occurring free in terms (redefined below).

The joinability M o N of terms M and N ensures that in any term in which

M and N occur, each variable has a unique index (note that it is more accurate to
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include this as part of the simultaneous inductions in Def. 7.1.4 and 7.1.7 defining
M, My, and M3, but for clarity, we define it separately here).

Definition 7.1.3 (Joinability ¢). Let ¢ € {1,2,3}.

e Let M, N be terms of AN (resp. A“") and let fv(M) and fv(IN) be the corre-
sponding free variables. We say that M and N are joinable and write M ¢ N
iff for all o € Var, if 211 € fv(M) and 22 € fv(N) (where Ly, L, € N (resp.
€ Ly)) then Ly = L.

o If M C M, such that VM, N € M. M o N, we write oM.
o If M C M; and M € M, such that YN € M. M o N, we write M o M. O

Now we give the syntax of AIV, an indexed version of the Al-calculus where
indices (which range over N) help categorise the good terms where the degree of a
function is never larger than that of its argument. This amounts to having the full
Al-calculus at each index and creating new \/-terms through a mixing recipe. Note
that one could also define AN by dividing Var into an countably infinite number of
sets and by defining a bijective function that associates a unique index with each of
these sets. We did not choose to do so because we believe explicitly writing down

indexes to be clearer.

Definition 7.1.4 (The set of terms M, (also called My)). The set of terms M,
My (where My = M,), the set of free variables fv(M) of M € My and the degree

deg(M) of a term M, are defined by simultaneous induction:
e If x € Var and n € N then 2" € My, fv(z") = {2"}, and deg(z") = n.

o If M,N € M, such that M o N (see Def. 7.1.3) then MN € My, fv(MN) =
fv(M) U fv(N) and deg(MN) = min(deg(M),deg(N)) (where min returns the

smallest of its arguments).

o If M € My and 2" € fv(M) then \a™. M € My, fv(Az". M) = fv(M) \ {z"},
and deg(Ax™.M;) = deg(M,).

Let iz € IVary ::= 2™ and IVar; = [Vary. For each n € N, let M} = {M € M, |
deg(M) = n}. Note that a subterm of M € M, is also in Mj. Closed terms are
defined as in Sec. 2.3.1. Let closed(M) be true iff M is closed, i.e., iff fv(M) = @. O

Here is now the syntax of good terms in the A\IN-calculus.
Definition 7.1.5 (The set of good terms M C M,).
1. The set of good terms Ml C M is defined by:
e If x € Var and n € N then 2" € M.
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o If M/N eM, MoN, and deg(M) < deg(N) then MN € M.
o If M € M and 2" € fv(M) then \a™.M € M.

Note that a subterm of M € M is also in M.

2. For each n € N, we let M" = M N M} O

Lemma 7.1.6.
1. (M e M and 2" € fv(M)) iff \a".M € M.

2. (Ml,MQ S M, M1 <>M2 and deg(Ml) S deg(Mg)) Zﬁ M1M2 € M. O

Now, we give the syntax of \A*¥. Note that in M, an application MN is only
allowed when deg(M) =< deg(N). This restriction did not exist in M (in My’s
definition). Furthermore, we only allow abstractions of the form Az’.M in \&%
when L = deg(M) (a similar restriction holds in A\IY since it is a variant of the
Al -calculus). The elegance of A" is the ability to give the syntax of good terms,

which is not obvious in \2¥,

Definition 7.1.7 (The set of terms M3). The set of terms M3, the set of free vari-
ables fv(M) and degree deg(M) of M € Mj are defined by simultaneous induction:

e If z € Var and L € Ly then 2% € M3, fv(z) = {27}, and deg(z*) = L.

o If M, N € Ms, deg(M) < deg(NN), and MoN (see Def. 7.1.3) then M N € Ms,
fv(MN) = fv(M)Ufv(N) and deg(M N) = deg(M).

o If z € Var, M € M3, and L = deg(M) then Azl .M € Ms, fv(\al. M) =
fv(M) \ {z'} and deg(\xl. M) = deg(M).

Let iz € IVarg ::= zl. Note that each subterm of M € Msj is also in Mj. Closed
terms are defined as in Sec. 2.3.1. Let closed(M) be true iff M is closed, i.e., iff
fv(M) = @. O

In our systems, expansions change the degree of a term. Therefore we define
functions to increase and decrease indexes in terms. The next definitions turn terms
of degree n into terms of higher degrees and also, if n > 0, they can be turned
into terms of lower degrees. Note that both the increasing and the decreasing func-
tions are well behaved operations with respect to all that matters (free variables,

reduction, joinability, substitution, etc.).

Definition 7.1.8.
1. For each n € N, let M5" = {M € My | deg(M) > n} and M;" = M7"*.
2. We define * (€ My — My) and =~ (€ M5° — M,) as follows:
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(l‘n)-‘r = gntl (M1M2)+ = M1+M2+ ()\:L,TLM)—F = "t Mt
(z") =g ? (M M)~ = My~ My~ (A" M)~ = "L M~

3. Let M C My. If VM € M. deg(M) > 0, we write deg(M) > 0. Also:
(MYt ={M* | M c M} If deg(M) >0, (M)" ={M~ | M € M}

4. We define M~" by induction on deg(M) > n > 0. If n =0 then M™ = M
and if n > 0 then M~0*+) = (M)~ O

Definition 7.1.9. Let i € N and M € Ms.

1. For each L € Ly, let:
ME={M e M3 |deg(M) = L} Mz = {M e M3 | deg(M) = L}
2. We define M** as follows:
(xF) i = gtk (My M)t = M My Azl M)* = Az L M
3. If deg(M) =i :: L, we define M~ as follows:
(zth)=t = g b (M M) =" = My My* Azl M) = Azt M
4. Let M C M3. Let (M)* ={M*" | M € M}.
Note that (M N My)* = (M) N (My)*. O

Definition 7.1.10 (Substitution, alpha conversion, compatibility, reduction).

e Let M, Ny,...,N, be terms of AI" (resp. \*¥) and Ii,..., I, € N (resp. Ly).
The simultaneous substitution M [:E{l = Nq, ..., xfl” = N,] of N; for all free

occurrences of l’fz in M, where i € {1,...,n}, is defined as a partial substitu-

tion satisfying these conditions:
— oM where M = {M}YU{N; |i€{l,...,n}}.
— Vi e{l,...,n}. deg(N;) = I,*.

We sometimes write M[z]' := Ny,...,zk == N,] as M[(z]' := N;)i<i<n] (or
simply M{(z] := N;)a]).

o In MY (resp. \*V), we take terms modulo a-conversion given by: Azl .M =
My (Mx! = y']) where VI'. yI" & fv(M) (where I,I' € N (resp. Ly)).

1We can prove the following lemma: if M = {M}U{N; | j € {1,...,n}} then we have (oM
and Vj € {1,...,n}. deg(N;) = [;) iff M[z]* .= Ny,...,zlr .= N,,] € M; where i € {1,2,3}.

n
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e Let i € {1,2,3}. We say that a relation on M; is compatible iff for all
M,N,P e M;:

— (iabs): If M rel N and A\z’.M, \z!.N € M, then (Az’.M) rel (A\z'.N).
— (iapp1): If M rel N and MP, NP € M, then MP rel NP.
— (iappa): If M rel N, and PM, PN € M, then PM rel PN.

e Let ¢ € {1,2,3}. The reduction relation —3 on M, is defined as the least
compatible relation closed under the rule: (Az!.M)N —5 M[z! := NJ if
deg(N) = I.

o Let i € {1,2,3}. The reduction relation —, on M; is defined as the least

compatible relation closed under the rule: A\z!.Ma! —, M if 2! & fv(M).

o Let i € {1,2,3}. The weak head reduction —p, on M; is defined as the least
relation closed by rule (iapp,) presented above and also by the following rule:
Azl . M)N —, M[x! := N] if deg(N) = I.

o Let —wg,=—5U —,.

e For a reduction relation —,, we denote by —» the reflexive (w.r.t. M,) and
transitive closure of —,. We denote by ~, the equivalence relation induced

by —* (symmetric closure). O

The next theorem states that reductions do not introduce new free variables and

preserve the degree of a term.
Theorem 7.1.11. Leti € {1,2,3}, M € M;, and r € {3,0n,h}.
1. If M —} N then fv(N) = fv(M) and deg(M) = deg(N).
2. Ifi=3 and M —* N then fv(N) C fv(M) and deg(M) = deg(N).

8. Ifi # 3 and M —5 N then fv(M) = fv(N), deg(M) = deg(N), and M € M
iff N € M. O

Proof. 1. By induction on M —7 N. 2. Case r = (3, by induction on M —3 N.
Case r = (B, by the 3 and 7 cases. Case r = h, by the [ case. 3. By induction on
M —DZ N. ]

Normal forms are defined as usual.
Definition 7.1.12 (Normal forms). Let i € {1,2,3} and r € {3, 51, h}.

e M € M, is in r-normal form if there is no N € M, such that M —, N.
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o M € M, is r-normalising if there is an N € M, such that M —* N and N is

in r-normal. 0J
Finally, the indexed lambda calculi are confluent w.r.t. 5-, fn- and h-reductions:

Theorem 7.1.13 (Confluence). Let i € {1,2,3}, M,M;,My € M;, and r €
{8, Bn, h}.

1. If M —} My and M —* My then there is M' € M; such that My, —* M' and
M2 —D: M/.

2. My ~, M iff there is a term M € M, such that My —} M and My —> M. [

Proof. We establish the confluence using the parallel reduction method. Full details
can be found Appendix B. O

7.2 The types of the indexed calculi

Let us start by defining type variables and expansion variables.

Definition 7.2.1 (Type variables and expansion variables). We assume that a,b
range over a countably infinite set of type variables TyVar, and that e ranges over a

countably infinite set of expansion variables ExpVar = {eg, eq, ... }. O

With each expansion variable we associate a unique natural number which is the
subscript of the expansion variable. Instead of explicitly naming the elements in
ExpVar, we could also have considered a bijective function from expansion variables
to natural numbers in order to associate a unique natural number with each expan-
sion variable. We have decided not to do so for clarity reason. Our solution avoids
defining an extra function.

For AN, we study two type systems (none of which has the w-type). In the first,
there are no restrictions on where intersection types and expansion variables occur
(see set Ty, defined below). In the second, intersections and expansions cannot

occur directly to the right of an arrow (see set 1Ty, defined below).
Definition 7.2.2 (Types, good types and degree of a type for A\IV).
e The type set ITy, is defined as follows:
T,U,V,W €Ty, i=a | Ui~Us | Uy MUy | U
The type sets Ty, and I Ty, are defined as follows (note that Ty, C [Ty, C ITy,):

T €Tyy u=a|U-T
UV,WelTy,:=U1NUs | eU | T
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e We define a function deg (€ ITy; — N) by (hence deg is also defined on ITy,):

deg(a) =0 deg(U—T) =min(deg(U),deg(T))
deg(eU) =deg(U) + 1 deg(U M V) =min(deg(U),deg(V))

e We define the set GITy which is the set of good [Ty, types as follow (this also
defines the set of good ITy, types: GITy N ITy,):

a € TyVar =a € GITy
UeGITy AeecExpVar =eU € GITy
U,T € GITy Adeg(U) > deg(T) = U-T € GITy
U,V € GITyAdeg(U) =deg(V)=UNV € GITy

When U € GITy, we sometimes say that U is good. O

Let n < m. Let €;(:yU or €.U where L = (iy, ..., i) denote e;, ...e;,U. Also,
let €(nim),;U denote e, 5y ... em jU. We consider the application of an expansion
variable to a type (eU) to have higher precedence than M which itself has higher
precedence than —. In all our type systems, we quotient types by taking M to be
commutative (i.e., UyMUy = UsMUy), associative (i.e., UyM(UaMU3) = (U;MU,)MU3)
and idempotent (i.e., U MU = U), by assuming the distributivity of expansion
variables over M (i.e., e(Uy MUy) = eU; MelUs,). We denote U, M ... MU, by M*, U
(when n < m).

The next lemma states when arrow, intersection and applications of expansion

variables to types are good.
Lemma 7.2.3.
1. On Ty, (hence on ITy,), we have the following:
(a) (U, T € GITy and deg(U) > deg(T")) iff U-T € GITy.
(b) (U,V € GITy and deg(U) =deg(V)) iff UNV € GITy.
(c) U € GITy iff eU € GITy.
2. On I Ty,, we have in addition the following:

(a) If T' € Ty, then deg(T) = 0.

(b) If deg(U) = n then U is of the form % €ja.n):Vi such that m > 1 and
Jie{l,...,m}. V; € Ty,.

(¢c) If U € GITy and deg(U) = n then U is of the form M €;a.n):T; such
that m > 1 and Vi € {1,...,m}. T; € Ty, N GITy.

(d) U, T e GITy iff U-T € GITy (in 1Ty, and ITy;).
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For \“", we study a type system (with the universal type w). In this type
system, in order to get subject reduction and hence completeness, intersections and
expansions cannot occur directly to the right of an arrow (see ITy; below). Note
that the type sets ITy; and Ty, defined below are far more restricted than the type
sets considered for the AIMN-calculus and that we do not have the luxury of giving a
separate syntax for good types. Note also that the definitions of degrees and types
are simultaneous (unlike for 1Ty, and Ty, where types were defined without any

reference to degrees).
Definition 7.2.4 (Types and degrees of types for \*).

o We define the two sets of types Ty; and ITy; such that Ty; C ITy,, and a
function deg (€ ITy; — Ly) by simultaneous induction as follows:
— If a € TyVar then a € Ty, and deg(a) = @.
— If U € ITy; and T € Ty, then U-T € Ty, and deg(U-T') = @.
— If L € Ly then w” € ITy; and deg(w”) = L.

— If Uy, Uy € ITy; and deg(U;) = deg(Us) then U; MU, € ITyy and deg(U; M
Uy) = deg(U;) = deg(Us).

— U € 1Ty, and e; € ExpVar then e;U € ITy; and deg(e;U) =i :: deg(U).

Note that deg uses the subscript of expansion variables in order to keep track

of the expansion variables contributing to the degree of a type.

e We let T range over Tys;, and U, V,W range over ITy;. We quotient types
further by having w’ as a neutral (i.e., W' MU = U). We also assume that for
alli >0 and L € Ly, ejw’ = Wl I

All our type systems use the following definition (of course within the corre-

sponding calculus, with the corresponding indices and types):
Definition 7.2.5 (Environments and typings).

e Let £ € {1,2,3}. We define the three sets of type environments TyEnv,
TyEnv,, and TyEnv, as follows: I'; A € TyEnv, = Var, — ITy,. When writing
environments, we sometimes write x : y instead of x+—y. We sometimes
write {a1' — Uy, ..., al—U,} as ai' : Uy,...,al . U, or as (zF : U;),. We
sometimes write () for the empty environment &. If dj(dom(I';),dom(I'y)), we
write I'y, 'y for I'y U T,.

e We say that I'; and I'y are joinable and write I'y o 'y iff (V2 € dom(T';). 22 €
dom(Fg) = [1 = [2)

e We say that I' is OK and write ok(I") iff V2! € dom(T"). deg(I'(z!)) = I.
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o Let I'y =" wI' and I'y = I, WI') such that dj(dom(I"]),dom(I'7)), dom(I"}) =
dom(T%), and Vz! € dom(T}). deg(T}(z7)) = deg(T'y(z")). We denote T'y M Ty
the type environment {z! — I} (z!) NTh(z!) | 2! € dom(I"})} UT] UTY. Note
that dom(I'; M I'y) = dom(I'y) U dom(I'y) and that, on environments, M is

commutative, associative and idempotent.

o In MM (ie., on TyEnv, and TyEnv,), we define the set of good type envi-
ronments as follows: GTyEnv = {T' | V2! € dom(T). T'(z’) € GITy}. If
I'= (2" : U;)m then let deg(I') = min(ny, ..., ny,,deg(Ur),...,deg(U,,)). Let
el = {z"h—el(2") | 2™ € dom(T)}. So e(T'; M Ty) = el'y Mely.

e In M2 (ie., on TyEnvy), if M € My and fv(M) = {z*,... 2L} then let
env%, be the type environment (z)% : w’),. For all e; € ExpVar, let e;I' =
{2l —e,T(zL) | ¥ € dom(T)}. Note that e(I'y MTy) = el'y Mely. If
I'=(zF :U)pands={L|Viec{l,...,n}. L < L A\ L < deg(U;)} then
deg(I') = L such that L € s and VI € s. L' < L. O

As we did for terms, we decrease the indexes of types and environments.
Definition 7.2.6 (Degree decreasing in AIV).
e If deg(U) > 0 then we inductively define the type U~ as follows:
(UL N Us)~ = Ui~ MU~ (el)~ =U
If deg(U) > n then we inductively define the type U~" as follows:
U'=vu U=t = (U=m)-

e If deg(") > 0 then let I'™ = {z"'+—T(2")" | 2" € dom(T")}.

If deg(T") > n then we inductively define the type I'™" as follows:

r0=r =+ — (p—m)—,

Definition 7.2.7 (Degree decreasing in \“7).
1. If deg(U) = L then UL is inductively defined as follows:
U2=U (U NU) 5 = gr#t quy#d (e;U) =L = py~—F
We write U~ instead of U~®.

2. f T' = (xF : U;),, and deg(T") = L then by definition Vi € {1,...,m}. L; =
L:: LA L =< deg(U;), and we define '™ = (2% : U;71),,. We write I'™* instead
of T~ O
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Let i € {1,2}. In ky, U and T range over ITy,. In k5, U ranges over ITy, and T
ranges only over Ty,.

T €GITy deg(T)=n T € GITy M :(T,(z":U)F; T)
n . n . (ax) 0. 0. (ax) n . (_>|)
(" T) 1 T) 2 {((2”:T) o T) Az M : (T +; U-T)
M1:<F1|—iU—>T> MQ:(le_iU> P1<>P2( M:(Fl—iU> (ex)
MMy < (01 1Ty 5 1) €) M* (D b el) P
M(F1|—2U1> M(FQ"ZU2> M<P|—2U> FFQUEP”—QU/ (E)

M
M (D MTy b+ Uy NU) () M : (Tt U')

The following relation C is defined on ITy,, TyEnv,, and Typing,:

U, C Uy, Uy Uy Uy € GITy deg(Uy) = deg(Us)

VLU (ref) Uy C Uy (tr) UnU; EU, (Me)
UCVi U EVy - U C Uy TlgTz(_> U C Uy (Ceoo)
UinUs CVinVsy Ui—-T) C Uy—Ts el C ely =P

U1 C U2 y" Q dom(F)
L,(y":U) ET, (y" : Usg)

UyCU;, ToCETIY
Ty Uy Tl Uy Y

(Co)

Figure 7.1 Typing rules / Subtyping rules for i and F5

7.3 The type systems -, and , for \I" and |3 for
MEN

In this section we introduce our three type systems t; for ¢ € {1,2,3}, our inter-
section type systems with expansion variables. The system I, uses the Ty, types
and the TyEnv, type environments, and is for AI. The system F, uses the ITy,
types and the TyEnv, type environments, and is for AIN. The system k3 uses the
I Ty, types and the TyEnv, type environments, and is for A*¥. In I, types are not
restricted and subject reduction (SR) fails. In k2, the syntax of types is restricted
(see ITy,’s definition), and in order to guarantee SR for this type system (and hence
completeness later on), we introduce a subtyping relation which allows intersection
type elimination (which does not hold in the first type system). In k3, the syntax
of types is restricted further (see ITy,’s definition) so that completeness holds with

an arbitrary number of expansion variables.

Definition 7.3.1 (The type systems). Let ¢ € {1,2,3}. The type system F; uses
the set 1Ty, of Def. 7.2.2 (for i € {1,2}) and 7.2.4 (for i = 3). The typing rules of I
and k5 are given on the left of Fig. 7.12. In -, U and T range over ITy,, and I" range

2The type system I is the smallest relation closed by the rules presented on the left of Fig. 7.1
(and similarly for 2).
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U ranges over [Ty, and T" Tys.

(ax)

(w)

29 :{((z9 :T)F3T) M : (enV§, I3 wdes(M))

M :([,(z*:U)F3T)
el M (T3 U=T)

M:(Tt3T) a2 ¢ dom(T)
Azl M : (T 3 wh=T)

(=1) (=1)

M1 : (Fl |—3 U—>T> M2 : <P2 |—3 U> Pl <>P2 (_} ) M <F |_3 U> (exp)
Mi M - (Fl NIy k3 T> E Mt <ejF F3 er>
M:(TFsUy) M:(T k3 Us) ) M: (T3 U) rnggrng’(E)
M (T Fs U NUs) ' M: (I3 U') -
The following relation C is defined on ITy;, TyEnvs, and Typings.
Ui EWy Uy E Uy deg(Uy) = deg(U>)
v v (") U, C 0, (tr) hnt,co, e
ULEVi U EVy deg(Up) = deg(Us) ® UEU; ThETh -)
UinUs T ViV, Ur=T, E Uy=To
U, CU L & dom(T"
U E U, 10 y ¢ ()(Ec) U0CU;, T9CETY Co)

— 2 (C
el C els (Eexp) Doyl Uy C Tyt Uy T FsU Chobs Uy Y

Figure 7.2 Typing rules / Subtyping rules for t-3

over TyEnv,. In t=, U range over ITy,, T range over Ty,, and I' range over TyEnv,.
The typing rules of k3 are given on the left of Fig. 7.2. In both figures, the last
clause makes use of a subtyping relation C which is defined on ITy, in Fig. 7.1 and
on [Ty, in Fig. 7.2. These subtyping relations are extended to type environments
and typings (defined below).

We define the three typing sets Typing;, Typing,, and Typing; as follows: & €
Typing, :=I'F; U, where I' € TyEnv; and U € ITy,.

Let Sorts = U2_, {Typing;, TyEnv,, ITy,} and let ¥ range over UscsortsS-

We say that I' is F;-legal if there exist M, U such that M : (I' F; U).

Let j € {1,2}. Let GTyping = {I' ; U | I' € GTyEnv AU € GITy}. If
® € GTyping then we say that ® is good. Let deg(I' F; U) = min(deg(I"), deg(U)).

If s={L|L=deg(I")ANL =< deg(U)} then deg(I" -3 U) = L such that L € s and
VL € s. L' < L. O

To illustrate how our indexed type system works, we give an example:

EXAMPLE 7.3.2. Let Ly = (3) < Ly = (3,2) < L3 = (3,2,1) = Ly = (3,2,1,0) and
let a,b,c,d € TyVar. Consider M, M’, U as follows:
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M = zl2 \yP (y5 (el2 ubs Aol (ubs (vP10l1)))) € M3
M’ = Xz b (y (22 2wl ot (uB (vioh)))) € Mo
U = eg(ez(e1((egb—c)=(eo(a M (a—b))—c))—d)=(((e2d—a) Mb)—a)) € ITy, N ITy;

One can check that M : (() F3 U) and M’ : {() Fo U). We simply give some steps
in the derivation of M : (() F3 U) (note that the derivation of M’ : (() F U) only
differs from the derivation of M : (() k3 U) by replacing everywhere 3 by F, and

any list (n1,...,ny) by k for any k£ > 0):

v9v? : (V9 :al(a—b) 3 b)
000+ (10 ey(a M (a—b)) F3 eph)

@ (u? : egb—c 3 egb—c)

u
u?(vOvO) : (u? : egb—c,v® : eg(a M (a—=b)) k3 c)
MO 42 (00 y0)) : (4@ : egb—c b3 eg(a M (a—b))—c)
M@ M@ 42wy () k3 (egb—c)=(eo(a M (a—b))—c))
A Ao (D) (p10y 10 () k3 ey ((egb—c) = (eo(a M (a—b))—=c)))
2@ (29 : e1((egb—c)=(eo(al(a—b))—c))—d k3 e1((egb—c)=(eg(al (a—b))~c))—d)
22 (MM Ao 4D (p (10 y10)Y) + (29 &) ((egb—c)—(eo(a M (a—b))—c))—d F3 d)
x(z)(}\u(z,l).)\v(zl,o).u(2,1)(0(2,1,0)1)(2,1,0)))

(2 : eg(e1((eob—c)=(eo(a M (a=b))=c))~d) b3 ead)
y®(x(2)()\u(271)‘/\v(271,0)‘u(271)(,0(2,170),0(2,170))))

(21 : ez(e1((eob—c) = (eo(a M (a=b))=¢))=d),y? : (ead—a) b3 a)

A2 (52 (2@ D M210) 42 (5(21.0)(2,1.0)))))
{2 : eg(er((egb—c)=(eo(a M (a=b))—c))=d) k3 ((ead—a) Mb)—a)

Az® Ay2. (52 (2@ D Ao 10 421 (52104 (2,1.0)))))
() F3 e2(e1((eob—c)=(eo(a M (a—b))—c))—=d)—(((e2d—a) Mb)—a))

Azl \ylr (ylr (2P (Auts Aol uls (vlae™)))) O
:(() 3 eg(ez(e1((eob—c)=(eo(a M (a—b))—c))~d)—(((e2d—a) Mb)—a)))

Let us now define our decreasing functions on the Typing,.

Definition 7.3.3.

1.

2.

If U € ITy, and I'' € TyEnv, such that deg(I') > 0 and deg(U) > 0 then we let
(ChyU) =T o U™

If U € ITy; and I' € TyEnv, such that deg(I") > L and deg(U) = L then we let
(Fi_gU)_L:F_Li_gU_L. U
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Next we show how ordering propagates to environments and relates degrees:

Lemma 7.3.4.

1.

7.

IfTCIY, UCU, and 2! & dom(T") then dom(I") = dom(I") and T, (z! : U) C
(U,

PCTff T = (2l - Uy, TV = (2F - U))p and Vi € {1,...,n}. U; C U..
Let j€{2,3}. THUCT'H U ifI'CT and U C U

If Uy C U, then deg(U;) = deg(Us) and Uy € GITy & Us € GITy.

IfT'y C Ty then deg(I'y) = deg(I'y).

Let j € {2,3}. The relation T is well defined on 1Ty, x ITy;, on TyEnv; x
TyEnv,, and on Typing; x Typing,.

IfI'y,I'y € TyEnvy and I'y C I’y then I'y € GTyEnv < I'y € GTyEnv O

Proof. We prove 1. and 2. by induction on the derivation I' © I". We prove 3.

by induction on the derivation I' -; U C I I; U’. We prove 4. by induction on
the derivation U; C U;. We prove 5. by induction on the derivation I'y £ I'y. We
prove 6. by induction on a subtyping derivation. We prove 7. by induction on the
derivation of I'y C I's. O

The next theorem states that typings are well defined, that within a typing,

degrees are well behaved and that we do not allow weakening.

Theorem 7.3.5. Let j € {1,2,3}. We have:

1.

2.

k5 is well defined on M; x TyEnv; X ITy;.
Let M : (I' -; U).

(a) deg(M) = deg(U), ok(I'), and dom(I") = fv(M).

(b) If j # 3 then U € GITy, M € M, T € GTyEnv, and deg(T") > deg(M).
(c) If j = 3 then deg(I") = deg(U).

(d) If 5 =2 and deg(U) > k then M=% : (I~F b, UF).

(e) If j =3 and deg(U) = K then M~% : (T7K b3 U™K).

Proof. We prove 1. and 2. by induction on the derivation M : (I' F; U). O

Let us now present admissible typing (and subtyping) rules.
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REMARK 7.3.6.
MZ<F1|_3U1> MZ<F2|_3U2>(/>
1. Therule M :(I1'NTy 5 U NU,) ""is admissible

UeGITy deg(U)=n N
2. The rule 2" : {((z":U) o U) ) is admissible

1"

a
3. The rule z9&W) . ((z9&l) : ) -5 U) ) is admissible

/

— (w
4. The rule U C &) () is admissible O

Let us now present some results concerning the w type and joinability.
Lemma 7.3.7.

1. If M : (I' =3 U) then I' C env,

2. If dom(T") = fv(M) and ok(T') then M : (I I3 wde(M)),

3. Ifi e {1,2,3}, My : (I'1 b; Uy) and My : (Ty F; Us) then Tyoly< MioM,. O

Proof.

1. Let T' = (2" : U;),, where fv(M) = {1, ... x5} by Theorem 7.3.5.2a. By
Remark 7.3.6.4,Vi € {1,...,n}. U; C w¥el) By Theorem 7.3.5.2a, ok(T') and
therefore Vi € {1,...,n}. deg(U;) = L;. Finally, by Lemma 7.3.4.2, ' C env¥,.

2. Let T' = (2 : U;),. Then by hypotheses fv(M) = {2 ... zi} and Vi €
{1,...,n}. deg(U;) = L;. By Remark 7.3.6.4, Vi € {1,...,n}. U; C w’. By
Lemma 7.3.4.2, T' C envf, = (2% : w’),. Since by rule (w), M : (env§, F3

wee)) e have by rules () and (Cyy), M : (T b3 wdee®)),

3. <) Let 21" € dom(T;) and z®2 € dom(T'y) then by Theorem 7.3.5.2a, !t €
fv(M;) and x> € fv(M,). Because M; o My, then I} = I, and therefore
[y oTy. =) Let 2 € fv(M;) and 2™ € fv(My) then by Theorem 7.3.5.2a,
2!t € dom(T'}) and 22 € dom(I'y). Because I'; o I'y, then I; = I, and therefore
My ¢ M. U

7.4 Subject reduction and expansion properties
of our type systems

7.4.1 Subject reduction and expansion properties for -, and
o

Now we list the generation lemmas for -; and 5 (for proofs see Appendix B).
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Lemma 7.4.1 (Generation for F).
1. If e : (D' T) thenT = (2" : 7).
2. ]f Az M <P "1 T1—>T2> then M : <F,l’n : Tl }_1 T2>

3. If MN : (I' by T') and deg(T) = m then I' = I’y I_IFQ, T = M €m),i i
n Z 1, M - <F1 }_1 i= 16](1 m), Z(TZ—>T,)> and N : <F2 }_1 i= 16](1 m), ZT/> O

Lemma 7.4.2 (Generation for F).
1. If 2" : (Do U) then T' = (2" : V) where V C U.

2. If \a®.M : (I' b9 U) and deg(U) = m then U = ﬂleé'j(l;m)’i(‘/,’—)ﬂ) where
k>1andVi € {1, R ]{3} M <F,SL’" : gj(l:m),i% Fo é}'(l:m),iﬂ)-

3. If MN : (I' 5 U) cmd deg(U) = m then U = M¥_,€j(1.m), ~Ti where k > 1, ' =
Fl I FQ, M <F1 }_2 z 163(1m Z(U —>T)>, and N : <F2 }_2 z 16](1 m), ZU> O

We also show that no (-redexes are blocked in a typable term.

REMARK 7.4.3 (No [-redexes are blocked in typable terms). Let ¢ € {1,2} and
M (' & U). If (Aa™.My)M; is a subterm of M then deg(M;) = n and hence

()\l’an)Mg s Ml[l’n = Mg] ]
Lemma 7.4.4 (Substitution for ). If M : (I'z' : U o V), N : (A 5 U) and
Mo N then Mlz! := N]: ([ A V). O
Proof. By induction on the derivation M : (I';z* : U 5 V). O

Lemma 7.4.5 (Substitution and Subject [-reduction fails for ty). Let a,b,c be
different type variables. We have:

1. (Ax®.2%2%)(1°2°) =5 (y°2") (y"2).
2. 2%2%: (2% : (a~c)Maty c).
3. (Ax%.2%2%) (y°2%) : (0 : b=((a—c)Ma), 2 : bk ).
4. It is not possible that (y°2°)(y°z°) : (y° : b=((a—c) Ma), 2" : bty c).
Hence, the substitution and subject B-reduction lemmas fail for . O

Proof. 1., 2., and 3. are easy.
For 4., assume (y°2°)(y°z%) : (y°: b—((a—c)Ma),z° : b+y ¢). By Lemma 7.4.1.3
twice, Theorem 7.3.5 and Lemma 7.4.1.1:

o 220 (y0:b-((a—c)Ma), 2’ : bk M, (Tj—c)) and n > 1.
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o 0 (40 b=((a—c)Ma) by M, T/=Ti—c).
o M T!-Ti—c=0b—((a—c)Ma).
Hence, for some i € {1,...,n}, b =T/ and T;—»c = (a—c) Ma which is absurd. O

Nevertheless, we show that 3 subject reduction and expansion hold in 5. This
will be used in the proof of completeness (more specifically in Lemma 8.2.8 which

is the basis of the completeness Theorem 8.2.9).
Lemma 7.4.6 (Subject reduction and expansion for 5 w.r.t. 3).
1 If M : (T = U) and M —35 N then N : (' U).

2. If N: ('t U) and M —j N then M : (I' = U). O

7.4.2 Subject reduction and expansion properties for 3

Now we list the generation lemmas for -3 (for proofs see Appendix B).
Lemma 7.4.7 (Generation for F3).
1 Ifal - D3 U) thenT = (2L : V) and V E U.

2. If \e* .M : (I k3 U), 2% € fv(M) and deg(U) = K then U = w¥ or U =
M_8x(V;=T;) wherep > 1 and Vi € {1,...,p}. M : (U, 2t : xV; b3 8 T;).

S If Xeb.M : (T k3 U), 2% & fv(M) and deg(U) = K then U = w¥ or U =
M_8x(Vi=T;) where p > 1 and Vi € {1,...,p}. M : (T b3 8xT;).

4. If Mal - (T, (2 - U) b3 T) and & & fv(M), then M : (T 3 U=T). O

Proof. 1. By induction on the derivation z% : (I' 3 U). 2. By induction on the
derivation Axl.M : (I' b3 U). 3. Same proof as that of 2. 4. By induction on the
derivation Ml : (T, 2t : U k3 T). O

Lemma 7.4.8 (Substitution for F3). If M : (U,zl : U 3 V), N : (A 3 U) and
Mo N then M[z" := N]: (LA b3 V). O

Proof. By induction on the derivation M : (I', 2% : U 3 V). O

Since 3 does not allow weakening, we need the next definition since when a term
is reduced, it may lose some of its free variables and hence will need to be typed in

a smaller environment.
Definition 7.4.9. Let I'[, stand for s <T". We write I'[; instead of I'[¢(ar). O

Now we are ready to prove the main result of this section:
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Theorem 7.4.10 (Subject reduction for F3). If M : (I' 3 U) and M —j, N then
N (Dlx b3 U). 0

Proof. By induction on the reduction M —%, N. O
Corollary 7.4.11.
1. IfM:(T'3U) and M —5 N then N : (I'[y b3 U).
2. If M : (' k3 U) and M —; N then N : (I'y F3 U). O
The next lemma is needed for expansion.

Lemma 7.4.12. If M[z" := N] : (T' 3 U), deg(N) = L, ¥ € fv(M), and M o N
then there exist a type V and two type environments I'1,T's such that deg(V) = L,
M:(Fl,xL:Vl—gU),N:(F2|—3V>,andF:f‘ll—lFQ. [

Proof. By induction on the derivation M [zl := N]: (T k3 U). O

Since more free variables might appear in the (-expansion of a term, the next

definition gives a possible enlargement of an environment.

Definition 7.4.13. Let m > n, T' = (2 : U;),, and X = {z}*, ... zlm}. We write
01X for of* : Uy, ... xke Un,xflfﬁll cwherr gk e T dom(T) C fu(M), we

write I'T™ instead of ['TF(M), O

We are now ready to establish that subject (-expansion holds in k3 (Theo-
rem. 7.4.14) and that subject n-expansion fails (Lemma 7.4.16).

Theorem 7.4.14 (Subject $-expansion holds in b3). If N : (I' =3 U) and M —7 N

then M : (DTM 13 U). O
Proof. By induction on the length of the derivation M —7 N using the fact that if
fv(P) C fv(Q) then (I'17)19 =T1¢. O
Corollary 7.4.15. If N : (I' b3 U) and M —} N then M : (1M 3 U). O

Lemma 7.4.16 (Subject n-expansion fails in t3). Let a be a type variable and let
x #vy. We have:

1. Ay A yPx® —, A\y©.y©.
2. My?y? :{() b3 a—a).

3. It is not possible that: \y® \z®.y®z® : (() b3 a—a). Hence, subject n-

expansion fails in 3. O

Proof. 1. and 2. are easy. For 3., assume \y®\z®.y%z? : (() k3 a—a). By
Lemma 7.4.7.2, \x®.4%z% : ((y : a) F3 a). Again, by Lemma 7.4.7.2, a = w®
or there exists n > 1 such that a = N, (U;—~T;), absurd. O
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Realisability semantics and their

completeness

8.1 Realisability
Crucial to a realisability semantics is the notion of a saturated set:
Definition 8.1.1 (Saturated sets). Let i € {1,2,3} and M, M,, My C M,.
1. Let My~ My={M € M; |VYN € M;. Mo N = MN € M,}.
2. Let My 1 My it VM € My ~» My. 3N € My. M o N.

3. Forr e {3,8n,h},let SAT = {M C M, | (M -*NAN€eM)=Mec M}
If M € SAT" then we say that M is r-saturated. O

Saturation is closed under intersection, lifting and arrows:
Lemma 8.1.2. Leti € {1,2,3}, r € {3,8n,h}, and M, My C M.
1. If My, My are r-saturated sets then M1 N My is r-saturated.
2. If My C My is r-saturated then My* is r-saturated.
3. Ifﬁl C My is r-saturated then Miﬁ 1s r-saturated.
4. If My is r-saturated then My ~ M is r-saturated.
5. If My, My C My then (My ~ M)t C M ~ My*.
6. If My, My C Ms then (My ~ M)+ C M, ~ M, .
7. Let My, My C My. If MY U My™, then Myt ~ Mot C (M~ My)*,
8. Let My, My C Ms. If M VDI, then M, ~s My C (My ~ Ma)*.
9. For everyn € N, the set M" is r-saturated. O
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The interpretations and meanings of types are crucial to a realisability semantics:

Definition 8.1.3 (Interpretations and meaning of types). Let Var = Var; U Vars
such that dj(Vary, Vary) and Vary, Vary are both countably infinite. Let ¢ € {1, 2, 3}.

1. Let z € Var; and I an index. We define the following family of sets:
VARL = {M € M; | 3Ny,...,N, € M;. M = 2Ny ...N,}.

2. In MM, let r = B and Iy = 0. In \*¥, let r € {3, 81, h} and I = ©.

(a) An r-interpretation 7 is a function in TyVar — P(M) such that for all
a € TyVar:

Z(a) € SAT" Vz € Vary. VAR C Z(a) In AN, Z(a) € MO

(b) We extend Z to ITy, in case of MY and to ITy, in case of A*" as follows:

In AN and Mov: Z(U NUp) = Z(U) NZ(Us)  Z(U-T) =Z(U) ~ Z(T)
In ATY: Z(eU) = Z(U)*
In \An: Z(e;U) =Z(U)* I(wh) = ME

Let Interp™ = {Z | Z is a r;-interpretation }'.
(c¢) Let U € ITy,. We define [U],,, the r;-interpretation of U as follows:

[U]T’z = {M € MZ ‘ Closed(M) NM e nIelnterpri I(U)}

Because N is commutative, associative, idempotent, (M, N M)t = M+ N My*
in AIN, (M, N My)* =M, N M, in Xv, and T is well defined. O

Type interpretations are saturated and interpretations of good types contain

only good terms.
Lemma 8.1.4. Letr € {(3,0n,h}. Let i € {1,2,3}.

1. (a) For allU €Ty, and I € Interp™, we have Z(U) € SAT".
(b) If deg(U) = L and T € Interp” then Va € Var,. VARL C Z(U) C ME.
(c) On Ty, (hence also on 1Ty, ), if U € GITy, deg(U) = n, and Z € Interp™
then Yx € Vary. 2™ € VAR C Z(U) C M".
2. Leti e {2,3}. IfZ € Interp” and U C V then Z(U) C Z(V). O

Proof. 1a . By induction on U using Lemma 8.1.2. 1b. By induction on U. lc. By
definition, 2" € VAR!. We prove VAR] C Z(U) C M" by induction on U € GITy. 2.
By induction of the derivation U C V. O

'We effectively define five interpretation sets Interpﬁl7 Interpﬁ2, Interpﬁg, Interpﬁ"@'7 and Interph3
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Corollary 8.1.5 (Meanings of good types consist of good terms). On ITy, (hence
also on ITy,), if U € GITy such that deg(U) = n then [U]g, € M™. O

Proof. By Lemma 8.1.4.1c, for any interpretation Z € Interp™, Z(U) C M". O

Lemma 8.1.6 (Soundness of by, by, and F3). Let © € {1,2,3}, r € {5, [n, h},
T € Interp™. If M : ((af : U), b U), Vj € {1,....n}. N; € Z(U)), and
o{M,N,,...,N,} then M[(z} := N;),] € Z(U). O

Proof. By induction on the derivation M : <(:ch 2 Uj)n i U). O

Corollary 8.1.7. Let r € {8,0n,h} and i € {1,2,3}. If M : {() b; U) then
M e [U),,. O

Proof. By Lemma 8.1.6, M € Z(U) for any Z € Interp”. By Theorem 7.3.5, fv(M) =
dom(()) = @ and hence M is closed. Therefore, M € [U],,. O

Lemma 8.1.8 (The meaning of types is closed under type operations). Let r €
{B,Pn,h} and j € {1,2,3}. The following hold:

1. [eUly, = [UX" and if j # 3 then [eU],, = [U],,".

T3 J

2. [Un V]Tj = [U],,

J

N[V],..

J

3. If U-T € |Ty, then VI € Interp™. Z(U) 1 Z(T).
4. If U=T € GITy then VI € Interp™. Z(U)1Z(T).

5. OnlTyy only (since eU—eT & Ty, ), we have: if U-T € GITy then [e(U-T)|s, =
[eU—eTg,. O

Proof. 1. and 2. are easy.

3. Let deg(U) = L, M € Z(U) ~» Z(T) and z € Var, such that VK. 2% & fv(M),
hence M ozl and by Lemma 8.1.4, 2 € Z(U).

4. Let deg(U) = n and M € Z(U) ~» Z(T). Take x € Var; such that Vp. 2P ¢
fv(M). Hence, M o z". By Lemma 7.2.3, U € GITy and by Lemma 8.1.4,
z" e Z(U).

5. Since U=T € GITy then, by Lemma 7.2.3, U,T € GITy and deg(U) > deg(T).
Again by Lemma 7.2.3, eU, T € GITy, deg(eU) > deg(eT) and eU—eT € GITy.
Hence by 4., Z(U)" 1 Z(T)". Thus, by Lemma 8.1.2.5 and Lemma 8.1.2.7,
VI € Interp™®. Z(e(U~T)) = Z(eU—eT). O

Let us now put the realisability semantics in use.

EXAMPLE 8.1.9. Let a and b be two distinct type variables in TyVar. We define:
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° Ido = a—a and id; = el(ido).
e d = (all(a—b))-b.
e nat) = (a—a)—(a—a), nat; = ej(naty), and naty = (eja—a)—(eja—a).

Moreover, if M, N are terms and n € N, we define (M)"N by induction on n as
follows: (M)°N = N and (M)™"'N = M((M)™N).
We now illustrate our realisability semantics by providing the meaning of the

types defined above:

L [(amb)=als = {M € M" | M —% \y°.°}.

2. Tt is not possible that A\y%.y° : (() F; (aMb)—a).

3. 220 {() k2 (aMb)—a).

4. [ido)g, = {M € Mg | closed(M) A M —% Ay®.y°}.

5. [idi]g = {M € M | closed(M) A M —% Ay .y}

6. [d]g, = {M € M7 | closed(M) A M —% Ay?.y®y°}.

7. [natlg, = {M € MY | closed(M) A (M —% Af9.f¢V (n > 1AM —}
AfO N2 (fO)y?))}

8. [natl]gg = (M e MV | closed(M) A (M —5 AfO.fOV (n > 1AM
AfO AW (fO)ry W)},

9. [natfs, = {M € MY | closed(M)A(M —5 Af@.fOVM =5 AfO Ay foyM)}
U

8.2 Completeness challenges in A\

In this document we consider two realisability semantics of types involving E-
variables. These semantics are based on a hierarchy of types and terms. Considering
how expansions can introduce new substitutions, new expansions and an unbound
number of new variables (type variables and E-variables), it was decided to use a
hierarchy on types and terms to give meanings to expansions to represent the en-
capsulation of types by E-variables. An obvious (and naive) approach is to label
types and terms with natural numbers. This is the hierarchy we used in AI". When
assigning meanings to types, we ensured that each use of an E-variable in a typing
simply changes the indexes of types and terms in the typing and that each E-variable
acted as a kind of capsule that isolates parts of the analysed A-term in a typing.

This captured the intuition behind E-variables. However, there are two issues w.r.t.
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this indexing: it imposes that the type w should have all possible indexes (which is
impossible? and hence we eliminated w from the type systems for My) and it im-
plies that the realisability semantics can only be complete when a single E-variable
is used (as we will see in this section). In order to understand the challenges of the
semantics of E-variables with w and the idea behind the hierarchy, we first studied
two representative intersection type systems for the Al-calculus. The restriction to
Al (where in every (Az.M) the variable x must occur free in M) was motivated
by not supporting the w type while preserving the intuitive indexes made of single
natural numbers. For b, the first of these type systems, we showed that subject

reduction and hence completeness do not hold.

8.2.1 Completeness for -, fails

REMARK 8.2.1 (Failure of completeness for ). Items 1., 2., and 3. of Example 8.1.9
show that we can not have a completeness result (a converse of the soundness
Lemma 8.1.6 for closed terms) for 1. To type the term Ay°.y° by the type (aMb)-a,

we need an elimination rule for M which we do not have in ;. OJ

Note that failure of completeness for ; is related to the failure of its subject
reduction. So, one might think that since -5, the second type system for A\IV, has

subject reduction, its semantics is complete. This is not entirely true.

8.2.2 Completeness for -, fails with more than one E-variable

REMARK 8.2.2 (Failure of completeness for b5 if more than one E-variable are
used). Let a be a type variable, e; and ey be two distinct expansion variable, and

naty = (eja—a)—(esa—a). Then:
L AfO.fY € [natg]s,.
2. it is not possible that Af°.f%: (() ko nat}).

Hence Af°.f° € [nat]s, but Af0.f0 is not typable by natj and we do not have

completeness in the presence of more than one expansion variable. O

However, we will see that we have completeness for I if only one expansion

variable is used.

8.2.3 Completeness for -, with only one E-variable

The problem shown in remark 8.2.2 comes from the fact that the realisability seman-

tics designed for -5 identifies all expansion variables. In order to give a completeness

2Let us assume that that our type language contains the w type annotated with integers, i.e.,
of the form w”, then we would need e;w”™ = w™*! and eyw™ = wW"t!, and finally we would have
e1w" = eqw™.
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theorem for -, we will, in what follows, restrict our system to only one expansion
variable. In the rest of this section, we assume that the set ExpVar contains only
one expansion variable ej.

The need of one single expansion variable is clear in item 2. of Lemma 8.2.3
which would fail if we use more than one expansion variable. For example, if e; # e,
then (eja)” = a = (ega)” but eja # esa. This lemma is crucial for the rest of this

section and hence, a single expansion variable is also crucial.
Lemma 8.2.3. Let U,V € ITy, and deg(U) = deg(V') > 0.
1. U™ =VU.
2. If U=V~ thenU =1V. O

Proof. 1. is by induction on U. 2. goes as follows: if U~ = V'~ then e;U~ = eV~
and by 1., U =V. U

Despite the difference in the number of considered expansion variables in the
completeness proof presented in the current section and the one of Sec. 8.3, both
proofs share some similarities. We still write these two proofs independently to
illustrate the method and especially since the proof in the current section is far
simpler. Furthermore, in the current section we only show the completeness of our
semantics w.r.t. f-reduction.

The first step of the proof is to divide {y™ | y € Vary} into disjoint subset amongst

types of order n.

Definition 8.2.4. Let U € ITy,. We define the set of variables DVary by induction
on deg(U). If deg(U) = 0 then DVary is an infinite set {3° | ¥ € Vary} such that if
U # V and deg(U) = deg(V) = 0 then dj(DVary, DVary ). If deg(U) = n + 1 then
DVary = {y"*! | y™ € DVary-}. O

Our partition of Vary allows useful infinite sets containing type environments
that will play a crucial role in one particular type interpretation. These sets and

environments are given in the next definition.
Definition 8.2.5.

e Let IPreEnv” = {(y",U) | U € ITy, Adeg(U) = n A y™ € DVary} and
BPreEnv" = |J . IPreEnv™ (where “I” stands for “index” and “B” stands

for “bound”). Note that IPreEnv" and BPreEnv" are not type environments

m>n

because they are not functions.

o If M € My and U € ITy, then we write M : (BPreEnv" F, U) iff there is a
type environment I' C BPreEnv" where M : (I' 5 U). O
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Now, for every n, we define the set of the good terms of order n which contain
some free variable 2* where x € Var; and i > n.
Definition 8.2.6. Let OPEN" = {M e M" | 2" € fv(M) Az € Vary Ai >n}. O

Obviously, if z € Var; then VAR, C OPEN".

Here is the crucial Go-interpretation I for the proof of completeness:

Definition 8.2.7. Let I be the (-interpretation defined as follows: for all type
variables a, I(a) = OPEN® U {M € MY | M : (BPreEnv’ I, a)}. O

The function T is indeed a (s-interpretation and the interpretation of a type
of order n contains the good terms of order n which are typable in the special

environments which are parts of the infinite sets of definition 8.2.5:
Lemma 8.2.8.

1. T is a By-interpretation, i.e., for all a € TyVar, 1(a) is (-saturated and Yz €
Vary, VAR? C I(a) C M,

2. If U € ITy, N GITy and deg(U) = n then I(U) = OPEN" U{M € M" | M :
(BPreEnv" o U)}. O

Proof. We prove 1. by first showing that I(a) is saturated: if M —7 N then if N €
OPEN° we prove that M € OPEN? and if N € {M € MY | M : (BPreEnV’ I, a)}
then M € {M € MY | M : (BPreEnv’ I, a)}. We then show Vz € Var;. VAR? C
I(a) € M°. We prove 2. by induction on U € GITy. O

I is used to prove completeness (see Appendix B for the proof).

Theorem 8.2.9 (Completeness). Let U € I Ty, N GITy such that deg(U) = n. The
following hold:

L [Ulg, ={M e M" [ M : () 2 U)}.
2. [Ulg, is stable by reduction: if M € [Uls, and M —3 N then N € [Ulg,.
8. [Ulp, is stable by expansion: if N € [Ulg, and M —5 N then M € [Ulg,. O

Proof. The first item follows by Lemmas 8.2.8 and 8.1.6. We obtain the second item

using subject reduction and the third one using subject expansion. O
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8.3 Completeness for \“N

Having understood the challenges of E-variables and the difficulty of representing
the type w using natural numbers as indices for the hierarchy, we moved to the
presentation of indices as sequences of natural numbers and we provided our third
type system 3. We developed a realisability semantics where we allow the full \-
calculus (i.e., where K-redexes are allowed) indexed with lists of natural numbers, an
arbitrary (possibly infinite) number of expansion variables and where w is present,
and we showed its soundness. Now, we show its completeness.

We need the following partition of the set of indexed variables {y* | y € Vary}.
Definition 8.3.1.

o Let ITys = {U € ITy, | deg(U) = L} and Var® = {a¥ | z € Var,}.

e We inductively define, for every U € ITy,, a set of variables DVary as follows:

— If deg(U) = @ then:
x DVary is an infinite set of indexed variables of degree ©.
« If U # V and deg(U) = deg(V') = @ then dj(DVary, DVary).

— \/4r?
* UUelTy;? DVary = Var”.

— If deg(U) =i :: L then DVary = {y*** | y* € DVary-:}.

Therefore, if deg(U) = L then DVary = {y’ | y© € DVary-.}. O]

Let us now provide some simple results concerning the DVary sets:
Lemma 8.3.2.

1. Ifdeg(U) = L, deg(V) = L, and UL = V=L thenU = V.
2. If deg(U) = L then DVary is an infinite subset of Var®.
3. If U #V and deg(U) = deg(V') = L then dj(DVary, DVary ).
4- Upermys DVary = Var.
5. If y» € DVary then y** € DVar,p.
6. If y*&' € DVary then y* € DVar .. O

Proof. 1. goes as follows: if L = (n;),, then we have U = e,, ...e,, U and V =
en, .-, Vithen UL =U VI =V and U = V’; thus U = V. 2., 3. and 4.
are by induction on L and using 1. We obtain 5. because (e;U)~% = U. 6. is by
definition. O
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The set Var, as defined above allows us to give in the next definition useful infinite
sets containing type environments that will play a crucial role in one particular type

interpretation.
Definition 8.3.3.

e Let L € Ly. We denote IPreEnv® = {(y*, U) | U € ITyS A y* € DVary} and
BPreEnv = UK&L IPreEnv™. Note that IPreEnv’ and BPreEnv” are not type

environments because they are not functions.
o Let L€ Ly, M € M3 and U € ITy,, we write:

— M : (BPreEnv” I3 U) iff there exists a type environment ' C BPreEnv”
such that M : (I' 5 U).

— M : (BPreEnv" 3 U) iff M —% N and N : (BPreEnv" I3 U).

Let us now provide some results concerning the BPreEnv’ sets:
Lemma 8.3.4.

1. IfT' C BPreEnv” then ok(T).

2. IfT C BPreEnv” then e,I' C BPreEnv’.

3. IfT C BPreEnv** then =" C BPreEnv”.

4. If Ty C BPreEnv?, T'y C BPreEnv®, and L < K then T'; Ty C BPreEnvl. O

Proof. 1.1is by definition. 2. and 3. are by Lemma 8.3.2. 4. First, by 1., I'y M5 is well
defined. Also, BPreEnv’® C BPreEnv”. Let (I'yMIy)(2%) = Uy MU, where I'y (2¥) =
U, and Ty(2™) = Us, then deg(U;) = deg(Us) = L' and 2™ € DVary, N DVary,.
Hence, by Lemma 8.3.2.3, U; = U, and Ty My = Ty U, C BPreEnv”. O

For every L € Ly, we define the set of terms of degree L which contain some free

variable 2% where x € Var; and K > L.

Definition 8.3.5. For every L € Ly, let OPENY = {M € ME | 25 € fu(M) A
x € Vary A K = L}. It is easy to see that, for every L € Ly and = € Vary,
VARL C OPEN”. O

Let us now provide some results on the OPEN” sets:
Lemma 8.3.6.

1. (OPEN®)** = OPEN*~,
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2. If y € Vary and My™ € OPEN” then M € OPEN*.
3. If M € OPEN®, Mo N, and L < K = deg(N) then MN € OPEN”.

4. Ifdeg(M) =L, L=<K, MoN, and N € OPEN" then MN € OPEN*. O

Proof. Easy using Def. 8.3.5. O

The crucial interpretation I (the three interpretations Ig,, I3, and I;, for our three

reduction relations) used in the completeness proof is given as follows:
Definition 8.3.7.

1. Let I, be the (ns-interpretation defined by: for all type variables a, I,(a) =
OPEN? U {M € M | M : (BPreEnv® I a)}.

2. Let Iz be the fs-interpretation defined by: for all type variables a, Ig(a) =
OPEN? U {M € M | M : (BPreEnv® I3 a)}.

3. Let I, be the hs-interpretation defined by: for all type variables a, I;(a) =
OPEN? U {M € M3 | M : (BPreEnv® I3 a)}. O

The next crucial lemma shows that I (the three functions Ig,, I3, and Ij) is
an interpretation and that the interpretation of a type of order L contains terms
of order L which are typable in these special environments which are parts of the
infinite sets of Def. 8.3.3.

Lemma 8.3.8. Letr € {6n,3,h} and ' € {3,h}.
1. If1, € Interp™ and a € TyVar then1,(a) € SAT" and VY € Var;. VAR? C I.(a).

2. If U € Ty, and deg(U) = L then 14,(U) = OPEN* U {M € ML | M :
(BPreEnv" 3 U)}.

3. If U € Ty, and deg(U) = L then I,(U) = OPEN* U{M € M} | M :
(BPreEnvt 5 U)}. O

Proof. We prove the first item by first showing that I.(a) is saturated: if M —* N
then if N € OPEN? we prove that M € OPEN? and if N € {M € M | M :
(BPreEnv® 3 a)} then M € {M € M$ | M : (BPreEnv® 5 a)}. We then show
that for all z € Var;, VAR? C OPEN? C T,.(a). We prove the second and third items
by induction on U. U

Now, we use this crucial I to establish completeness of our semantics.
Theorem 8.3.9 (Completeness of F3). Let U € Ty, such that deg(U) = L.
1. [Ulgy, = {M € M¥ | closed(M) AN M —% N AN :(() s U)}.
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2. [Ulg, = [Ulny ={M € Mg | M : () s U)}.
3. Ul gy, is stable by reduction: if M € [Ulg,, and M —3, N then N € [Ulg,,. O
Proof.

1. Let M € [U]gy,. Then M is closed and M € Ig,(U). By Lemma 8.3.8.2,
M € OPEN" U {M € ML | M : (BPreEnv" K% U)}. Since M is closed,
M ¢ OPEN®. Hence, M € {M € M. | M : (BPreEnv" 5 U)} and so,
M —%, N and N : (' b3 U) where I' C BPreEnv®. By Theorem 7.1.11.2, N
is closed and, by Lemma 7.3.5.2a, N : {() k3 U).

Conversely, take M closed such that M —% N and N : (() k3 U). Let
T € Interp™. By Lemma 8.1.6, N € Z(U). By Lemma 8.1.4.1, Z(U) is (1-
saturated. Hence, M € Z(U). Thus M € [Ula,,.

2. Let M € [Ulg,- Then M is closed and M € I3(U). By Lemma 8.3.8.3,
M € OPEN* U {M € ME | M : (BPreEnv® 3 U)}. Since M is closed,
M ¢ OPEN®. Hence, M € {M € M% | M : (BPreEnv" 3 U)} and so,
M : (T 3 U) where I' C BPreEnv”. By Lemma 7.3.5.2a, N : {() F5 U).

Conversely, take M such that M : (() k3 U). By Lemma 7.3.5.2a, M is closed.
Let Z € Interp™. By Lemma 8.1.6, M € Z(U). Thus M € [U]s,.

It is easy to see that [Ulg, = [U]p,-
3. Let M € [Ulgy, and M —5, N. By 1., M is closed, M —3 P, and P :
(() k3 U). By confluence Theorem 7.1.13, there is @ such that P —5 Q

and N —7 Q. By subject reduction Theorem 7.4.10, @ : (() 3 U). By
Theorem 7.1.11.2, N is closed and, by 1., N € [U]a,,. O
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Conclusion and future work

Expansion may be viewed to work like a multi-layered simultaneous substitution.
Moreover, expansion is a crucial part of a procedure for calculating principal typings
and helps support compositional type inference. Because the early definitions of
expansion were complicated, expansion variables (E-variables) were introduced to
simplify and mechanize expansion. The aim of this document is to give a complete
semantics for intersection type systems with expansion variables.

We studied first the AIN-calculus, an indexed version of the Al-calculus. This
indexed version was typed using first a basic intersection type system with expansion
variables but without an intersection elimination rule, and then using an intersection
type system with expansion variables and an elimination rule.

We gave a realisability semantics for both type systems showing that the first
type system is not complete in the sense that there are types whose semantics is
not the set of AIN-terms having this type. In particular, we showed that \y°.9/° is
in the semantics of (ab)—a but that it is not possible to give A\y°.4° the type
(aMb)—a in the type system F; (see Example 8.1.9 in Ch. 8.1). The main reason
for the failure of completeness in the first system is associated with the failure of the
subject reduction property for this first type system. Hence, we moved to the second
system which we showed to have the desirable properties of subject reduction and
expansion and strong normalisation. However, for this second system, we showed
again that completeness fails if we use more than one expansion variable but that
completeness succeeds if we restrict the system to a single expansion variable.

In order to overcome the problems of completeness, we changed our realisability
semantics from one which uses natural numbers as indices to one that uses lists of
natural numbers as indices. The new semantics is more complex and we lose the
elegance of the first (especially in being able to define the good terms and good
types). However, we consider a third type system for this new indexed calculus and
we show that is has all the desirable properties of a type system and it handles
all of the A-calculus (not simply the Al-calculus). We also show that this second

semantics is complete when any number (including infinite) of expansion variables
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is used w.r.t. our third type system. As far as we know, our work constitutes the
first study of a realisability semantics of intersection type systems with E-variables
and of the difficulties involved.

Note that a restricted version (restricted to normalised types'), which we call
RCDV, of the well known CDV intersection type system (see Sec.2.4.2), both systems
introduced by Coppo, Dezani and Venneri [27, 28] and recalled by Van Bakel [4],
can be embedded in our type system F3 without making use of expansion vari-
ables (a more detailed remark can be found in Sec. B.3). We can then restrain
the range of our interpretations (see Def. 8.1.3) from M3 to the “space of mean-
ing” MY (see Def. 7.1.9) which is then the only necessary set because expansion
variables are not used and therefore they do not allow one to change the index of
terms. Unfortunately, we do not believe that it would be possible to embed RCDV
in our system such that we would make use of the expansion variables “as much
as possible” (everywhere where an expansion might be needed). For example, if
M : (I' b3 Uy M Uy) is derivable from M : (I' 3 U;) and M : (I' k5 Us,) us-
ing the intersection introduction rule and we apply the expansion introduction rule
to each of the branches of the derivation then we obtain the two following typing
judgements: M** : (e;' b3 ;U) and M1 : (e;' b5 e;U). If we use two differ-
ent expansion variables (i # j) then, given these two new typing judgements, we
cannot use the intersection introduction rule because e,U " e;U is not a [Ty, type
(deg(e;U) = i :: deg(U) # j :: deg(U) = deg(e;U)). This might be overcome by
considering trees instead of lists as indices in our semantics. We let the investigation
of such a system to future work.

In the present document we are not interested in a denotational semantics of the
presented calculus. We are neither interested in an extensional A-model interpreting
the terms of the untyped A-calculus. Instead, we are interested in building a realis-
ability semantics by defining sets of realisers (programs satisfying the requirements
of some specification) of types. We believe such a model would help highlighting
the relation between terms of the untyped A-calculus and types involving expan-
sion variables w.r.t. a type system. Moreover, interpreting types in a model helps
understanding the meaning of types (w.r.t. the model) which are defined as purely
syntactic forms and are clearly used as meaningful expressions. For example, the
integer type (whatever its notation is) is always used as the type of each integer.
An arrow type expresses functionality. In that way, models based on A-models have
been built for intersection type systems [69, 8, 35]. In these models, intersection
types were interpreted by set-theoretical intersections of meanings. Even though
E-variables have been introduced to give a simple formalisation of the expansion
mechanism, i.e., as syntactic objects, we are interested in the meaning of such syn-

tactic objects. We are particularly interested in answering a number of questions

'Normalised types are types strongly related to normalisable (typable) terms.
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such as:

1. Can we find a second order function, whose range is the set of A-terms, and
which interprets types involving any kind of expansions (any expansion term

and not just expansion variables)?
2. How can we characterise the realisers of a type involving expansion terms?

3. How can the relation between terms and types involving expansion terms be

described w.r.t. a type system?

4. How can we extend models such as the one given in Kamareddine and Nour [80]

to a type system with expansion?

These questions have not yet been answered. We leave their investigation for future

work.
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Chapter 10

Introduction

10.1 Background of type error slicing

As explained in Sec. 2.4.3, SML is a higher-order function-oriented imperative pro-
gramming language and Milner’s W algorithm [32] is the original type-checking
algorithm of the functional core of ML. W implementations generally locate errors
at or near the syntax tree node being visited when unification fails, and this is

unsatisfactory.

10.1.1 Moving the error spot

Following W, other algorithms try to get better locations by arranging that unty-
pability will be discovered when visiting a different syntax tree node. For example,
Lee and Yi proved the folklore algorithm M [98] finds errors “earlier” (this measure
is based on the number of recursive calls of the algorithm) than W and claimed
that their combination “can generate strictly more informative type-error messages
than either of the two algorithms alone can”. Similar claims are made for W' [104]
and UAE [147]. McAdam observes that W suffers a left-to-right bias and tries to
eliminate it by replacing the unification algorithm used in the application case of
W by another operation called “unification of substitutions”. McAdam explains
that the left-to-right bias in W arises because in the case of applications, “the sub-
stitution from a left-hand subexpression is applied to the type-environment before
traversing the right-hand side expression” [104]. His “unification of solutions” allows
one “to infer types and substitutions for each subexpression independently” [104].
The “unification of substitutions” operation is then used to combine the inferred
substitutions. Yang claims that UAE’s primary advantage is that it also eliminates
this bias. However, all the algorithms mentioned above retain a left-to-right bias in
handling of let-bindings and they all blame only one syntax tree node for each type
error when in fact a node set is at fault.

When only one node is reported as the error site, it is often far away from the
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actual programming error. The situation is made worse because the blamed node
depends on internal implementation details, i.e., the tree node traversal order and
which constraints are accumulated and solved at different times in the traversal. The
confusion is worsened because these algorithms usually exhibit in error messages (1)
an internal representation of the program subtree at the blamed location which
often has been transformed substantially from what the programmer wrote, and
(2) inferred type details which were not written by the programmer and which are

anyway erroneous and confusing.

10.1.2 Other improved error reporting systems

Constraint-based type inference algorithms [112, 115, 116] separate constraint gen-
eration and constraint solving. Many works use this idea to improve error reporting.
A probably incomplete list includes [56, 57, 47, 64, 63, 58, 65, 60, 125, 126, 127].
Independently from this separation, there exist other approaches toward improving
errors [149]: error explanation systems [9, 37, 36, 148] which focus on explaining
the reasoning steps leading to a type error, and error reporting systems [139, 133]
which focus on trying to precisely locate errors in pieces of code. There are also
approaches that report type errors together with suggestions for changes that would

solve the errors [59, 99]. Some of these approaches are discussed in Ch. 12.

10.2 Type error slicing

Haack and Wells [57] developed a type error reporting method called type error
slicing (TES). Haack and Wells [57] noted that “Identifying only one node or subtree
of the program as the error location makes it difficult for programmers to understand
type errors. To choose the correct place to fix a type error, the programmer must
find all of the other program points that participate in the error.” They locate type
errors at program slices which include all parts of an untypable piece of code where
changes can be made to fix the error and exclude the parts where changes cannot
fix the error.

We shall refer to the method of Haack and Wells as HW-TES in this document
(the slicer of Haack and Wells as presented in their papers [56, 57] and not its imple-
mentation). HW-TES generates a constraint set for a program, enumerates minimal
unsatisfiable subsets of the constraint set, and computes type error slices. Genera-
tion and solving of constraints are not interleaved. To identify slices responsible for
type errors, each constraint is labelled by the location responsible for its generation.
Error slices are portions of a program where all blameless subterms are elided (e.g.,
replaced by dots). Slices can be shown by highlighting the source code.

HW-TES makes use of intersection types and its handling of polymorphism in-
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volves heavy constraint and type environment duplications which leads to a combi-
natorial constraint size explosion at constraint generation.

HW-TES meets the following seven criteria of Yang et al. [149] for good type
error reports: it reports only errors for ill-typed code (correct), it reports no more
than the conflicting portions of code (precise), it reports short messages (succinct),
it does not report internal information such as internal types generated during type
inference (a-mechanical), it reports only code written by the programmer which has
not been transformed as happens with existing SML implementations (source-based),
it does not privilege any location over the others (unbiased), and it reports all the

conflicting portions of code (comprehensive).

10.3 Contributions

Unfortunately, HW-TES is not practical on real programs and works only for a
tiny SML subset barely larger than the A-calculus. Our goal is a TES method that
(1) covers full SML, (2) is practical on real programs, and (3) has a simple and general
design. As would happen for any programming language, we faced challenges.

An initial challenge was avoiding a combinatorial constraint size explosion. The
naive approach in HW-TES duplicated constraints for code that gets a polymorphic
type (e.g., in SML’s let-expressions), and thus is unusable beyond small examples.
Instead, at constraint solving we simplify constraints before copying them, and copy
them as late as possible. We retain compositional initial generation of constraints,
but unlike in HW-TES we solve constraints in a strict left-to-right order. Our solution
is related in part to earlier constraint systems for ML-style let-bindings [115, 116,
108, 55, 112], which Pottier explains “allow building a constraint of linear size” [115].
Unfortunately, the earlier ideas are inadequate for module systems, so we needed a
new constraint representation.

The next challenge was to scale constraint generation while also handling ad-
vanced module system features. Like many languages, SML can manipulate names-
paces, e.g., with structures (modules), signatures (module types), functors (func-
tions from modules to modules), etc. We achieve this with our novel hybrid con-
straint/environments (metavariable e in Fig. 11.2 in Sec. 11.2). They are constraints
because they are satisfiable (or not) depending on variable values, and environments
because they bind program names to information. Furthermore, some bindings are
polymorphic to support some the kinds of polymorphism in SML: polymorphic func-
tions, datatype constructors, named structure signatures, and functors.

The remaining challenges were using the novel constraint machinery for a full
programming language, with all its features and warts. Ch. 11 presents full details
for a core of language features large enough to show the essence of the mecha-
nism, and Ch. 14 presents a larger feature set towards Full-TES which is the TES
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we are aiming at but which we have not yet achieved. This core includes poly-
morphic functions, datatypes and pattern matching, and structures (including the
difficult open operation). We call this core system, Core-TES. The larger set of fea-
tures/warts we present includes SML’s value/constructor identifier-status ambiguity,
local declarations, type functions/abbreviations, structure signatures, functors, type
annotations, and the value polymorphism restriction. We generally refer to this for-
malised TES as Form-TES (the formalism we have achieved so far). Even though
the implementation of our TES covers nearly full SML, it is not quite Full-TES.
Some TES features have not yet been implemented and some SML features are not
yet supported. We generally refer to the implementation of our TES as Impl-TES.
Impl-TES is usable via a web demo and installable packages [132]. Note that neither
Impl-TES is a superset of Form-TES and nor is Form-TES a superset of Impl-TES
because Impl-TES supports some features that are not supported by Form-TES (e.g.,
many cases of records or the fun SML forms to write recursive functions) and vice
versa (e.g., Form-TES has a better support for functors). We plan to have both
Form-TES and Impl-TES converge with Full-TES in the future. We will often write
our TES to encompass both Form-TES and Impl-TES.

The most challenging feature for full SML was the open declaration, which splices
another structure into the current environment (example in Sec. 10.4.3), and has
been criticized in the literature [2, 11, 12, 61]. Harper writes [61]: “it is hard to
control its behaviour, since it incorporates the entire body of a structure, and hence
may inadvertently shadow identifiers that happen to be also used in the structure”.
Blume [11] shows that certain automatic dependency analyses become NP-complete
in the presence of open, and writes: “Programs are not only read by analysis tools;
human read them as well. A language construct like open that serves to confuse
the analysis tool is also likely to confuse the human reader”. We believe open is
one of the most difficult programming language features to analyze, but our con-
straint /environments make it easy and simple, and we believe this highlights the
generality of our machinery. Our TES clarifies otherwise obscure type errors involv-

ing open and enhances its usability.

10.4 Key motivating examples

This section gives examples extracted from our testcase database motivating TES.
Our testcase database is distributed with the packages and archives we provide [132].
Type error slices are highlighted with red. Purple and blue highlight error end points

(sources of conflict). End points are discussed in Sec. 15.2.
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fun g x §y =
1etva1f=.®
then fn _ => fn z => z
else fn z => z

val = (£, true)

end

Figure 10.1 Conditionals, pattern matching, tuples (testcase 121)

10.4.1 Conditionals, pattern matching, records

Fig. 10.1 shows an untypable piece of code involving, among other things, the fol-
lowing derived forms: a conditional, a record selector (# u). Derived forms are
syntactic sugar for core of module forms. For example, if expl then exp2 else exp3,
where exp1, exp2, and exp3 are expressions, is not a core expression itself but is equiv-
alent to the core expression case expl of true => exp2 | false => exp3. Suppose the
programming error in the code presented in Fig. 10.1 is that we wrote y (the circled
one in Fig. 10.1) instead of x. We call the programming error location, the real error
location. The function g can be used to perform computations on integers. For
example (g true (fn x => x + 1) 2) evaluates to 2 and (g false (fn x => x + 1) 2)
evaluates to 3. This piece of code is untypable because of the following reasons (high-
lighted in Fig. 10.1): y, being a parameter of a function, has a monomorphic type;
y is constrained to be a Boolean via the conditional; and finally, u’s first component
is applied to y, where u’s first component is the function £ which is constrained by
the two branches of the conditional to take a function as argument. SML’s compiler
SML/NJ (version 110.72) reports a type constructor clash in line 6 (more precisely,
the circled portion of code (#1 w) y in Fig. 10.1 is blamed) as follows:

Error: operator and operand don’t agree [tycon mismatch]
operator domain: ’Z -> ’Z
operand: bool
in expression:

((fn {1=<pat>,...} => 1) W y

In the above example, because of the small size of the piece of code, the pro-
grammer’s error is not too far away from the location reported by SML/NJ. It is not
always the case. The real error location might even be in another file. Nonetheless,
note that SML/NJ reports only one location which is far from the real error location
w.r.t. the size of the piece of code. Also, note that the type >z -> >z reported by
SML/NJ is an internal type made up during type inference. Finally, the reported

expression does not match the source code!.

1SML/NJ has transformed the code because the derived form #1 is equivalent to the function
(fn {1=y,...} => y) in SML. Note also that (fn {1=<pat>,...} => 1) is SML/NJ’s pretty
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Blue of ’a *x ’b x ’c
Pink of ’a *x ’b x ’c
Green of ’a *x 'b * ’bl
Yellow of ’a * ’b * ’c
Orange of ’a * ’b * ’c
FUH trans (Red (x, y, 2)) = Blue (y, x, 2)
[l trans (Blue (x, y, z)) = Pink (y, x, 2)

[l trans (Pink (x, y, z) = Green (y, x, 2z)
| ) <)

[l trans (Yellow(x, y, z)) = Orange(y, x, z)
I trans (Orange(x, y, z)) = Red (y, x, 2)

type (’a, ’b) u = (’a, ’ b

val x = (Red (2, 2, false), true)
val y (#1 )l #2 =)
&)

Figure 10.2 Datatypes, pattern matching, type functions (testcase 114)

datatype (&5 biPE)IE & Red  of ’a x ’b x ’c
I
I
I
I
I

Fig. 10.1 highlights a slice for the type error described above. This highlighting
contains the minimal amount of information necessary to understand and fix the
type error. Also, it highlights the real error location. Note that the fact that most
of the piece of code is highlighted is due to the small size of the piece of code. We
present below larger examples where a smaller percentage of the pieces of code is
highlighted?.

10.4.2 Datatypes, pattern matching, type functions

Fig. 10.2 shows how TES helps for intricate errors. The code declares the datatype t
and the function trans to deal with user defined colours. This function is then applied
to an instance of a colour (the first element in the pair x). Suppose the programming
error is that we wrote b instead of >c in Green’s definition at location (0. SML/NJ

(version 110.72) reports a type constructor clash at @) as follows:

operator domain: (int,int,int) t
operand: (int,int,bool) t
in expression:

trans ((fn {1=<pat>,...} => 1) x)

The reported code is far from the actual error and does not match the source

code. SML/NJ gives the same error message if, instead of the error described above,

printing of #1, but the two functions are different because (fn {1=<pat>,...} => 1) returns
always 1 while #1 takes a record and returns the field of field name 1 in the record, which is
confusing. SML’s compilers MLton and Poly/ML do not transform the code.

2A slice for a type error will always contain exactly the portion of the program required to
explain the error. We have no choice on how much or how little of a piece of code is included in
a type error slice. The choice is made by the type error itself. In our experience in using TES,
the size of slices does not vary much depending on the size of the program but it varies mainly
depending on the kind of error.
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structure A = struct val x = false end

structure M = struct val x = true end

end

open Y

val m = M.x

val x = if m then true else false
end

structure T = struct
structure X = struct val x = 1 end

open S
open X
val y = § n EHGRNINGISENR

end

Figure 10.3 Chained opens and nested structures (testcase 450)

one writes x instead of z in the right-hand-side of any branch of trans. Thus, one
might need to inspect the entire program to find the error.

Fig. 10.2 highlights a slice for this error. The programming error location being
in the slice, we track it down by considering only the highlighted code, starting from
the clashing types on the last line. The type annotation (int, bool) u constrains
the result type of trans’s application. The part of the trans function in the slice
is the case handling a Green object. At (D), Green’s second and third arguments are
constrained to be of the same type. At 2), y is therefore constrained to be of the same
type as z. At 3), because y and z are respectively Yellow’s first and third arguments
and using Yellow’s definition, we infer that the type of Yellow’s application to its
three arguments (returned by trans) is t where its first and third parameters have
to be equal. At @) and (O) we can see that trans is constrained to return a t where

its first (int) and third (bool) parameters differ.

10.4.3 Chained opens and nested structures

Fig. 10.3 has an intricate type error with chained opens. Let us describe what the
code was meant to do. Structure T declares structure X declaring integer x. Structure
s is opened to access the Boolean m. Then, X is opened to access the integer x. Finally,
if m is true then we return 1 otherwise we return x. This is untypable and SML/NJ

blames y’s body as follows:

Error: types of if branches do not agree [literall
then branch: int
else branch: bool
in expression:

if m then 1 else x
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The programming error, as our type error slice shows, is that opening s causes
s’s declarations to shadow the current typing environment. Because Y is opened in
S, the structures A, X and M are part of s’s declarations. Hence, when opening s in T,
the structure x which was in our current typing environment is shadowed by the one
defined in v. If the programmer’s intent is as described above (and only then), this
error can be solved by replacing “open S open X’ by “open S X", which opens x and
Y simultaneously (opening X results then to the opening of the structure x declared
in T because it is then not shadowed by the one declared in Y).

Our type error slice rules out x’s declarations in x and s and clearly shows why
x does not have the expected type. The traditional report leaves us to track down

x’s binding by hand.
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Technical design of Core-TES

This chapter introduces Core-TES and its different modules: initial constraint gen-
erator (Sec. 11.5), constraint solver (Sec. 11.6), minimiser (Sec. 11.7), enumerator
(Sec. 11.7), and slicer (Sec. 11.8). The reader might (or might not) want to peek
ahead at Sec. 11.7.3 which motivates the need of a minimiser. Sec. 11.1 defines
the overall algorithm. Sec. 11.2 presents a fragment of SML syntax handled by
Core-TES. Sec. 11.3 defines the constraint syntax of Core-TES and Sec. 11.4 their
semantics. Sec. 11.10 discusses the principles of our approach. The reader might

(or might not) want to peek ahead at Sec. 11.10 while reading the sections below.

11.1 TES’ overall algorithm

Fig. 11.1 informally presents how the different modules of our TES interact with
each other. We use different colours to differentiate different parts of our TES. The
green parts are user interface related. The red parts are related to slicing. The
purple parts are related to constraint generation. These parts are external language
related. The blue parts are related to the enumeration of type errors. These parts
are external language unrelated.

Formally, given a SML structure declaration strdec (see Fig. 11.8), the initial con-
straint generation algorithm defined in Fig. 11.7 and extended in Fig. 11.14 to dot
terms (see Sec. 11.8.1), generates a constraint/environment e (see Fig. 11.3). Then,
the enumerator defined in Fig. 11.12 enumerates the type errors of e. Each error
found by the enumerator is minimised by the minimiser also defined in Fig. 11.12.
From each minimised error and strdec, the slicing algorithm defined in Sec. 11.8 com-
putes a type error slice. Both enumeration and minimisation rely on the constraint
solver defined in Fig. 11.10. The computed type error slices are finally reported to
the user. A type error report includes a type error slice, a highlighting of the slice
directly in the SML user code, and a message explaining the kind of the error (see

Fig. 11.8). Formally, our overall algorithm tes is defined as follows (the undefined
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Initial
filter set

Enumeration

Minimisation

(relies on the constraint solver)

Constraint
solving

Failure

Figure 11.1 Interaction between the different modules of our TES

relations, functions, and other syntactic forms used in this definition of TES’ overall

algorithm are all defined in the remaining sections of the current chapter):

tes(strdec) = {(strdec’, ek, vid) | strdec > e
A enum(e) —¢ errors(er)
A ek, lUvid) € er
Asl(strdec, 1) = strdec’}

Note that Core-TES does not have value identifier dependencies. These depen-
dencies are introduced in Sec. 14.1. We anticipate this addition in the definition of

our overall algorithm above (see the computation of the vid sets).

11.2 External syntax

Fig. 11.2 defines a fragment of SML syntax used to present the core ideas. Most
syntactic forms have labels (1), which are generated to track blame for errors. To
provide a visually convenient place for labels, some terms such as function applica-
tions are surrounded by | | which are not written by programmers but are part of
an internal representation used to avoid confusion with ( ) as part of SML syntax.
Value identifiers (vid) are subscripted to disambiguate rules for expression (vid.),
datatype constructor definitions (dcon'), and pattern (m’dé) occurrences. Note that
the only non-subscripted value identifiers are those occurring at unary positions in
patterns and datatype declarations.

Although SML distinguishes value variables and datatype constructors by assign-
ing statuses in the type system, we distinguish them by defining two disjoint sets
ValVar and DatCon. For fully correct minimal error slices, we discuss the needed

handling of identifier statuses in Sec. 14.1.
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external syntax (what the programmer sees, plus labels)
[ € Label (labels)
tv € TyVar (type variables)
tc € TyCon (type constructors)
strid € Strld (structure identifiers)
vvar € ValVar (value variables)
dcon € DatCon (datatype constructors)
vid € VId = vvar | deon
Itc € LabTyCon ::= tc!
ldcon € LabDatCon ::= dcon'

tyeTy n=tol | ty, 4 tyy | [ty ltc]!
c¢b € ConBind  :=dcon’ | dcon of !ty
dn € DatName ::= [tv tc]!
dec € Dec m=val rec pat < exp | open' strid | datatype dn Loep
atexp € AtExp = m‘di | 1et! dec in exp end
exp € Exp = atexp | £n pat & exp | [exp atexp]!
atpat € AtPat S m'dIlJ
pat € Pat = atpat | [ldcon atpat]!
strdec € StrDec ::=dec | structure strid < strexp
strexp € StrExp = strid' | struct! strdecy - - - strdec,, end

extra metavariables
id € |ld ::=vid | strid | tv | te term € Term == ltc | ldcon | ty | cb | dn | exp | pat | strdec | strexp

Figure 11.2 External labelled syntax

To simplify the presentation of Core-TES, all datatypes have one constructor and
one type argument.

Note that we do not enforce all the syntactic restrictions of the SML syntax [107].
For example, in SML, in a recursive declaration such as val rec pat L exp, the
expression exrp must be a fn-expression.

In this chapter we are going to consider the following simple running example:

structure X = struct
structure S = struct datatype ’a u = U end
datatype ’a t =T
(EX1) val rec f = fn T => T
val rec g = let open S in f U end
end
end

This piece of code is untypable because f is defined as taking a ’a t and is applied

to a ’a u. The labelled version of this piece of code is as follows:

I
structure X = struct?

B Iy ) ls b b
structure S = struct” datatype [’a u[® =U_ end

1 I
datatype [Pat]® 21"
ho 1 lig 1 l15
val rec f12 2 fn Tp14 éng

e

7 . b1 o
val rec gpl = let!s open? § in [fel U, 120 end

end

We call this structure declaration strdecgx.
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constraint terms (syntax of entities used internally by TES and which the programmer never sees)
ev € EnvVar (environment variables)

d € TyConVar  (type constructor variables)
~ € TyConName (type constructor names)
a € ITyVar (internal type variables)
d € Dependency ::=1
w € ITyCon m=0 || ar| (u,d)
TelTy s=a|Tu| - (r,d)
o € Scheme s=1|Va.7 | (o, d)

bind € Bind = lte=p | Lstrid=e | ltv=a | lvid=c

acc € Accessor = 1te=4 | 1strid=ev | 1tv=a | Tvid=a

c € EqCs n= =g | er=ey | =Ty B
e € Env ==T | ev| bind | acc | ¢ | poly(e) | ex;er | (e, d)

extra metavariables
v € Var s=a|d|ev
dep € Dependent ::= (7, d) | {1, d) | (e, d)

Figure 11.3 Syntax of constraint terms

11.3 Constraint syntax

11.3.1 Terms

Fig. 11.3 defines constraint terms, those pieces of syntax that can occur anywhere
inside a constraint. In our system, this is any u, 7, o, or e.

Some forms, called dependent forms, are annotated by dependencies: (z,d). In
Core-TES, a dependency d must be a label [ (but in Impl-TES, d can also be a value
identifier vid for handling identifier statuses in Sec. 14.1). During analysis, a form
(z, d) depends on the program nodes with labels in d. For example, the dependent
equality constraint (r,=7y, d U {/}) might be generated for the labelled function
application [exp aterp]!, indicating the equality constraint 7,=7, need only be true
if node [ has not been sliced out. Let strip be the function that strips off the outer
dependencies of any syntactic form: strip(z) = strip(y) if z = (y, d), ¥ otherwise. Let
collapse be the function that combines nested outermost dependencies: collapse(x) =
collapse((y, d; U do)) if x = (({y, d1)), d2), = otherwise.

An internal type 7 is a type construction and is built from an internal type
constructor p and its argument 7 (such as the polymorphic list type ’alist, where
'a is an explicit type variable in SML). To simplify the formalisation of Core-TES,
external (tc¢) and internal (i) type constructors both take exactly one argument.
We present how to handle non-unary type constructors in Sec. 14.10. The special
internal type constructor ar represents the binary arrow type constructor (=) dur-
ing constraint solving solely to allow constraints between — and any unary type
constructor. This allows one to compute the necessary portions of code when gen-
erating type errors. A type scheme can either be a universal quantification, or an
internal type, or a dependent type scheme. Our type schemes are subject to alpha-

conversion. For example, V{a}. a is convertible to V{a'}. /. These two terms are
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considered equal.

A constraint/environment e is a hybrid that acts as both a constraint and an
environment, and we will freely switch between these terms when discussing them.
A major novelty is three of the constraint/environment forms, and their interaction:
binders (lid=z, with metavariable bind), composition environments (e;;ez), and ac-
cessors (Tid=x, with metavariable acc). A binder lid=z or an accessor Tid=z is
used for program occurrences of id that are respectively binding or bound. The
composition e;;ey is used when the accessors of ey are in the scope of the binders
of €1, and acts like a logical conjunction requiring e; to be satisfied, and ey to be
satisfied when the bindings of e; are in scope. For example, in lvid=0c;1Tvid=a, the
type variable « is constrained to be an instance of ¢ through the binding of wvid.
Note that the binders and accessors do not need to be next to each other. For ex-
ample, in lvid=Va. ;- ;Tvid=aq; - - - ;Tvid=ag, if the ellipses do not shadow vid’s
binder (e.g., if they are equality constraints) then this constraint/environment has
same solvability as lvid=Va. ;- - -;7[reni|=ay; - - - ;7[rens]=as where the two acces-
sors have been resolved by accessing the corresponding binder, and where the two
renamings ren; and reny rename the type variables in @ to fresh variables in order to
instantiate the type scheme Va. 7. We have dom(ren;) = dom(reny) = @ and, among
other properties it holds that dj(ran(reny), ran(rensy)). The shadowing mechanism is
further discussed in Sec. 11.6. The motivation for these constraint/environments is
to have a general mechanism to build environments for sequential declarations that
avoids duplications at initial constraint generation or during constraint solving.

The operator ; is used to compose environments. We consider ; to be associative
(i.e., (e1;(eg;e3)) is considered to be equivalent to ((ej;es);e3)) with unit T (i.e.,
(Tse), (e;T) and e are all equivalent).

A constraint /environment can also be (1) the empty environment and satisfied
constraint T, (2) a constraint/environment variable ev, (3) an equality constraint
¢, (4) a special form poly(e) which promotes bindings in e to be polymorphic (see
below), or (5) a conditional environment (e, d) which acts like e if the dependen-
cies in d are satisfied and otherwise acts (mostly) like T. The semantics of our
constraint/environments is provided in Sec. 11.4.

Binders and accessors are related to ideas in earlier systems, e.g., Pottier and
Rémy’s let-constraints and type scheme instantiations [116]. The earlier systems
are too restrictive to easily represent module systems because they only support
very limited cases of what our binders do and they lack environment variables. We
know of no other system with these features. With our constraints we can easily
define a compositional constraint generation algorithm. A comparison with related

constraint systems is provided in Sec. 12.1.
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ren € Ren = {ren € ITyVar — ITyVar | ren is injective A dj(dom(ren), ran(ren), Dum)}

u € Unifier ={fiUk US| fi €TyVar — ITy A fo € TyConVar — ITyCon A f3 € EnvVar — Env}
sub € Sub = Unifier

A € Context ::= (u, e)

Figure 11.4 Renamings, unifiers, and substitutions

11.3.2 “Atomic” syntactic forms

Let atoms(x) be the syntactic form set belonging to Var U TyConName U Dependency

and occurring in  whatever z is. We define the following functions:

vars(xz) = atoms(z) N Var (set of variables)

) =
labs(z) = atoms(z) N Label (set of labels)
deps(z) = atoms(x) N Dependency (set of dependencies)

11.3.3 Freshness

We use distinguished dummy variables: Dum = {Qgun, €Vgun; daun }- Fach use of a
dummy variable acts like a fresh variable. These variables are used to generate
dummy environments and constraints. For example, in (gm=01);(0qm=02), the
two occurrences of gy, can be thought of as type variables different from each
other and also different from «; and as. Note that variable freshness is not handled
via existential constraints as in other systems [55, 108, 116]. Instead the relation
dja ensures the freshness of the generated variables and type constructor names:
dja(zy,...,x,) < dj(f(x1),..., f(z,), Dum), where f(x) = atoms(x) \ VId. This also
ensures that each label occurs at most once in a labelled program. Let us define

nonDums as follows: nonDums(z) = vars(x) \ Dum.

11.3.4 Syntactic sugar

We write (z,d) for (z,{d}). If yis a d or a d, then a¥ abbreviates (z,y), and
71 == x5 abbreviates (r1=m9,y), and similarly for binds and accs. Let [e] abbreviate
(evgum=c€), an equality constraint that enforces the logical constraint nature of e
while limiting the scope of its bindings (they can still have an effect if e constrains
some environment variable ev). This is used for local bindings by rules (G2) and

(G4) of our constraint generation algorithm defined in Fig. 11.7.

11.4 Semantics of constraint/environments

11.4.1 Renamings, unifiers, and substitutions

Fig. 11.4 defines renamings, unifiers and substitutions. One can observe that Ren C

Unifier = Sub. Renamings are used to instantiate type schemes. Substitutions will

101



Chapter 11. Technical design of Core-TES

be extended in Ch. 14 (see Sec.14.7 and Sec.14.9) such that Unifier C Sub. It will
always be the case that Unifier C Sub.

The set Unifier is generally the set of unifiers generated by our constraint solver
defined in Sec. 11.6. We also use the distinct set Sub because we sometimes need to
substitute more syntactic forms than allowed by unifiers. For example, in Sec. 14.7
we need to to substitute rigid type variables (introduced in Sec. 14.7 as well) when
instantiating type schemes (type schemes are also extended in Sec. 14.7). Rigid type
variables are not allowed to be in the domain of a unifier during constraint solving
(because, as explained in Sec. 14.7, they act as constant types).

The application of a substitution sub (and therefore of a renaming ren and a

unifier u) to a constraint term is defined as follows:

olsub] _ {:E, if sub(v) ==z (tid=v[sub]),
v, otherwise (tid=v)[sub) =< if v[sub] € Var
(T p)[sub] = 7[sub] u[sub] undefined, otherwise
(7;1—>7'2)[sub] =7 [sub]ﬁ—m'g[sub] (lid=x)[sub] = (Lid=x[sub])
x4 sub] = x[sub]? (r1=m2)[sub] = (z1[sub]=x2[sub])
V. x[v < sub], (e1;e2)[sub] = e1[sub];ea[sub]
(Vo.x)[sub] = ¢ if dj(v,vars(T < sub)) poly(e)[sub] =poly(e[sub])
undefined, otherwise x[sub] =z, otherwise

Fig. 11.4 also defines constraint solving contexts. A constraint solving context
A = (u, e) is used as the context in which the meaning of constraint/environments
is checked in the semantic rules provided below in Sec. 11.4.3. Such forms are also
used in our constraint solver defined in Sec. 11.6 as contexts in which the solvability
of constraint /environments is checked. In our system unifiers and environments are
complementary: unifiers contain information on internal type variables and environ-
ments on external identifiers. This is further stressed in Sec. 11.4.2, in the definition

of the application of a constraint solving context to an identifier.
Let (u, e)(v) be u(v), let (u, e);e’ be (u, e;e’).

11.4.2 Shadowing and constraint solving context applica-
tion

In a constraint solving context (of the form (u, e)) some parts might be shadowed
and so inaccessible. For example, in the constraint solving context (u, binds;ev;bind;)
where u = @, the binder bind; is “visible” and ev shadows bind, because ev is not
bound in u (ev € dom(w)) and an environment variable stands for any environment
and could potentially bind any identifier. Let the predicate shadowsAll be defined

as follows:
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a7 M e m R LY
x1|u] = x2[u] x1,22 &€ Env (eq0) Vie{l,2}. eve — e e =€} (eqe)
eqc eqe
eb (r1=x2) — T a e>(e1=ey) — T a
e(id) nstance, o o (z=v) — T e(id) undefined ,
— (acc) —— acc’)
e> (tid=v) — T e> (tid=v) = T
! "
bind ere —e |
ed> (lid=x) — (lid=z[u]) (bind) e>poly(e’) — toPoly((@, e), e”) (poly)
e>e — e (ee])> e — €
(comp)

et (er;e2) — (eg;e3)

Figure 11.5 Semantics of the constraint/environments, ignoring dependencies

(e = ev A (shadowsAll({u, u(ev))) V ev & dom(u)))
shadowsAll((u, e)) < ¢ V (e = (e1;e2) A (shadowsAll({u, e1)) V shadowsAll({u, e3))))
V(e=¢?  AshadowsAll((u, ¢')))

shadowsAll(e) < shadowsAll((@, €))

If shadowsAll(e) then it means that some of the binders in e might be shad-
owed, and especially it means that in (e’;e), the environment e shadows the entire
environment ¢’ (no binder from e’ is accessible in (e;e)).

Let us now present how to access the semantics of an identifier in an environment.
The applications A(id) and e(id) to access identifiers’ static semantics are defined
as follows:

(u, lid=z)(id) =x
(u, e?)(id) = collapse({u, e)(id)?)
_ x,if {u, e9)(id) = x or shadowsAll({u, e
(, (exsen) (id) = ( | 2)(id) ' ((u, €2))
(u, e1)(id),otherwise
id), if =
(i, ev)(id) _ (u, e)(id),if u(ev) = e
undefined, otherwise
e(id) = (2, e)(id)

For example, (lvid=Va. 1;lstrid=e)(vid) = Ya. T but (¢';ev;lstrid=e)(vid) and
(Lvid=0;lstrid=e)(tc) are undefined.

Let us now present another example involving a unifier:

({ev— (Lvid=Va. 1)}, (e;ev;istrid=e))(vid) = Va. T

11.4.3 Semantic rules

We will now present the semantics of our constraint/environments.
First, let us define the relation instance, which allows one to generate instances

of type schemes. This predicate is defined as follows:
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o instance yE[sub] if  collapse(z?) = (V@O,y)g and dom(sub)

o Anstance, . if  collapse(x?) is not of the form (V7. y)?

Let us define semantic judgements as follows:
® € SemanticsJudgement ::= e > e; <— e

Fig. 11.5 defines the semantics of our constraint/environments, ignoring depen-
dencies at first. Note that this figure uses the function toPoly which is formally
defined below in Fig. 11.9 in Sec. 11.6.4. The function toPoly allows one to trans-
form a monomorphic environment into a polymorphic one. The function toPoly used
in Core-TES (i.e., defined in Fig. 11.9) can only be applied to a single dependent
value identifier binder. Note that this function is extended in Fig. 14.2 in Sec. 14.1.4
to deal with environments composed of more than one binder.

We say that an environment e is satisfiable iff there exist u and e’ such that
T e ¢ The environment e’ is the semantics of e in the context (u, T).

Let us now consider the following environment which we call e;
poly(lvid=ay);(tvid=as);(as=ay);(a1=az—as)

Let u = {ag— avy, a1 —az—ay} and € = (lvid=V{ap}. ap). Let @ =T e —
¢’. Then, one can derive ®. Let us show how to derive this judgement.

Let ®; = (T ppoly(lvid=ap) < €’). This judgement can be derived as follows:

T (lvid=ap) — (lvid=ag)  toPoly((@, T), lvid=ag) = €’
Dy

Let &5 = (T > poly(lvid=ayp);(tvid=as) < €’). This judgement can be derived
as follows:
| aslu] = (a)[u] = a7y
e/ (vid) 22N, vy /b (ay=ag) — T
oy e > (tvid=ag) — T
@y

Finally, the judgement ® can be derived as follows:

agfu] = (ay)[u] = ay
Dy > (mw=ay)—T agfu] = (ag—ay)[u] = ag—ay

T poly(lvid=agp);(Tvid=as);(ag=ay) — € e'>(a=az—ay) — T
P

Let us mention an issue concerning the semantics of our constraint/environments
and our constraint solver defined below in Sec. 11.6. Let us consider the following

environment, similar to e;, which we call ey:

poly(lvid=ay);(Tvid=as);(ag=a p);(a1=asz—ay)
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u,e,de>T — T (M) u, e, de > ev — ev|u] (evar)
x1|u] = x2[u] x1,22 & Env Vie{1,2}. u,e,de>e; — € e = e
— (eqc) — (eqe)
u, e,de> (r1=x2) — T u,e,ded> (e1=e2) — T
e(id) nsance, oy e ded (z=v) — T e(id) undefined ,
, (acc) , (acc’)
u, e, det> (tid=v) — T u, e, det> (tid=v) — T
u,e,de>e’ —e”
bind L I
u, e, de > (lid=x) — (lid=x) (bind) u, e, de > poly(e’) — toPoly({, e), e”) (poly)
u,e,de>er — e u,(epe]),de>es — eb u,e,de> e’ — e de(d) = {keep}

(keep)

(comp)

u, e, de> (e1;e2) — (e1;€h) u, e, dew (e’ d) — (e",d)

drop € de(d) (drop) {keep-only-binders} = de(d) \ {keep}

— — (keep-only-binders)
u, e, de (e, d) — dum(e’) u,e,de (e, d)y — T

Figure 11.6 Semantics of the constraint/environments, considering dependencies

The environment e, only differs from e; by the replacement of ay by a;. Note that
there are now two occurrences of a; in e;. Note that e, uses «a; at two separate
unrelated places. Because of these two occurrences of «q, the environment e, fails to
be satisfiable w.r.t. the rules defined in Fig. 11.5. However, ey is satisfiable w.r.t. our
constraint solver defined below in Sec. 11.6. The issue is that our constraint solver
considers the two occurrences of o to be different when with the semantics defined
in this section, these two occurrences are considered to be the same. Note that e,
cannot be generated by our initial constraint generation algorithm defined below in
Sec. 11.5, so this bug is not triggered. (Not initially generating environments such
as ey is currently our only way of forbidding them.)

Let us define semantic judgements considering dependencies as follows:

ds € DepStatus ::=keep | drop | keep-only-binders
de € DepEnv = Dependency — DepStatus

W € SemanticsJudgementDep ::=u, e, de> e — ey

We define des on dependency sets as follows:
de(d) = {de(d) | d € )

Fig. 11.6 adds dependencies to the rules from Fig. 11.5. Semantic judgements
are now of the form u, e, de > €1 < ey. Except for these additions, rules (T), (eqc),
(eqge), (acc), (acc’), (bind), (evar), (comp), and (poly) do not differ from the ones
defined in Fig. 11.5. In addition to these rules, Fig. 11.6 defines three new rules:
(keep), (drop), and (keep-only-binders) to deal with dependencies. Note that this
figure also uses the function toPoly and in addition uses the function dum which is
formally defined below in Fig. 11.11 in Sec. 11.7.2. The function dum allows one
to transform an environment e into a similar dummy environment e’ which cannot

participate in any error but contains dummy versions of the binders from e.
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We say that an environment e is satisfiable w.r.t. the dependency environment
de iff there exist u and e’ such that u, T, der> e — ¢’. Given a dependency environ-
ment de, a dependency d is said to be satisfied if de(d) = keep, and it is said to
be unsatisfied if de(d) = drop. The dependency status keep-only-binders is more
complicated. This status is needed for scoping issues which are further discussed
below in Sec. 11.7.2. If an environment e is annotated by a dependency which has
status keep-only-binders then e’s binders and environment variables (which could
potentially bind any identifier) are turned into dummy binders and dummy environ-
ment variables respectively. Other environments, such as equality constraints, are

discarded. The environment e’ is the semantics of e in the context (u, T, de).

11.5 Constraint generation

11.5.1 Algorithm

Fig. 11.7 defines our initial constraint generator which is the relation - defined as
the smallest relation satisfying the rules in Fig. 11.7. We use the word “initial” to
distinguish it from our constraint solver defined in Sec. 11.6 which, while solving
constraints, is also responsible for the generation of some constraints. Let the forms
associated with terms (in Term) by our initial constraint generator be defined as

follows:
cg € InitGen ::= e | (v, e)

The relation 4> is a binary relation defined on Term x InitGen, i.e., &> C Term x InitGen.
This relation is extended below in Sec. 14.

The rules of our constraint generator return cgs which can either be environments
e (rules (G17)-(G20)) or constrained variables of the form (v, e) where e constrains v.
Such a constrained variable v is in some cases an internal type variable a (rules (G1)-
(G8),(G10)-(G16)), in some other cases a type constructor variable ¢ (rule (G9)), and
in some other cases an environment variable ev (rules (G21)-(G22)). We chose not
to have a constructor of constrained types that would build an internal type from an
environment and an internal type (as a composition environment of the form ej;e,
builds a constrained environment from two environments because e; constrains es),
because it simplifies the presentation of our system by not having deep types. Such
a system with constrained types could be investigated (see also Sec. 12.1.2 on this
matter). Having chosen to return pairs of the form (a, e) for expressions, we then
decided to follow the same pattern for structure expressions and return pairs of the

form (ev, e) instead of returning composition environments of the form e;ev.
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All rules of the form P < @ have to be read as P < (Q A dja(e, e1, ea, v, &, e, ev’))

|[Expressions (exp > (o, €))]
(G1) vid! > (o, 1vid < a)
(G2) 1et! dec in exp end > (a, [61;62;(a;a2)]> < dec > e1 A exp > {ag, e)

(G3) [exp atexp]' + {a, er;eni(an = az—a)) < exp > (an, e1) A atezp & (az, e2)
(G4) fn pat Y exp > {(a, [(ev:el);evl;@;(aéa1—>a2)]> < pat > (a1, e1) A exp > (a2, e2)

[Labelled datatype constructors (ldcon + (o, ¢))]

(G5) deon' > (a, Tdcon L a)

[Patterns (pat > (a, €))]

(G6) vvaré > (o, Lvvar = a)  (G7) dconé > (a, Tdcon = a)

(G8) [ldcon atpat]’ + {(a, er1;ea;(y £a2—>a)> < ldcon > {(aq, e1) A atpat > (ag, e3)

[Labelled type constructors (lic > (0, ¢))]
(G9) tc » (3, tte = §)

Types (i = (@, )]

(G10) tv! > (o, 1tv < a)

(G11) [ty ltc]! + (o, 61;62;(0/;(16» < ty > {(a, e1) Alte > (0, e2)

(G12) ty, 4 tys > (a, 61;62;(a£a1—>o¢2)> < ty, > (a1, e1) A tyy > (ag, e2)

|Datatype names (dn - (o, ¢))]
(G13) [tv tc]! + (o, (o/éoz'y);(ltc = ~¥);(Ltv = a)) <= a#d

|Constructor bindings (cb > (o, ¢))|
(G14) dcon' > (o, Ldcon L a)
(G16) dcon of ' ty > {(a, er;(c éal—w);(ldcon = o)) < ty > (aq, e1)

|Declarations (dec > ¢)]

(G17) val rec pat = exp > (ev=poly(er;ex;(ar = az)));ev! < pat > (a1, e1) A exp > (aa, €3)
(G18) datatype dn = cb > (ev=((a1 = az);er;poly(er)))iev’ < dn -+ (a1, e1) A cb - (s, e)
(G19) open' strid > (1strid L ev);ev'

[Structure declarations (strdec > ¢)]

(G20) structure strid L strezp > [e];(ev'=(Ustrid L ev));ev’t < strexp > (ev, )

[Structure expressions (strezp > (ev, e))]
(G21) strid" - (ev, 1strid < ev)

(G22) struct! strdecy - - - strdec,, end > (ev, (ev L ev');(ev'=(e1;- - -5en)))
< strdecy > e A -+ - A strdec,, > e, Adja(er, ..., e,, ev, ev’)

Figure 11.7 Constraint generation rules

11.5.2 Shape of the generated environments

Our initial constraint generator defined in Fig. 11.7 only generates restricted forms
of environments (ge defined below, where “g” stands for “generation”). Let us
present these restricted forms, where sit is a restriction of 7, and the other forms

are restrictions of e (where “p” stands for “poly” and “1” for “labelled”):
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sit  €ShallowlTy i=a | ad | ay | a1—as

lbind € LabBind = tc = v | Lstrid L e | Ltv La | Lvid L a
lc  €LlabCs = evy L evs | ozé sit
lacc € LabAcc = acc!

lev € LabEnvVar ::= ev'

ipe € InPolyEnv ::=lacc | lc | ipey;ipeqy
pe € PolyEnv = lvid La | pe;ipe | ipe;pe
ge €GenEnv =T |lev | lbind | lacc | lc | ev=ge | poly(pe) | gey;gey

At initial constraint generation, the only labelled (dependent) environments are
equality constraints (c¢), binders (bind), accessors (acc), and environment variables
(ev). Also, note that a pe contains exactly one binder and can also contain equality

constraints as well as accessors.

11.5.3 Complexity of constraint generation

Inspection reveals the generated constraint’s size is linear in the program size. Un-
like HW-TES’ constraint generation [57], for a polymorphic (let-bound) function (see
the combination of rules (G2), (G6) and (G17)) we do not eagerly copy constraints
for the function body. Instead, we generate (among other things) poly environ-
ments, composition environments, and binders, and force solving (constraint solving
is defined below in Sec. 11.6) the constraints for the body before copying its type for
each use of the function. This type is a simplified form of the constraints generated

for the function body.

11.5.4 Discussion of some constraint generation rules

In rule (G17), the environment e; generated for pat constrains e, generated for exp.
This order is necessary to handle the recursivity of such declarations. The binders in
e; are monomorphic. Polymorphic type schemes are generated at constraint solving
when dealing with the poly constraint. Within the poly environment, binders need
to be monomorphic because SML does not allow polymorphic recursion. Allowing
poly constraints on environments other than just a single binder (e.g., allowing poly
on a binder constraining equality constraints and accessors such as in bind;c;acc
where acc could potentially refer to bind) allows one to delay the generation of
polymorphic types. Therefore, given a recursive function declaration, one can gen-
erate only one binder for the function (in a naive approach two would be needed:
one monomorphic for the function’s body and one polymorphic for the function’s
scope as mentioned in Sec. 12.1.7 below).

In rule (G18) for datatype declarations, the environment e; generated for the
declared type constructor constrains the environment poly(ey) generated for the

datatype constructor of the declared type constructor. This order is necessary to
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handle the recursivity of such datatype declarations. For example, in the declaration
datatype nat = z | s of nat, nat’s second occurrence refers to its first occurrence.
Note that e; also binds explicit type variables in Core-TES. This extends the scope
of the bound external type variable further than needed, but causes no harm in Core-
TES, in which all type variables only occur inside datatype constructor bindings.
This will be changed in Sec. 14.3, after introducing internal local environments in
Sec. 14.2.

Rules (G4), (G17), (G18), (G19) and (G20) label environment variables to prevent
sliced out declarations from shadowing their context (e.g., in our constraint system
if ev is unconstrained, it shadows e in e;ev which is something we do not want
to happen in these rules). In each of these rules, such an environment variable
represents the entire declaration. For example, in rule (G19), ev represents the
entire analysed opening declaration. Our initial constraint generation algorithm
labels ev using [, the label associated with the analysed opening declaration. In
rule (G19) (as in any of the other rules mentioned above), without [ the environment
variable ev would be a constraint that always has to be satisfied, even when the
corresponding opening declaration has been sliced out. For example, slicing out
open S in structure S = struct end; val x = 1; open S; val y = x 1 would result in
the environment variable generated for open s shadowing its context which contains
the declaration val x = 1. Failing from labelling ev using [ in rule (G19) would
therefore prevent from finding the error that x is declared as an integer in the piece
of code presented above, and is also applied to an argument in y’s body. With the
label, the environment variable is a constraint that has to be satisfied only when
the declaration is not sliced out. Note that in rule (G19), the link between the
environment variable and the structure to open is made via the labelled accessor.

Rules (G4), (G17), (G18), (G20) and (G22) generate unlabelled equality con-
straints. Those generated by rule (G22) are of the form ev'=(e;---;e,). Such a
constraint needs to be unlabelled because each e; does not depend on the analysed
structure expression struct! strdec; - - - strdec,, end itself, but only on the corre-
sponding declaration strdec; packed together with other declarations in the structure
expression. Therefore when slicing out the packaging created by this structure ex-
pression (i.e., when slicing out [ above) we do not want to discard all the e;s as well
(which is what would happen if we were to label ev'=(ey;- - -;e,) with [ and entirely
discard it when slicing out [). The information related to the structure expres-
sion struct! strdec; - - - strdec, end, carried by the unlabelled equality constraint
ev'=(e1; - ;€,), is the fact that a sequence of declarations (corresponding to the
composition environment ej;- - -;e,) is packed into a structure. This information de-
pends on the structure expression via the extra labelled equality constraint ev=—ev'.
In rules (G4), (G17), (G18) and (G20), we use labelled environment variables of the

form ev! for this purpose.
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11.5.5 Constraints generated for example (EX1)

We now present the constraints generated for example (EX1) presented in Sec. 11.2.
First, let us repeat the labelled version of example (EX1) which is called strdecgx:

l
structure X = struct?

l Is I
structure S = struct” datatype [’au]l = Uc7 end

ls I
datatype [*a t]® = T:O

ha | lig 1 l15
valrecf =ZfnT =T
y I P ° b1 I
17 . 21 22
val rec g 2% 1eth8 open® s in (£, U 120 end
end

We assume in this section that the generated variables and type constructor
names are all distinct from each other.

The environment generated for datatype ’a u = U which we call ¢ is as follows:

I -
e = (eva=((a1 = as);ell;eh));evl

ey is poly(lu L4 ag)

such that ‘ s s s
ey is (a1=ajm);(lu=m);(l’a=a})

The environment generated for structure S = struct datatype ’a u = U end, which
we call e; is as follows:

l [
e1 = [(eva==-euv3);(evz=ep)];(ev1=(1S = evy));ev®

The environment generated for datatype ’a t = T, which we call e, is as follows:

I
er = (evs=((a3=ay);e};eh));evs

eh is poly(IT ho ay)

such that o o o
ey is (a3=a372);(lt = 12);(l’a= a3)

The environment generated for val rec f = fn T => T, which we call e3 is as
follows:
Lo h1 l
e3 = (eve=poly((Lf == as);es;(as == ag)));evg’
l l l
such that e} = [(evy=(1T == oz7));evl713;(TT == 0g);(ap = ar—ag)]
The environment generated for val rec g = let open S in f U end, which we call

e4 1s as follows:

[ [ [
es = (evs=poly((lg == ag);[epiei(aro == an)]i(ag == ap)));evl®

. ho
ey is (18 == evg);ev]?

such that L, ot oy o
is (1f = a12);(10 = au3);(a12 = a13—a11)

Finally, the environment generated for the entire piece of code is the following

environment which we call egx:

[ [
emx = [(evi1 = evia);(evia=(e1;ea;es;e4));(ev10=(4X = ev11));evl),
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er € Error = (ek,d)
ek € ErrKind ::= tyConsClash(u1, p2) | circularity
state € State  ::=slv(A,d,e) | succ(A) | err(er)

Figure 11.8 Syntactic forms used by the constraint solver

11.6 Constraint solving

11.6.1 Syntax

Fig. 11.8 defines additional syntactic forms used by our constraint solver (Fig. 11.10)
where a constraint solving step is defined by the relation —, and where —* is its
reflexive (w.r.t. State) and transitive closure. A constraint solving process always
starts in a state of the form slv((&, T),d, e) where T is called the initial envi-
ronment. Given such a state, our constraint solver either succeeds with final state
succ(A) returning its current constraint solving context A, or fails with final state
err(er) returning an error which can be a type constructor clash or a circularity
error (see ek in Fig. 11.8). Given a state slv(A,d, e), if the dependencies in d are
satisfied and e is solvable in the context A then the constraint solver will succeed

with final state succ(A’) for some A'.

11.6.2 Building of constraint terms

We defined a substitution operation in Sec. 11.3. Let us now define a new substi-
tution operation called “build” that differs from the one defined in Sec. 11.3 by the
facts that: it is recursively called in the variable case, it is undefined on V schemes
and environments, and it collapses dependencies. The constraint solver defined in
Fig. 11.10 uses build to generate, w.r.t. a given constraint solving context, polymor-
phic types from monomorphic ones (build is called by toPoly in Fig. 11.9) and check
circularity errors (in order not to generate a unifier where, e.g., « = T—=aq):

build(u, v) = {build(u,x), if u(v) ==z bu?ld(u,ﬁ_—n'g) = build(u,ﬁ).—>bui|d(zi, T9)

v, otherwise build(u,z?) = collapse(build(wu, z)?)
build(u, 7 ) = build(wu, 7) build(u, 1) build(u, z) =z, otherwise

We also extend the build function to constraint solving contexts as follows:
build({(u, €),x) = build(u, z).

Types have to be built up when generating polymorphic environments (see
Sec. 11.6.4) for efficiency issues (to avoid duplicating constraints). Also, because
SML does not allow infinite types, we use build to detect circularity issues. During
constraint solving, before augmenting any constraint solving context, we check if
the augmentation could lead to the generation of infinite types (see rule (Ul) in

Fig. 11.10). For example, given the unifier {ay — o', ay— <a§l3—>a§4, da)}, we do
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Polv(A. Lvid & 7' =build(A, 7)

toPoly( L o 7) where { @ = (vars(7') N ITyVar) \ (vars(monos(A)) U {aqun})
odud

= A;(lvid == Va.1’)

d ={d | a® {4} € monos(A) A o € vars(7') \ @}

Figure 11.9 Monomorphic to polymorphic environment

not allow its augmentation with, e.g., {az— (a§6—>a137,35)} because it would allow
one to generate infinite types.

Note that 7[u] and build(u, 7) do not always yield the same result. Consider u =
{a1 — ag, ay — ag} where dja(ay, s, a3). Then ayf[u] = as but build(u, ;) = as.

The result would be the same if u was idempotent (i.e., if we had uf[u] = u).

11.6.3 Environment extraction

The function diff is used by rules (U4) and (P1) of our constraint solver (see

Fig. 11.10) to extract environments generated during solving. It is defined as follows:

e\e =T

e1\(ez;e3) = e1\easez if e # (ea;e3)
When solving an environment, it allows one to get back its “solved version” once all
of its constraints have been dealt with. By “solved version” of an environment e, we
mean the sequence of environments that has been added to the constraint solving
context of the state in which the constraint solving process was when it started to
solve e. For example, if s1v({u, €),d, e;) —* succ({«, €')) then € = e;e;;-- ;e

and e\e’ = T;ey;- - -;e, which is the “solved version” of ¢y w.r.t. e.

11.6.4 Polymorphic environments

The function monos computes the set of dependent monomorphic type variables
occurring in an environment w.r.t. a unifier as follows (the type variables occurring

in the types of the monomorphic binders):
monos(A) = {aPs(") | Jyid. 7 = build(A, A(vid)) A a € nonDums(7)}

Note that in monos’ definition, 7 = build(A, A(vid)) enforces that vid has a monomor-
phic binder in A. For example, in (u, e;(lvid 2 7)), vid has a monomorphic binder
because 7 is not a V (dependent or not) type scheme.

Fig. 11.9 defines toPoly which, given a constraint solving context A and a depen-
dent monomorphic value identifier binder, generates a polymorphic binder by quan-
tifying the type variables not occurring in the types of the monomorphic binders of
A. The function toPoly is used by the semantic rule (poly) and by the constraint
solving rule (P1).

In Fig. 11.9, 7 is the type from which a type scheme is generated. First, we

build up 7, using the constraint solving context (A) of the current state, to obtain
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the type 7/. The set @ is the set of type variables that are quantified over because
they do not depend on the types of monomorphic binders. The dependencies set d
“explains” why the type variables not in @ but occurring in 7’ (therefore depending
on monomorphic binders) are not allowed to be quantified over. Roughly speaking, @
is the set of polymorphic type variables in 7" and vars(7")\@ is the set of monomorphic
type variables in 7.

Let us illustrate this mechanism using the fn-expression ezp defined as fol-
lows: fn x => let val rec f = fn z => x z in f end. At initial constraint genera-
tion, an environment of the form poly(e;)! is generated for the recursive declara-
tion val rec f = fn z => x z. When solving the constraints generated for ezp, the
constraint solver eventually applies toPoly to a constraint solving context (u, e) and
a binder of the form (lf=ay, d) (which is the “solved version” of ¢;). Building up
aq results in a type 7’ of the form (a§2—>a§3,31). Because x’s type is monomor-
phic, a monomorphic binder (the only one) of the form |x=cqq occurs in e and so

vars(monos({u, e))) = vars(7y) where 7y is obtained by building up aq and is of the

form <a§l5—>a§6,34) (equivalent to 7" up to dependencies because f eta-reduces to

x). We therefore build a @ (see Fig. 11.9) of the form & because ay and a3 both
occur in 79. We also build a d' of the form d4 U d5 U dg which are the “reasons” for
not allowing ay and ag to be in @ (type variable set allowed to be generalised over
when building the type scheme returned by toPoly). Finally, e is augmented with
(1£=Y@. (a5 d,), dUd).

When solving constraints generated by our constraint generator, toPoly is only
applied to bind®’s resulting from the solving of an environment wrapped by poly
which in turn is only used to wrap environments built from: dependencies, a single
monomorphic binder, equality constraints, and accessors (see PolyEnv’s definition in
Sec. 11.5).

Extracting the monomorphic type variables of a binder’s type is expensive. We
only perform it once per polymorphic binder by, given a constraint solving context,
first building the type of a given binder and by then looking up in the constraint
solving context which type variables are monomorphic. When accessing the type of
a polymorphic binder we then only have to generate an instance of its type scheme
(see rule (A1) of our constraint solver).

In Fig. 11.9, the computation of d and our constraining of the generated type
scheme with E/, even though a correct approximation (that cannot generate false
errors and that will eventually allow one to obtain minimal type errors), could be re-

fined, thereby speeding up minimisation. This refinement is presented in Sec. 11.6.7.

'When considering the following labelling: val rec f}lf Z z}lf LS [xil ziz] I the environment

. ls I A Iy I3 Is I
ey is of the form |f = ag;[ev=(1z = ay);ev®;1x = a1;12 = a9;01 == ao—a3;a5 =04~ Q306 =qrs.
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11.6.5 Algorithm

Let uy@up be {(v—x) € uyUuy | dj({v, strip(x) }, Dum)} if dj(Dum <dom(u;), Dum<
dom(uy)), and undefined otherwise. This function allows us, at constraint solving
(see rules (U3) and rule (U4) of our constraint solved defined in Fig. 11.10), to gener-
ate unifiers which do not constrain dummy variables. For example, u®{agum— 7} =
ud{a—al } = u.

Fig. 11.10 defines our constraint solver which can be regarded as a rewriting
system. A finite computation is then a finite sequence of states (stateq, ..., state,)
such that for each i € {1,...,n — 1}, the state state;,; is obtained by applying one
of the constraint solving rules as defined in Fig. 11.10 to the state state; (i.e., the
pair (state;, state;,1) is obtained by instantiating one of the constraint solving rules,
where state; is the instantiation of the left-hand-side of the rule and state;; is the
instantiation of the right-hand-side).

Rule (A3) can be used to report free identifiers. If s1v(A, d, tid=v) — succ(A)
and —shadowsAll(A) then it means that there is no binder for id and so that it
is a free identifier. Free identifiers are in any case important to report, but it
is especially vital for structure identifiers in open declarations. In our approach,
a free opened structure is considered as potentially redefining its entire context.
Hence, val x = 1; open S; val y = x 1 does not have an error involving x because
x’s first occurrence is hidden by the declaration open S. This might be confusing
if s was not reported as being free. Let us explain how a free opened structure
shadows its context. Given a declaration open S labelled by [, our initial constraint
generation algorithm generates an environment of the form (1s L ev);ev'. Because
s is free, rule (A3) applies when solving ts=ev. The environment variable ev is
then unconstrained. Hence, when solving ev, rule (V) applies and A;ev (from the
right-hand-side of rule (V)) results in the shadowing of all the binders in A by ev.

Let the relations isErr and solvable be defined as follows:

isErr

e =5 er <slv((a, T),9,e) —* err(er)
solvable(e) < 3A. slv((g, T),d, e) —* succ(A)
solvable(strdec) < Je. strdec - e A solvable(e)

These relations are used, among other things, to define our minimisation and

enumeration algorithms in Sec. 11.7.

11.6.6 Shape of the environments generated during con-

straint solving

During constraint solving (see Fig. 11.10), a constraint solving context of the form
(u, €) is maintained. No ¢ or acc occurs in e because they are transformed instead

into unifiers u (rules (U3) and (U4) in Fig. 11.10). Similarly, the poly(e’) forms are
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equality constraint reversing
(R) slv(A, d,z=y) — slv(A, d,y=x),if s = VarUDependent Ay € s Az & s
equality simplification

(S1) s1v(A, d, z=x) — succ(A)

(S2) s1v(A, d, z? =y) —s1v(A, d U d, x=y)

(S3) s1v(A, d, 7 u=7" ') — s1v(A, d, (u=p);(t=7"))

(S4) s1v(A, d, 11 »To=73—74) — slv(A, d, (11=73);(72=71)),

(S5) s1v(A, d, 71 ="3) — s1v(A, d, p=ar), if {ri,n} ={rp,m3->m}

(S6) s1v(A, d, p1=p2) — err({tyConsClash(u1, u2), d)), if {u1, p2} € {{7, 7'}, {7, ar}}
ANy #

unifier access
Rules (U1) through (U6) have also these common side conditions: v # z and y = build(u, z¢).
(U1) s1v((u, ), d,v=2) — err({circularity, deps(y))),
if v € vars(y) \ (dom(u) UEnv U Dum) A strip(y) # v
(U2) siv({u, ), d,v=rx) — succ((u, €)),
if v € vars(y) \ (dom(u) UEnv) A strip(y) = v
(U3) siv({u, ), d,v=rx) — succ((u®{v y}, €)),
if v & (vars(y) \ Dum) U dom(u) U Env
(U4) s1iv({u, e), d,v=x) — succ((v'®{v— e\e'}, €)),
if v € Env \ dom(u) A slv({u, €),d,z) —* succ({v/, €))
(U5) siv({u, €), d,v=x) — err(er),
if v € Env \ dom(u) A slv({(u, e€),d,
(U6) siv({u, €), d,v=x) — s1v({u, €), d, z=x),
if u(v) =z
binders -
(B1) s1v({u, e),d, lid=z) — succ((u, e;(Lid £ x)))
empty/dependent/variables
(E) s1v(A,d, T) — succ(A)
(D)slv(A,d,e?)  —slv(A,dUd,e)
(V) s1v({u, €), d, ev) — succ({u, e;ev?))
composition environments
(C1) s1v(A, d, e1;e2) — slv(A’, d, e2),if s1v(A, d, e;) —* succ(A’)
(C2) s1v(A, d, e1;e0) — err(er), if s1v(A, d, e;) —* err(er)
accessors
(A1) s1v(A, d, tid=v) — slv(A dud, v= Tlren]),
if A(id) = (Va. T)E A dom(ren) =@ A dj(vars((A, v)), ran(ren))
(A2) s1v(A, d, tid=v) — s1v(A, d, v=x),
if A(zd) =z A strip(z) is not of the form Va.r
(A3) s1v(A, d, t1id=v) — succ(A),
if A(id) undefined
polymorphic environments
(P1) s1v((uy, e1), d,poly(e)) — succ(toPoly({uz, e1), e1\e2)),
if s1v((u1, 1), d, e) —* succ((ug, e2))
(P2) siv((u1, e1), d,poly(e)) — err(er),
if s1v((u1, e1),d, e) —* err(er)

Figure 11.10 Constraint solver

eliminated. Moreover, given that a constraint solving process always starts with the
initial environment T, the environment e is then of the form T;e;---;e,, where
each e; is built from dependencies, binders, environment variables, composition

environments, and T. Such an environment e is of the form se defined as follows:
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sbind € SolvBind = lte=p | Istrid=se | ltv=a | lvid=0o
serhs € SOWVENVRHS := T | ev | shind | serhsy;serhsy | serhs®
se € SolvEnv ==T | T;serhs

It is also the case that, for any environment variable ev € dom(u), u(ev) €
SolvEnv. This is obtained by a simple inspection of the constraint solving rules.

We sometimes call an environment of the form se, a “solved” environment.

11.6.7 Improved generation of polymorphic environments

Fig. 11.9 defines the simple toPoly function which is used by rule (P1) of our con-
straint solver to generate a polymorphic environment from a monomorphic one by
quantifying the type variables not occurring in the types of the monomorphic bind-
ings of the current constraint solving context. In this figure @ is the set of type
variables occurring in 7' (the type that we want to generalise to a V scheme) that
can be generalised and quantified over. The dependencies in the dependency set d
are the reasons for not generalising the type variables occurring in 7/ that are not
in @ (these dependencies are the reasons why some type variables are not allowed
to be quantified over).

As mentioned in Sec. 11.6.4, the computation of d' and our constraining of the
generated type scheme with E/, even though a correct approximation, could be
refined, thereby speeding up minimisation. We now present how this can be done.

First, we define functions from internal type variables to dependency sets as

follows:
tvdeps € ITyvarToDeps = ITyVar — P(Dependency)

Let us now define the two functions getDeps and putDeps. The application
getDeps(a, 7, @) results in the dependency set occurring in 7 on the paths from its
root node to any occurrence of . The application putDeps(7, tvdeps) results in the
constraining, for each variable v in dom(tvdeps), of the occurrences of o in 7 with
the dependency set tvdeps(a). The function getDeps is defined as follows:

getDeps(a, o/, d) = { d, if o= of
&, otherwise
getDeps(T i1, ,d) = getDeps(7,, d)
getDeps(7,—72, a, d) = getDeps(71, a, d) U getDeps(72, a, d)
getDeps(TE, a, El) = getDeps(7, o, d U El)
The function putDeps is defined as follows:
putDeps(c, tvdeps) = {ad’ if tudeps(a) = d
«, otherwise
putDeps(7 u, tvdeps) = putDeps(T, tvdeps) u
putDeps(71—72, tudeps) = putDeps(71, tvdeps)—putDeps(72, tvdeps)

putDeps(TE, tvdeps) = putDeps(T, tvdeps)?
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Let us now present another way of constraining 7’ from the one in Fig. 11.9
(different from constraining it with E/). In the following, 7" and @ are the same as
in Fig. 11.9. First, we define a variant of monos, called monos’ that gathers labels

more precisely as follows:
monos'(A) = {a? | Jvid. T = build(A, A(vid)) A a € nonDums(7) A d = getDeps(7, a, @)}

Let e be the monomorphic binder (lvid=«), u be the set {a+— (a{il—wgﬁgo)},
and A = (u, e). Then, monos(A) = {a® Ve odUdiUdy  while monos'(A) =
{alﬁouﬁl’ ogou%}. As a matter of fact, ay occurring in the monomorphic type associ-
ated with vid, does not depend on the dependency set d, but only on the dependency
set dy U d; (and similarly for as).

We can then compute the set of type variables occurring in 7/ that are not allowed
to be quantified over in the generated type scheme (because they occur in monos'(A))

along with the precise reasons as why they are not allowed to be quantified over:
todeps = {a— U, d, | monos'(A) = {a®, ... a%m} WF Aa € vars(T') \ (@ U vars(7))}

Finally, toPoly would generate the following type scheme: Va. putDeps(7’, tvdeps).

11.6.8 Solving of the constraint generated for example (EX1)

Sec. 11.2 introduced the untypable piece of code (EX1). Let us repeat the labelled

version of example (EX1) (called strdecgx):

l
structure X = struct®
L I
structure S = struct® datatype [’au]l 2 Uc7 end

ls I
datatype [*a t]® = Tc10

ha 1 lia 1 l15
valrecf  ZfnT 2T
}l) l P N : I
7 . 2 22
val rec gpl = lets open? § in [fel U_"1% end

end

Sec. 11.5.5 presented the environment, called egx, that our initial constraint
generation algorithm generates given example (EX1). Let us now present the solving
of egx. We present below the solving of the environment (e;;es;e3;e4) which is part
of egx as defined in Sec. 11.5.5. Let us consider the solving of e; generated for

structure S = struct datatype ’a u = U end. Let us repeat e;’s definition:

I I
e1 = [(eva==rev3);(evz=ep)];(ev1=(1S = evy));ev®

. l
e} is poly(lU = ap)
such that e(/)/ is (al lé 0/1 ’Yl);(lu l=6 ’yl);(i’a l=6 a’l)

. l5
eo is (eva=((an =ag);ell;el));ev’

The solved version of e; is as follows:
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1
ev)+— 1S = evo

ev’ such that { evy evlt

i i ;
evz = ((bu == 71);(L7a = o );(40 = V{aq}. (o] 1) B 6h))b

Note that evs is mapped to an environment that contains a binder for ’a because
we have not yet introduced any mechanism to only export partial environments (we
want a mechanism other than e;;e; that exports, e.g., the binders of e; but not those
of ep). This is done in Sec. 14.2 below.

Let us now consider the solving of e, generated for datatype ’a t = T. First, let

us repeat ey’s definition:

s
er = (evs=((a3=ay);es;eh));ev?

. l
such that ¢ is poly(IT == ay)

. z z z
¢f is (a3 =af7)i(1t = 12);(1a = aj)

The solved version of e, is as follows:
evés such that evs+— (It b v2);(L2a L af);(IT fo v{a4}. (o o) Usslo}y

Let us now consider the solving of e3 generated for val rec f = fn T => T. First,

let us repeat e3’s definition:

es = (evg=poly((If ll:Qas);eé;(%h:lae)));evé”

such that ef = [(evy=(1T Ll ar));evds; (1T i

l
ag);(ag == ar—as)]

The solved version of es is as follows:

l
evé” such that evg— (1£ 12 V{4, o'} (o 72){1871971107114}_>(ag/ 72){1871971107115}){1117113})

Note that in the binder generated at constraint solving for £, l;5 only labels
(o v2) and does not label the whole binder. Having dependencies on types as well
as on environments allows a precise blaming (dependency tracking).

Let us present the solving of e, generated for val rec g = let open S in f U end.

First, let us repeat e;’s definition:

l l l
es = (evs=poly((lg == aw)ilefiefs(aro == anr)];(ag == ap)));evg®

. lig l
/ 19
e, 18 (1S = evg);ev
such that 4 ( 0); 9

. 21 b2 ko
ef is (1f = a12);(10 = ay3);(12 = a13—~a11)
We start by solving e. Its solved version is as follows:

lig

I3,1
evg® such that evg— evé Y

Then, we solve €. The dependent accessor (1£ By a2) accesses £'s binder through

evg. It leads to the generation of the following mapping:

aia— ((af 72){l87l97l107114}_>(a21” 72){ls,lg,l1o7l15}){l117l12,l137l21}
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filtering function

) -5 filt(ev=e, l1,l2) = (ev=filt(e,l1,12))
el, 1fl€ll\l2 . [ e - 20 = =
filt(el, I, 12) = { dum(e)?,if | € I, f!It(el,eg, hole) - = ﬂlt(el’.ll’ l2)iflt(ez, b, [2)
. filt(poly(e), l1,l2) = poly(filt(e, l1,12))
T, otherwise . I
fl|t(—|—,ll,lg) =T
conversion of environments into dummy environments
dum(lid=x) = (lid=toDumVar(x)) dum(e¢) =T toDumVar(c) = aqun
dum(ev) = Vdun dum(acc) =T toDumVar(1) = dgun
dum(eisez) =dum(er);dum(ez) dum(T) =T toDumVar(e) = evgun
dum(e?) =dum(e)

Figure 11.11 Constraint filtering

The dependent accessor (U L2 ay3) accesses to U’s binder through evg, evy, and

evs. It leads to the generation of the following mapping:
a3 (o /}/1){l37l47l57l67l77l197l22}

Finally, our constraint solver returns a type error (terminates in an error state) when
. . . . L .
dealing with the equality constraint (cvs = ay3—a1), because 7y, # 7y,. The error is

as fOHOWS: <tyConsC1ash(71, 72)7 {137 l47 l57 lﬁu l77 l87 l97 llO7 l117 l127 1137 l147 l197 1207 l217 l22}>
We call this error ergx. Let ergx = (ekgx, dpx)-

11.7 Minimisation and enumeration

11.7.1 Extraction of environment labels

Given an environment e, IBinds extracts the labels labelling binders occurring in
e. It is used during the first phase of our minimisation algorithm which consists in
trying to remove entire sections of code (datatype declarations, functions, structures,

...) by “disconnecting” accessors from their binders:

IBinds(e) = {1 | bind' occurs in e}

11.7.2 Constraint filtering

Fig. 11.11 defines the constraint filtering function filt, used to check the solvability
of constraints in which some constraints are discarded. Note that our filtering func-
tion is not defined on all environments. The forms on which the filtering function is
defined are the ones generated by our initial constraint generator (these forms are
defined in Sec. 11.5.2). When applied to unlabelled equality constraints on envi-
ronments, our filtering function is only applied to unlabelled equality constraints of
the form ev=e (and not of the general form e;=e,) because our initial constraint
generator only generates variables as the left-hand-side of unlabelled equality con-

straints on environments (see the definition of GenEnv in Sec. 11.5.2). Similarly,
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we only apply our filtering function to dependent environments of the form e

, l.e.,
depending on a single label. In filt(e, 1, l5), I} is the label set for which we want to
keep the annotated environments (first case of the filtering rule for e!), and I, is the
label set for which we do not want to keep the equality constraints and accessors but
for which we want to turn the binders into dummy ones and keep the environment
variables (second case of the filtering rule for e!). The environments annotated by
labels not in 1; U [y are discarded (third case of the filtering rule for e!). In the
constraint filtering context, label sets are sometimes called filters. The distinction
between binders to discard (not labelled by a label in I; U ;) and binders to turn
into dummy ones (labelled by a label in I5) is necessary because at minimisation,
throwing away any environment might result in different bindings in the filtered con-
straints (corresponding to a different SML code). For example, removing the binder
labelled by bl in (ix L 71);(1x L1 T2);(Tx L 7) results in x’s accessor being bound to
x’s first binder instead of its second. Similarly, removing the binder labelled by £’s

second occurrence’s label in the environment generated for

let val rec £ = fn x => x 1
in let val rec £ = fn x => x + 1 in f true end

end

results in £’s third occurrence being bound to its first occurrence and so to a non-
existing (false) type error to be found at enumeration. When a binder is labelled by
a label from [y, it is turned into a dummy unlabelled one that cannot be involved
in any error and it results that the same holds for its accessors.

The intended meaning of a labelled constraint is that it only must hold if the
condition represented by the label is true. The machinery presented in this document
is designed to implement this intended semantics. We therefore allow our filtering
function to entirely discard labelled equality constraints, bindings, accessors and
environment variables because when generated, these forms are always shallow. As
a matter of fact, by definition, the right-hand-side of an accessor can only be a
variable v. When generated, the right-hand-side of a binder is either a variable v
or a type constructor name 7y (see LabBind’s definition in Sec. 11.5.2). Concerning
the generated equality constraints, by shallow we mean a [c constraint as defined
in Sec. 11.5.2. The non-shallow generated equality constraints are the non-labelled
ones generated by rules (G4), (G17), (G18), (G19), (G20) and (G22). Because these
constraints are not labelled, they are then never filtered out but the filtering function
is recursively called on the right-hand-sides of these constraints as they can be non

shallow.
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11.7.3 Why is minimisation necessary?

Given an environment generated for a piece of code (given e such that strdec + e for
a given strdec), our enumeration algorithm works as follows: it selects a filter from
its search space, it filters out the constraints labelled by the filter in the environment
and runs the constraint solver on the filtered environment. If the constraint solver
succeeds (terminates in a success state) then the enumerator keeps searching for type
errors using the rest of the search space. If the constraint solver fails (terminates in
an error state) then the enumerator has found a new error. This new error might not
be minimal. The enumerator runs then the minimiser on the found error and once a
minimal error has been found, keeps searching for other type errors. The minimiser
is necessary because when the constraint solver returns an error at enumeration,

this error might not be minimal. An obvious example is as follows:

val rec f = fn x => (x (fn z => z), x (fn () => O))

fn y => y true

val rec g

valu=f£f g

This piece of code is untypable and the highlighting of one of the type errors of

this piece of code is as follows:

Val gee fEfE = (x (fn z => z), EER @@= O

val rec g = fn y => y true
val u = £ g

The corresponding type error slice is as follows (we have adapted the slice re-

turned by Impl-TES to the restricted language presented in this document):

fnx = (..x (fn O => (..))..)
fn y => (..y true..)

(..val rec f

..val rec g
fgl)

The issue is that because of the first component returned by the function £
(the application x (fn z => z)) and because of x's monomorphism, when the error
presented above is first found at enumeration, it is not minimal. The error first

found by the enumeration algorithm, before minimisation, is as follows:

fonx=>(..x (fnz = (..))..x (fn O => (..))..)
fo y => (..y true..)

(..val rec f

..val rec g
fgll)

Because x is monomorphic, it is constrained by both z and (). This is a typical
example that shows the necessity of the minimisation algorithm. We have not yet

found a way to directly obtain the first slice presented above without the help of the
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minimiser. The investigation of such a system is left for future work.

11.7.4 Minimisation algorithm

Fig. 11.12 defines our minimisation algorithm: the relation min that uses the relation
—est Which tests if a label can be removed from a slice and where —7, is its reflexive
(w.r.t. Env x Error) and transitive closure. Minimisation consists of two main phases.
The first one (phasel) tries to remove entire sections of code at once by turning
bindings into dummy ones using IBinds (defined in Sec. 11.7.1). In a fine-grained
second phase (phase2) the algorithm tries to remove the remaining labels (I; in
rule (MIN3) in Fig. 11.12) one at a time.

A step of our minimisation algorithm is as follow: (e, l1, {{} Wly) —est (€, I3, 14)
where I3 and I, depend on the solvability of filt(e, I} Uy, {I}). Let ¢’ = filt(e, [} U
I5,{1}). The set I; Uly U{l} is the label set of the error that the minimisation
algorithm is minimising at this step, and {I} W I, is the label set yet to try to
discard. The environment €’ is obtained from e by filtering out the constraints that
are not labelled by I, Ul,U{I}, by filtering out the accessors and equality constraints
that are labelled by [, and by turning the binders labelled by [ into dummy ones
(and similarly for the environment variables labelled by [). If ¢’ is solvable it means
that [ is necessary for an error to occur, and therefore I3 = I3 U {l} and Iy =1y If
¢’ is unsolvable (the solver failed and we obtained a new smaller error, i.e., which
contains strictly less labels), it means that [ is unnecessary for an error to occur
and that any environment labelled by [ can be completely filtered out in the next
step. The label sets I3 and I, are then restricted to the newly found error (see
rule (MIN1)).

Environments (bindings, environment variables, ...) can be completely filtered
out from one step to another because the labelled internal syntax, our constraint
generator and solver, together ensure that if a binder is turned into a dummy one
then none of its accessors will be part of any error (see Sec. 11.7.6 for more on this
matter). This invariant could explicitly be enforced during constraint solving by
adding side conditions to rules (Al) and (A2) checking that the accessed identifiers’
types are not dummy variables (in Dum). This enforcement is not necessary.

Note that the minimisation algorithm fails if at the end of the second phase,
in rule (MIN3), the label set I, does not correspond to an error in e: because of
filt(e, lo, @) =% e’ rule (MIN3) is only defined if filt(e, Iy, @) is unsolvable.

11.7.5 Enumeration algorithm

Enumeration states are defined as follows:

EnumState ::= enum(e) | enum(e, e, 7) | errors(er)
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minimisation
(MIN1) (e, 11, {1} W) —est (€, 11 N d, 1 N d), if filt(e, Iy Ulo, {1}) 25 (ek, d)
(MIN2) (e, 11, {1} U72> —test (€, 11 U{l},12), if solvable(filt(e, I} Uz, {I}))
(MIN3) (e, er) ™1, ¢/ if IBinds(e) = 1
A (e, Iabs(er)\l Iabs(er)ﬂl> to (e, 11, @) (phasel)
Ale, D, 11) =t (6,12, D) (phase2)
Afilt(e, Io, @) ST e

enumeration

(ENUM1) enum(e) —eenumn(e, 7, {T})
(ENUM2) enum(e, e7, &) —e errors(er)
(ENUM3) enum(e, &7, [ W {I}) —. enum(e, 27, 1), if solvable(filt(e, labs(e), 7))
(ENUM4) enum(e, er, Ty {1}) — enum(e, er U {<ek,g>},7l U?),
if filt(e, labs(e), ) SET er
A e er) =

ek, d)
AT ={u{l}|1edAVipel lo Z TU{l}}

Figure 11.12 Minimisation and enumeration algorithms

Fig. 11.12 also defines our enumeration algorithm: the relation —. where —? is
its reflexive (w.r.t. EnumState) and transitive closure. Assume that strdec + e for a
given piece of code strdec. An enumeration process always starts in a state of the
form enum(e) and stops in a state of the form errors(er). Enumerating the minimal
type errors in a piece of code consists of trying to solve diverse results of filtering the
constraints generated for the piece of code. The tested filters (label sets) form the
search space which is built while searching for errors. The enumeration algorithm
starts with a single filter: the empty set, so that the constraint solver is called on
all the generated constraints. Then, when an error is found and minimised, the
labels of the error are used to build new filters (see 7 in rule (ENUM4)). Once the
filters are exhausted the enumeration algorithm stops. The found errors are then
all the minimal type errors of the analysed piece of code (see rule (ENUM2)). In an
enumeration process, the second enumeration state is always (see rule (ENUM1)):
enum(e, &, {@}) where the first empty set is the set of found errors (empty at the
beginning) and where the second empty set is the first filter. If strdec is untypable,
the constraint solver fails and returns a type error er; of the form (eky, d;). The
minimisation algorithm minimises er; and returns a minimal error ery of the form
(eky, dy) such that dy C dy. The error ery can be er; if it was already in a minimal
form when found by the enumerator. New filters are computed based on the filter
used to find this new error (& in our example) and the new error erq itself: {{{} |l €
dy}. The enumerator keeps searching for errors using this updated search space: the
new state is enum(e, {ers}, {{I} | | € da}). At the next step, one of the {I} where
I € dy will be picked as the filter to try to find another error. When a filter leads
to a solvable filtered environment, the filter is discarded (rule (ENUM3)) otherwise
it is used to update the search space as explained above (rule (ENUM4)).
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11.7.6 Minimisation and binding discarding

Let us describe a step of the first phase of our minimisation algorithm. We test if we
can remove a label [ associated with a binder bind from the slice we want to minimise
(and still obtain a type error slice) by first filtering the constraints of the original
piece of code as follows: filt(e,,{l}), to obtain ¢’ and where e is the environment
generated for the original piece of code and U {} is the label set labelling the slice
that is being minimised. In order not to mix up the bindings, at constraint filtering,
the binder bind associated with [ is not discarded but is replaced by a non labelled
dummy binder bind" (such that bind" = dum(bind)) that cannot participate to any
error but that still acts as a binder. If we then solve ¢’ and obtain an error then no
label labelling in e’ an accessor to bind’ will occur in the found error (we give below
an informal argument as why none of these accessors will be part of the new error).
The bindings in this new error are then not mixed up. (Note that bindings can
be mixed up in a filtered environment if and only if an accessor refers to a binder
to which it does not refer to in the non filtered environment.) The found error is
then the new slice to try to minimise further and next time the constraints will be
filtered w.r.t. this new slice, the binder bind and its accessors will be completely
thrown away (as well as the other constraints not participating in the new error).

Let us consider the following unsolvable environment which we call e:

I, b . .. 13 .ol l5 . .. s lz
a1 = int;ag =unit;lvid = aq;lvid = ag;a3 =unit;tvid = ag;a1 = as

The only labels necessary for an error to occur are lj, I5 and l;. Note that vid’s
accessor refers to wvid’s binder labelled by I; (second binder) and not to the one
labelled by I3 (first binder). Let us run our minimisation algorithm on e and let the
first step be to try to discard ly. First the filtering function is called on e as follows:

filt(e,{h, bk, 3,5, ks, Iz}, {l4}), which results in the following environment, called ¢’:
h o, b2 . ! . b5 . . bz
a1 = int;ao =unit;lvid = aq;lvid=agum;0i3 = unit;tvid = ag;a; = Qg

At constraint solving, running on e’, when dealing with the accessor 1vid L as,
the dummy binder lvid=ag4u is accessed and the equality constraint as=agu, is
generated by rule (A2). This constraint is then discarded by rule (U3) thanks to the
definition of @& and because agum € Dum. Therefore, the accessor and its label are
discarded at constraint solving and cannot occur in any error. In our example, on €,
the constraint solver terminates in an error state, which means that I, is unnecessary
for an error to occur. The error returned by the constraint solver does not involve
ly or lg and especially, in the next step of the minimisation process, vid’s accessor
cannot refer to vid’s first binder.

Note that filtering itself does not prevent bindings to get mixed up because, e.g.,
filtering allows one to throw away the binder generated for the second occurrence

of x in fn x => fn x => x while not throwing away the binder generated for the first
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occurrence of x and not throwing away its accessor. However, we give below an
informal argument as why we never filter a binder without filtering its accessor.

Let us now present an informal argument as why when our constraint solver
returns an error, the error does not involve accessors to dummy binders or accessors
without their corresponding binders.

According to rules (Al)-(A3), during constraint solving the label labelling an
accessor only gets recorded in a constraint solving context A of the form (u, e) if
the accessed identifier is in the type environment e stored in A in the current state
(the state in which the constraint solving process is when the rule applies). There are
two possible scenarios. In the environment e (1) either the accessed identifier has a
dummy static semantics (resulting from filtering) and then, according to rules (U3)
and (U4), the label of the accessor does not get recorded into the constraint solving
context A. In more details, given an accessor Tid=wv, according to rules (Al) and
(A2), a constraint of the form v=v’ is generated, where v" € Dum comes from the
accessed id binder. Then (U3) or (U4) applies and the newly generated constraint is
discarded without generating anything. (2) Or the accessed identifier has a labelled
non-dummy static semantics, and the labels associated with the binder and the label
associated with the bound occurrence will always occur together in the constraint
solving context. The main point being that in our system if a binder is not a dummy
binder then it is labelled.

This is why we strongly believe that an identifier occurring at a non-binding
position in a piece of code (represented by an accessor in our constraint language)
only occurs in a slice if it is bound and its binder occurs in the slice as well.

This argumentation relies on the fact that our labelled external syntax together
with our initial constraint generation algorithm enforce that each bound occurrence
of an identifier is labelled by a unique label that does not label a larger piece of code
and therefore the label labelling an accessor does not label any other constraint term
(see principle (DP6) presented in Sec. 11.10). Therefore in case (1) described above,
once the accessor and the generated equality constraint have been dealt with and
discarded, the label labelling the accessor does not occur anymore in the state in
which the constraint solver is. This label cannot then be part of any error. Note
that this would not necessarily be the case with an initial constraint generation rule
that would generate («, ((« L ap—ae);(1id L aq))) for some term. As a matter of
fact, we could imagine a scenario where « is further constrained to, e.g., int. We
would therefore obtain a type constructor clash (between int and the arrow type
constructor) that involves [ but that does not require the accessor to be resolved.
The accessor being kept alive in this error, at the next step of the minimisation
algorithm, we would have no guarantee that it does not refer to a different binder
from the one it refers to (if referring to any) in the non filtered environment.

Thanks to the invariant that if a binder is filtered out then its bound occurrences
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are also filtered out, we can then easily compute free identifiers thanks to rule (A3)
which is the rule for an accessor for which no binder exists in the current constraint

solving context (i.e., for free identifiers) or for which the binder is hidden.

11.7.7 Discussion of the search space used by our enumer-

ator

The search space used by our enumeration algorithm is a set of filters (where a
filter is a label set). For example, given an environment e, if using? the filter
the enumeration algorithm finds a minimal error labelled by the set {/;, b} then to
search for other type errors, it generates the two filters [ U {} and 1 U {k} (if no
smaller filter is already in the search space). As a matter of fact, if another error
(different from the one labelled by {/, L}) can be found in filt(e, labs(e), I) then this
other error cannot be labelled by both /; and Iy, otherwise it has to be the minimal
type error {I;,h}. So we want to search for errors that are not labelled by 1 U {}}
and for errors that are not labelled by [ U {k} (this allows one to obtain a correct
and terminating enumeration algorithm).

A particularity of the enumeration algorithm presented in Sec. 11.7.5 is that the
search space stays ‘“relatively” small. However, because of the strategy used by the
enumeration algorithm to build new filters, it can happen that the same error is
generated twice (using two different filters). Note that even though an error can
be generated twice using the algorithm presented in Sec. 11.7.5, this cannot happen
using Impl-TES’ enumeration algorithm which differs as follows: before using a filter
I, Impl-TES’ enumeration algorithm checks whether it has already found an error
er using a filter at least as big as [ (superset of 1), and if it did it does not use [
(does not run the constraint solver) again but instead directly generates new filters
because er can also be found using /.

Note that even though the enumeration algorithm presented in Sec. 11.7.5 can
enumerate an error twice (using two different filters), it terminates because no filter
can be generated twice. (We strongly believe that the termination of our algorithm
follows from the one of HW-TES’ algorithm [57].)

Let us explain why the enumeration algorithm presented in Sec. 11.7.5 can gen-
erate an error twice. We describe a highly possible scenario. Assume that e has been
generated by our initial constraint generator for the structure declaration strdec, i.e.,

strdec + e. Then, the enumeration algorithm starts with the following transition:

(TR1) enum(e) — enun(e, &, {J})

2Given an environment e, by using a filter | we mean running the constraint solver on

filt(e,labs(e), ) which is the environment e where, among other things, the equality constraints
labelled by [ are filtered out.
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using rule (ENUM1) (see Fig. 11.12), and where the first & is the set of found errors
and {@} is the initial search space which only contains the empty filter & at the
beginning of the computation.

Let us now assume that the first found minimal error (using rule (ENUM4) in
Fig. 11.12) is labelled by the label set {l, L} (d = {l, L} in rule (ENUM4) in
Fig. 11.12). The enumeration algorithm generates then the filters {/;} (which is the
union of the filter @ and the set {}) and {l;} (which is the union of the filter &
and the set {l;}). We obtain the following transition:

(TR2) enum(e, &, {@}) — enum(e, {{ek1, {l, 4 })}, {{bt},{l4}})

Using the filter {/; } let us assume that the enumeration algorithm finds an other
minimal error labelled by the set {k, l3}. From the filter {}; }, the following filters are
then generated: {l;, b} and {l;, l3}. The search space (set of filters yet to try) is now
{{h, b}, {h, s}, {lL4}}. At this stage, the minimal type error set is {{l, l4}, {k, 5} }.

We obtain the following transition:

enun(e, {(ek1, {h, b})}, {{h},{la}})
(TR3)  —

enum(e> {<6k1> {llv l4}>> <ek27 {127 l3}>}> {{llv l2}7 {lh l3}> {l4}})

Let us assume now that using the filter {l;, b} the enumeration algorithm finds
an error labelled by the set {lj,ls}. The enumeration algorithm generates from
the filter {/;, L}, the two following filters: {l;, k, [4} which is immediately discarded
because it is a superset of the filter {l;} which is already in our search space, and
{h, bk, 5} which is not discarded and then added to the search space. The search
space is then {{4, b, 5}, {lL, 5},{ls}}. At this stage, the minimal type error set is
{{h, 4}, {k, B}, {l,5}}. We obtain the following transition:

enun(e, {er1, era}, {l, b}, {h. B}, {i}}) ery = (eky, (b, b))
(TR4) — where ¢ erg = (eko, {b, 5})
enun(e, {er1, ery, ers}, {{l, b, b}, {b, b}, {l}}) ers = (ek3, {ls; 55})

Let us assume that the enumeration algorithm does not generate any error with
the filter {4, b, l5}. It is then discarded. Assume that the enumeration algorithm
uses then the filter {/;, 5}. The enumeration algorithm has already found an error
that can be obtained using this filter: ers which is labelled by {l, 5}, and might

then generate this error a second time. If it does, we obtain the following transitions:

enum(e, {ery, erg, erst, {{lh, b, 5}, {h, 5}, {li}})

- ery = (ek1,{l, ls})
(TR5) enum(e, {ery, ere, ers}, {{h, s}, {lu}}) where § ery = (cka, {b, b5})
- ers = (ek3, {l, 5})

enum(e, {67"1, €ra, 67"3}, {{lla l37 14}7 {ll7 137 15}7 {14}})
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(ENUM4) enum(e,WjErJ {I}) —¢ enum(e,er U {<ek,3>}j/ U 7),

if (((ek, d) € e A dj(l,d))
V ((Y{eko, do) € er. ~dj(1,do)) A filt(e,labs(e), 1) ¥E™s er A (e, er) ™0, (ek, d)))

AT =(Qu{ly[1ednvlyel lygTu{l})

(a) Enumeration algorithm of Impl-TES

(ENUM4) enum(e,ﬁjw {1}) — enum(e, er U {<ek,3>},71 Ul U?g),

if filt(e, labs(e), 1) ZE% er A (e, er) ™ (ek, d)
A ={1U{l}|1edAVloel oz TU{l}}
ANy ={loU{l} |1 ednTyelndjlo d)}
A= {To | To € T A =dj(To, d)}

(b) Variant to generate each error exactly once

Figure 11.13 Variants of our enumeration algorithm

Now, let us present an alternative strategy to generate new filters. In transi-
tion (TR3) above, instead of only generating the filters {/, b} and {}, l5} from the
filter {/;} and the error {k, i3}, we also could generate the extra filters {ls, b} and
{ls, 5} (and remove {l;} from the search space) because {l4} is a filter which is yet
to try (is in the search space) and which is disjoint from the error {bk, 3} (the error
{lk, 5} can be found using the filter {l;}). Then, as before when using the filter
{l, b} (see transition (TR4) above), this variant of our enumeration algorithm finds
an error labelled by the set {ly,ls}. As before, the filter {}, b, I} is generated and
we also replace the filter {/;, 3} by the filter {l;, 5, 5} because the filter {/, 3} and
the error {ly, 5} are disjoint (we do not generate the filter {4, 5, 4} because it is a
superset of the already existing filter {l5,l;}). The error labelled by {l4, s} is then
not going to be found again. We would then, instead of the transitions as described

above, obtain the following transitions (transitions (TR1) and (TR2) stay the same):

enum(e, {er1}, {{lL},{ls}})

- er1 = (ek1, {h, l1})
enum(e,{erl,erg},{{ll,Zg},{ll,13},{14,12},{14,13}}) where €ry = <6k2,{12,13}>
- ers = (ek3, {l,l5})

enum(e, {ery, ery, ers}, {{l, b, 5}, {h, B, 5}, {l, b}, {lu, 3}})

Finally, let us formally present two alternatives of the enumeration algorithm
presented in Fig. 11.12. We only present variants of rule (ENUM4) because the
other rules stay unchanged. Fig. 11.13a presents a first variant which is used by
Impl-TES, and Fig. 11.13b presents a second variant which is the one described

above.

11.7.8 Enumerating all the errors in example (EX1)

First, let us repeat the labelled version of example (EX1) defined in Sec. 11.2:
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l
structure X = struct?
L sl
structure S = struct® datatype [’a u]® 2 UC7 end

I l 0
datatype [’at]l =T’
12 l11 l14 l13 l

valrecf = = fn T :>Te
[
val rec g17 e letl18 open® s in [f Uem}l?o end
end

It turns out that example (EX1) has only one minimal type error which is ergx

defined in Sec. 11.6.8 as the pair (ekgx, dpx) Where dgx is the following set:

{l,lu, 5,16, b7, I3, by, Lo, i, L2, lis, las g, o, bty o}

This error is already minimal when found by the enumeration algorithm and there-
fore the minimiser does not do anything in this case, but is still called by the
enumerator. Therefore we obtain the following enumeration steps (we superscript
—¢ and —¢ with the names of the rules used to obtain the provided enumeration

steps):

enum(egx)
ENUM?) enum(eEX,Q,{Q})
um(erx, {erpx}, {1} | | € dux})
enum( epx, {erpx}, @)

errors({ergx})

_(
e
_ (ENUM4)
e
_+(ENUM3)
e

_ (ENUM2)
e

11.8 Slicing

11.8.1 Dot terms

Our TES’ last phase consists of computing minimal type error slices from untypable
pieces of code and minimal errors found by the enumerator. This is performed by
the slicing function sl (defined below in Fig. 11.17). The nodes labelled by the labels
not involved in the error are discarded and replaced by “dot” terms. For example, if
we remove the node associated with the label §, (the unit expression) in [1% ()2]%
then we obtain [14 dot-e(2)]%, displayed as 1 (..) in our implementation. Dots
are visually convenient to show that information has been discarded. Fig. 11.14
extends our syntax and constraint generator to dot terms. Our constraint generator
is extended to dot terms so that every piece of our extended syntax can be type
checked (by generating constraints and by then solving the constraints), which is
needed to define type error slices and to state our minimality criteria in Sec. 11.9. We
call slice, any syntactic form that can be produced using the grammar rules defined
in Fig. 11.2 and Fig. 11.14 combined (i.e., a term as defined in Fig. 11.2). We call
type error slice, any slice for which our constraint generation algorithm (defined

in Fig. 11.7 and Fig. 11.14 combined) only generates unsolvable constraints. If we
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extension of the syntax

LabTyCon::=--- | dot-e(term)  DatName:=--- | dot-e(term) AtPat::=--- | dot—p(ﬁ)
LabDatCon ::=- - - | dot-e(term) Dec::=--- | dot-d(term) Patu=-- | dot-p(ﬁ)
—_— —_—
Ty :=--- | dot-e(term) AtExp ::=--- | dot-e(term)  StrDec:=--- | dot-d(term)
ConBind ::=--- | dot-e(term) Exp::=---| dot-e(term)  StrExp:=--- | dot-s(term)
extension of the constraint generator
(G23) ept > e < ept > (v, €)
(G24) dot-d((termy, ..., termy)) > [e1;- - ;en] < termy &> eg A -+ A termy, > e, Adja(er, ..., e)
(G25) dot-p({paty,...,pat,)) > (o, e1;---;e,) < paty &> ex A--- A pat,, > e, Adja(er,. .., ey, Q)
(G26) dot-s((termy, ..., termy)) > (ev, [e1;- - ;en])
< termy > ep A--- A term,, > e, Adja(er, ..., e,, ev)
(G27) dot-e((termq, ..., termy,)) & {(a, [e1; - ;en])
< termy > e A -+ A termy, > e, Adja(er, ..., en, )

Figure 11.14 Extension of our syntax and constraint generator to “dot” terms

restrict ourselves to structure declarations, formally a slice is a strdec and a type

error slice is a strdec such that —solvable(strdec).

11.8.2 Remark about the constraint generation rules for dot

terms

Fig. 11.14 presents constraint generation rules for the different dot terms of our
syntax. Rules (G24), (G26), and (G27) all wrap the environments generated for the
terms wrapped into the dot constructors, into a local environment not visible from
the outside of the form [e]. Rule (G25) for dot patterns stands out by not generating
an environment of the form [e]. As of matter of fact a dot pattern constructor has
a different meaning as the other dot constructors. Such a dot pattern term means
that information has been sliced away but that the remaining information might
still be in a pattern at a binding position. Such a pattern dot term does not define

a local scope as the other dot terms do.

11.8.3 Alternative definition of the labelled external syntax

We will now provide an alternative generic definition of the external labelled syntax
presented in Fig. 11.2. This definition helps defining our slicing algorithm in a
compact way. First, Fig. 11.15 defines our labelled abstract syntax trees. A node
in a tree tree can either be a labelled node of the form (node, [, @), an unlabelled
“dot” node of the form (dot, tr_%)>, or a leaf of the form id.

Fig. 11.16 defines the function toTree which associates a tree with each term
(defined in Fig. 11.2). We also define toTree on sequences of terms.

The function getDot generates dot markers (terms in Dot) from nodes as follows:
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class € Class ::= 1Tc | 1Dcon | ty | conbind | datname dot € Dot ::=dotE | dotP

| dec | atexp | exp | dotD | dotS

| atpat | pat | strdec | strexp node € Node ::= (class, prod)
prod € Prod ::=tyArr | tyCon tree € Tree :: <n0de l, Feé}

| conbind0f | datnameCon | <d0t tree}
| decRec | decDat | decOpn | id

| atexplet | expFn

| strdecDec | strdecStr

| strexpSt

|id | app | seq

Figure 11.15 Labelled abstract syntax trees

Labelled type constructors

toTree(tc!) = ((1Tc, id), I, (tc))
Labelled datatype constructors

toTree(dcon') = ((1Dcon, id), I, {(dcon))
Types

toTree(tv!)
toTree(ty, 4 tyQ)
toTree([ty ltc]!)
Constructor bindings

toTree(dcon!)
toTree(dcon of ! ty)

{(ty,id), I, (tv))
({ty, tyArT), [, (toTree(ty, ), toTree(ty,)))
({ty, tyCon), I, (toTree(ty), toTree(ltc)))

({conbind, id), I, (dcon))
({conbind, conbind0f), [, (dcon, toTree(ty)))

Datatype names
toTree([tv tc]!) = ((datname, datnameCon), [, (tv, tc))

Declarations
toTree(val rec pat L exp)

toTree(datatype dn 4 cb)
toTree(open! strid)

({dec,decRec), [, (toTree(pat), toTree(exp)))

l
({(dec,decDat), I, (toTree(dn), toTree(cb)))
({dec,decOpn), I, (strid))

Expressions
toTree(vid!)
toTree(let! dec in exp end)

atexp, id), I, (vid))
atexp, atexpLet), [, (toTree(dec), toTree(ezp)))

toTree(fn pat 5N exp)
toTree([exp atexp]’)

exp, expFn), [, (toTree(pat), toTree(ezp)))
exp, app), [, (toTree(exp), toTree(atezp)))

(
(
(
(

Patterns
toTree(md )
toTree(Hdcon atpat])

({atpat, id), [, (vid))
({pat, app), I, (toTree(ldcon), toTree(atpat)))

Structure declarations

toTree(structure strid L strexp) = ((strdec, strdecStr), [, (strid, toTree(strezp)))
Structure expressions

toTree(strid") = ((strexp, id), , (strid))

toTree(struct! strdec; - - - strdec,, end) = ((strexp, strexpSt), I, toTree((strdeci, ..., strdecy)))
Term sequences

toTree((termy, ..., termy,)) = (toTree(termy), ..., toTree(termy,))

Dot terms

toTree(dot- e(term)) = (dotE, toTree(term)>

toTree(dot- d(term)) = (dotD, toTree(term)>

toTree(dot- p(ant))) = (dotP, toTree(F))

toTree(dot- s(%)) = (dotS, toTree(term)>

Figure 11.16 From terms to trees
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getDot((1Tc, prod)) =dotE getDot((atexp, prod)) =dotE
getDot((1Dcon, prod)) =dotE getDot(({exp, prod)) =~ =dotE
getDot((ty, prod)) =dotE getDot((atpat, prod)) = dotP
getDot(({conbind, prod)) = dotE getDot((pat, prod)) = =dotP
getDot((datname, prod)) = dotE getDot((strdec, prod)) = dotD
getDot((dec, prod)) =dotD getDot((strexp, prod)) = dotS

This function is, among other things, used by rule (SL1) of our slicing algorithm

defined below in Fig. 11.17 to generate dot nodes from labelled nodes.

11.8.4 Tidying

In addition to turning nodes not participating in type errors into dot nodes, our slic-
ing algorithm uses two tidying functions flat and tidy. The flattening function flat
flattens sequences of terms (term). For example, flattening (..1..(....)..) results
in{..1..0..). Not all nested dot terms are flattened. In order not to mix up bindings
in a slice, we do not let declarations escape dot terms. For example, we do not flatten
(..val x = false..(..val x = 1..)..x + 1..)t0o(..val x = false..val x = 1..x + 1..)
because they have different semantics. The first slice is not typable but the second
is. In the first slice x’s last occurrence is bound to x’s first occurrence while in the
second slice x’s last occurrence is bound to x’s second occurrence.

Let isClass(tree, { class} U class) be true iff tree = ({class, prod), l,@). This
predicate is used to check the class of the root node of a tree. Let declares(tree) be
true iff isClass(tree, {dec, strdec, datname, conbind}) and let pattern(iree) be true
iff isClass(tree, {atpat,pat}). The classes dec, strdec, datname, and conbind are
associated (using the toTree function) with terms for which our initial constraint
generation algorithm generates binders.

Let us define our flattening function flat as follows:

flat(()) =

(treeq, .. ., tree@@ﬂat(f?e_e)),
if tree = (dot, (t ..o treey,
fIat((tree>@Fee>): if tree = {dot, {frecr, ..., treen)) —
and (Vi € {1,...,n}. ~declares(tree;) or tree = ())
(tree}@flat(f?cz), otherwise
The condition “Vi € {1,...,n}. ~declares(tree;)” ensures that bindings are not

mixed up as explained above. However, flattening the last dot term (if it actu-
ally is a dot term) cannot mix up the bindings because there is no identifier left
to bind. Therefore, flattening (..val x = 1..(..val x = true..)..) would lead to
(..val x = 1..val x = true..). We however have not yet found a concrete exam-
ple where this situation occurs.

We also define the function tidy to tidy sequences of declarations in structure

expressions as follows:
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N (node, l,sll(?ee)j)), if I € [ and getDot(node) # dotS
(SL1) sl({node, I, tree), 1) = § (node, 1 tidy(sll(Fee> 1)), if | € [ and getDot(node) = dotS

s

(getDot(node), flat(sly(tree, 1)), otherwise

(SL2) sly({dot, (treey, ..., tree,)), 1) = (dot,flat({sla(tree1, 1), ..., sla(tree,, 1))))
(SL3) sla({dot, (treey, ..., tree,)), 1) = (dot,flat({sla(tree1, 1), ..., sla(tree,, 1))))
(SL4) sly ({node, 1, tree), 1) =sl((node, 1, tree), 1)

(SL5) sla((node, 1, tree), 1) =sl((node, I, tree), 1)

(SL6) sly ({treey, ..., tree,), ) = (sli(tree, 1), ..., sli(tree,, 1))

(SL7) sla({treeq, . .., tree,), ) = (sla(treey, 1), ..., sh(tree,, 1))

(SL8) sly (id, ) —id

(SL9) sly(id, 1) = (dotE, ())

Figure 11.17 Slicing algorithm

tidy(() = O

tidy(((dotD, tree1), (dotD, trees))@trec)
= tidy(((dotD, Fee)l@ﬁee)gﬁ@ﬁee}), if Yiree € ran(Feél). —declares(tree)
. —
tidy(((dotD, @))Qtree)
= tidy(?ee)), if none of the above applies
tidy((tree>@ﬁ)
= <tree>@tidy(?ee>), if none of the above applies

11.8.5 Algorithm

Fig. 11.17 formally defines our slicing algorithm. Note that rule (SL9) generates
the dot marker dotE, but we could have used any of the terms in Dot because the
flattening function flat discards such terms. The functions sl; and sl, are defined on
trees but also on sequences of trees in rules (SL6) and (SL7). Finally, let sl(strdec, )
be sl(toTree(strdec), ).

11.8.6 Generating type error slices for example (EX1)

First, let us repeat the labelled version of example (EX1) called strdecgx and defined
in Sec. 11.2:

!
structure X = struct®
l Is I
structure S = struct” datatype [’au]l = Uc7 end

ls I
datatype [*at]P =1

2 [ l14 l 15
valrecf1 4 fn p :1§Te
. b1 oo
val rec gp "2 1eths opentt® S in [fel U_"]% end

end
We saw in Sec. 11.5.5, that, given example (EX1) (i.e., given strdecgx), our
initial constraint generation algorithm generates the environments egx. We saw in

Sec. 11.7.8, that, given egx, our enumeration algorithm enumerates only one error,

namely ergx.
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((strdec, strdecStr), 1, (X, ((strexp, strexpSt), b, (treey, trees, trees, treey))))

where tree; = ((strdec, strdecStr), Is,
S,
<<<strexp, strexpSt), l,
({(dec,decDat), Is,
({{datname, datnameCon), ls, (’a, u)), ((conbind, id), Iz, (U))))))))
trees = ((dec,decDat), Is, (((datname, datnameCon), ly, (’a,t)), ({conbind, id), Lo, (T))))
trees = ((dec, decRec), 11,
(((atpat, id), ha, (f)),
((exp, eprn>, hs, (((atpat, id>a ha, <T>>7 <<atexp, id>7 hs, <T>>>>>>
treeq = {(dec, decRec), lig,
(((atpat,id), b7, (g)),
({atexp, atexplet), lis,
({(dec, decOpn), lg, (8)),
<<exp, app), ko, (((atexp, id>a b, <f>>7 <<atexp, id>7 b2, <U>>>>>>>>

Figure 11.18 Result of applying toTree to strdecgx

In Sec. 11.6.8, ergx is defined as (ekgx, dpx) where dgx is the dependency set

1B, Ly I, b, bz, Is, by, ho, by, o, B, ha, Do, ko, b1, ba ). Let us present the slice that our

slicing algorithm computes when given ergy, i.e., we compute sl(strdecgx, dgx).

Fig. 11.18 shows the tree (which we call treegx) obtained when applying toTree

to strdecgx. Finally, sl(toTree(strdecgx), dgx) returns the following tree where tree,

and treey are the ones defined above, and treel and treelj, are obtained from trees

and treey respectively:

(dotD, (treeq, trees, treey, treely))

where treef = ({dec,decRec), li1,
({(atpat, id), ha, (f)),
({exp, expFn), L3, (((atpat, id), ha, (T)), (dotE, ())))))
treej = (dotE, ({(dec, decOpn), lg, (S)),
({exp, app), ho, (((atexp, 1d), b1, (£)), ((atexp, id), bo, (U))))))

This slice is displayed as follows:
(..structure S = struct datatype ’a u = U end
..datatype ’a t =T

..val rec £ = fn T => (..)
..{(..open S..f U..)..)

11.9 Minimality

Informally, bindings is a function on environments that extracts the bindings between

accessors and binders (by keeping track of the bindings generated at constraint solv-

ing by rules (Al) and (A2)). We extend this function to a function on our external

labelled syntax (this extension uses our constraint generator). For example, if ezp is
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let val x = true in let val x = 1 in x end end, and the label [; is associated with
the ith occurrence of x then bindings(exp) = {(k, Is) }.

We define the sub-slice relation as follows: strdec; Ty strdecy iff sl(strdecy, ) =
strdecy and bindings(strdecy) C bindings(strdecs).

Let strdecs be a minimal type error slice of strdecy iff —solvable(strdecsy), strdece Ty
strdecy, and for all strdec’ if strdec’ Cy strdecy for some 1 and strdec’ # strdecy then
solvable(strdec’).

We consider minimality as a design principle for our TES even though minimal
slices do not always seem to be the correct answer to type error reporting (e.g., as
explained in Sec. 15.1, for record field name clashes we report merged minimal type
error slices).

For Core-TES (the subset of our TES presented in this section), we believe the
following holds: a slice strdec’ is a minimal slice of strdec iff (strdec’, ek, vid) €
tes(strdec). We have not formally proved this statement for diverse reasons. First,
our TES (Form-TES as well as Impl-TES) is in constant change and proving the
minimality of one of its versions would not guarantee the minimality of the others.
Moreover proving the minimality of Core-TES would not guarantee the minimality
of TES (of Form-TES or of Impl-TES) and proving the minimality of TES is beyond
the scope of this thesis. Then, as mentioned above, minimality is only a design
principle. Let us finally stress that we feel improving the range and quality of our
slices is more important than ensuring their minimality in particular.

Note that, given an untypable piece of code, a type error slice will always contain
exactly the portion of the piece of code required to explain the error reported by the
type error slice. Moreover, if a part of a slice is not necessary to explain the error,
minimisation will remove it. Therefore the minimality of a type error slice is not

related to its size. The size of a minimal type error slice depends on the error itself.

11.10 Design principles

While developing our TES we discovered, developed, and followed the following
principles.

(DP1). Each syntactic sort of constraint terms should have a case ranging over an
infinite variable set. This allows incomplete information everywhere, which allows
one to consider every possible way of slicing out parts of the program. This is essen-
tial to get precise slices that include all relevant details and exclude the irrelevant.
Thus, the sorts u, 7, and e have the variable cases d, a;, and ev.

(DP2). Each syntactic sort of constraint terms should support dependencies.
This allows precise blame, which enables precise slicing. Thus, sorts u, 7, o, and e
have dependency cases (i, d), (r,d), {0, d), and (e, d).

(DP3). Our initial constraint generation rules return a main result (a type or

135



Chapter 11. Technical design of Core-TES

an environment) and sometimes also an environment result (used for constraints
and bindings), i.e., our initial constraint generation rules return cgs as defined in
Fig. 11.5.1. The generated constraints may connect information from the results for
a program node’s subtrees to the other subtrees or to the node’s results.

The principle is that these connections should generally be via constraints that
carry the syntax tree node’s label and that are “shallow”, i.e., contain only con-
nection details and not constraints from program subtrees (see LabCs’s definition in
Sec. 11.5.2). Fresh variables should be used as needed. This allows a program syntax
node to be “disconnected” for type errors that depend on the node’s details, while
still keeping type errors that arise solely due to connections between environment
accessors and bindings that pass through the node.

For example, rule (G22) of our initial constraint generation algorithm defined
in Fig. 11.7 in Sec. 11.5.1 builds the unlabelled constraint ev’=(e;;---;e,). This
“deep” unlabelled constraint packs together a sequence of environments from the
declarations that are the structure’s body. The resulting environment is connected
to the main result by the labelled shallow constraint ev L v,

(DP4). Duplicating constraints should be unnecessary. This seems obvious, but
some previous formalisms seem too weak for the needed sharing. For example,
rule (G22) of our initial constraint generation algorithm defined in Fig. 11.7 in
Sec. 11.5.1 builds a structure’s environment as the sequential composition of its
component declarations’ environments: e;;---;e,. Here, the first declaration’s en-
vironment e; is available for subsequent declarations and also in the result (if its
bindings are not shadowed) which avoids duplicating it. A previous version of our
system had a weaker constraint system with let-constraints similar to those of Pot-
tier and Rémy [116], and the best solution we could find duplicated the constraints
for each declaration’s bindings, causing severe performance problems. Sec. 12.1.7
discusses further this issue.

(DP5). Dependencies must be propagated during solving exactly where needed.
If dependencies are not propagated where they should go, minimisation could over-
minimise yielding non-errors. This can be detected. More insidiously, propagating
dependencies where they are unneeded can keep alive unneeded parts of error slices
much longer during minimisation, resulting in severe slowdowns. Because correct
results happen eventually, detecting such bugs is harder so this requires great care.
For example, an earlier version of our solver copied dependencies from declarations in
a structure to the structure’s main result. The minimiser had to remove declarations
one at a time. Debugging this was hard because only speed suffered. Furthermore,
the system should yield error slices (before minimisation) that are as close to minimal
as can be reasonably achieved. If constraint solving yields a non-minimal error slice,
then solving steps must have annotated a constraint with a location on which it

does not uniquely depend.
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(DP6) Sec. 11.7.6 already mentioned this principle. In the labelled external
syntax, identifiers which can occur at bound positions must be labelled by a unique
label that does not label a piece of code larger than the identifier itself. Moreover,
for those labelled identifiers, the constraint generator should in general generate
no more than a labelled accessor. (Note that to simplify the presentation of Core-
TES we do otherwise for structure openings (see constraint generation rule (G19) in
Fig. 11.7) but this is in general unsafe.) The risk of not following this principle is
that during minimisation, a bound occurrence of an identifier can be kept in a slice
while its binding occurrence is discarded. This can then result in the identifier at a
bound position being bound to a different binding occurrence than the one to which
it is originally bound in the original piece of code. This can then lead to generating
wrong identifier bindings and finding false errors.

(DP7) Environment variables, when not generated as part of a shallow environ-
ment in an equality constraint (e.g., as the direct left or right-hand-side of an equality
constraint), should always be labelled. As explained in Sec. 11.3, an unlabelled en-
vironment variable is a constraint that can never be filtered out and has to always
be satisfied (independently from any program location). Because an environment
variable shadows its context (i.e., in (ev;e), the environment variable ev shadows
e), if such an environment variable is unlabelled and is not constrained to be equal
to anything, it can only shadow its context whatever filtering is applied on it. This
behaviour is undesirable because the shadowing of an environment should in general
be dependent on a program location (see, e.g., constraint generation rule (G19) in
Fig. 11.7 for open declarations).

However, in our TES, at constraint generation, it happens that most of the en-
vironment variables not generated as part of a shallow environment in an equality
constraint cannot shadow their environments. It is the case for rules (G4), (G17)
and (G18). (Note that in these rules, each generated environment variable has to
be labelled to carry the dependency on the program point responsible for its gen-
eration.) Each of these rules generates an environment variable that is constrained
by an unlabelled equality constraint on the environment variable itself (these unla-
belled equality constraints cannot be filtered out). If these equality constraints were
labelled, but the environment variables were not, the equality constraints could be
filtered out and the environment variables could then be unconstrained and there-
fore shadow their contexts. Given a piece of code, for rule (G17), e.g., this would
mean that filtering out the constraints associated with a recursive value declaration
in the piece of code would allow this declaration to shadow its entire context in the
analysed piece of code which is undesirable. For example, when slicing out the re-
cursive value declaration in val x = 1 val rec f = fn x => x val y = x x, we do not
want it do shadow val x = 1 (i.e., we do not want the environment generated for

val rec f = fn x => x to shadow the environment generated for val x = 1 when the

137



Chapter 11. Technical design of Core-TES

label associated with val rec f = fn x => x is sliced out in the environment gener-
ated for the entire piece of code). Rule (G19) stands out by generating environment
variables that are constrained by labelled accessors. Hence, if this rule was generat-
ing ((1strid = ev);ev) instead ((1strid = ev);ev!) (where the environment variable
is unlabelled), ev would then be totally unconstrained when filtering out the acces-
sor. This would disallow one to slice out open declarations. Worse, this could lead to
finding typable type error slices. Let us illustrate this last point with the following

example:

structure S = struct end
val x = 1
open S

val y = x 1

Note that the structure s is empty, so open S does not do anything and especially
x is not rebound. Let us assume that our constraint generation algorithm generates
the environment e for this sequence of declarations. Our enumeration algorithm

would find a slice as follows:

(..val x = 1

Cx (L))

Now, filtering out the constraints in e w.r.t. this slice would lead to an environ-
ment e’ where the unlabelled environment variable generated for open S (assuming
that unlabelled environment variables are generated for open declarations instead
of labelled environment variables as we do in our TES) shadows the environment

generated for x’s declarations. The environment e’ would then be solvable.
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Related work

12.1 Related work on constraint systems

12.1.1 Constraint based type inference algorithm

Milner [105] proved the soundness of the semantics of a small language (application,
abstraction, conditional, recursion, local declaration) w.r.t. a typing relation. We
refer to this language in this document as core ML. This result allows Milner to state
that the well typed property is enough to prove the well-defined behaviour of pieces
of code, for a certain notion of behaviour. Milner’s method is based on three steps.
First he provides a denotational semantics of his language. Milner defines wrong as
a value in his denotational semantics. Milner points out that wrong “corresponds
to the detection of a failure at run-time” where in his language “the only failures
are the occurrences of a non-Boolean value as a condition of a conditional, and
the occurrence of a nonfunctional value as the operator of an application”®. This
semantics allows one to check some type constraints such as: the first parameter
of a conditional expression has to be a Boolean. However, this semantics does not
allow one to check some other constraints such as: the two branches of a conditional
must have the same type. The second step of Milner’s method consists in defining
types and a typing relation between the values of his semantics and types to ensure
the consistency of the typing of an expression, meaning that, e.g., a function cannot
sometimes return a Boolean and sometimes return an integer when applied to, say,
an integer. Milner provides an example of values that do not have types (such as
the value wrong). One of them can be explained as follows: the value (semantics)
of the function “Az.if x then 1 else true” does not have any type. The third step
of Milner’s method is to define a type assignment system that assigns types to
expressions. Finally, Milner’s soundness results expresses that if a type can be

assigned to an expression (if the expression is well-typed) then this type can also be

'Milner’s theorem is well known under the slogan “well-typed expressions do not go wrong”
where wrong is a value of his semantics with which no type can be associated.
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assigned to the semantics of the expression (so the semantics of the expression cannot
be the wrong value). An interesting aspect in Milner’s paper is that when giving
an informal presentation of his type inference algorithm (W) he separates constraint
generation and constraint solving (these are interleaved in the W algorithm which
leads to the well-known left-to-right bias).

Aiken [1] provides three reasons in favour of constraint-based program analyses
(even though Aiken does not restrict himself to type constraints and to the type
inference problem we provide our understanding of the advantages Aiken describes
in the context of type inference). (1) “Constraints separate specification from im-
plementation”. This says that one obtains a clear separation between constraint
generation and constraint solving where the constraint generation phase is regarded
as producing a specification of the information that one wishes to analyse, and
where the constraint solving phase is regarded as the implementation to compute
this information. (2) “Constraints yield natural specifications”. This says that each
analysed piece of syntax is usually translated into (local) primitive constraints, each
expressing a particular feature of the analysed piece of syntax. Moreover, let us
add that in many constraint systems (see below for examples of such systems), new
forms of constraints are sometimes introduced to deal with particular features of the
analysed language and to deal with them in a particular way, and these constraints
are usually used to translate more than one feature of the analysed language. Given
a piece of code, the generated constraints are packed in a way that gives a constraint
representation of the piece of code. (3) “Constraints enable sophisticated implemen-
tations”. For example, various constraint solvers extending the Martelli-Montanari
algorithm [103] have been designed to define different implementations.

As early as 1987, Wand [140] introduced a constraint based type inference algo-
rithm for the simply typed A-calculus to provide an alternative proof of the decid-
ability of the type inference problem for the simply typed A-calculus. Wand reduced
the type inference problem to a unification problem by first converting A-terms into
constraint sets and by then solving the constraints. Wand’s system is simple, he
does not consider polymorphism and his constraints are only equality constraints
(the only constraints required in his setting). His constraint generation algorithm is
based on a type environment that associates types (type variables) with identifiers.

Henglein [66] considers the type inference problem for two calculi: the Milner
calculus [105, 32] and the Milner-Mycroft calculus [110]. As in the original sys-
tems, the considered languages contain a fixpoint operator and a non-recursive
“let” construct (the two calculi differ on the semantics of the fixpoint operator
which only allows monomorphic recursion in the Milner calculus and polymor-
phic recursion in the Milner-Mycroft calculus). Henglein formulates the type in-
ference problem in these calculi using a constraint based approach. First equal-

ity and inequality constraints are generated. Inequalities are used to deal with
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polymorphism (to encode type schemes) and therefore to enforce the monomor-
phism of A-bindings (fn-bindings in SML). For example, using SML’s syntax, in
fn z => let val rec f = fn x => z x in (f (), f true) end, f’s first occurrence binds
both £’s second and third occurrences. For each of the bindings, Henglein generates
inequalities on z’s (monomorphic) type which eventually lead to an error because
through the generated equality and inequality constraints, z’s type is constrained to
be both a function that takes a unit (thanks to a first inequality set generated for
the binding of £’s second occurrence to £’s first occurrence) and a bool (thanks to a
second inequality set generated for the binding of £’s third occurrence to £’s first oc-
currence). Then, Henglein presents how to compute most general semi-unifiers from
equality and inequality constraints. Unfortunately, Henglein’s algorithm, based on
semi-unification, is undecidable in the general case [87, 67].

Kanellakis, Mairson and Mitchell [86] consider the same algorithm as Wand [140].
They propose a type inference (they instead use the terminology “type reconstruc-
tion”) algorithm for the A-calculus extended with polymorphic (non-recursive) let-
expressions (core ML) which consists of reducing an expression to a let-free expression
(by reducing all the let-expressions) and then use Wand’s algorithm on the obtained
A-expression. This algorithm, obviously inefficient in practice, intuitively gives the
DEXPTIME-completeness of the type inference problem for core ML.

Pottier [114] defines a type system which is based on, among other things, con-
strained types, which are types depending on subtyping constraints. These forms are
not allowed in types but only in type schemes and in type judgements (a constrained
type is a component of a type judgement). The language considered by Pottier is a
core ML-like language with (non-recursive) let-polymorphic expressions and subtyp-
ing. Pottier’s system is based on a similar system by Eifrig, Smith and Trifnov [39]
(they use a notion of recursively constrained type which is a type constrained by a
set of inequality constraints which can themselves be recursive). Pottier mentions
that Eifrig, Smith and Trifnov’s system, “although theoretically correct, depends on
type simplification in order to be usable in practice” (this is due to the fact that
their polymorphic variable rule duplicates the constraints generated for polymorphic
values without simplifying them first). Pottier’s solution to avoid a combinatorial
explosion in the number of constraints is to allow the simplification of constraints
during constraint generation. Moreover, Pottier does not use a notion of solvability
of generated constraints but instead uses a notion of consistency. With the notion
of consistency, no “solution” of a constraint set is computed?. Pottier proves that
the notion of consistency is equivalent to the notion of solvability. He defines a

notion of entailment which is used by his substitution and subtyping rules. An issue

2Eifrig, Smith and Trifnov [39] write: “we expect general union and intersection types would
be required to express the solution of constraints as types, but we do not wish to pay the penalty
of having these types in our languages”. The notion of consistency is then expected to be simpler
to deal with than the notion of solvability.

141



Chapter 12. Related work

with Pottier’s approach is that, as in many other approaches, to avoid constraint
duplication, constraint generation and constraint solving are mixed.

Sulzmann, Odersky and Wehr [112] define a generic type inference algorithm
for the HM(X) system. This system is a “general framework for Hindley/Milner
style type systems with constraints”. Sulzmann, Odersky and Wehr say about their
system that “particular type systems can be obtained by instantiating the param-
eter X to a specific constraint system” and that “the Hindley/Milner system itself
is obtained by instantiating X to the trivial constraint system” (the standard Her-
brand constraint system). They also extend their framework with subtyping. Their
type inference algorithm mixes constraint generation and constraint solving. Con-
straint solving is performed via a “normalization” function. Each time an already
generated constraint is extended with a new constraint (constraints are packed to-
gether via a conjunction operator which can be seen as the union operator in their
context), the extended constraint is normalised. Type schemes in their system can
either be monomorphic types or constrained type schemes of the form Va.C' = o
where @ is a type variable set, C is a constraint and o is a type scheme (similar
forms are used by, e.g., Eifrig, Smith, and Trifonov [39], Pottier [114], or Dug-
gan [36]). Because of the way normalisation is used, during type inference, the
constraints of the generated type schemes are already simplified. Sulzmann [129]
calls such a use of normalisation, an eager use. Sulzmann [129] defines variants of
the generic type inference mentioned above where normalisation is only used before
inferring the type of let-expression’s bodies and at the end of the type inference pro-
cess only. This is achieved by defining an extra rule (and relation) that normalises
constraints and which is to be used when needed (such a use of normalisation is
called by need). In their system, normalisation is required before inferring the type
of let-expression’s bodies because using normalisation only at the end of the type
inference process leads to the separation of the constraint generation and the con-
straint solving phases but also to an inefficient type inference algorithm. Sulzmann,
Muller and Zenger [128, 129] present a variant of the inference algorithm men-
tioned above where constraints are preferred over terms. For example, informally,
constraint-based systems are more expressive because one can devise a simple con-
straint language and a simple constraint generation algorithm that associates the
constrained type ({ay=an—a, ay=int, ap=int}, o) (where, using our notation, the
first component of the pair is a constraint set that constrains the second compo-
nent of the pair which is a type variable) with the application (1 1). However, for
this expression to be typable, one needs more complex type constructors such as
the ones used by Neubauer and Thiemann [111]. Also, because Sulzmann, Muller
and Zenger’s type inference algorithm is not based on substitutions anymore (but
on constraints), they obtain simpler results (e.g., their completeness of inference)
than with Sulzmann, Odersky and Wehr’s system [112]. Miiller [109] claims that an
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advantage of HM(X) is that “it provide generic proofs of correctness, principality,
and completeness of type inference”.

We discuss other constrained based systems below, by Hage and Heeren [65, 63,
58, 60], by Miiller [108], by Gustavsson and Svenningsson [55], and by Pottier and
Rémy [116, 115].

12.1.2 Constrained types

Pottier defines a system [114], similar to the one used by Eifrig, Smith and Tri-
fonov [39], that uses constrained types of the form 7|C, where 7 is a type and C
is a (subtyping) constraint set. These forms are not allowed in types but only in
type judgements and in type schemes which are of the following form: Va.7|C (sim-
ilar to those used by Pottier and Rémy [116]) where @ is a set of type variables.
As opposed to other systems [112, 78], Pottier allows constrained types in typing
judgement because in his system a typing judgement is of the form A + e : 7|C
where A is a type environment and e is an expression of the external syntax.

Odersky, Sulzmann and Wehr [112] and Kaes [78] also consider constrained types
in their type schemes. However, because they use a different presentation style of
their constraint generation algorithm, constrained types are not allowed in type
judgements (a constrained type is not a component of a type judgement). Instead
of writing A F e : 7|C (using Pottier’s syntax) they would write such a typing
judgement as follows: C, A e : 7 where C also constrains 7 but where such a
constrained form is not explicitly defined.

In our constraint system, types can only be constrained via equality constraints
as in the following environment: e;(73=7y) where both 7, and 7, are constrained by
the environment e. For example, our constraint generation rule (G3) for expression
applications generates an environment of the form e;es;(ay L ap—a) where ¢
and oy are generated for the function part of the application, and where ey and
ag are generated for the argument part of the application. In this environment,
both e; and ey constrain both «; and as even though a; only depends on e; and
as only depends on e;. We could then imagine a constraint system where we allow
constrained types to be types. Constrained types could be of the form (e;7). This
would allow one to generate instead, for expression applications, an environment of
the form (e;a1) L (e2;00)—a. The drawback of such a system is that types are not

shallow anymore which complicates constraint filtering and solving.

12.1.3 Comparison with Haack and Wells’ constraint sys-

tem

The method of Haack and Wells (HW-TES) makes use of intersection types. A type
ty in HW-TES can either be a type variable, the integer type or an arrow type. A
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type set is denoted by S. An intersection type is denoted AS. HW-TES’ constraint
generation algorithm gathers the types of bound occurrences of identifiers in type
environments which associate intersection types with identifiers.

Let us consider the following simple piece of code: x x. Given this piece of
code, HW-TES generates the triple (I';, a,, C,), where the type environments I',,
the type variable a5, and the constraint set C, are described below. First, the type
environment I', is of the form {x+ A{ay, ap}}® where a; # as, a; is a type variable
generated for x’s first occurrence, and a, is a type variable generated for x’s second
occurrence. The constraint set €, contains, among other things, constraints on a;

. . h b2 I3 I3 I3
and ag, and is of the following form: {a; = a{, ap = a}, a] = az— a4, ab = ag, a = as}

where [; is x’s first occurrence’s label, l is x’s second occurrence’s label, and I3 is
the label associated with the application.

Let us now consider a monomorphic binding of these two occurrences of x. Let
x be bound via a monomorphic fn-binding as follows: fn x => x x. Given this piece
of code, HW-TES’ constraint generation algorithm generates the triple (I, @, Cpn)
(where “m” stands for “monomorphic”). The type environment I',, is @ and C,, is
of the following form: C,U {aé ay, aé ag, G— axé am }, where [ is the label labelling
the fn-expression, and where a; and ay are obtained from I',.

Let us now consider the polymorphic case. First, assume that given fn y => z y
(this piece of code is reused in the let-expression presented below), where z is a free
variable, HW-TES’ constraint generation algorithm generates the following triple:
(I',, a,, C,). The type environment I', is of the form {z— A{as}}. Let us now con-
sider the following polymorphic let-binding of x: 1let val x = fn y => z y in x x end.
Now, because I', (defined above) associates two type variables with x, HW-TES’
constraint generation algorithm generates two “fresh” copies of (I',, a,, C.) namely
(I, a., C!) and (I, a”, C!). The type environments [, and I/ are of the form

{z—N{dal}} and {z— A{a!}} respectively. It finally generates the following triple
for the entire let-expression: (I, AI'7, o', C,UC]UC/ U{agéal, al Ly, d é%}) where
[ is the label labelling the let-expression, where a; and ay are obtained from I';, and
where IV AT = {z— ASUSy | I".(z) = ASIATY(2) = ASo} = {z+— N{a, al}} (zis
Haack and Wells’ notation for program variables). Note that polymorphism involves
heavy constraint and type environment duplications which leads to a combinatorial

constraint size explosion at constraint generation.

3Environments in HW-TES are total functions from identifiers to intersection types. Therefore,
the environment {x+ A{ay, az}} denotes the total function that associates A{a1, az} with x and
that associates A{} with any identifier different from x.
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12.1.4 Comparison with Hage and Heeren’s constraint sys-

tem

The approach followed by Hage and Heeren [65, 63, 58, 60] is as follows: given a piece
of code, first a constraint tree is generated, then this constraint tree is converted into
a list (many conversions are possible which result in different lists), and finally the
constraints are solved. Because different conversions of trees into lists are allowed,
their system allows them to emulate algorithms such as W [32], M [98] or UAE [147].

In their system, a constraint tree can among other things (we only present some
of their constructs), be a strict node as follows: T} < Ty where T; and T, are
constraint trees. A constraint can be attached to a tree using for example the
following construct: ¢ ¢ T, which makes the constraint ¢ “part of the constraint
associated with the root of 77 [60]. A tree can also pack together trees as follows:
¢ Ty,..., T,e A constraint itself can among other things be: an equality constraint
T = Ty, a generalisation constraint 0:=GEN(M , 7) where M is a (monomorphic) type
variable set and ¢ is a scheme variable, or a instantiation constraint 7 < o. Hage
and Heeren [60] say about their generalisation and instantiation constraints: “The
reason we have constraints to explicitly represent generalization and instantiation
is the same as why, e.g., Pottier and Rémy do [116]: otherwise we would be forced
to (make a fresh) duplicate of the set of constraints every single time we use a
polymorphically defined identifier”.

Their equality types are similar to ours. Their generalisation constraints are
related to poly environments but are restricted to types. Another difference is that
the monomorphic type variable set that are not allowed to be quantified over when
generating a type scheme is part of a generalisation constraint in their system while
in our system, such a set is computed at constraint solving. Their instantiation
constraints are related to our accessors but they do not mention external syntax
(external identifiers) and do not have identifier bindings in their constraint language.

Trees in their system can be regarded as sophisticated constraints. They are
used to provide extra structure on constraint sets. In our system a single equality
constraint can be an environment. Similarly, in their system a single constraint
can be a tree. Their strict nodes of the form 77} < T, can be seen as a restricted
version of our composition environments of the form ej;e;. Environments of the
form eg;e, also enforce e; to be solved before e;. A major difference is that in
our system, not only in an environment ej;es, the environment e; has to be solved
before ey but also ey, looks up in e; to access binders. Also a major difference
between trees and constraint/environments is that in their system trees do not act
as environments, they do not allow one to associate static semantics with identifiers.
We do not allow non-strict nodes (such as their nodes of the form ¢ Ty,..., T, @)

because our system does not rearrange the order in which constraints are initially
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generated. Their constraint rearrangement mechanism can be seen as a restriction
of our enumeration algorithm.

Enforcing to solve constraints before other introduces a bias. Our TES is unbi-
ased thanks to our enumeration algorithm which, given an environment e, run our
constraint solver on the different environments that can be obtain from e using our
filtering function. We believe that Hage and Heeren only partially remove the bias
thanks to their ordering strategies.

The main difference between their transformation of a type inference problem
into a constraint solving problem and ours (and so the main difference between their
constraint system and our constraint system) is that we also encode the bindings
of identifiers into our constraint system. Bindings of identifiers are solved at con-
straint solving in our system while they are solved at constraint generation in Hage
and Heeren’s system. We do so thanks to our binders and accessors. We moved
from a binding resolution at initial constraint generation to a binding resolution at
constraint solving in order to handle SML features such as the open feature. Thanks
to our binders and accessors, we can generate a “faithful” representation of a SML
program, that uses intricate features such as open, into our constraint language.

Moreover, we believe that in addition to the motivation of generating “faithful”
representations of SML programs in our constraint language, binders and accessors
are necessary to distinctly separate the constraint generation and constraint solving
phases of a constraint based type inference algorithm for SML. To illustrate this

point let us consider the following typable SML program:

structure S = struct val ¢ = fn () => () end
S
T

structure T

structure U
open U
vald = c ()

Without binders and accessors, one needs to use type environments at constraint
generation to be able to access identifiers’ static semantics when analysing identi-
fiers at bound positions. At constraint generation, in order to be able to generate a
proper environment for the declaration open U so that it can be used when dealing
with the declaration val d = ¢ (), one needs to resolve the chain of structure equal-
ities. This means that solving structures’ static semantics at constraint generation
becomes necessary which goes against a clear separation between constraint genera-
tion (generation of constraints on the static semantics of the analysed piece of code)
and constraint solving.

The necessity of having bindings solved at constraint solving rather than at con-
straint generation is also motivated by the will of having a compositional constraint

generation algorithm while dealing with the inherent identifier status ambiguity in
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SML which is dealt with in Sec. 14.1. Here we anticipate Sec. 14.1 where uncon-
firmed binders of the form fwvid=a are introduced to deal with SML’s identifier
status ambiguity. When initially generated, such unconfirmed binders are neither
binders nor accessors but lie between the two. As a matted of fact, for a piece of
code such as fn x => fn ¢ => x ¢, from Sec. 14.1 on, the binders generated for x and
c are unconfirmed binders and the static semantics of x’s second occurrence does not
depend on the static semantics of x’s first occurrence until the unconfirmed binder
generated for x is turned into a confirmed one (and similarly for c). If it turns out
at constraint solving that, e.g., ¢ is a datatype constructor then c¢’s unconfirmed
binder is turned into an accessor. Otherwise c¢’s unconfirmed binder turns into a de-
pendent or independent (on c’s status) confirmed binder (still at constraint solving
only and not at constraint generation). Note that a similar argument holds about

open declarations. Compositionality is further discussed in Sec. 16.1.

12.1.5 Comparison with Miiller’s constraint system

Miiller [108] defines the relational calculus pgeep to “implement Damas-Milner poly-
morphic type inference”. This calculus allows one to generate constraints of linear
size. It does that by generating identifier binders with which are associated static
semantics. The semantics attached to an identifier binder can then be simplified
before being “used”, i.e., before instantiating the polymorphic type. The language
considered by Miiller is the A-calculus extended with polymorphic let-expressions
(core ML). Miiller also forces bound variables in A-expressions to be “pairwise dif-
ferent and distinct from the free variables”. His constraint language is a two layer
language. He first defines a constraint set and then an expression set containing the
constraint set. What Miiller calls an expression will sometimes be called a constraint
expression in this discussion when we need to distinguish between a A-expression
(an external expression) and an expression (an internal or constraint expression).

Miiller’s syntax of constraints and expressions is defined as follows:

o =T | L|Zad|ond[a=8la=F-7y
E,F:=¢|EANF|3a E|z:a/E|[M]a

where M is a M\-expression and «, J and y are type variables. The two constant con-
straints are the satisfied constraint T and the unsatisfied constraint L. Constraints
and expressions of the forms da ¢ and Ja £ introduce fresh variables. Constraints
and expressions of the form ¢ Ay and E A F are conjunctions. The two last forms
of constraints are shallow equality constraints.

The most interesting forms in Miiller’s constraint system are: z:a/E and [M]cv.

An expression z:«/ E is called an abstraction and associates the constrained static
semantics a, constrained by F, with the identifier z. Such expressions are called ab-

stractions because, e.g., z:a/ E abstracts the type variable a. The polymorphism of
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such forms comes from the fact that expressions can be existential expressions. If id
is the polymorphic identity function, one can then generate the following abstraction
(binder) for id (where some expressions are omitted for clarity): id:y/38~v = — (.
Let us now assume a bound occurrence of id with which is associated the static se-
mantics a. One has then to apply the abstraction generated for id to a which results
in 38 o = 8 — (. A particularity of pg4., is that computations can occur within the
nested expression of an abstraction, which is within £ in an abstraction of the form
r:a/E.

Intuitively, we believe that an abstraction of the form z:a/FE would be rep-
resented in our system by an environment of the form poly(e;lz=a) where E is
represented by e.

Note that because of the restriction on free and bound variables, Miiller does
not need to define local constraints to restrict the scope of abstractions. Given such
a restriction on the \-expressions, Miiller’s inference algorithm cannot generate two
abstractions for the same identifier.

An expression of the form [M]a is called a proof obligation and it “represent
the constraint o = 7 for the principal type 7 of M7, where 7 is an internal type in
Miiller’s system. A constraint expression of the form [M]« is used to analyse (infer
a type for) the lambda expression M.

The constraint based type inference algorithm defined by Miiller does not distin-
guish between constraint generation and constraint solving and no specific constraint
solving strategy is presented (constraint generation and solving interleave). Espe-
cially, it seems that Miiller's system does not enforce simplifying the constraints
generated for a polymorphic identifier z before applying the abstraction generated
for z. This can therefore lead to the exponential growth of the size of the constraint
expression generated for a A-expression. Let us consider the following simple let-
expression called M (where fn x => x is written as Ax.x using Miiller’s A-expressions’

syntax):

let id = fn x => x
in let £ = id id in £ f end

end

Let M’ be 1et £ = id id in f f end. Fig. 12.1 presents the inference of M’type
using Miiller’s type inference algorithm. Omne can observe the duplication of the

constraint expression generated for id’s body.
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[M]o
[M'|laa A F Aid:y/E, where E = [fn x => x|y and F = 35 ([id]9)
[£ flanF' Af:'/[id id]y A F Aid:y/E, where F/ =35 ([£]5)
38" " ([£18" AN E]Y' A B =" = «)) AN F' Afy//[id id]y A F Aidy/FE
38" I ([£18" AN [EIY' A B =" = @)) NF' ANEy'JE'ANF Aidiy/E

WheI‘e E/ — 3/8/// El,_y/// ([[ld]]ﬁ/” /\ [[idﬂ,_y/// /\ 6/// — ,_Y/// s ’Y/)
—=* (30" 3 ([£18" AN[EIY' A B =+" = a)) NF' N£:y//E" NF Nidiy/E

Whel‘e E// — Elﬁ/// El/y/// (E{ﬁ/////y} /\ E{,Y/////y} /\ 6/// — ,y/// N /y/)

_>* (Elﬁ// El/y// (E//{ﬁ////y/} /\ E//{,y////y/} /\6// — ,7// N a)) /\ F/ /\ f:,y//E// /\ F /\ 1d.’7/E

Ll

Figure 12.1 Derivation using Miiller’s type inference algorithm

12.1.6 Comparison with Gustavsson and Svenningsson’s con-

straint system

Gustavsson and Svenningsson [55] defined a constraint system where solutions can be
found in cubic time. Their constraint syntax is based on: the satisfied constraint T,
inequality constraints on variables of the form a < b where a and b are variables,
conjunctions of constraints of the form M A N where M and N are constraint
terms, and existential constraints of the form Ja.M. They also add to their syntax,
abstractions and applications.

Constraint abstractions are inspired by let-expressions and are of the form: f @ =
M, where f is a constraint abstraction variable (the name of an abstraction), @ is
a set? of variables, and M is a constraint term. Constraint abstractions are used in
let-constraint terms. A let-constraint term is of the form: let { F } in M, where Fis
a set of abstractions and M is a constraint term. Abstractions in a let-constraint are
mutually recursive so in a let-constraint let {F} in M’  if f @ = M is a constraint
abstraction in F', then all the uses of fin F and M’ all refer to this occurrence of f.

We believe a let-constraint as follows:
let {fl (_7:1 :Ml,...,fn (_1;,1 = Mn} in M
would be represented in our system by an environment as follows:

[poly(lfi=aq;- - jlfn=0cmnser; - ;en)se]

where M; would be represented by ¢; for each ¢ € {1,...,n}, where M would be
represented by e, and where d;, for each i € {1,...,n}, would be computed when
dealing at constraint solving with the poly constraint.

Abstractions are applied thanks to application constraint terms of the form f a.
An abstraction of the form f @ would be represented in our system by an accessor
of the form 1f=qa.

Gustavsson and Svenningsson define a constraint solving algorithm and prove it
to be of cubic complexity. Such a result is obtained by enforcing that abstractions

are simplified before being applied. Their constraint solver is based on a rewriting

4Even though it is not explicitly stated in their paper, vectors seem to be used for sets.
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system that allows four kinds of reductions: a transitivity reduction rule and three
reduction rules allowing reducing abstractions at various places in a let-constraint
(in the body of the let-constraint, in the body of the abstraction that is applied or
in the body of another abstraction declared in the same let-constraint).

These reduction rules do not allow one to copy the whole body of an abstraction
when it is applied. Only the “live” inequality constraints are allowed to be copied
at an application location, where an inequality constraint is said to be “live” in a

constraint term if it does not use a variable which is bound in the term.

12.1.7 Comparison with Pottier and Rémy’s let-constraints

Our constraint system has evolved through many versions. One earlier version
of our constraint system had a kind of constraint that was very close to the let-
constraints® of systems of Pottier and Rémy [116, 115]. Pottier and Rémy define
a constraint system [116] which allows one “to reduce type inference problems for
HM(X) to constraint solving problems”. Pottier defines a very similar system [115].
Using their let-constraints Pottier and Rémy “achieve the desired separation between
constraint generation, on the one hand, and constraint solving and simplification,
on the other hand, without compromising efficiency” [116]. In our discussion, we
will collectively refer to these two systems as the PR (Pottier/Rémy) system and
ignore their technical differences, although our presentation will follow more closely
the presentation of Pottier and Rémy [116].

In PR, a constraint can, among other things, be a let-constraint, a subtyping con-
straint, a type scheme instantiation constraint, a conjunction of constraints, or the
constant (and satisfied) true constraint. A PR let-constraint looks like let id:¢ in C
where ¢ ranges over type schemes, and C' ranges over constraints. In PR, type
schemes are of the form VX [C].T where X is a type variable set, C' is a constraint,
and T is a type. We borrow for our discussion two abbreviations that Pottier and
Rémy define: (1) the form VX . T stands for the type scheme VX [true]. T, and (2) the
form let id:T in C stands for let id:Va.T in C.

The idea of let-constraints is that a constraint of the form
let id:VX[C].T in (id = T; Aid = Ts)
is (roughly) equivalent to a constraint of this form:
BX(CAT=T))ANEBX(CANT="Ts))A((3X.C)

The key point is that one can get the effect of making the appropriate number

5Technically, the let-constraints of Pottier and Rémy are based on their more primitive def-
constraints.
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of copies of C' and T while keeping the size of the constraint proportional to the
program size. The constraints will need to be copied and each copy solved inde-
pendently, but each copy can be solved immediately before the next copy is made,
avoiding an exponential increase in the amount of memory used during constraint
solving. To get the full benefit of this, an implementation should be eager in sim-
plifying C' and calculating 7" as much as possible before making any copies. (In our
application, it could be good to also be lazy in simplifying and calculating only those
portions of C' and T that are actually needed by the uses of id, because our TES
needs to spend most of its time finding minimal portions of unsatisfiable constraints.
We leave investigating this idea for future work.)

Identifier bindings occurring in let-constraints are similar to abstractions as de-
fined by Miiller [108]. A binding as defined by Pottier and Rémy is of the form
id:vX[C].T where the type scheme VX[C].T associated with id is a constrained
type scheme where the constraint C' constrains the type 7. An abstraction as de-
fined by Miiller [108] is of the form z:a/E where the static semantics associated
with the identifier x is the type variable o which is constrained by the expression
E.

In our latest system, the equivalent of let-constraints can be represented as a
special case of what our system supports. Informally, a let-constraint of the form
let id:VX[C)].T in C, generated for a SML recursive let-binding would be repre-
sented in our system by (using a combination of rules (G2) and (G17) in Fig. 11.7)

[poly((Lid=T);e1);e2]

where C; is represented by e; and T is represented by 7. (Let-constraints generated
for other SML forms would not necessarily get the same representation.) There is no
explicit representation of X in the representation in our system; instead the correct
set of type variables that can be quantified is calculated by toPoly which generates
type schemes when it handles environments of the form poly(e) (see Fig. 11.9).

Let us have a closer look at the different components of a let-constraint. A
let-constraint is of the form let id:¥X[C}].T in C,. Such a constraint: (1) assigns
static semantics to the identifier i¢d (thanks to the form id:¢), (2) quantifies the
static semantics associated with id over a set of variables (generates a polymorphic
type), (3) makes the access to id’s semantics local to Cy, and (4) defines an order
in which the constraints have to be solved (C; before C3). Such a constraint can
then be seen as the combination of (at least) four primitive constraints. The first
one is a binder in our system, the second one is a poly environment in our system,
the third one is an environment of the form [e] in our system, and the fourth one is
an environment of the form e;;e; in our system.

We now give an example comparing the constraints that would be generated for
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SML recursive value declarations in the PR system and our system. Consider the
SML expression

let val rec £ = fn z => exp; in exp,

where ezp, and exp, are two sub-expressions. The constraint generated in PR for

this let-expression would be
let £:VXY[let £:X — Y inlet zX in (}].X — Y in

where X and Y are internal type variables, where XY is PR notation for the set
{X, Y}, where C; for ¢ € {1,2} is the constraint generated for ezp,, and where Y is
the result type of exp,. Due to the way let-constraints declare a local environment,
the PR system needs two binders for £. The outer one polymorphically binds the
occurrences of £ in exp, and the inner one monomorphically binds the occurrences
of £ in exp,.

Some of the differences between PR and our system can be seen when comparing
how this example is handled. Our constraint generator builds roughly® the following

constraint (technically, an environment) for the example let-expression:

[poly(lf=a—ag;[(tz=a1);e1]); e

In contrast to how PR handles this example, only one binder for £ is needed in our
system. Two features of our system interact to allow this. First, in a composition
environment (e;;e;), the bindings from e; are available in ey, but also form part of the
result (except where bindings in e, shadow them). Second, in an environment of the
form poly(e), the poly operator changes the status of binders in the result from the
status they had internally. In the example constraint (environment) above, £’s binder
is monomorphic within the scope of the poly operator (in e;) and polymorphic
outside (in ey).

There is a sense in which what the PR system does is similar to what would hap-
pen in our system if the poly operator worked on just single types or single bindings
rather than entire environments. It is significant that we can form environments of
the form poly(lwvid=T;e);e, in which the type for vid is available monomorphically
in e; and polymorphically in e,.

The differences between the PR system and our system gain greater significance

when we consider how to handle the SML module system. The most basic construct

6We have omitted labels and simplified a bit. The actual constraint that is generated (still
omitting labels though) is

[(eva=poly(lf=au;[(evi=(tz=az));ev1;e1;c1];c));ev2;5€2; 3]

where ¢1 = (az=a2—ay), c2 = (t1=03), 3 = (as=0ag), (a4, €1) is generated for ezp,, (as, e2) is
generated for ezp,, and a5 is the type of the entire let-expression.
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of the module system is what forms the body of a structure, namely a sequence
of declarations dec; - - - dec,,. For this discussion, assume each dec; declares exactly
one identifier x;. Consider how declaration sequences can be handled by the PR
system and our system. PR can handle such a sequence with nested let-constraints
as follows:

let x1:67 in (- - -let x,:0, in Cy- - -)

The constraints must be nested as indicated because each x; is only visible in the
“in” part of the corresponding let-constraint, where an identifier binding occurrence
is visible when constraints can refer to it. In contrast, our system handles the same

declaration sequence with the environment
er; ey

where e; is the environment generated for the declaration dec; for each i € {1,... ,n}.
The importance of the difference becomes clearer when we consider how to rep-
resent full structures and structure bindings. Take the above example declaration

sequence and wrap it up in a structure definition:
structure strid = struct decy - - - dec,, end

A structure expression packs into a unit a sequence of declarations. The normal
scope of the declarations ends at the end of the structure, and subsequent access
to the declarations must go through the structure itself, which must first be bound
to a name via either a structure declaration like above or a functor application.
When performing type inference for SML structure expressions, it is most natural
and straightforward that the type inferred for a structure will be a sequence of
individual mappings from declared names to their types’. Such sequences are often
called environments. It seems clear that any type inference method will need to
handle environments.

The PR system has never been extended to handle ML-style structures®, but let
us imagine how it might be extended to do this. First, let us point out that Pottier

and Rémy abbreviate the above example of nested let-constraints as follows:
let I'y in Cp, where I'q = x1:01;- -+ ; 2500,

Let us call this constraint Cq where the “d” means “declarations”. Given an SML

structure definition, this kind of constraint can represent the constraints required

"The order of the sequence is important because a type scheme for one value identifier in a
structure can refer to a type constructor name defined by the structure, while at the same time a
type scheme for a different value identifier can use the same type constructor name to refer to a
definition outside the structure.

8Francois Pottier told us this on 2010-08-09.
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for typability of the sequence of declarations in the structure body, and it is the only
easy way to do so in the context of the PR system.

Now, how do we represent the connection of the structure’s body to the struc-
ture’s name? The immediately (and naively) obvious idea is to extend PR with
let-constraints of a form similar to let strid:I's in C, where strid is a structure
identifier, and Ty is an environment (the type of a structure). Let us call this new
constraint C;. This is not enough, because there needs to be some way to connect
the constraint Cy to the environment I'y. In fact, the environment I'q inside Cjy is
just what we need, but there is no easy way to get at it, because there is no mech-
anism in PR for generating an environment from a constraint. The easiest thing to
do is to nest the entire constraint C; inside the constraint Cj inside of Cy, because
the types of the x;’s are not accessible from outside Cg, but this seems like turning
the program inside out, because the entire rest of the program must be nested inside
the scope of the constraints for just the structure’s body.

So one might then want to extend the PR constraint system with an exporting
mechanism and generate a constrained environment of the form [Cy].I' for the struc-
ture expression where Cyq would export the type schemes of the x;s and where I’y
would refer to these exported type schemes. But, all this technicality really should
not be needed because I'y is already the environment that we would want to generate
for the structure expression.

The way our constraint system achieves that is by instead of having only one
mechanism (the let-constraints) to bind identifiers and to restrict their scope (let-
constraints define a local scope), it has two separate mechanisms: one for bind-
ings that does not restrict the scope of the binders (we obtain this behaviour by
having binding constraints of form lid=z and by having our general composition
environment forms e;;e; where the accessors occurring in ey can depend on the
binders occurring in e;), and another one for constraining the scope of a type envi-
ronment (obtained thanks to our environments of the form [e]). The environment
we generate for the structure expression presented above is then similar to the en-

vironment I'g.

12.2 Related work on presenting type errors and
types

12.2.1 Methods making use of slices

After the first version of TES presented by Haack and Wells [56, 57|, many re-
searchers began to present type errors as program slices obtained from unsolvable
sets of constraints.

Tip and Dinesh [133] report type error slices for a Pascal-like language called
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CLaX, which is an explicitly typed language (where explicit types are enforced,
e.g., on function parameters). Their method consists of defining the type checker of
the CLaX language as a rewriting system. This rewriting system rewrites a piece
of code into either a type if the piece of code is typable, or into a list of error
messages if the piece of code is untypable. To compute slices they use “dependence
tracking” [41, 42]. Tip and Dinesh explain that “Dependence tracking is a method
for computing term slices that relies on an analysis of rewriting rules to determine
how the application of rewriting rules causes creation of new function symbols, and
the residuation (i.e., copying, moving around, or erasing) of previously existing
subterms” [133]. Developments (w.r.t. a sequence of rewriting steps on a piece of
code) are trimmed to retain only the necessary symbols of a piece of code, i.e., the
ones responsible for an error to occur. Tip and Dinesh also applied their techniques
to Mini-ML [25] which is a subset of ML (“a simple typed A-calculus with constants,
products, conditionals, and recursive function definitions” [25]). However, Tip and
Dinesh face some minimality issues when applying their method to Mini-ML (“in
some cases slices are computed that seem larger than necessary” [133]). This issue
is related to the lack of a minimisation algorithm.

Neubauer and Thiemann [111] use flow analysis to compute type dependencies
for a small ML-like language to report type errors. Their system uses discriminative
sum types and can analyze any term. Their first step (“collecting phase”) labels the
studied term and infers type information. This analysis generates a set of program
point sets. These program points are directly stored in the discriminative sum types.
A conflicting type (“multivocal”) is then paired with the locations responsible for
its generation. Their second step (“reporting phase”) consists of generating error
reports from the conflicts generated during the first phase. Slices are built from
which highlighting are produced. An interesting detail is that a type derivation can
be viewed as the description of all type errors in an untypable piece of code, from
which another step computes error reports.

Similar to ours is work by Stuckey, Sulzmann and Wazny [127, 141] (based on
earlier work without slices [125, 126]). They do type inference, type checking and re-
port type errors for the Chameleon language (a modified Haskell subset). Chameleon
includes algebraic data types, type-class overloading, and functional dependencies.
They code the typing problem into a constraint problem and attach labels to con-
straints to track program locations and highlight parts of untypable pieces of code.
First they compute a minimal unsatisfiable set of generated constraints from which
they select one of the type error locations to provide their type explanation. They
finally provide a highlighting and an error message depending on the selected loca-
tion. They provide slice highlighting but using a different strategy from ours. They
focus on explaining conflicts in the inferred types at one program point inside the

error location set. It is not completely clear, but they do not seem to worry much
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about whether the program text they are highlighting is exactly (no more and no
less) a complete explanation of the type error. For example, they do not highlight
applications because “they have no explicit tokens in the source code”. It is then
stated: “We leave it to the user to understand when we highlight a function posi-
tion we may also refer to its application”. This differs from our strategy because we
think it is preferable to highlight all the program locations responsible for an error
even if these are white spaces. Moreover, they do not appear to highlight the parts
of datatype declarations relevant to type errors.

When running on a translation of the code presented in Sec. 10.4.2 into Haskell,
ChameleonGecko outputs the error report partially displayed below (the rest of the

output seems to be internal information from their solver).

ERROR: Type error; conflicting sites:
y = (fErans x1, x2)

This highlighting identifies the same location as SML/NJ and would not help
solve the error.

Significantly, because they handle a Haskell-like language, they face challenges
for accurate type error location that are different from the ones for SML.

Gast [47] generates “detailed explanations of ML type errors in terms of data
flows”. His method is in three steps: generation of subtyping constraints annotated
by reasons for their generation; gathering of reasons during constraint solving; trans-
formation of the gathered reasons into explanations by data flows. He provides a
visually convenient display of the data flows with arrows in XEmacs. Gast’s method
(which seems to be designed only for a small portion of OCaml) can be considered
as a slicing method with data flow explanations.

Braflel [16] presents a generic approach (implemented for the language Curry)
for type error reporting that consists of two different procedures. The first one tries
to replace portions of code by dummy terms that can be assigned any type. If an
untypable piece of code becomes typable when one of its subtrees has been replaced
by a dummy term then the process goes on to apply the same strategy inside the
subtree. The second procedure consists in using of a heuristic to guide the search of
type errors. The heuristic is based on two principles: it will always “prefer an inner
correction point to an outer one” and will always “prefer the point which is located
in a function farther away in the call graph from the function which was reported by
the type checker as the error location”. Brafiel’s method does not seem to compute
proper slices but instead singles out different locations that might be the cause of a

type error inside a piece of code.
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12.2.2 Significant non-slicing type explanation methods

Heeren et al. designed a method used in the Helium project [64, 62, 65, 59] to provide
error messages for the Haskell language relying on a constraint-based type inference.
First, a constraint graph is generated from a piece of code. For an ill-typed piece
of code, a conflicting path called an inconsistency is extracted from the constraint
graph. Such a conflicting path is a structured unsolvable set of type constraints.
Heuristics are used to remove inconsistencies. A trust value is associated with each
type constraint and depending on these values and the defined heuristics, some
constraints are discarded until the inconsistency is removed. They also propose some
“program correcting heuristics” used to search for a typable piece of code from an
untypable one. Such a heuristic is for example the permutation of parameters which
is a common mistake in programming. Their approach has been used with students
learning functional programming. Using pieces of code written by students and their
expertise of the language they refined their heuristics. They also designed a system
of “directives” which are commands specified by the programmer to constrain the set
of types derivable from a type class. This approach differs from ours by privileging
locations over others by the use of some heuristics. They do not compute minimal
slices and highlightings.

We present below the most interesting part of the error report obtained using
Helium on a translation of the code presented in Sec. 10.4.2 into Haskell. It comes
with some warnings (which are not displayed here) on the bindings of identifiers such
as the binding of y in trans (some of these warnings explain, for example, that y’s

declaration at the end of the code does not bind any of the y’s in trans’s definition).

(16,6): Type error in application

expression : trams x1
term : trans
type : Ta a a ->Ta a a

does not match : T Int Int Bool -> T Int Int Bool
Compilation failed with 1 error

It is reported that x1 and trans don’t have the expected types. The application,
which is at the end of the code, is then blamed when our programming error is at
the very beginning of the code.

Also, they have tackled the task to report type errors for Java [14, 15]. Error
reports provided by usual compilers can be of little help, especially in the presence
of generics. El Boustani and Hage try to do a better job by keeping track of more
information during type checking. When analysing an untypable piece of code, it
allows a more global view of its type errors and leads to more informative error

reports. The main difference between type error reporting for SML and for Java is

157



Chapter 12. Related work

that in Java “types are instantiated based on local information only and not through
a long and complicated sequence of unifications” [14].

Lerner, Flower, Grossman and Chambers [99] present type error messages by
constructing well-typed programs from ill-typed ones using different techniques (like
Heeren et al. [59]), e.g., switching two parameters. Automatically conceived modi-
fications to the ill-typed piece of code are checked for typability. They target Caml,
and also developed a prototype for C++. The new typable generated code is pre-
sented as possible code that the programmer might have intended. It could be

interesting to study the combination of this with TES.
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Case studies

13.1 Modification of user data types using TES

Our TES is generally of great help when coding in SML. It is particularly helpful
when one wants to modify a user data type in a well-typed program. Let us consider
the very simple program provided in Fig. 13.1a (this is testcase 577 in our testcase
database) where we define a structure 1d to deal with labelled identifiers (see the
type idlab). In this structure we define some functions to handle labelled identifiers
such as a function to compare two labelled identifiers (compare), or a function to
build a labelled identifier from a label and an identifier (cons).

Now, let us change idlab’s declaration, for a more convenient one as follows:
type idlab = {id : id, lab : lab}. The type idlab is now a record type containing
two fields, one named id of type id and a second one named 1ab of type 1ab. Records
are usually preferred over tuples because they are more flexible and meaningful
thanks to the field names.

For example, one can access the field named id in an expression x of type idlab
(the new type idlab) as follows: #id(x:idlab). Records are more flexible than tu-
ples because the order of the fields does not matter in a record. For example,
{id = 0, lab = 0} is equivalent to {1ab = 0, id = 0}. Note that a tuple (id, 1ab) is
equivalent to a record {1 = id, 2 = lab}.

First of all, let us mention that when compiling the updated code with SML/NJ
v.110.72, one obtains a type error report for each function defined in the structure

1d. The report concerning the compare function is as follows:

test-prog.sml:14.1-31.4 Error: value type in structure doesn’t match signature spec
name: compare
spec: ?.Id.idlab * 7.Id.idlab -> order

actual: (int * int) * (int * int) -> order

Note that the reported region is the entire structure 1d.
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MLton v.20100608 outputs the following error report concerning compare:

Error: test-prog.sml 14.16.
Variable type in structure disagrees with signature.
variable: compare
structure: [lab * lab] * [lab * lab] -> _
signature: [id: lab, lab: lab] * [id: lab, lab: lab] -> _

Poly/ML v.5.3 outputs the following error report concerning compare:

Error-Structure does not match signature.

Signature: val compare: idlab * idlab -> order

Structure: val compare: (int * int) * (int * int) -> order

Reason: Can’t match int * int to {id: int, lab: int} (Field 1 missing)
Found near

struct

type id = int

type lab = int

type idlab = {id: id, ...}

fun ...

fun ...

end

As for SML/NJ, MLton and Poly/ML both report a conflict between compare’s
types in the structure 1d and in its signature 10. Also, MLton blames the signature
ID constraining the structure 1d and Poly/ML blames the entire structure.

In contrast, Fig. 13.1b presents the highlighting that one obtains when running
Impl-TES on the updated piece of code. The error in focus (highlighted with a
darker red) shows that the parameter of compare is a pair of pairs. The second pair
(equivalent to a record with two fields named 1 and 2) clashes with the type of
compare’s second parameter given in the signature 1D, which is idlab, declared as a
record with field names id and 1ab in the structure 1d. In the parameter of compare,
the second pair has its elements surrounded by grey boxes. We do so, because tuples
do not have explicitly written field names. The first grey box surrounds the first
element of a pair that corresponds to a record where the element would be in a field
with field name 1 (and similarly for the second box). Note that the number of boxes
indicates the arity of the tuple. In addition to the highlighting, we also report a
type error slice (not presented here because often, as it is the case in Fig. 13.1b,
highlightings are enough to solve type errors) and the following message for this

type error:

Record clash, the fields {id,lab} conflict with {1,2}

161



Chapter 13. Case studies

The light pink corresponds to slices other than the focused one. One can then
start solving the errors one at a time by just editing the highlighted portions of code,

to get from a well-typed program to another well-typed program (see Fig. 13.1c).

13.2 Adding a new parameter to a function

Our TES and its Emacs user interface are also generally useful when one wants to
add a new parameter to a function. Starting from the program in Fig. 13.1c, let
us consider the program provided in Fig. 13.2a. We have essentially added weights
to our labelled identifiers (this is testcase 578 in our testcase database). We have
also added some functions (declared in 1d and sometimes also specified in ID) such
as functions to deal with weights (e.g., raiseWeight raises the weight of a labelled
identifier), renamed some functions (e.g., getId has been renamed to getI), removed
some specifications from 1D (e.g., we removed getId’s specification).

Even though in Fig. 13.2a, we still have not made all the necessary changes to
deal with weights, the program is well-typed. Let us now add a new parameter to
the function cons. The new (third) parameter is a weight which allows one to build
a labelled identifier by specifying its weight (in Fig. 13.2a, cons uses a default weight
when building a labelled identifiers from a label and an identifier).

When compiling the updated code with SML/NJ v.110.72, one obtains three type
error reports. One reporting that cons’s type in Id does not match its specification
in I0. The two other ones are similar but for the two functions resetweight and

raiseWeight. The three error reports are as follows:

test-prog.sml:16.1-50.4 Error: value type in structure doesn’t match signature spec
name: cons
spec: Id.id -> Id.lab -> Id.idlab
actual: ’a -> ’b -> ’c -> {id:’a, lab:’b, weight:’c}
test-prog.sml:16.1-50.4 Error: value type in structure doesn’t match signature spec
name: resetWeight
spec: Id.idlab -> Id.idlab
actual: Id.idlab -> ’a -> {id:Id.id, lab:Id.lab, weight:’a}
test-prog.sml:16.1-50.4 Error: value type in structure doesn’t match signature spec
name: raiseWeight
spec: Id.idlab -> Id.idlab
actual: Id.idlab -> ’a -> {id:Id.id, lab:Id.lab, weight:’a}

Note that once again the reported region is the entire structure 1d. In the
report mentioning raiseWeight, one can see that SML/NJ derived that the function
raiseWeight declared in Id takes two arguments and that the second argument’s type

is the same as the type of the weight of the returned labelled identifier. However,
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poteLs i g 9 Tt mapiedght "idlab m = updweight |idlabli(m (getw idlab)) fun mapWeight idlab m = updieight idlab (m (getW idlab))
fun mapwWeight idlab m = updWeight idlab (m (getw idlab))
fun resetWeight idlab = mapwWeight idlab (fn _ => initWeight) fun resetWeight idlab = mapWeight idlab (fn _ => initWeight)
fun resetWeight idlab = mapWeight idlab (fn _ => initWeight) furn raiseWeight _id';la'b'-'w'.l‘laj‘iﬁk'fg‘jt S dTabM i w == w + 1}] fun raiseWeight idlab = mapWeight idlab (fn w == w + 1)
fun_raiseWeight idlab = mapWeight idlab (fn w == w + 1) 'errd]j S = e : el end]]
[+ end] E2 --i--- test-prog.sml ALl (58,3) L, e e e
% test-prog.sml ALl (50,3) (SML) = mmmieeae oy --i--- test-prog.sml ALl (50,3) L e iaatettntatls | E (SML-TES) SLICING FINISHED WITH STATUS: slicer worked OK, program 2
§is typable

(a) Structure defining labelled identifiers with (b) Highlighting obtained after adding a parameter
weights to a function

(c) Program obtained after solving all the type errors

Figure 13.2 Using TES to add a parameter to a function
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this report does not make it clear as why SML/NJ constrains raiseweight to take two
arguments. One finally ends up at trying to understand as why SML/NJ generated
such type information. Note that the piece of code being untypable, the types
generated and reported by SML/NJ are anyway erroneous and therefore confusing.

MLton v.20100608 outputs the following error report concerning raiseWeight:

Error: test-prog.sml 16.16.
Variable type in structure disagrees with signature.
variable: raiseWeight
structure: _ -> [?7?? -> {id: weight, lab: weight, weight: ?77}]
signature: _ -> [{id: weight, lab: weight, weight: weight}]

MLton blames the signature constraint on 1d, namely, the signature 1. This
report is similar to the one generated by SML/NJ. Apart from the blamed region, it
also differs by hiding some of the non-conflicting generated internal type information
using .

Poly /ML v.5.3 outputs the following error report concerning raiseWeight:

Error-Structure does not match signature.

Signature: val raiseWeight: idlab -> idlab

Structure: val raiseWeight: idlab -> ’a -> {id: int, lab: int, weight: ’a}

Reason:

Can’t match ’a -> {id: int, lab: int, weight: ’a} to
{id: int, lab: int, weight: int} (Incompatible types)

Found near

struct

type id = int

type lab = int

type weight = int

type idlab = ...

val ...

end

Once again Poly/ML blames the entire 1d structure. Poly/ML’s report is similar
to MLton’s report. Apart from the blamed region, it also differs by not hiding some of
the non-conflicting generated internal type information but by outputting an extra
“reason” which explains why the type Poly/ML has generated for raiseweight in Id
conflicts with raiseweight’s specification in ID (using again generated internal type
information).

In contrast, Fig. 13.1b presents the highlighting that one obtains when using
TES on the updated piece of code. The error in focus (highlighted with a darker
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red) shows that the function raiseweight is involved in a type error. According to
ID, raiseWeight is meant to return an idlab which is defined as a record type in Id.
In 1d, raiseWeight takes a parameter and applies two arguments to mapWeight, which
itself takes two parameters and applies updWeight to two arguments, which itself
takes two parameters and applies cons to two arguments, which itself takes three
arguments (and not two). This means that raiseWeight returns a function and not
a record type. We therefore obtain a type constructor clash between a record type
and an arrow type. In our case, our programming error only concerns raiseWeight
through its use of cons in updWeight. Since cons takes three parameters now, we have
to update the definitions of updid, updLab and updWeight.

We can then quickly spot our programming error and make the necessary changes

to get from a well-typed program to another well-typed program (see Fig. 13.1c¢).
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More TES features to handle more

of SML

Let us now present other interesting features of our TES which allow one to handle
SML features such as local declarations, type functions, many cases of signatures,
functors, non-recursive declarations, type annotations, and non-unary type construc-
tors. Some of these features were already used in the examples provided above. We
will now formally present how to handle them.

In this section will will extend Core-TES presented above with additional features.
Also, some syntactic forms will sometimes need to be redefined. In this section, we
will sometimes write x 2+ y to mean that in the set s, syntactic forms of the form
x are replaced by syntactic forms of the form y.

Many examples are provided in the sections below. For readability purposes, we

sometimes omit dependencies and the environment T in these examples.

14.1 Identifier statuses

In the presentation of Core-TES we have syntactically distinguished between value
identifiers and datatype constructors by defining two disjoints sets ValVar and DatCon.
In SML there is no lexical distinction between, e.g., value variables and datatype
constructors. Only one set exists, the set of value identifiers VId which is redefined
below. To distinguish between value variables (the only kind of value identifier
considered by Haack and Wells), datatype constructors and exception constructors
(omitted in this document), SML assigns statuses to value identifiers. The status of
an identifier depends on its context and cannot always be inferred from any context
smaller than the entire program.

In the subset of SML presented above, datatype (or exception) constructors are:
(1) the value identifiers defined in datatype declarations such as bot and cons in

datatype ’a list = bot | cons of ’a x ’a list, (2) the value identifiers occurring in
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patterns or expressions in the scope of such datatype constructors, and (3) the value
identifiers taking arguments in patterns such as x in fn x y => y. In the subset
of SML presented above, Value variable are: (1) the recursive functions such as
f in val rec £ = fn x => x, and (2) the value identifiers occurring in patterns or
expressions in the scope of such value variables.

For example, all of ¢’s occurrences in datatype t = c; val rec f = fn ¢ => c are
datatype constructors because of ¢’s declaration as a datatype constructor. Whereas
in val rec ¢ = fn x => x; val f = fn ¢ => c, all occurrences of ¢ are value variables
because of c¢’s declaration as a recursive function. The sequence of declarations
val rec ¢ = fn x => x; val rec d = fn ¢ x => x is not valid SML because c’s first
occurrence forces ¢ to be a value variable in its scope but in the pattern ¢ x, ¢ must
be a datatype constructor.

A challenge in dealing with SML’s value identifier statuses is that the status of a
value identifier occurring in a pattern, such as x in val rec ¢ = fn x => x, depends
on x’s status in its context. If we were analysing a complete piece of code where x is
not declared in the context of ¢’s declaration, x would by default be a value variable.
In the context of compositional analysis because x does not occur in the context of
our declaration, we cannot infer x’s status. The identifier x could either be defined
as a datatype constructor, or as a value variable or undefined in a larger piece of
code.

Handling identifier statuses in our constraint system and doing context-independent
type checking allows a natural reporting of context-sensitive syntax errors as error
slices. For example, x occurring twice in the pattern in fn (x, x) => x is an error
only if x has value variable status. Context-sensitive syntax errors are discussed in
Sec. 17.1.1.

14.1.1 External syntax

We redefine the sets VId, ConBind and Pat defined in Fig. 11.2 to introduce SML’s

ambiguity on identifier statuses as follows:

vid € VId (value identifiers)
lvid € Labld  ::= vid!,
cb € ConBind ::= vid! | vid of ' ty
atpat € AtPat = m’dé
pat € Pat = atpat | [lid atpat]’

For example, if identifier ¢ has value variable status in the context and not
datatype constructor status, fn ¢ => (¢ 1, ¢ ()) has a unique minimal error which
is that ¢ has a monomorphic type because it is the parameter of the fn-expression

but is applied to two expressions with different types: int and unit'. However,

More specifically, the type unit is none of the type on which 1 is overloaded. We do not
discuss overloading in this section. Overloading is discussed in Sec. 18.3

167



Chapter 14. More TES features to handle more of SML

this error would not exist if the code was preceded by, e.g., datatype t = ¢ because
the fn-binding would not bind c. Instead there would be a minimal error that c is
declared as a nullary datatype constructor and is applied to an argument in c 1.
There would also be another similar error involving ¢ () instead.

In addition to the distinction between value identifiers occurring in expressions,
occurring non applied in patterns (at a nullary position), and occurring in datatype
constructor definitions, we also make the distinction with value identifiers occurring
applied in patterns (at a unary position) using the following subscripted forms:
vid’ (see Labld’s definition above), where u stands for “unary”, because we only
use this form for identifiers at unary position in patterns which are unary datatype
constructors in SML.

We also entirely discard the sets ValVar, DatCon, and LabDatCon. We replace

the ldcon forms in Term by the lvid forms as follows:

ldcon T&™s lvid

14.1.2 Constraint syntax

To compute correct type error slices, we annotate constraints by context dependen-
cies on identifier statuses (see the extension of the set Dependency below). For the
fn-binding presented above we generate during constraint solving constraints relating
the occurrences of ¢ annotated by the dependency that c is a value variable and not a
datatype constructor. These constraints are not generated if a context confirms that
c must be a datatype constructor. The constraints but not the context dependency
are generated if a context confirms that ¢ cannot be a datatype constructor. When
handling incomplete programs, we report conditional errors (warnings) that assume
a sensible default truth status for the dependencies (value identifiers are assumed
to be value variables and not datatype constructors?). For example, the type error
slice displayed in Fig. 10.2 in Sec. 10.4.2 is context-dependent: it depends on y and
z being value variables and not datatype constructors. Our type error reports are
then extended with a set of identifier statuses context dependencies: a type error
report is then composed by a type error slice, a highlighting, a message explaining
the kind of the error, and a set of identifier statuses context dependencies.

We extend our constraint syntax to deal with identifier statuses as follows:

2We do not report errors assuming that these identifiers are datatype constructors because in
our experience most of the time these identifiers are value variables. We therefore believe that we
would cause a great increase in unhelpful reported slices.
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n € ldStatusVar (status variables)
ris € RawldStatus::=v | c|d|u|p

is € ldStatus = | ris | (is, d)
d € Dependency ::=--- | vid
bind € Bind = | Jvid=is | tvid=a
acc € Accessor  u=--- | Tvid=n
¢ € EqCs n=ee | is1=1s9
dep € Dependent ::=--- | (is, d)

In our constraint system, an identifier status can either be a status variable 7, a
raw status 7is or a status annotated with dependencies of the form is? (this complies
with design principles (DP1) and (DP2) defined in Sec. 11.10). The raw status v is for
value variables, e.g., SML requires the recursive function f in val rec f = fn x => x
to be a value variable and not a datatype constructor. Statuses ¢ and d are for
unary and nullary datatype constructors respectively, e.g., the unary constructor ¢
in datatype ’a t = C of ’aand the nullary constructor D in datatype ’a t = D. Status
u is for unconfirmed context-dependent statuses, e.g., in fn x => x, the identifier x
could be a value variable or a nullary datatype constructor, it is therefore considered
as a dependent value variable at constraint solving. Intuitively, u is a dependent v.
Finally, status p is for unresolvable statuses, e.g., in let open S in fn x => x end, x
could be declared as a value variable as well as a datatype constructor in the free
structure s. The difference between u and p is that u is used for identifiers for which
we know we do not have enough information to resolve their statuses whereas p
is used for identifiers for which we do not know whether or not we have enough
information to resolve their statuses (because information has been filtered out).

The dependency set Dependency is extended to include the value identifier set. In
addition to being dependent on program nodes, constraint terms can now also be de-
pendent on value identifiers. An annotated syntactic term of the form (z, d) depends
on the vids in d being in the analysed code, value variables and not datatype con-
structors (the statuses v or u). Because identifier statuses are resolved at constraint
solving, such dependencies (value identifiers) are only generated during constraint
solving and not during initial constraint generation. For example, if constraint solv-
ing generates the dependent equality constraint (7,=7y, d U{vid}), then the equality
constraint 71=75 need only be true if vid cannot be a datatype constructor.

Our binder set is extended with binders of the form fwvid=a. Such a binder is
called an unconfirmed binder and can, at constraint solving, either be confirmed to
be a binder of a value variable and so be turned into a binder of the form |vid=c«, or
be turned into an accessor Twvid=c if it turns out that vid is a datatype constructor.
Such unconfirmed binders are initially generated for identifiers occurring in patterns
at a nullary positions. The status (and the fact that it binds or is bound) of such

an identifier is context dependent. Therefore, in order to design a compositional
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constraint generation algorithm, thanks to these unconfirmed binders, the resolution
of identifier statuses is delayed to be dealt with at constraint solving.

Because we introduced status variables we redefine Dum as follows: Dum =
{Cdums €Vaun, Odum; Naun }» Where Ny is a distinguished dummy status variable.

As a matter of fact, because of the restricted language considered in this docu-
ment, we do not need any other status variable than the dummy status variable 14y.
We could therefore discard the status variables and introduce a new constant which
would play the role of the dummy status variable. This is not true anymore when
considering exceptions. For example, in exception e = e’, whether e is nullary or
unary depends on the status of e’. Another reason for introducing status variables
is that it simplifies the presentation of our system and makes our TES comply with
principle (DP1).

If y is a d or a d then we write Lvid == (o, is) for Lvid = is;lvid = o, and
similarly for accessors.

We extend the application of a substitution to a constraint term as follows:

(tvid=alsub)), if afsub] € ITyVar

undefined, otherwise

(tvid=a)[sub] = {

14.1.3 Constraint generation

In order to deal with identifier statuses, Fig. 14.1 redefines the rules (G5), (G6), (G8),
(G14), (G16), and (G17) originally introduced in Fig. 11.7 in Sec. 11.5.1. Rule (G6)
now generates unconfirmed binders of the form fvid=a and no status constraint
is generated (as opposed to, e.g., rule (G14) which forces the analysed identifier to
be a nullary datatype constructor) because in SML, e.g., in fn x => x, without any
more context, the identifier x could be a value variable or a datatype constructor.
The status of x is then unknown. Because we do not allow a lexical distinction
between datatype constructors and value variables anymore, we then replace the two
rules (G6) and (G7) by the generation of unconfirmed binders in a unique rule (the
new rule (G6)). Because SML requires recursive functions to be value variables (v)
even when in the scope of a datatype constructor binding, toV (used by rule (G17))

generates a status constraint:

toV(ep;ea)  =toV(ep);toV(ez)

toV(e?) =toV(e)?

toV(tvid=a) = (lvid=(a, v))

toV(e) = e, if none of the above applies

This function is used at initial constraint generation because it is not context
dependent and therefore we do not need to wait constraint solving to apply it.
If not at constraint generation, at constraint solving unconfirmed binders of the

form tvid=a are eventually turned into binders of the form |vid=a or into accessors

170



Chapter 14. More TES features to handle more of SML

[Labelled value identifiers (lvid > (o, 7, ¢€))]
(G5) vid, + (a, n, Tvid = (a, 7))
(G6) vidé > {a, tvid L a)

(G8) [Wid atpat]' > (a, (a1 = az—a);(n=c);ersen)
< id > (a1, n, e1) A atpat > (a2, e2) Adja(er, e2, @)

|Constructor bindings|
(G14) vid. » (v, Lvid = (o, d))
(G16) vid of  ty - (a1, e;z éo<—>o<1;lm'd L (ag,c)) < ty > {(a, e) Adja(e, a1, a2)

Declarations

(G17) val rec pat L exp > (ev=poly(toV(ey);e2;(a1 éag)));ev
< pat > (a1, e1) A exp > (e, e2) Adja(er, ez, ev)

l

Figure 14.1 Constraint generation rules to handle identifier statuses

of the form tvid=a. In some cases, a status constraint is also generated from an
unconfirmed binder.
Because the new constraint generation rule (G5) generates triples, we extend the

set InitGen originally defined in Sec. 11.5.1 as follows:
cg € InitGen ::= -+ | (a1, €)

We also extend the set LabBind of initially generated binders and the set LabCs
of initially generated labelled equality constraints, originally defined in Sec. 11.5.2,

as follows:

lbind € LabBind ::= - - - | tvid = o | Lvid = ris
le €labCs :u=-.-- lném’s

We also entirely redefine the set PolyEnv of environment initially generated in a
poly environment, originally defined in Sec. 11.5.2, as follows (we also discard the

set InPolyEnv):
pe € PolyEnv ::= lbind | lc | lacc | peq;pes

Note that the set PolyEnv is much larger than the set of forms generated in poly
environments by our initial constraint generation algorithm because it allows, e.g.,
more than one binder and also other binders than value identifier binders. We do
so to anticipate the forms generated to handle other features presented below. Note

also that the function toPoly is redefined below to work on such forms.

14.1.4 Constraint solving

In Sec. 11.6, we have defined environment application to access identifier static
semantics. Let us now define a similar application to access value identifier statuses.

Because the two applications are similar we also redefine the application e(id).
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_ 7/ =build(A, 7)
toPoly(A, lvid=T) = A;(1vid 4 va. ), if {a = (vars(7’) N ITyVar) \ (vars(monos(A)) U {cqun})
d ={d | a% 1%} ¢ monos(A) A a € vars(T') \ @}
toPoly((u, e), eg) = (v, (6;6\6/3», if toPoly((u, €), eg) = (v, €)
toPoly(A, e1;e2)  =toPoly(A’] es), if toPoly(A, ¢1) = A’
toPoly(A, e) =Ase, if none of the above applies

Figure 14.2 Monomorphic to polymorphic environment function

First, let £ € AppKind ::= T | 8. The applications e(id) to access identifier static
semantics, and e[id| and A[id] to access value identifier statuses are defined via the

function app as follows:

A(id) =app(A,id,T) Alid] = app(A,id, 8) elid) = (o, e)[id]
app((u, lid=z),id,T) =z, if x & IdStatus
app({(u, lid=z),id,8) =z, if x € IdStatus
app((u, %), id, k) = collapse((app((u, €),id, k))?)

, x,if a u, €),1d, k) = x or shadowsAll({u, e

app({u, (exiea), id, by = { &1 2P €2 il 1) = a (. e2)
app((u, e1),id, k), otherwise

app({u, e),id, k),if u(ev) = e

undefined, otherwise

app((u, ev),id, k) :{

Because adding statuses to our system can lead to new status errors we extend

the set of error kinds as follows:
ek € ErrKind ::= - - - | statusClash(isy, is2)

Because of we have added binders to associate statuses with identifiers, toPoly
can now be applied to an environment composed by such binders. We extends toPoly
in Fig. 14.2.

Fig. 14.3 extends our constraint solver to deal with our new constraint terms.

Two identifier statuses are incompatible iff a unary datatype constructor, occur-
ring in a pattern, is bound to a (context-dependent or independent) value variable
as in let val rec £ = fn x => x in fn (f x) => x end where £’s first occurrence is a
value variable and £’s second occurrence is a unary datatype constructor (taking an
argument in a pattern); or if a nullary value identifier in a pattern is bound to a
unary datatype constructor as in let datatype t = x of int in fn x => x end. The

compatible relation is defined as follows:

compatible(isy, isa) < {is1,is2} & {{c,v},{c,u},{c,p}}

Status compatibility is checked by constraint solving rules (S7) and (S8) defined
in Fig. 14.3. Rule (S8) is only defined on raw statuses because rule (S2) removes
dependencies on, among other things, statuses.

The status p is used to catch errors in pieces of code such as the let-expression

let open S in fn x => fn x y => y end where x occurs both at a nullary position and

172



Chapter 14. More TES features to handle more of SML

equality simplification
(S7) s1v(A, d, is;=isy) — err((statusClash(isy, isz2), d)), if ~compatible(isy, is2)
(S8) s1v(A, d, ris; =risa) — succ(A), if compatible(risy, riss)
binders
(B2) s1v(A, d, tvid=a) — s1v(A, d, tvid=(c, ifNotDum(a, u))),

if strip(Afvid]) € {c,d}

(B3) s1v(A, d, tvid=a) — succ_(/A;(lm‘d dod a)),
if collapse(A[vid]?) = v¢

(B4) s1v(A, d, tvid=a) — succ(A;(Lvid {c, ifNotDum(a, u)))),
if strip(Afvid]) = u V (—shadowsAll(A) A Alvid] undefined)

(B5) s1v(A, d, tvid=a) — succ(A;(Lvid < {taum, ifNotDum(a, p)))),

if strip(Afvid]) € Var U{p} V (shadowsAll(A) A A[vid] undefined)
accessors
(A2) s1v(A, d, 1id=v) — s1v(A,d,v=z),

if A(id) = = A strip(z) is not of the form Va. 7 A v ¢ IdStatus
(A3) s1v(A, d, tid=v) — succ(A),

if (v € IdStatus A A[id] undefined) V (v ¢ ldStatus A A(id) undefined)
(A4) s1v(A, d, tvid=n) — s1lv(A, d,n=is), if A[vid] = is

du{vid}

Figure 14.3 Constraint solving rules to handle identifier statuses

at a unary position in patterns (applied and not applied). The identifier x cannot
be a value variable because it is applied in a pattern. It cannot be a datatype
constructor either because it would be both nullary and unary.

Context dependencies are solved during constraint solving. An unconfirmed
binder of the form fwvid=« either turns into a binder of the form | vid=a or an acces-
sor of the form tvid=ca using one of these rules: (B2)-(B5). These rules use the func-
tion ifNotDum that ensures that a dummy status binder cannot bind something else
than a dummy status and therefore cannot be involved in an error: ifNotDum(z, is) =
Naun if strip(z) € Dum, and is otherwise. Rule (B2) discards binders generated under
unsatisfied context dependencies, e.g., in let datatype t = x in fn x => x end, x'S
second occurrence does not bind x’s third occurrence because of x’s declaration as a
datatype constructor. The unconfirmed binder is then turned into an accessor. In all
three other rules, the unconfirmed binder is turned into a confirmed one. Rule (B3)
validates context dependencies, e.g., in val rec x = fn x => x, x is confirmed to be
a value variable because x’s second occurrence is in the scope of x’s first occurrence
which is a recursive function, and so in SML is forced to be a value variable and not a
datatype constructor. Rule (B4) generates context dependencies, e.g., in fn x => x,
because x can be a value variable as well as a datatype constructor then x’s second
occurrence is bound to x’s first occurrence under the context dependency that x is
not a datatype constructor. Rule (B5) generates dummy environments when there
is not enough information to check whether a context dependency is satisfied or
not, e.g., in let open S in fn x => x end, if S is free, it might declare x as a datatype
constructor or as a recursive function. Thus, we do not allow x to be a monomorphic

binder but we still generate a dummy binder to catch status clashes. For example,
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if instead of the second occurrence of x we had fn (x y) => y where x is a unary
datatype constructor, we would then have x occurring in patterns both at a nullary
position and a unary position.

Because binders of the form |vid=is can now occur in constraint solving contexts
(in e in (u, e)), we extend the binder forms generated at constraint solving, originally
defined in Sec. 11.6.6, as follows:

sbind € SolvBind ::= - - - | Jvid=is

14.1.5 Constraint filtering (Minimisation and enumeration)

We extend our filtering function as follows:

dum(tid=z) = (tid=toDumVar(z))
toDumVar(is) = Ngun

14.1.6 Slicing

Because our constraint generator generates a triple of the form («, 7, e) for labelled

value identifiers of the form vid!, we need to introduce a new form of dot term as

u’

follows:
Labld ::= - - | dot-i(term)

We define the new constraint generation rule for terms of the form dot-i(term)

as follows:

(G28) dot-i((termy, ..., termy,)) > (a, 1, [e1;-- - ;en]) <

termy > e; A -+ A termg, > ey Adjaler, ..., eq,1n, Q)
We modify the set of classes Class as follows:
1Dcon <355, 1vid
We extend the set of dot markers Dot as follows:
Dot ::=--- | dotI

We extend the function getDot that associates dot markers with node kinds as

follows:
getDot((1Vid, prod)) = dotI

Fig. 14.4 extends the function toTree that transforms terms into trees.
Fig. 14.5 slightly modifies rule (SL1) of our slicing algorithm defined in Fig. 11.17.
The only difference with rule (SL1) defined in Fig. 11.17 is the addition of the

condition “or pattern(sll(@(O), [))”. We add this special treatment for patterns
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Labelled value identifiers  toTree(vid)) = ((1vid, id), I, (vid))
Constructor bindings toTree(vid") = ((conbind, id), [, (vid))

toTree(vid of ' ty) = ((conbind, conb1nd0f> I, (vid, toTree(ty)))
Patterns toTree(vid ) = ((atpat, id), [, (vid))

toTree([lmd atpat]!) = ((pat, app), I, (toTree(lvid), toTree(atpat)))
Dot terms toTree(dot- 1(term)) = (dotI,toTree(term))

Figure 14.4 Extension of toTree to deal with identifier status

(SL1) sl((node, 1, tree), 1)
(node, 1, sl (tree, 1)), if (1 € 7 and getDot(node) # dotS) or pattern(sly (free(0),1))
= q (node, l,tidy(sll(%j))), if I € I and getDot(node) = dotS
(dot, flat(slg(%j)», otherwise, and where dot = getDot(node)

Figure 14.5 Slicing algorithm rule to handle identifier status

because in our system, at constraint solving, we do not record the label associated
with the fn-expression when generating the following type error slice (the error being
that x is declared as a unary datatype constructor and occurs at a nullary position

in a pattern):

(..datatype (..) = x of (..)
Sfnox o= (L)L)

This is because the unconfirmed binder generated for x’s occurrence in the fn-
expression turns into an accessor at constraint solving (x being declared as a datatype
constructor) and this accessor can directly refer to x’s binder without using any
constraint labelled by the label associated with the fn-expression. This applies for

any accessor generated for an identifier occurring in a pattern.

14.2 Local declarations

14.2.1 External syntax

First, let us extend our external syntax with local declarations as follows:
dec ::= --- | locall dec; in decy end
For example,

val x = true
local val x = 1 in val y = x end

val z = x + 1

is untypable because x’s last occurrence is bound to its first occurrence and not to

its second (assuming that + is the one from the Standard ML basis library).
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Let us present another example:

val x = true
(EX2) 1local val x =1 in val y = x end

val z = fn w => (wy, w x)

Only z’s declaration differs from the previous example. This piece of code is also
untypable because w has a monomorphic type and is applied to y which is an integer

and x which is a Boolean. This example will be reused later in this section.

14.2.2 Constraint syntax

We extend constraint /environments with local environments as follows:
e:x=---|loce iney

The meaning of such an environment is that it builds an environment e, which
depends on e; and only exports e;’s binders, i.e., only ey’s binders can be accessed
from outside the local environment. Such environments differ from environments of
the form e;;es because an environment of the form e;;e; builds a new environment
from both e; and ey and exports both e;’s binders not shadowed by ey and ey’s
binders.

Environments of the form [e] are not enough to handle local declarations because
they do not allow one to partially export an environment. The requirement imposed
by a local declaration of the from loc e; in e, is that only e¢; and ey should be able
to access e;’s binders. Unfortunately, [e1;es] does not export ey’s binders, and [e;]; e,
does not allow ey’s accessors to refer to e;’s binders. The solution was to introduce
environments of the form loc e; in es.

Note that these environments are not only used to generate constraints for local
declarations, they are also used to, e.g., handle bindings of external type variables
(see Sec. 14.3). In Sec. 11 we allow binding occurrences of explicit type variables
to have a larger scope than they should, which is harmless in the small language of
Sec. 11, but needs to be (and is) fixed to work for full SML in Sec. 14.3.

We extend the application of a substitution to a constraint term as follows:

(loc €1 in eg)[sub] = loc (e1[sub]) in (eo[sub])

14.2.3 Constraint generation

Fig. 14.6 extends our constraint generator with a rule to handle local declarations.
Because our initial constraint generation algorithm generates new forms of con-

straints, we extend the ge forms as follows (see Sec. 11.5.2):
ge :=---| loc ge; in geqy
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(G29) locall dec; in decy end > (ev=e;);loc ev!in ey

< decy > e A deca > ea Adja(ey, ea, ev)

Figure 14.6 Constraint generation rule for local declarations

local environments

(L1) s1v({u, €),d,loc e; in eg) — succ(A), if s1v((u, €), d, e;) —* succ({v’, ')
A slv({u/, €'y, d, ea) —* succ({u”, "))
ANA=(u) e e’\e )

(L2) s1v({u, €),d,loc e; ineg) — err(er), if siv((u, €),d, e;) —* succ((u e’))
A slv((u/, e> d, 62) —* err(er)

(L3) s1v({u, €),d,loc e; inez) — err(er), if slv((u, €), d, e;) —* err(er)

Figure 14.7 Constraint solving rules for local declarations

The forms generated by our initial constraint generator are in fact more restricted
than that, but we already anticipate the forms generated by further extensions such

as for type functions.

14.2.4 Constraint solving

Fig. 14.7 extends our constraint solver to handle local declarations.

The most important rule is rule (L1). The two other ones are to handle the
failure of solving one of the two environments composing a local environment of the
form loc e; in ey.

When solving an environment of this form, first we solve e; and if it leads to a
success state succ(Aq), A is used to solve ey so that the binders generated while
solving e; are made available when solving e;. If solving ey leads to a success
state succ(Ay), solving loc e; in ey leads then to a success state succ((u, e)) where
u is the unifier from A, and e is the environment from Ay where we forget the

environments generated by the constraint solver while solving e .

14.2.5 Constraint filtering (Minimisation and enumeration)

We extend our filtering function as follows:

ﬁlt(lOC e1in 62,71,72) = 10Cﬁ|t(€1,71,72) in ﬁ|t(€1,71,72)

14.2.6 Slicing

Finally, our slicing algorithm does not need to be extended but we need to update

the tree syntax for programs as follows:
Prod ::=--- | decLoc

We also need to extend the toTree function that associates trees of the form tree

with terms of the form term as follows:

177



Chapter 14. More TES features to handle more of SML

toTree(locall dec; in decy end) = ((dec,decLoc), I, (toTree(decy ), toTree(decs)))

14.2.7 Minimality

Let us illustrate what would happen if we were not generating an extra labelled
environment variable in rule (G29). Consider example (EX2) presented above. With
our current system, we would obtain a type error slice involving the local declaration

itself in addition to the nested declarations of x and y as follows:

(..val x = true
..local val x = 1 in val y = x end

..val z=fnw=>(..Wwy..wx..)..)

If we were not to label the environment variable in rule (G29) or if we were to
use e; instead of ev! in the local constraint (and omit ev=e; which becomes useless),

then we would obtain a type error slice that would look like:

(..val x = true
..val x = 1
..val y = x

..val z =fnw =>(..wy..w x..)..)

which is typable and therefore is not a minimal type error slice of example (EX2).
As a matted of fact, in this last slice, both bound occurrences of x are bound to x’s
second declaration.

Therefore, the extra initially generated labelled environment variable is necessary
to force, when solving an environment of the form loc e; in ey, e;’s binders to be
dependent on the label of the local declaration for which the local environment has

been generated before making them accessible to es.

14.3 Type declarations

14.3.1 External syntax
First, let us extend our external syntax with type functions as follows:
Dec ::=--- | type dn L ty
For example,
type ’a t = ’a -> ’a -> ’a

datatype ’a u = U of ’a t
val x = U (fn x => x)
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is untypable because U is applied to the identity function which cannot have the type
’a => ’a -> ’a.

Note that in SML, type declarations are not recursive while datatype declarations
are. For example, in type t = t -> t, the two last occurrences of t are free, especially,
they are not bound to t’s first occurrence. However, in datatype t = C of t —> t,
the two last occurrences of t are bound to t’s first occurrence.

We still use dn (standing for “datatype name”) for type functions. This name is
not suitable anymore because it is not only used for datatype declarations only but
also for type declarations. However, for lack of a better name, we keep this name in

this section.

14.3.2 Constraint syntax

We extend our constraint system with pseudo type functions:

tfi € TypFunlns::= 7.7
p €I1TyCon =+ | Aa.T

We explain below why, even though we use the symbol A, constraint terms of
the form Aa. 7 are called pseudo type functions and not type functions.

We also introduce quantified internal type constructors as follows:
x € TyConSem ::= p | Va. pu | (K, d)

We modify type constructor binders as follows:

lte=p Bind, | te=k

A internal type constructor of the form Aa. 7 is called a pseudo type function
and is not a type function as defined in The Definition of Standard ML [107]. At
initial constraint solving, an internal type constructor of the form Aa. 7 is a type
function only when the constraints on 7 have all been solved and when 7 is fully
built up. As a matter of fact, in Aa. 7, the parameter o can be connected to 7
via constraints. For example, at initial constraint generation we generate for a type
declaration of the form type ’a t = ’a, an environment of the form (for readability

purposes, we have omitted labels as well as some constraints):
(0=Aaj.a9);loc(l’a=aq) in (1’ a=a9;lt=0)

The internal type constructor Aay. as is not a type function. It is a type function
only via constraints. However, at constraint solving, if no constraint is filtered out,
then the binder [t=V@. Aa;.a; is eventually generated, where Aay.aq is a type
function.

We introduce quantified internal type constructors of the form Va.p because

now internal type variables can occur in internal type constructors via pseudo type
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functions. For example, the type function Aay.ay (where o # ap) is generated at
constraint solving when solving the constraints generated for the type declaration
type ’a t = (..). Because as is not bound by the type function, we need to quantify
it so that it will be renamed for each accessor to t. We then eventually generate
the following binder for t (where we omit dependencies for readability purposes):
lt=V{as}. Ay ap. If we were to not quantify asy in our example, we would obtain
an error for the following piece of code (because as would be constrained to be equal

to bool and.unit)

type ’a t = (..)
val x = true : bool t

val y = () : unit t

But one can observe that this incomplete piece of code becomes typable when
replacing (..) by ’a.
We also define the following forms where TyFun C LabName and App C ITy:

tyf € TyFun:=6| Aa.7 | (tyf, d)
app € App =T tyf
These forms will be used to state side conditions in the extension of our constraint
solver below.

We extend the application of a substitution to a constraint term as follows:

(Aa. 7)[sub] = Aa. T[{a} < sub],if a & vars({a} < sub)

14.3.3 Constraint generation

Fig. 14.8 modifies the rules for datatype names (G13) and datatype declarations (G18),
and defines a new rule (G30) for type function declarations. The environment e; is
generated before ey in rule (G18) to handle the recursivity of datatype declarations
and it is generated after e, in rule (G30) to handle the non-recursivity of type dec-
larations. Note the use of local environments of the form loc e; in ey in rules (G18)
and (G30). They are used to handle binding occurrences of explicit type variables.
In rule (G30) the environment e; is not required to be generated inside the local
environment. It could as well be generated after the local environment.

Because the new constraint generation rule (G13) associates tuples of the form
(0, av, €1, e2) with dns, we extend the set InitGen originally defined in Sec. 11.5.1 and

extended in Sec. 14.1.3 as follows:
cg € InitGen :=--- | (0, €1, €3)

Because our initial constraint generation algorithm generates new forms of type
constructor binders, we replace the initially generated type constructor binders as

follows:
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|Datatype names (dn > (5, o, e1, €2))|
(G13) [tv tc]' + (6, a, Ltc L d, Ltv L a)

(G18) datatype dn LS (ev=((d é'y);(ozg Lo v);e1;1oc ef inpoly(e2)));ev
< dn > (0,1, e1,€]) A ch > {as, e2) Adja(er, e2,7, ev)

(G30) type dn L ty > (ev:(((;éAal. az);loce] in(ez;er)));ev’
< dn (6, a1, e, e1) Aty > (a2, e2) Adja(er, ez, ev)

l

Figure 14.8 Constraint generation rules for type functions

Ltc R L LabBind itc—é

The extension of our constraint generation algorithm defined in Fig. 14.8 also
generates forms of equality constraints that were not generated at initial constraint
generation by the algorithm defined so far. We introduce ShallowTyCon and extend

LabCs as follows:

stc € ShallowTyCon ::=~ | Aa. o/
le €LabCs ::z---\&éstc
14.3.4 Constraint solving

Because we added internal type constructors of the form Aa. 7, we need to update

our building function as follows:
build(u, Aa. 7) = Ad. build(u, 7), if build(u,a) = o/

We define the free internal type variable of an internal type or an internal type

constructor as follows (used by rule (B6) in Fig. 14.9 presented below):

freevars(«) ={a} \ Dum

freevars(m —7y) = freevars(11) U freevars(s)

Aa. 1) =freevars(7) \ {a}

freevars(z?) = freevars(z)

(
(
freevars(T 1) = freevars(u) U freevars(r)
freevars(Aa.
(
(

freevars(z) = @, if none of the above applies

Fig. 14.9 extends our constraint solver to handle internal type constructors of
the form Aa. 7. We replace the two rules (S3) and (S5) defined in Fig. 11.10 by the
new rules (S9)-(S13).

Accessor rules (Al) and (A2), originally defined in Fig. 11.10 (rule (A2) is re-
defined in Fig. 14.3), are redefined to handle universally quantified internal type
constructors as well as type schemes. Also, the new binder rule (B6) is introduced
to generate universally quantifier internal type constructors.

Note that equality constraints of the forms (Aa.7=p) or (u=A«.T), where p

is not a variable, are never generated neither at initial constraint generation nor
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equality simplification
(S9) s1v(A,d, 7 u=T) —slv(A, d, 7 [{a— n}=T), if coIIapse(u )= (Aa )
A 7' = build(A, ¢ )

(S10) s1v((u, €), d, 7 p=7) — succ((u, €)), if collapse(u?) = 6% A § ¢ dom(u)
(S11) s1v({(u, €),d, 7y p=7) — slv((u, e),dU d,m w'=t), if collapse(u?) = 54 A u(d) =y
(S ) SlV(A, T1 U1=T2 ,u,g) — SlV(A 1 U dg, ’71—’72,7’1—7’2), if coIIapse(uf) = ’yldj

A collapse(pif) = ~52
(S13) s1v(A, d, 1="72) — slv(A, d, u=ar), if {r1, 72} ={Tp, 107}

A strip(p) € TyConName

equality constraint reversing
(R) s1v(A, d,z=y) — s1v(A, d,y=x),if s = Var U Dependent UApp A y € s A = & s,
binders
(B1) s1v({u, e),d, lid=z) — succ({u, >,(lzd = :v)) if ¢d & TyCon
(B6) s1v({u, e), d, Ltc=pu) — succ((u, e);(ltc = 2 va. ), if @' = build(u, ) A @ = freevars(u')
accessors
(A1) s1v(A, d, tid= U)—>slv(A dud, v= x[ren)),

if A(id) = (Vv. x)d A dom(ren) =T A dj(vars((A, v)), ran(ren))
(A2) s1v(A, d, tid=v) — s1v(A, d, v=x),

if A(id) = x A strip(z) is not of the form Vv.x A v ¢ IdStatus

Figure 14.9 Constraint solving rules for type functions

at constraint solving. A constraint of the form (Aa.7=7) would lead to checking
that Aa. 7 and Aa/. o/ v are the same type functions because v is considered in our
system as equivalent to a type function of the form Aa’. o’ (where o is a “fresh”
type variable w.r.t. a given constraint solving context). A constraint of the form
(Acy. m=Aas. 5) would lead to checking that 7 [{a;+— a}] and m[{as— a}] can
be made equal (where a is a “fresh” type variable w.r.t. a given constraint solving
context).

There are two issues w.r.t. solving applications of internal type constructors to
internal types where internal type constructors can be type functions, e.g., of the
form 75 (Acy. 1), where dependencies are omitted for readability issues. The first
issue is related to the fact that applications of type functions to internal types need
eventually to be reduced. Such reductions are done by rule (S9) in Fig. 14.9. The
first issue is that when an application of the form 7 (Aay. 71) is reduced at constraint
solving, all the constraints on 7; need to have already been dealt with in order to
replace all the occurrences of oy by 75 in the fully built up version of 7;. Therefore,
at constraint solving, we need to enforce that before reducing the application of a
type function to an argument, all the constraints on the body of the type function
have been dealt with. However we do not allow any look ahead in our constraint
solver. Let us consider the two following environments, where 7; # 73, and which

differ only by the swapping of the two equality constraints:

Let e be ((a171)=(az72) (Ad. a));(a=a")
Let e; be (a=d');((a171)=(azy2) (Ad. a))
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When dealing with e, our constraint solver first deals with ((a; 71)=(az272) (Aa. &))
which does not lead to a type error and leads to asy2 to be thrown away and o’ to
be constrained to be equal aq ;. It then deals with a=a’ which leads to a to also
be constrained to be equal to oy y; but which does not lead to any type error. As a
matted of fact, when dealing with the first constraint of e; (left one) our constraint
solver is not aware of the equality between o and o/ and does not know if there are
any more constraints on o that have not yet been dealt with (and does not look them
up). Note that solving ey leads to a type error. Because we believe e; and ey should
have the same semantics, we need to somehow rule out environments such as e;.
Because we do not enforce our constraint solver to deal with (a=a’) before dealing
with ((c1 71)=(272) (Aa. @’)), we need the initial constraint generation algorithm
to generate (a=a’) before ((agy1)=(ag2) (Aa.@’)). More generally, we need the
initial constraint generation algorithm to generate all the constraints on u before a
constraint in which a type of the form 7y occurs.

Another solution would be to introduce another binary environment composition
operator with a different semantics than the one of “;”, such that unifiers generated
for the right-hand-side of such an operator would not be usable for the left-hand-side.
We leave the study of such a system to future work.

Equality constraints of the form (were dependencies are omitted) 77 6=7 where
0 is unconstrained (see rule (S10)) are discarded at constraint solving. We do so
because 0 could potentially be the type function Aa.7 where o does not occur in
7. Once again, because we discard such constraints at constraint solving, we need
to require that all the constraints on  have been generated before 71 d=7 at initial
constraint generation and are dealt with before 7 =7 at constraint solving.

Another issue w.r.t. solving applications of internal type constructors to internal
types where internal type constructors can be type functions is an efficiency issue.
For example, we do not wish to generate polymorphic binders of the form, e.g.,
lvid=¥{a}. (1) (Ad’. &/ v2) because this would potentially involve having to re-
duce the application multiple times. Therefore, because we already need our initial
constraint generation algorithm to generate all the constraints on p before a con-
straint in which a type of the form 7 u occurs, we redefine our building function on

types of the form 7y as follows (this new rule replaces the one given in Sec. 11.6):

collapse(7'®) [{cv+— build(u, 7)}], if build(u, 1) = (Ac. 7/)%

build(u, 7 u) =
(.7 1) {build(u,T)buiId(u,’y), otherwise

Because binders of the form |tc=k can now occur in constraint solving contexts
(in e in (u, e)), we redefine the binder forms generated at constraint solving as
follows (originally defined in Sec. 11.6.6 and extended in Sec. 14.1.4):

ltC:M SolvBind Lte=k
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14.3.5 Slicing

Because we have changed our constraint generation rule for dns, we need to replace

the dot terms in DatName as follows:
dot-e(term) BatName, g6t n(term)

We define the new constraint generation rule for terms of the form dot-n(term)

as follows:

(G31) dot-n({termy, ..., termy)) > (5, a, T, [e1;- - ;6,]) <

—_— — .
termy > ep A -+ A termy, > e, Adja(er, ..., e, 0, Q)

Note that this rule is correct because our slicing algorithm (defined in Fig. 11.17)
only generates dot-dn terms of the form dot-n(()) and so no binder needs to be non-
locally exported by the rule. The sequence wrapped into a dot-dn term is always
empty when generated by our slicing algorithm because it means that it has been
generated from a dn term of the form [tv tc]' and that [ is sliced away (see rule (SL1)
in Fig. 11.17). Given the function sl on identifiers (see rule (SL9) in Fig. 11.17), we
then obtain what corresponds to the dot-dn term dot-n(()).

Our slicing algorithm does not need to be extended but we need to update the

tree syntax for programs as follows:

Prod ::=--- | decTyp
Dot :=---|dotN

We also need to modify the getDot function that associates dot markers with
node kinds as follows (the function now returns a dotN marker and not a dotE

marker anymore when applied to a datname node):
getDot((datname, prod)) = dotN
We also need to extend the toTree function that associates trees of the form tree
with terms of the form term as follows:

toTree(type dn L ty) = ((dec,decTyp), [, (toTree(dn), toTree(ty)))

toTree(dot-n(term)) = (dotN,toTree(term))

14.4 Non-recursive value declarations

In SML, a value declaration can either be recursive or non-recursive depending on
the presence or not of the keyword rec. We already covered recursive value declara-
tions (val rec declarations). Let us now present how to handle non-recursive value
declarations. These declarations are interesting as they raise many issues such as

value identifier status issues.
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14.4.1 External syntax

Let us extend our external syntax with non-recursive value declarations as follows:
Dec::=--- | val pat L exp

In SML, the expression of a recursive value declaration is restricted to a fn-
expression so that recursive value declarations are forced to declare functions. We
do not take the restriction into consideration in this document as it does not raise
any interesting issues w.r.t. type error slicing. There is no such restriction for non-
recursive value declarations.

Let us provide an example of a non typable piece of code involving a non-recursive
value declaration (many examples using non-recursive value declarations have al-

ready been given above, as these declarations are most useful):

]
Moo
-

val x

val x

In this piece of code, x’s third occurrence is bound to x’s first occurrence and not
to x’s second occurrence. This piece of code is untypable because x’s first occurrence
is constrained to be an integer and x’s third occurrence is constrained to be a function
that takes an integer. We then obtain a type constructor clash.

Let us now present a slightly more interesting example.

datatype t = x
val x = 1

val x = x 1

The issue here is the same as for fn-expression. In our example, x’s second (as
well as its third and fourth) occurrence is bound to x’s first occurrence. Therefore,
the second declaration does not declare any identifier. We obtain two type error
slices for this untypable piece of code: the first one reports a type constructor clash
involving x’s first and second occurrences, and the second one reports another type
constructor clash involving x’s first and fourth occurrences.

Let us finally wrap the second and third declarations of our last example into a

structure declaration as follows:

datatype t = x
structure S = struct
val x = 1
val x = x 1

end

As explained above, the issue here is that the structure does not declare any

identifier even though it contains declarations. This can lead to, e.g., confusing
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(G45) val pat L eap » (ev=poly(ea;er;(ay éag)));evl
< pat > (aq, e1) A exp > {ag, e2) Adja(er, ez, ev)

Figure 14.10 Constraint generation rule for non-recursive value declarations

unmatched errors.
Another interesting issue that is raised when adding non-recursive value decla-

rations is the value polymorphism restriction which is discussed in Sec. 14.5.

14.4.2 Constraint syntax

No additional constraint term is necessary for this partial extension, but some will be
required when taking into account the value polymorphism restriction (see Sec. 14.5).
Our constraint solver and constraint filtering function are not changed in this section

either. They will however be extended in Sec. 14.5.

14.4.3 Constraint generation

Fig. 14.10 extends our constraint generator with a rule to handle non-recursive value
declarations. This rule is similar to rule (G17) defined in Fig. 11.7. Rule (G45) differs
from rule (G17) by the fact that toV is not applied to e; and by the order in which
the environments are in the generated environment. In rule (G45) for non-recursive
value declarations, e; does not constrain ey so that in a declaration val pat L exp

the accessors generated for exp cannot refer to the binders generated for pat.

14.4.4 Slicing

First, we extend our tree syntax for programs as follows:
Prod::=--- | decNRec
Then, we extend the toTree function as follows:

toTree(val rec pat L exp) = ((dec,decNRec), [, (toTree(pat),toTree(exp)))

14.5 Value polymorphism restriction

The value polymorphism restriction [146] allows one to have imperative features such
as references in, e.g., SML by constraining the polymorphism of value declarations
that could potentially be unsound.

We will illustrate this feature using an example given by Tofte [134] and reused
(sometimes slightly modified) by many others [101, 146, 116]. First let us intro-

duce references. The ref datatype and constructor are defined as follows in SML:
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datatype ’a ref = ref of ’a. One can then create a new reference to an expression
e as follows: ref e. One can access the value stored in a reference r as follows: !r.
The function ! has the following polymorphic type ’a ref -> >a. One can update a
reference r as follows: r := e which results in e being stored in the reference r. The
infix function := has polymorphic type ’a ref * ’a -> unit.

The example used by Pottier and Rémy [116] is as follows:

val r = ref (fn x => x)
val _=r :=fnx =>x + 1

val _ = Ir true

This piece of code declares a reference r to the identity function. This reference
is then updated to store the successor function. Finally, the function stored in r
is applied to true. It would then be unsound to generalise the type of r to the

polymorphic type:
V{a}.@kﬁa)ref

because it would result in having a typable piece of code that reduces to the appli-
cation of the successor function to true.

The value polymorphism restriction allows one to overcome this issue by re-
straining the body of value declarations that are allowed to be generalised. First,
the expression set is partitioned into two sets: the expansive expressions and the
non-expansive ones (what Wright [146] calls the syntactic values). A value declara-
tion is not generalised if the corresponding expression is expansive. In The Definition
of Standard ML [107, Sec.4.7], it is written that “the idea is that the dynamic eval-
uation of a non-expansive expression will neither generate an exception nor extend
the domain of the memory, while the evaluation of an expansive expression might”.
In our restricted language, the syntax of non-expansive expressions is defined as

follows:
conexp € ConExp ::= m’dé

nonexp € NonExp ::= vid. | [conexp nonexp]" | £n pat A exp

where a conexp has to be a datatype constructor (it can also be an exception con-
structor in full SML) and has to be different from the datatype constructor ref.

The expressions in Exp \ NonExp are therefore the expansive expressions.

14.5.1 External syntax

Our external labelled syntax does not change. However, we define the functions
expansive and expansiveCon which extract the dependencies responsible for an ex-

pression to be expansive as follows:
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(G45) val pat L eap » (ev=expans(ez;er;(aq L ), expansive(ezp)));ev’
< pat > (aq, e1) A exp > {ag, e2) Adja(er, e2, ev)

Figure 14.11 Constraint generator handling the value polymorphism restriction

expansive(vid.) =g

expansive(let! dec in exp end) ={{l}}

expansive(fn pat A exp) =0

expansive([exp atezp]') ={lud | d € expansiveCon(exp) U expansive(aterp)}
expansiveCon (vid.) ={{l, vid}}

expansiveCon(let! dec in erp end) = {{I}}

expansiveCon(fn pat LY exp) ={{l}}

expansiveCon([ezp atexp]’) ={{l}}

14.5.2 Constraint syntax

We introduce new environments as follows:
e €Envi=--- | expans(e, d)

The semantics of an environment of the form expans(e, E) is that e is monomor-
phic if one of the set in d is satisfied. An environment of the form expans(e, d) is

then a dependent poly(e) environment.

14.5.3 Constraint generation

Fig. 14.11 redefines rule (G45). This rule differs from the one provided in Fig 14.10
by the replacement of the poly environment by an expans environment.

Because our initial constraint generation algorithm generates these new expans
forms, we have to extend the set GenEnv of initially generated environments, origi-

nally defined in Sec. 11.5.2; as follows (where pe is as redefined in Sec. 14.1.3):

ge € GenEnvii=-- - | expans(pe,i)

14.5.4 Constraint solving

Fig. 14.12 extend our constraint solver to deal with expans environments.

An expans environment can turn into a poly environment if it turns out that
the corresponding declaration binds a non-expansive expression or if there is not
enough information to determine whether or not the corresponding expression is ex-
pansive (rule (VPR1)). For example, the environment generated for £’s declaration in
val £ = fn x => x will eventually turn into a poly environment at constraint solving
because the corresponding expression is a fn-expression which is non-expansive. The

environment generated for f’s declaration in datatype ’a t = T of ’a val £ =T 1
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Value polymorphism restriction
(VPR1) s1v(A, d, expans(e, j)) — s1v(A, d,poly(e)),

if Vdy € d. (do = 10U {vid}

A(strip(Afvid]) & {v,u} V (A[vid] undefined A shadowsAll(A))))

(VPR2) s1v(A, d, expans(e, du {1}) —s1v(A,d Ul e)
(VPR3) s1v(A,d, expans(e,j U{do W {vid}})) — slv(A,dU d, e),

if (collapse(A[vid]) € {vd, u®} A'd =dyUdy)

V (A[vid] undefined A —shadowsAll(A) A d = do U {vid})

Figure 14.12 Constraint solving rules handling the value polymorphism restriction

will also eventually turn into a poly environment at constraint solving because
the corresponding expression is the application of a datatype constructor to a non-
expansive expression (special constants such as 1 are also non-expansive in SML).

Rule (VPR2) applies when dealing with the environment generated for the decla-
ration val f = let val g = fn x => x in g end because let-expressions are expansive
and the expansiveness does not depend on identifier statuses. The binder generated
for £ at constraint solving is then monomorphic.

Rule (VPR3) can generate value identifier dependencies if it turns out that the
polymorphism of an environment depends on a value identifier not being a value
variable and that this identifier is free. For example, the environment generated for
£’s declaration in val £ = g 1 will stay monomorphic at constraint solving and will
eventually be dependent on g being a value variable and not a datatype constructor
because g is a free identifier and as such its status is context dependent.

Rule (VPR3) also deals with the case where the polymorphism of an environment
depends on a value identifier not being a value variable and that the status of this
identifier is confirmed to be a value variable. For example, the environment gener-
ated for £’s declaration in val rec g = fn x => x; val f = g 1 will stay monomorphic
at constraint solving and will depend on the dependencies of the status binder gen-
erated for g’s first occurrence (which is a value variable).

Let us now consider this example: fn g => let val f = g 1 in (f (), f true) end.
Because g is not declared in the context of this fn-expression, at constraint solv-
ing, a status binder is generated associating the status u to g’s first occurrence.
This binder is context dependent and depends on g’s status being a value vari-
able and not a datatype constructor (see rule (B4) in Fig. 14.3). Rule (VPR3)
applies and the environment generated for f’s declaration will stay monomorphic
at constraint solving and will be dependent on g being a value variable and not
a datatype constructor because g's status in the context of f’s declaration is con-
text dependent. It will also be dependent on g’s first occurrence itself for bind-
ing issues even though this occurrence does not help resolving the dependency on
g’s status. A type error slice for this untypable piece of code is then as follows:

(..fng=>(..val £ =g (..)..f O..f true..)..) which depends on g being a value
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variable and not a datatype constructor. Let us present why g’s first occurrence is

necessary using the following piece of code:

datatype t = h; val g = h; val u = g;
val v = fn g => let val £ = g 1 in (f OO, f u) end

If g’s third occurrence was not involved in the found type error slice (similar to
the one described above) then our minimiser would eventually try to minimise the

following slice:

..datatype t = h..val = h..val u =
yp g g
c{eoval £ =g (... f O f u.l). )

where the bindings are mixed up because in this slice g’s last occurrence is bound
to g’s first occurrence.

Instead, the minimal type error slice computed by our TES is as follows:

(..datatype t = h..val g = h..val u = g
fng=>(..val f =g (..)..f O..fu..)..)

14.5.5 Constraint filtering

We update our filtering function as follows:

filt(expans(e,i), I1,12) = expans(filt(e, Iy, 12),{d | d € dA labs(d) C I1})

14.6 Type annotations

14.6.1 External syntax
First, let us extend our external syntax with type annotations as follows:

Expi=---| exp:'ty
Pat ::=--- | pat:'ty

Let us consider the following piece of code.

val rec g : unit -> unit = fn x => x

val u = g true

This piece of code is untypable because the function g is explicitly defined to be
a function that takes a unit and is later applied to true. Note that there are several
ways to solve the programming error. We only mention some of them below. For
example, one can change the type annotation on g to be bool -> bool. One could

also apply another function to true.
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We define sequences of explicit type variables as follows:

ltv € LabTyVar:=tv! | dot-d(term)
tvseq € TyVarSeq ::=ltv | € | (Itvy, ..., ltv,)! | dot-d(term)

Explicit type variables (fv) in type variable sequences are subscripted when oc-
curring in type variable sequences (tv!) in order to distinguish between occurrences
in type variable sequences and occurrences in types.

We replace the recursive and non-recursive value declarations as follows:

val pat L exrp Dec, val tvseq pat L exp

val rec pat L exrp Dec, yal rec tvseq pat L exrp

For example, the following piece of code is untypable:

val rec ’a f = fn x =>

(EX11) let val rec g : ’a -> ’a = fn x => x

in g true

end

First, ’ais explicitly bound at the outer value declaration (£’s declaration). Then,
before generalisation, g’s type is ’a -> ’a. Because ’a is bound to the outer value
declaration, it occurs in the type environment. It is therefore not generalised when
generalising g’s type. After generalisation, g’s type is then still a -> ’a. Finally,
when applying g to true, the non-generalised explicit type variable ’a clashes against
the type bool.

As usual, there as several ways of obtaining a typable piece of code. We only
mention some of them below. For example, example (EX12) below (we have just
removed the explicit binding of ’a from (EX11)) is typable if it does not occur in an
expression where ’a occurs at a binding or bound occurrence because the explicit

type variable ’a is implicitly bound to the inner declaration (g’s declaration).

val rec £ = fn x =>

(EX12) let val rec g : ’a -> ’a = fn x => x

in g true

end

In example (EX11), one could also remove the type annotation on g or change it
into, e.g., ’b -> ’b.

Let us present a last example:

val rec £ = fn x =>

(EX13) let val rec g : ’a -> ’a = fn x => x
in fny : ’a=>fn z : ’a => g true
end

This untypable piece of code slightly differs from example (EX12). We have

replaced the expression g true by the fn-expression fn y : ’a => fn z : ’a => g true

191



Chapter 14. More TES features to handle more of SML

in order to introduce new occurrences of the type variable >a. Because ’a occurs free
in £’s body (in the expression fn y : ’a => fn z : ’a => g true), it is then implicitly
bound at the outer value declaration (f’s declaration). Now, because ’a is bound
at the outer value declaration, the occurrences of ’a in g’s body are also implicitly
bound at the outer value declaration and not at the inner one. We then obtain as for
example (EX11) a clash between the first occurrence of the non-generalised explicit
type variable a and true’s type. As a matter of fact, we obtain two minimal type
error slices. One involves ’a’s occurrence in the pattern y : ’a and the other one

involve ’a’s occurrence in the pattern z : ’a.

14.6.2 Constraint syntax

We introduce unconfirmed type variable binders as follows:

bind € Bind ::=- - - | ltv=0
e €Env i=---|or(e,d)

The difference between binders of the form |tv=/ and binders of the form tvid=«
is that a binder of the form |tv=/( cannot turn into an accessor while one of the form
tvid=a can as we saw in Fig. 11.10. The similarity is that both kinds of binders
will look up the environment to turn into confirmed binders of the form |id=xz. The
difference between binders of the form |tv= and binders of the form |id=z is that
a binder of the form |tv=[ can be discarded at constraint solving while a binder of
the form |id=x cannot.

We need such unconfirmed type variable binders because, e.g., for example (EX11)
presented above, we generate an unconfirmed binder for ’a at the inner declaration
(g's declaration). In our example, this unconfirmed will obviously be discarded at
constraint solving, if no constraint is filtered out, because there is already a binder
generated for >a at the outer declaration (f’s declaration).

We also define environments of the form or(e, d). Such an environment differs
from an environment of the form e by the fact that in the latest all the dependencies
have to be satisfied for e to be kept at constraint filtering (we then say that e is kept
“alive”, or simply that it is “alive”) while in an environment of the form or(e, d)
only one of the dependencies in d has to be satisfied for e to be “alive”. In an
environment of the form eg, the set d can be seen as a conjunction of dependencies,
while in an environment of the form or(e, d), the set d can be seen as a disjunction
of dependencies. This is why we write e¥? for or(e, d).

For example (EX13) we generate an environment or the form (1°a L B)Vinl}
where [; is ’a’s third occurrence’s label, l is ’a’s fourth occurrence’s label, and [
is the label of the declaration at which ’a is implicitly bound. Both /; and I are
“reasons” explaining why the unconfirmed binder is introduced and only one of them

is necessary for the unconfirmed binder to exist.
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14.6.3 Constraint generation

We extend the labtyvars function, originally defined in Sec. 14.7, to expressions and

patterns as follows:

labtyvars(vid') =g

labtyvars(1et! dec in exp end) = labtyvars(ezp)

labtyvars(fn pat 1Y exp) = labtyvars(pat) U labtyvars(ezp)
labtyvars([ezp atezp]’) = labtyvars(exp) U labtyvars(atezp)
labtyvars(exp : 'ty) = labtyvars(exp) U labtyvars(ty)
labtyvars(vid ) =g

Iabtyvars(vzdl atpat) = labtyvars(atpat)

labtyvars(pat : ' ty) = labtyvars(pat) U labtyvars(ty)

This function does not extract all the explicit type variables occurring in an
expression of a pattern. It does not extract the explicit type variables occurring in
nested declarations (see case for let-expressions).

We define the function labtyvarsdec as follows:

labtyvarsdec(tvseq, pat, exp) = {tv’ | f(tv) = 1}
where f = W{tv— {l} | tv does not occur in tvseq

A t! € labtyvars(pat) U labtyvars(ezp)}

Such tvseq, pat and exp are meant to be those of a recursive or non-recursive
value declaration.

Fig. 14.13 extends our constraint generation algorithm. Rules (G46)-(G50) are
new. Rules (G17) and (G45) replace the ones respectively defined in Fig. 11.7 and
Fig. 14.11. Rules (G48)-(G50) generate explicit type variable binders for type vari-
able sequences. The generated binders are confirmed binders (of the form |tv=0 and
not of the form |tv=/3) because type variable sequences are used in SML to explicitly
bind type variables (they are not context dependent). Rules (G17) and (G45) gener-
ate unconfirmed type variable binders of the form |tv=( for explicit type variables
that could potentially implicitly bound at value declarations. These unconfirmed
binders are generated after the confirmed binders because the unconfirmed ones are
dependent on the confirmed ones. This order is necessary. The order in which the
unconfirmed binders are generated is not relevant because the explicit type variables
are all different.

Note that instead of adding environment of the form evg, we could have replaced
the dependent environment forms by forms depending on disjunctions of conjunc-
tions of dependencies (instead of just depending on conjunctions of dependencies).
Then, instead of generating, e.g., (1tvy L ﬁl)vjl, we could have generated a binder of

LUV el -
the form (tvq MG, f1, where at least one of {I,1'}, such that I’ € [;, has to be
satisfied to the constraint represented by the dependencies to be satisfied. Because

this is only needed for environment, and in order to keep the same simple dependent
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(G46) exp: 'ty » (a, el;eg;(aéal);(aéag)) < exp > (a1, e1) Aty > (az, e2) Adja(er, e, @)

(G4T) pat: 'ty > (a, erseas(@=a1)i(a=an)) < pat > (a1, e1) Aty > (as, &) Adja(er, €2, )

[Labelled type variables (ltv > ¢)]
(G48) tv! > Ltv L Ié]

[Type variable sequences (tvseq > e)
(G49) el & T
(G50) (Itvy, ..., ltvy)t > er;---en < ltvy > eg A---Altv, > e, Adjaler, ..., e,)

Declarations

(G17) val rec tvseq pat L exp > (ev=poly(loc ey;e in (toV (e );e2;(an L a3z))));ev
< twseq > eg A pat > (a1, e1) A exp > {Qz, €2)

l

Alabtyvarsdec(tvseq, pat, exp) = Wi {tv'}
! 7 1 7
Ae = ((Itvy = B1)Vhs - (Itv, = B,)Vi)
/\dja(eo, €1, €2, €V, 617 te 7671)
(G45) val tvseq pat L exp > (ev=expans(loc ep;e in (eq;er;(ay L a2)), expansive(ezp)));ev’
< twseq > eg A pat > (a1, e1) A exp > {Qa, €2)
Alabtyvarsdec(tvseq, pat, exp) = Wi {tv'}
! 7 1 7
Ne = ((Itvr = B1)V0s -5 (Itvn = Ba)¥™")
/\dja(eo, €1, €2, €V, 617 te 7671)

Figure 14.13 Constraint generation rules for type annotations

binders <
(B9) slv(A,d,ltv=8) — succ(A;(1tv = B)),if A(tv) is undefined
(B10) s1v(A, d, ltv=8) — succ(A), if A(tv) is defined

or environments
(OR) s1v(A,d, eV{dVd) 5 s1v(A, d U {d},e)

Figure 14.14 Constraint solving rules to handle type annotations

form for all our kind of constraint terms, we did not adopt this solution. We leave
for future work the investigation of such a system.

Because our initial constraint generation algorithm generates new forms of binders
(I1tv=03), and because poly environment can now wrap local environments, we up-
date LabBind and PolyEnv as follows:

lbind € LabBind := - - - | (Itv = B)V
pe € PolyEnv ::=--- | loc pe; in pe,

14.6.4 Constraint solving

Because we introduced new form of binders and environments, Fig. 14.14 extends
our constraint solver. Rule (B9) only picks one dependency from the dependency
set labelling an environment of the form e"¢ because only one of them is needed for
the constraint represented by the dependency set to be satisfied. Any dependency

from d can be chosen.
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Expressions

toTree(eap:'ty) = ((exp, expTyp), [, (toTree(exp), toTree(ty)))
Patterns
toTree(pat : 'ty) = ((pat, patTyp), [, (toTree(pat), toTree(ty)))

Labelled type variables
toTree(tv!) = ((labtyvar, id), I, (tv))

Type variable sequences
toTree(e!) = ((tyvarseq, tyvarseqEm), [, ())
toTree((ltvy, ..., ltv,)!) = ((tyvarseq, tyvarseqSeq), [, toTree((ltvy, . .., ltv,)))

Figure 14.15 Extension of our conversion function from terms to trees to deal with
type annotations and type variable sequences

14.6.5 Constraint filtering (Minimisation and enumeration)

We update our filtering function as follows:

filt(e, T, 1)V it T = TN (1 \ o) # @

dum(strip(e)), if dj(I,11 \ l2) and —dj(i, I3)

®, if dj(, 1, U l5) and strip(e) € Var U Bind
T,
dum(lid=x) = (lid=toDumVar(x))

fi|t(e\/7,zl,72): E’ !
l7 1

otherwise

14.6.6 Slicing

We extend our tree syntax for programs as follows:

Class::=--- | labtyvar | tyvarseq

Prod ::=--- | expTyp | patTyp | tyvarseqEm | tyvarseqSeq

We extend the function getDot that associates dot markers with node kinds as

follows:

getDot((labtyvar, prod)) =dotD
getDot((tyvarseq, prod)) = dotD

Finally, Fig. 14.15 extends the function toTree that transforms terms into trees.

14.7 Signatures

This section shows how to design a type error slicer that handles some signature
related features. This section deals with value, type, datatype and structure speci-
fications. It does not deal with include or sharing specifications, and does not deal
with type realisations (where clauses) either. Type realisations are “almost fully”
supported by our implementation, we partially support include specifications, and
we have started implementing support for sharing specifications.

Some kinds of errors are not handled by the system presented in this section.

For example we do not handle unmatched errors: when an identifier is specified in
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a signature but not declared in a structure constrained by the signature. These
errors are dealt with in Sec. 14.8. Another kind of error which is not dealt with in
this section is when a type constructor is defined as a type function in a structure
and as a datatype in the structure’s signature. This kind of error is handled by our

implementation but we do not provide the details in this document.

14.7.1 External syntax

First, let us extend our external syntax with signatures as follows:

sigid € Sigld (signature identifiers)
sigdec € SigDec ::=signature sigid L sigexp
—
| dot-d(term)
sigexp € SigExp 1= sigidl | sigl specy - - - spec,, end
—_—
| dot-s(term)
spec € Spec n=val vid :! ty
| type dn'

| datatype dn L cd
| structure strid :! sigexp
—
| dot-d(term)
cd € ConDesc ::= vid'. | vid of ! ty
—
| dot-e(term)
id eld n=--- | sigid
strexp € StrExp =--- | strexp i sigexp | strexp >l stgexp
topdec € TopDec ::= strdec | sigdec
prog € Program ::= topdec;; -- - ; topdec,,

The symbol :> is used for opaque constraints and : for translucent constraints.
The structure strezp :>' sigexp is the structure strezp constrained by the signature
sigexp where each of sigexp’s specifications has to be matched by one of strexp’s

! sigexp). The structure strexp can declare

declarations (and similarly for strezp :
more identifiers than are specified in sigezp. In the structure strexp :>' sigexp,
only the identifiers specified in sigexp can be accessed from strexp, i.e., only the
sigerp part from strerp is visible to the outside world. The difference between
strexp :>' sigexp and strexp :' sigexp is that in the first one if sigexp specifies a type
constructor tc then in strezp :>' sigexp it is not constrained by its declaration in
strexp, whereas in strexp :' sigexp the type constructor would be constrained by its
declaration in strezp. Opaque signatures are used to abstract types from structures
and are usually preferred over translucent ones for this reason.

Let us present an example involving an opaque signature:

signature s = sig val x : ’a end
(EX3) structure S = struct val x = 1 end
S > s

structure T

196



Chapter 14. More TES features to handle more of SML

This piece of code is untypable because the type variable ’a is more general than
the type int. Types of declarations in structures have to be at least as general as
the corresponding specifications in signatures. This kind of error will be referred as
a too general error henceforth.

Let us now present an example illustrating the difference between opaque and

translucent signatures:

signature s = sig type t val £ : t -> t end

structure S = struct type t = bool val rec £ = fn x => x end

= >
(EX4) structure T1 S s

structure T2 = S : s
val ul = let open T1 in f true end

val u2 = let open T2 in f true end

In this piece of code, the difference between T1 and T2 is that T1 is the structure
s constrained by the signature s using an opaque constraint while the structure
T2 uses a translucent signature. The declaration u2 differs from u1 by opening the
structure T2 instead of T1. The application £ true occurring in ut is part of an error
because f is a function that takes a t as argument and not a bool. In T1, the type
t is abstracted and is not related to bool. The application f true occurring in u2
however, is not part of an error because f is there a function that takes a bool as

argument. In T2, the type t is the bool type.

14.7.2 Constraint syntax
We extend our constraint system to handle signatures as follows:

16} € RigidTyVar  (set of rigid type variables)

svar € SVar s=v|p

p €FRTyVar =« |p

sig €SigSem  u=e|Vd.e | (sig,d)

bind € Bind n=--- | Lsigid=sig

acc € Accessor i=---| Tsigid=ev

T elTy n= | B

! € ITyCon n=-ee |ty

subty € SubTy =01 Reid 02 | K1 St K2

e € Env n=---| er:eg | ins(e) | subty

In this table, we introduce new type variables: the rigid type variables. These
rigid type variables act as constant types but are called variables because they are
allowed to be renamed and quantified over. Being considered as constant types,
they are not allowed to be equal, e.g., to arrow types (they are not allowed to be
vs in rules (U1)-(U6) in Fig. 11.10). Because these rigid type variables have a spe-

cial status (they are not allowed in the domain of unifiers), they are not allowed
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in the set Var. However, we define the new variable set SVar (where “S” stands
for substituable, because we allow s to be renamed as as do when, e.g., instanti-
ating type schemes, where type schemes are redefined below) that contains all the
variables in Var plus the rigid type variables. Type variables of the form o will
now be referred as flexible type variables in contrast with rigid type variables of the
form 3. The set FRTyVar contains the flexible (“F”) and rigid (“R”) type variables.
The terminology used to distinguish between type variables® is borrowed from Pot-
tier and Rémy’s implementation of their constraint system [116]. In Pottier and
Rémy’s implementation of their constraint system [116], a type scheme is as follows:
VX.3Y .[Clidy: Ty - -+ id,: T, where X is a rigid type variable set, Y is a flexible
type variable set, C' is a constraint, and the T; are types all constrained by the
constraint C'. Such a type scheme can bind more than one identifier. They explain
that for such a type scheme to be considered consistent, the constraint VX.3Y.C
must hold 4. They also write: “Rigid and flexible quantifiers otherwise play the
same role, that is, they all end up universally quantified in the type scheme”, which
is why we consider two distinct sets of variables for flexible and rigid type variables
and why both kinds are allowed to be universally quantified over.

Let us extend the definition of atoms, originally introduces in Sec. 11.3, as fol-
lows: let atoms(x) be the set of syntactic forms belonging to SVar U TyConName U
Dependency and occurring in = whatever « is. Let svars(x) = atoms(z) N SVar.

We extend the form of the explicit type variable binders and the form of type

schemes as follows:

Ltw=a B | ty=p Va. r Scheme, 5 -

To allow one to instantiate our different universally quantified forms, we redefine

renamings as follows:

ren € Ren = {ren| ren = U fy
A fi € FRTyVar — ITyVar
A fo € TyConVar — TyConVar
A ren is injective

Adj(dom(ren), ran(ren), Dum)}

Both flexible and rigid type variables are renamed to flexible ones. So, e.g.,
instantiating the type scheme V{a}. a—a or the type scheme V{3}. 5—/ both result
in a type of the form o/—da/.

We also extend our substitutions as follows:

sub € Sub = {sub | sub=uU f A f € RigidTyVar — ITy}

3 Flexible is the term usually used for existentially quantified variables and rigid is the term
usually used for universally quantified variables.

4See documentation at the following location http://www.pps. jussieu.fr/ yrg/software/
mini-doc/Constraint.html.

198



Chapter 14. More TES features to handle more of SML

Therefore, Ren C Sub and Ren & Unifier.

We extend the application of a substitution to a constraint term as follows:

x, if sub(svar) =z

svar[sub] = {

svar, otherwise

Let us now define another kind of substitution called ins because used to deal
with ins environments. Note that a ins is a sub: Ins C Sub. Instantiations are

defined as follows:
ins € Ins = {f | f € TyConVar — TyConName A f is injective}

An environment of the form ins(e) is an instance of the environment e where in-
ternal type constructor variables are instantiated to internal type constructor names.
Such an instantiation is performed using an ins as defined above.

The table above also introduces subtyping constraints of the forms oy <,4 09
and K1 =4 ko. Checking, e.g., that o is a subtype of o9 (that oy is at least as
general as o9, or equivalently as written in The Definition of Standard ML [107,
Sec.5.5], that o is “more polymorphic” than o,°) results in a new type scheme built
from both o; and o,. The identifier in such a constraint is used to bind the newly
built type scheme at constraint solving. Therefore, a subtyping constraint of the
form o1 <,iq 02 is both a constraint and an environment because it constrains oy
to be a subtype of o, and also can be responsible for the generation of a binder
of the form lvid=c at constraint solving, where ¢ is computed from both o; and
0o. Subtyping constraints are only generated at constraint solving and not at initial
constraint generation. They are generated when dealing with constraints of the
form ej:e; which are used to check that the validity of signature constraints on
structures. When a signature constraint sigexp on a structure strexp is valid SML
code, we sometimes say that sigexp matches strezp. For example, in example (EX4)
the signature s matches the structure s.

Our subtyping relation departs from usual subtyping relations. Usually a type
scheme o is a subtype of a type scheme oy iff each function that is typed by
the scheme o7 in a type environment can also be typed by the type scheme oy
in the same type environment. For example, 1 can have type int but cannot be
associated the type V{a}.«. However, in our system int <, V{a}.« is solvable
(V{a}.a <, int is also solvable). We elaborate on this below. Our definition
departs from usual subtyping relations by the fact that Va;,. 7 is a subtype of Va,.
iff 71[rens] can be made equal to Te[rensy] for some renamings ren; and reny, where
ren, renames the flexible and rigid type variables of 71 to “fresh” flexible type

variables and where rens only renames the flexible type variables of 7 to “fresh”

SMilner et al. [107] write o1 < 02 to mean that o is “more polymorphic” than o1. Moreover,
using their notation o1 < o9 iff for all monomorphic type 7, if 7 < o1 (7 is an instance of the type
scheme o1) then 7 < os.
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flexible variables. The renaming ren, does not rename rigid type variables because
in type schemes, rigid type variables are used for type variables that are not allowed
to be more specific whereas flexible type variables can be more specific (constrained
further to be equal to type constructs). Rigid type variables give us a control on the
(enforced) generality of type schemes. Therefore, the type scheme V{3}. 3 cannot
be more specific while V{a}.« could potentially have been more specific if some
constraint filtering had not occurred. In our system, int <,;4 ¥{3}. 3 is not solvable
but V{5}. 5 <44 int is.

We associate rigid type variables with explicit type variables because of the gen-
erality imposed by the explicit type variables. Thus, allowing explicit type variables
to bind rigid type variables and not only flexible ones helps us catch too general
errors as presented above. We also add the new form tv to the internal type con-
structor set. Intuitively, a rigid type variable of the form 3 can turn into a flexible
one but as long as it is rigid, it is considered as a constant type with which is
associated the type name tv.

Let us illustrate why rigid type variables are vital using the following piece of

code (the same as (EX3) where we replaced ’a by bool in x’s specification):

signature s = sig val x : bool end
(EX5) structure S = struct val x = 1 end

structure T = S :> s

Given this piece of code, our enumeration algorithm would find the type error
that x is specified as a Boolean in s, which is the signature constraining s in T’s
definition, and that x is declared as an integer in s. The issue is that our minimisation
algorithm would eventually try to slice out the type bool in x’s specification. This
would result in x having a type scheme of the form V{a}. « in its specification. In our
system, as discussed above, V{a}. @ and int are both subtypes of each other. Usually,
V{a}. v is considered a subtype of int but int is not considered a subtype of V{a}. a.
Now, if we were to bind explicit type variables occurring in value specifications to
flexible type variables, we would also generate a type scheme of the form V{a}.«
for x’s specification in (EX3) (instead of a type scheme of the form V{3}. 3 which
is currently generated by our system when no constraint is filtered out). We then
would not be able to distinguish between a type scheme which is genuinely too
general (in (EX3)) and a type scheme which is too general because some information
has been discarded (in (EX5) where bool has been filtered out). In order to avoid
that, explicit type variables occurring in a signature are not bound to flexible type
variables but to rigid type variables.

Let rigtyvars(x) be the set of rigid type variables (in RigidTyVar) occurring in x
whatever x is. Let tyconvars(z) be the set of internal type constructor variables (in

TyConVar) occurring in x whatever z is.
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Let the function labtyvars, which computes the set of labelled explicit type vari-

ables occurring in an explicit type, be defined as follows:

labtyvars(tv') = {t'}
labtyvars(ty, 4 tys) = labtyvars(ty,) U labtyvars(ty,)
labtyvars([ty Itc]!) = labtyvars(ty)

Let the function tyvars, which computes the set of explicit type variables occur-

ring in an explicit type, be defined as follows:
tyvars(ty) = {tv | tv! € labtyvars(ty)}

This function is used by rule (G35) in Fig 14.16 to generate explicit type variable
binders for explicit type variables occurring in value specifications.

We extend the application of a substitution to a constraint term as follows:

21 =g T2[sub] = xz1[sub] <;q x2[subd]
(e1:e2)[sub] = e1[subl:ea[sub]

ins(e)[sub] = ins(e[sub])

14.7.3 Constraint generation

Fig. 14.16 presents the new constraint generation rules to handle signature related
syntactic forms introduced above.

Note that rules (G32), (G33) and (G34) for signature declarations and expressions
are similar to rules (G20), (G21) and (G22), defined in Fig. 11.10, for structure
declarations and expressions. Rule (G32) differs from rule (G20) by the generation
of the quantification over the internal type constructor variables occurring in the
bound structure expression.

Rule (G35) is a simplified version of rule (G17) for recursive value declarations
(defined in Fig. 11.10), where the expression is replaced by an external type and
where the pattern is reduced to a single value identifier. The novelty in this rule is
the binding of the explicit type variables occurring in the external type. To do so, it
uses the function tyvars. For example, for the specification val £ : ’a -> ’a we would
generate a binder of the form |’a={. The order in which the binders are generated
does not matter. For example, it does not matter whether for val1 £ : ’a -> ’b, ’a’s
binder or ’b’s binder is generated first.

Rule (G36) is similar to rule (G30) defined in Fig. 14.8, but instead of binding the
specified type constructor to an internal type computed from an external type, it
leaves the generated internal type constructor variable unconstrained (the variable
occurring in the generated binder). Such a variable might then be captured by a V
when declaring a signature, or constrained by an internal type constructor when a

signature is matched against a structure during constraint solving.
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[Signature declarations (sigdec > ¢)]

(G32) signature sigid L sigep > ev'=(e; ! sigid £ ev);ev’t <= sigexp & (ev, e) Adja(e, ev’)

[Signature expressions (sigezp > (ev, ¢))]
(G33) sigid' + (ev, 1sigid L ev)

(G34) sig! spec, - - - spec, end + (ev, (ev < ev');(ev'=(e1;- - ;en)))
< specy > ep A+ A spec, > e, Adjaler, ..., e,, ev, ev’)

[Specifications (spec > ¢)]

(G35) val vid :' ty - (ev=poly(loc Ltv; L B lto, L B in (e;lvid L (o, v))));ev!
< ty > («, e) Atyvars(ty) = {tv1,...,tvp t Adja(e, ev, B1,...,0n)

(G36) type dn' > (ev=e);ev! < dn > (6,a,e,e’) Adja(e, €, ev)

(G37) structure strid :' sigerp > (ev'=(e;(Lstrid < ev)));ev’t <= sigexp > (ev, ) Adja(e, ev’)

(G38) datatype dn Loed o (ev=((aq Lo 81);e1;1oc €] inpoly(eq)));evt

< dn > (61,01, €1, e]) A ed > (g, e2) Adja(er, ez, 7, ev)

[Structure expressions|

(G39) strexp :! sigexp > (ev, ex;er;(ev L evyiieva))
< strexp > (evy, e1) A sigexp > (eva, ez) Adja(er, ez, ev)

(G40) strexp :>' sigexp - (ev, 62;61;(61)@,,,; evi:evs);(ev = ins(evs)))
< strexp > (evy, e1) A sigexp > (eva, ez) Adja(ey, ez, ev)

[Programs (prog + )|

(G41) topdecy ; - - - s topdec,, > e1;- - ;e, < topdecy > e1 A --- A topdec,, > e, Adja(er, ..., e, ev)

Figure 14.16 Constraint generation rules for signatures

Rule (G37) is similar to rule (G20) defined in Fig. 11.10 where, as for type specifi-
cations, the generated type constructor variables are left unconstrained. Rule (G38)
is similar to rule (G18) defined in Fig. 14.8.

The constraint generation rules for constructor descriptions are the same as the
ones for constructor declarations: rules (G14) and (G16) defined in Fig. 11.10.

Finally, rules (G39) and (G40) are the most interesting rules. They are the ones
generating our new environments of the forms e;:e;. Rule (G39) generates such forms
for translucent signature constraints and rule (G40) for opaque signature constraints.
As opposed to rule (G39), rule (G40) for opaque signature constraints also generates
ins(e) forms. Rule (G39) generates constraints for a structure constrained by a
translucent signature. The environment associated with the analysed constrained
structure is computed from an environment of the form e;:e;. It is then obtained
from both the environment generated for the structure expression and the environ-
ment generated for the signature expression. Rule (G40) generates constraints for a
structure constrained by an opaque signature. The environment associated with the
analysed constrained structure is not computed from an environment of the form
e1:e; (such an environment is still generated to check that the signature matches the
structure) but from an environment of the form ins(e). It is then obtained from
the environment generated for the signature expression only.

Because our initial constraint generation algorithm generates new forms of con-
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straints, we extend the lbind and lc forms as follows (see Sec. 11.5.2):
lbind € LabBind ::=- - - | L sigid L ev
le  €labCs :u=---| evéevlzevg \ ev;ins(ev’)
We also replace the initially generated external type variable binders as follows:
LabBind

l l
Lty = o LebBind, 4, =

14.7.4 Constraint solving

First, let us extend constraint solving states and error kinds as follows:

state € State  ::=--- | match(A,d, e, e)
ek € ErrKind::=--- | tyVarClash | tooGeneral(fuy, i2)

Error kinds of the form tooGeneral(us, uz) are for type errors as the one de-
scribed above (too general errors), where a signature constrains a structure and is
more general than the structure. Error kinds of the form tyVarClash are for type

errors such that the one in the following piece of code:

signature s = sig val £ : ’a -> ’b end
structure S = struct val rec f = fn x => x end
S > s

structure T

In this piece of code, f is specified in the signature s as a function where its
argument’s type can differ from its body’s type. In the structure s, the function f is
declared as the identity function and so its argument’s type has to be the same as
its body’s type. Finally s is constrained by s. Therefore, we report an explicit type
variable clash between >a and >b. This is a special kind of too general errors.

We also need to extend our unifiers as follows (note that this extension also
extends Sub):

u € Unifier = {U?zlfi | fi € 1TyVar — ITy
A fo € TyConVar — ITyCon
A f3 € EnvWar — Env
A fy € SigSemVar — SigSem}

We now allow flexible and rigid type variables to be quantified over when gen-
erating type schemes. Fig. 14.17 updates the toPoly function. The only difference
with the definition in Fig. 14.2 is that the type variable set generalised over can now
contain both flexible and rigid type variables.

Let us define the function scheme that computes a for all quantified form from
a variable set, a unifier and a constraint term (either an internal type or an internal

type constructor):
scheme(u, svar, x) = Vsvar Nsvars(z’'). 2/, if ' = build(u, x)
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_ 7/ =build(A, 7)
toPoly(A, Lvid=7) = A;(Lvid 4 vp. '), if {ﬁ = (vars(7') N FRTyVar) \ (vars(monos(A)) U {atqun})
d ={d | a%{?} ¢ monos(A) A o € vars(1') \ 7}
toPoly((u, e), eg) = (v, e;e\e’g>, if toPoly((u, €), ep) = (v, €)
toPoly(A, e1;e2)  =toPoly(A’] es), if toPoly(A, ¢1) = A’
toPoly(A, e) =Ase, if none of the above applies

Figure 14.17 Monomorphic to polymorphic environment function generalising flex-
ible and rigid type variables

Rule (B7) of the extension of our constraint solver defined below in Fig. 14.18,
needs to build up environments to generate polymorphic forms (for signatures). We

therefore need to extend the build function as follows:

build(u, lid=x) = (Lid=build(u, x))
build(u, e1;e2) = build(u, e;);build(u, e)

Fig. 14.18 and Fig. 14.19 extend our constraint solver to deal with our new
constraint terms. Fig. 14.18 presents rules to rewrite states of the form s1v(A,d, e)
and Fig. 14.19 presents rules to rewrite states of the form match(A, d, ey, ;).

The new equality constraint simplification rules (S14)-(S17) are defined to handle
rigid type variables.

Rules (SM1)-(SM12) check whether a signature matches a structure. These rules
are used for both translucent and opaque constraints. If match(A,d, e, e) —*
match(A’,El, e1, €5) using rules (SM1)-(SM12) then e; = e;. Moreover, e; is the
environment generated for a structure and ey is the environment generated for a
signature constraining the structure.

Rules (SU1)-(SU5) handle subtyping constraints. In rule (SU1), the generated
type scheme is built from 75 and not from 7. The type 7 is extracted from an
environment generated for a signature sigerp. The type 7 is extracted from an
environment generated for a structure constrained by sigexp. We do so in case the
binding from the signature is a dummy binding. If the binding from the signature
is a dummy binding then 75 is qgu. If we were to generate a type scheme from
71 and not from 7y, it could result in finding an error that involves a declaration
in a structure constrained by a signature without involving the signature. Let us

consider the following piece of code:

signature s = sig val ¢ : bool end
structure S = struct val ¢ = true end
S : s

val x = let open T in ¢ () end

structure T

This piece of code is untypable because c is specified and declared as a Boolean and
is also used as a function because it is applied to . If we were to try to slice out

¢’s specification, we would then generate a dummy binding for ¢ in the environment
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Some kinds of errors are not handled by the system presented in this section, although our imple-
mentation handles them. For more information please refer to the introductory paragraph of this
section (Sec. 14.7).

equality simplification

(S14) s1v(A, d, 11=72) — slv(A, d, p=tv), if {r, 72} = {7, B}
A strip(p) € TyConName
(S15) s1v(A, d, 1=m2) — slv(A,d, tv=ar), if {m,72} = {7, 5}
(S16) s1v(A, d, ﬁ ﬁ ) — err(({tyVarClash, d)), if 81 # B2
(S17) s1v(A, d, ju1=p2) — err({tooGeneral (i, po), d)), if {1, u2} € {{tv,ar}, {tv,v}}

binders
(BL) s1v((u, ),

(B7) s1v((u, ¢),

instantiations
(11) slv({u, €), d,ins(ep)) — succ({u, e;e1[ins])),
if build(u, eg) = e; A dom(ins) = tyconvars(e;) A dj(vars({u, e)),ran(ins))

id=z)  — succ((u, >,(izd = :17)) if id ¢ Sigld U TyCon

d, |
d, Lsigid=e;) — succ({u, e);(1sigid < Vityconvars(ez). e2)), if e = build(u, €1)

signature constraints
(SC1) s1v({u, €),d, e1:e3) — match((u, e), d, build(u, e), build(u, es))

subtyping constraints

(SU1) s1v(A, d, 01 =yia 02) — succ({(u', e';lvid < scheme(u', 5y [ren1] U py[renz], To[rens)))),
ifvi € {1,2}. (0, =Vp;. 7 V (04 = 7: ANp; = @ A 7; & Dependent))
A dom(reny) = p; A dom(rens) = {a | o € Py} A dj(vars(A), ran(reny), ran(rens))
A slv(A, d, 11 [reny]|=m2[rens]) —* succ({u’, €'))
(SU2) s1v(A, d, 01 =yiqg 02) — err(er),
ifvi € {1,2}. (0, =Vp;. 7 V (04 = 7: ANp; = @ A 7; & Dependent))
A dom(reny) = py A dom(reng) = {a | a € Gy} A dj(vars(A), ran(reny), ran(rens))
A s1v(A, d, 7 [ren;|=To[rens]) —* err(er)
(SU3) s1v(A, d, k1 =4 k2) — succ({v/, e';ltc £ scheme(u’, @y [ren| U aia[rens], ua[rens]))),
if Vi € {1,2}. (ks = Va;. p1; Adom(ren;) = @;) A dj(vars(A), ran(reny), ran(rens))
A s1v(A, d, p1 [reny|=pa[rens]) —* succ((u’, €'))
(SU4) s1v(A, d, k1 =4 ka) — err(er),
if Vi € {1,2}. (ks =Va,. pi A dom(reni) =a;) A dj(vars(A), ran(reny),ran(rens))
A s1v(A, d, p1[reni)=ps[rens]) —* err( T)
(SU5) s1v(A, d, 1 =iq 72) —>slv(A dud Y1 =id Y2),
if (z1 is of the form y{ A y2 = 22) V (x2 is of the form ygl Ay =2x1)

Figure 14.18 Constraint solving for signature related constraints (1)

generated for the signature s. Now if we were to use 1 instead of 75 in rule (SU1) to
build ¢’s binder in the environment generated for T, we would generate a binder as
follows: |c=VJ.bool. We would then obtain a clash with the arrow type generated

for ¢ (). We would then obtain a slice as follows:

struct val ¢ = true end
S (..)
..{..open T..c O..)..)

(..structure S

..structure T

However, this is not a complete type error slice (this slice is typable) because s
might be constrained by a signature that does not specify ¢ and therefore c¢’s last
occurrence would be free. As a matter of fact, ¢ might be defined as a function

taking a unit in a larger context. A complete, minimal type error slice would be as
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structure/signature matching

(SM1) match(A,d,e, T) — succ(A)

(SM2) match(A, d, e, e;;er) —match(A/,d, e, ey), if match(A,d, e, e ) —* succ(A’)
(SM3) match(A,d, e, e1;e2) — err(er), if match(A, d, e, e1) —* err(er)
(SM4) match(A, d, e, lvid=01) — s1v(A, d, 09 =4iqg 01), if e(vid) = o9

(SM5) match(A, d, e, Ltc=k1) — s1v(A, d, kg =y k1), if e(tc) = ko

(SM6) match({ui, 1), d, e, Lstrid=eg) — succ((uz, e1;e’'?)),

if e(strid) = ¢} A match((u1, e1), d, €}, eg) —* succ({ug, €2))
A e = (Istrid=e;\ez)

(SM7) match(A, d, e, Lstrid=e) — err(er),
if match(A, d, e(strid), eg) —* err(er)
(SM8) match(A, d, e, lvid=is1) — succ(A;(lvid=is)),
if e[vid] = is2 A (solvable(isy < iso) V strip(isy) = v) A is = ifNotDum(isy, is$)
(SM9) match(A, d, e, Lvid=is;) — err(er),
if strip(is1) # v A s1v(A, d, isy=e[vid]) —* err(er)
(SM10) match(A, d, e, Lid=x) — succ(A;(lid=y)),
if e(id) is undefined A y = toDumVar(z)
(SM11) match(A, d, e, ev) — succ(A;ev)
(SM12) match(A, d, e, e’d,) Hmatch(A,EUE/, e,e)

Figure 14.19 Constraint solving for signature related constraints (2)

follows:

(..signature s = sig val ¢ : (..) end
..structure S = struct val ¢ = true end
..structure T S:c

..{..open T..c ()..)..)

Note that this is not the only type error slice explaining the type error described
above, another type error slice involves the signature s and not the structure s.

In rule (SU1) again, from a subtyping constraint of the form o1 <,;4 02, a new
type scheme o is generated from both o; and g5. This type scheme is then used to
generate a new binder of the form |vid=c. Let us explain how this new type scheme
o is generated. Let us assume that oy is of the form Vp,. 7 and that oy is of the
form Vp,. 1. First, we generate fresh instances of 7, and 7»: 7| and 75 respectively.
The type 7, is obtained from 7; by renaming the flexible and rigid type variables in
Py (flexible and rigid type variables are renamed to “fresh” flexible type variables).
Because we are checking that 7, is not more general than 7 and because rigid type
variables enforce the generality of type schemes, the type 7 is obtained by renaming
only the flexible type variables in p,. We then check that 7/ can be made equal to
75. We finally generate a new type scheme o by first building up 75 to obtain 7
and by then renaming (using the two renamings used to generate 7| from 7 and 7}
from 73) the flexible and rigid type variables in p, Up, and by quantifying over those

occurring in 7. For example, solving the following subtyping constraints:

V{ai} ar1—oq =g V{aa}. oo
V. Qaun Zvid V{aa}. co—a
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result in a binder of the form Lvid=V{a}. a—a. and solving the following subtyping
constraints:

V{aa}. a1 Zyia V{B}. -0

V{aa}. ar—ar Zyia V{ag, B} ag—p3
result in the binder lvid=V{(}.—0. However, solving the following subtyping

constraint:
V{a}. cn—oq =4ig VO. 0laun

results in the dummy binder |vid=VJ. agym and solving the following subtyping
constraints:
V{a1}.bool-ay <yq V{aa}. (ag—an)—as
V{a1}.bool—ay <yg V{8, as}. o
result in type errors (in type constructor clashes).
Because restricted forms of signature binders can now occur in constraint solving
contexts (in e in (u, e)), we extend the binder forms generated at constraint solving,

originally defined in Sec. 11.6.6, as follows:
sbind € SolvBind ::= - - - | Lsigid=V5. se

Because in constraint solving contexts, type variable binders can now bind flex-
ible as well as rigid type variables, we redefine SolvBind as follows:

L ty=cy SolvBind, ltv=p

14.7.5 Constraint filtering (Minimisation and enumeration)

We extend our filtering function as follows:
filt(ey:eo, 1, l2) =filt(er, 1, l2):filt(er, I1, 12)
filt(ins(e), I1, I2) = ins(filt(e, I, [2))
filt(v, 11, I2) =

We now need the filtering of unlabelled environment variables (we generalise
the rule to all kinds of variables) because we now allow unlabelled environment
variables to occur within environments of the form e;:e; or ins(e). Note that these
environments are considered shallow when initially generated (see the extension of
LabCs above in Sec. 14.7.3) and are only generated as part of equality constraints.
Therefore, we still follow our principle (DP7).

Note that regarding the form of the initially generated environments, our filtering
function could be lazier and, e.g., we could just have: filt(e:ey, 11, 12) = e:e5. We
do not adopt this solution which is less robust regarding changes or extensions to
the slicer.

We also extend toDumVar as follows:

toDumVar(sig) = €vgun
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Signature declarations

toTree(signature sigid L sigexp) = ((sigdec, sigdecDec), I, (sigid, toTree(sigezp)))

Signature expressions

toTree(sigid') ({sigexp, id), I, {sigid))

toTree(sig' spec; --- spec, end) = ((sigexp,sigexpSig), I, (toTree(spec,),...,toTree(spec,)))

Specifications

toTree(val wvid :! ty) ({spec, specVal),
toTree(type dn') ({spec, specTyp),
toTree(datatype dn 4 ed) ({spec, specDat),
toTree(structure strid :' sigexp) = ((spec, specStr),

vid, toTree(ty)))
toTree(dn)))

toTree(dn), toTree(cd)))
strid, toTree(sigezp)))

)

)

)

o~ o~ o~ e~
o~ o~~~

)

Structure expressions
toTree(strexp :! sigexp)
toTree(strexp :>! sigexp)

({(strexp, strexpTr)
({strexp, strexpOp)

(toTree(strezp), toTree(sigezp)))
(toTree(strezp), toTree(sigezp)))

7l7
7l7

Programs
toTree(topdecy ; - - - ; topdec,,) = (dotD, (toTree(topdec,), . .., toTree(topdec,,)))

Figure 14.20 Extension of toTree to deal with signatures

14.7.6 Slicing

We extend our tree syntax for programs as follows:

Class::=--- | sigdec | sigexp | spec
Prod i:=---

| sigdecDec

| sigexpSig

| specVal | specTyp | specDat | specStr
strexpTr | strexp0l
p pup

We also extend our function getDot that associates dot markers with node kinds

as follows:

getDot((sigdec, prod)) =dotD
getDot((sigexp, prod)) = dotS
getDot((spec, prod)) =dotD

Finally, Fig. 14.20 extends our function toTree that transforms a term term into

a tree tree.

14.8 Reporting unmatched errors

There is a kind of error involving signatures that is not handled by the constraint
solver as defined above: what we refer to as the “unmatched” errors.

Let us consider the following piece of code:

signature s = sig val fool : int end

structure S = struct val foo = 1 val bar = 2 end

structure T S :> s
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The specification fool from the signature s is not matched in the structure s,
but s constrains s in T’s definition. This error could be solved in many ways, such
as: (1) one could replace fool by foo in s, (2) one could replace foo by fool in s,
(3) one could change T’s definition.

For this error we would like to report that fool specified in s is not any of foo
or bar declared in S, but s constrains s. For that we need to be able to check that
indeed fool is not any of s’s declarations.

With the system as described above, we cannot report such errors because we do
not have any way of knowing whether an environment is constituted by the binders
corresponding to all the declarations of a structure. As a matter of fact, this is not
possible with the current system because of the way constraint filtering can replace
environment variables and binders by T.

We will now show how to extend our system to report such errors.

14.8.1 Constraint syntax
Environments are extended with a new empty and satisfied environment as follows:
Envi=---|0®

The meaning of the environment © lies in between the meaning of T and the
meaning of environment variables.

The difference between T and © is that ® will be used to indicate that we filtered
out an environment which has the potential to bind (either an environment variable
or a binder) and not, say, an equality constraint.

The difference between » and an environment variable is that in an environment

of the form (e;®), the environment ® does not shadow e.

14.8.2 Constraint solving

The environment ® is allowed to exist within constraint solving contexts (see Sec. 11.6.6
for the definition of SolvEnvRHS):

serhs € SolVEnvRHS ©:=--- | ®
Let us extend error kinds as follows:
ek € ErrKind ::= - - - | unmatched(id, id)

Fig. 14.21 extends our constraint solver with rules to handle unmatched errors.
Rule (SM10) replaces the previous rule (SM10) from Fig. 14.19 and rules (SM13)
and (E2) are new.

Rules (SM10) and (SM13) make use of the predicate complete (similar to shadowsAll)

which is defined as follows:
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Some kinds of errors are not handled by the system presented in this section, although our im-
plementation handles them. For more information please refer to the introductory paragraph of
Sec. 14.7.
structure/signatlge matching <
(SM10) match(A, d, e, lid=x) — succ(A;(lid = toDumVar(x))),
if e(id) is undefined A —complete(e)
(SM13) match(A, d, e, lid=x) — err({unmatched(id, getBinders(e)), d)),
if e(id) is undefined A complete(e)
(SM14) match(A, d, e,®) — succ(A;0)
empty
(E2)  s1v(A,d,®) — succ(A;0)

Figure 14.21 Constraint solving rules handling unmatched errors

(e of the form lid=x and x ¢ Dum)

or (e of the form ey;e; and Vi € {1,2}. complete(e;))
complete(e) < =

or (e of the form e’* and complete(e’))

ore= 1T

For example, complete(lvid=c), ~complete(®;lvid=0), —shadowsAll(®;lvid=0),
—complete(ev;lvid=c), and shadowsAll( ev;lvid=0).

A “solved” environment (occurring in a constraint solving context and of the
form se as defined in Fig. 11.6.6 and extended above) is said to be complete if it is
not composed by an environment variable, a filtered binder or a dummy binder.

Rule (SM13) makes use of the function getBinders which gathers the identifiers

bound in its argument:

getBinders(lid=x) = {id}

getBinders(eg;e2) = getBinders(e;) U getBinders(es)
getBinders(e?) = getBinders(e)
getBinders(e) = ¢, if none of the above applies

14.8.3 Constraint filtering (Minimisation and enumeration)

We add a new rule to filter ® and update the filtering of labelled environment as

follows:
el, ifl e 71 \72
- - d ifl el
filt(el, Ty, o) = um(e),if ety _
®, if | €11 Ul and e € Var U Bind
T, otherwise

filt(®,11,12) =©
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14.8.4 Slicing

We now need to modify our slicing algorithm. Consider the following piece of code:

signature s = sig val x : int val y : bool end

structure S : s = struct val x = 1 val y = true end

structure T :> s = struct val x = 1 val y = true end
val u = let open T val z = y open S
in fn w => (v z, w x)

end

where in the fn-expression, z’s last occurrence is the y from T and x’s last occurrence
comes from § via the structure opening. The structures s and T have the same
structure body constrained by the same signature s, but s has a translucent signature
while T’s signature is opaque.

This piece of code is untypable because w has a monomorphic type and is applied
to z which is the Boolean y defined in T, and it is also applied to x which is the integer
x defined in s.

With our current slicing algorithm, one of the type error slice we obtain would

be as follows:

(..signature s = sig val x : (..) val y : bool end
..structure S : s = struct val x = 1 end
..structure T :> s = (..)

..(..open T..val z = y..open S..fn w => (..W Z..W X..)..)..)

which is not minimal: s does not match s because y is not declared in s.
The problem comes from our tidying of declarations in structure expressions.
We therefore need to update our tidying function so that it does not discard empty

dot declarations:

tidy(()) = 0

tidy(((dotD, free ), (dotD, trees))@tree)
= tidy(((dotD, Feél@Fee}g»@ﬁ), if Vtree € ran(ﬁl). —declares(tree)
—
tidy((tree)Qtree)

= <tree>@tidy(?ee>), if none of the above applies

With this new tidy function, we would then obtain a slice as follows:

(..signature s = sig val x : (..) val y : bool end

..structure S : s = struct (..) val x = 1 end

..structure T :> s = (..)

..(..open T..val z = y..open S..fn w => (..W Z..W X..)..)..)

where the second occurrence of (. .) indicates that some declarations have been sliced

out in S’s declaration and that therefore s is not a “complete” structure.
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(G24) dot-d(({termy, ..., termy)) > [e1;- - ;en];0

< termy > ep A--- A term,, > e, Adja(er, ..., e,)
(G31) dot-n({termy, ..., termy)) > (o, &/, ©, [e1; - - - ;€n])

< termy > e A+ A termy, > e, Adjaer, ..., en,a,a))
(G25) dOt_p(<pat17 s 7patn>) > <O[, €15 aena®>

< paty > er A+ Apat, > e, Adjaler, ..., e, Q)
(G42) dot-c((termy, ..., termy)) & (o, [e1; - ;ea];®)

< termy > ep A - A term,, > e, Adja(er, ..., e, @)

Figure 14.22 Constraint generation rules to handle incomplete structures and sig-
natures

We also have to replace our constraint generation rule for dot declarations, in
order to generate markers of discarded binders: Fig. 14.22 redefines rule (G24) orig-
inally defined in Fig. 11.14 in Sec. 11.8.1.

However, this modification is not enough because binders are generated for cbs,
pats, and dns. For example, we would like to generate a marker of discarded binder
for the following declaration: datatype ’a t = (..).

First, let us replace the dot terms for c¢bs. We need to do so because we want to
generate markers of discarded binders only for ¢b dot terms, but not for expressions

and types. We replace these dot terms as follows:
dot-e(term) LB, qot-c(term)

Fig. 14.22 also redefines the constraint generation rules for the forms dot-n(term)
(rule (G31)) and dot-p(term) (rule (G25)), and we introduce a new constraint gen-
eration rule for the forms dot-c(term) (rule (G42)).

We add a new dot marker to the set Dot as follows:
Dot ::=--- | dotC
Finally, we extend the toTree function as follows:

toTree(dot-c(term)) = (dotC,toTree(term))

14.9 Functors

14.9.1 External syntax

First, let us extend our external syntax with functors as follows:

funid € Funld (functor identifiers)

strexp € StrExp = --- | funid(strexp)’

fundec € FunDec ::= functor funid(strid: sigexp) L strexp
| dot-d(term)

topdec € TopDec::=--- | fundec

id €ld =+ | funid
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Let us consider the following piece of code:

functor F (S : sig val x : int end) =
(EX6) struct open S val y = x + 1 end

structure T = F(struct val x = true end)

This piece of code is untypable because F’s parameter is a structure that must
declare an integer x, and F is applied to a structure that declares a Boolean x.
Therefore, for this untypable piece of code, we would like to obtain a type error

slice as follows:

(..functor F ({..) : sig val x : int end) = (..)

. .F(struct val x = true end)..)

Such kinds of errors are relatively easy to find and report because they just
involve checking a structure against a signature and we have seen how to do that
in Sec. 14.7. However some error reports involving functors are harder to find. For
example, more interestingly, (assuming that + is the one defined in the Standard ML

basis) we would also like to obtain the following slice for the same untypable piece
of code ((EX6)):

(..functor F (8 : sig val x : (..) end) =
(..open S..val (..) =x + (..)..)

..F(struct val x = true end)..)

This type error slice shows that the functor F has a parameter s that specifies
a value x that is used as an integer in F’s body. The functor F is then applied to
a structure that declares x as being a Boolean. This means that x’s specification
in 8’s signature, must be at least as general as int and at most as general as bool.
Therefore, we obtain a type constructor clash.

This error is more complicated to report than the first one, because it involves
constraining the parameter of a functor depending on the types of the bound oc-
currences of the identifiers specified in the parameter’s signature. In our example,
it involves constraining x’s specification such that it has to be at least as general
as the type int (e.g., a is at least as general as int but bool is not) because of its
bound occurrence which is constrained to be of type int via the use of +.

Let us now consider an even trickier example:

functor F (S : sig val x : (..) end) = struct
local open S in val rec g = fn y => x end
(EXT7) val - = (g 1) + 0
end

structure T = F(struct val x = true end)

In this incomplete piece of code, the signature of F's parameter specifies a value

x that has an entirely sliced out type. The difference with example (EX6) is that
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the type of x’s occurrence in F’s body does not allow one to constrain the type of
x’s specification because the context of x’s occurrence in g’s declaration does not
constrain its type. Such a way of constraining type schemes is presented below.
However, g’s type depends on x’s type and because of the expression (g 1) + 0, the
function g must return integers. This means that x’s specification has to be at least
as general as the type int. As in example (EX6), because of F’s application, x’s
specification has to be at most as general as bool. So we would like to obtain the

following type error slice:

(..functor F (S : sig val x : (..) end) =

(..local open S in val rec g = fn (..) => x end

g ) (L))

..F(struct val x = true end)..)

Such a type error slice is harder to obtain than the ones presented above because
it involves constraining x’s specification depending on its uses but also depending
on the uses of the functions using x (and so on).

Let us present a final example that shows the complexity in reporting as much
explanations of type errors involving functors as possible:

functor F (S : sig val x : (..) end) = struct

local open S in val rec g = fn y => x end
(EX8) end

structure T = F(struct val x = true end)
local open T in val _ = (g 1) + O end
This example differs from example (EX7) by the fact that we took the expression
(g 1) + 0 out of F's body. Now, g’s occurrence in this expression does not directly
refer to g’s declaration in F’s body but it refers to it through the application of F to
struct val x = true end. Because x’s specification is totally unconstrained, ¥’s body
declares the function g that can take any argument and return anything (because we
have sliced out x’s type in its specification). Now, because F is applied to a structure
that declares x as a Boolean, the structure T declares a function g that has to return
a Boolean. Finally, because the last declaration constrains g from T to be a function

that returns an integer, we want to obtain the following type error slice:

..functor F (S : sig val x : (..) end) =
g
(..local open S in val rec g = fn (..) => x end..)
..structure T = F(struct val x = true end)..)

..local open T in (..(g (..)) + {..)end..)

Note that the complexity discussed above comes from, at it is often the case,
dealing with incomplete information (sliced out pieces of code). It is relatively easy
to report some type errors involving functors when pieces of code are complete.

What we wish to accomplish in this section is designing a TES that reports as close
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as possible all possible explanations of a programming error involving functors (see,

e.g., the two first slices provided in this section).

14.9.2 Constraint syntax

We extend our constraint syntax as follows:

o € FuncVar (set of functor variables)
sv € SchemeVar (set of scheme variables)
fet  €Func =@ | epen | (fet, d)
fetsem € FuncSem = fct | V. fet | (fetsem, d)
bind € Bind = | Lfunid=fctsem

acc € Accessor  n=--- | Tfunid=¢

c € EqCs = | fet=fet,

e € Env n=---| fet - e | lazy(e)

o € Scheme n=- oMoy | sv

cap € LazyCapture ::= (7, sv)
v € Var n=- @] sv

We extend type schemes with intersection type schemes. An intersection type
scheme is a sequence of type schemes as follows: o1 M- --Ma,. We only use restricted
forms of intersection type schemes which are as follows: ¢ M7 M- A7, M sv, where
o is not of the form ¢’ M ¢” and is called the head of the intersection type scheme,
and where sv is called its tail. In such an intersection type scheme, the order of the
types 7; is not relevant but is convenient. For example, it allows one to distinguish
its head and tail. It is also convenient at constraint solving to have a variable in an
intersection type scheme. Moreover, in such an intersection scheme, the 7; are meant
to all be instances of the type scheme o (the type uses of the identifier with which
the intersection type scheme is associated). So for each i € {1,...,n}, we have
0 =g T; solvable (for some vid). Such an intersection type scheme is also called a
lazy type scheme. For example, (V{a}.a—int) M (int—int) M (bool—int) M sv would
be the lazy type scheme of a function of type V{a}. a—int which is used on at least
an integer and a Boolean. Such a type scheme would be derived, e.g., for ¢ specified

in F’s parameter in the following incomplete piece of code:

functor F (S : sig ¢ : (..) -> int end) = struct

open S
(EX9) val rec g = fn x => c 1
val rec h = fn x => ¢ true
end

The lazy form is used to mark the parameter of a functor. It is used to have
a control on which type schemes are transformed into lazy type schemes. We also

introduce environments of the form fct - e for applications of functors to structures.
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Because we introduced functor variables, we extend Dum as follows: let ¢gqu, be
a distinct functor variable in FuncVar, and let Dum = {Qgun; €Vaun; Odun, Maun, Pdun | -

We also replace the type schemes of the form Vp. 7 as follows®:

Vp. T Scheme, 5 Gap o T

A type scheme of the form Vp.cap ¢ 7 is a type scheme as defined in Sec. 14.7 (of
the form Vp. 1), augmented with a set of pairs, each composed by a internal type
and a type scheme variable. Each type in this set contains at least a variable which
is quantified over in the type scheme: in a type scheme of the form Vp.cap ¢ 7 we
have V(7, sv) € cap. —dj(vars(7), p). Each pair is extracted from a lazy type scheme.
Because these forms are not intuitive, let us explain why we need such forms using

the following example:

functor F (S : sig val ¢ : (..) end) = struct

(EX10) local open S in val rec g = fn x => x :: ¢ end
val _ = g true
end

Because c is used as a 1ist in F’s body, we want to obtain a binder as follows for

c in F’s parameter:
le=(W{a}.a)no

where 0 = g 1listMsv and qg is x’s type in g’s body. Now, instead of generating the

type scheme V{ap}. ap—ag 1ist for g, we want to generate a type scheme as follows:
V{ao}. {{ap list, sv)} 0 ap—ap list

so that the intersection type scheme o can be constrained further via sv depending
on the uses of g. In this last type scheme, the type variable o in (aglist, sv), is
captured by the universal quantification of the type scheme. Then, when applying g
to true we generate an instance of this type scheme. When doing so, we generate an
instance af—aj list but we also constrain sv to be equal to af 1istMsv’ where o, and
sv” are fresh variables. Now because g is applied to true we conclude that «f has to
be equal to bool. So the intersection type scheme o, which is the list of type uses of
c, is eventually equal to (ag1ist) M (boollist)Msv’. If the functor F was applied to a
structure, the structure would then have to declare a c that can be a list of something
(that has a type which is a subtype of g 1ist for some ), and more precisely, that
can be a list of Boolean (that has a type which is a subtype of bool1ist). It is the
case for the structures struct val ¢ = [] end and struct val ¢ = [true] end, but not

the case for the structure struct val ¢ = [()] end.

6Because we have already updated and extended type schemes many times above, let us recall
the full definition of type schemes: o € Scheme ::= 7 |Vp.Capo 7 | o1 Nog | sv | (o, d)
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In a type scheme of the form Vp.<¢cap ¢ 7, the flexible type variables in p that
also occur in cap are not definitively quantified type variables. Such type schemes
occur in binders generated for functors’ bodies. The quantification over such vari-
ables is conditional and the condition is resolved when applying the functor for
which such a type scheme has been generated. For example, the type scheme
V{1, as}. {{as, sv)} © ay—ay, can turn into V{a;}.a;—unit if the type ay from

{(cvg, sv) is constrained to unit. This can happen with the following piece of code:

functor F (S : sig val ¢ : (..) end) = struct
local open S in val rec g = fn x => ¢ end
end

structure T = F(struct val ¢ = () end)

This will be further illustrated below.

Because of this mechanism, these new type scheme forms cannot be subject to
alpha-conversion. For example, the type scheme V{ay,as}. {{aq, sv)} ¢ ay—as is
not convertible to V{a1, as}. {{(as, sv)} © a;—as. Note that this is overly restrictive
because, given a type schemes of the form Vp. cap o7, one could safely alpha-convert
the type variables in p \ vars(cap).

Let Vp. 7 stand for Vp. @ o 7

Lazy type schemes of the form oy Moy are meant to be used for functors’ param-
eters and type schemes of the form Vp. cap o 7 where cap # @ are meant to be used
for functors’ bodies. Type schemes of the form Vp.cap ¢ 7 where ¢ap # & are not
meant to be generated for signatures.

Let us now formally define the functions that extract the heads (head) and tails

(tail) of intersection type schemes. The functions head and tail are defined as follows:

head(o1 M o2) =head(o)
head (o) =g, if the above does not apply

tail(o, u), if u(sv) =0

tail(sv, u) :{

tail(oy M o9, u) =tail(og, u)
tail(o, (u, e)) =tail(o, u)

sv, otherwise

Note that tail is undefined if the argument is a sequence that does not end with
a variable or if it is neither a variable nor an intersection type scheme.

We extend the application of a substitution to a constraint term as follows:
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[Functor declarations (fundec > ¢)]

(G43) functor funid(strid: sigexp) L strexp > (ev=(ey;e};eh;e}));ev’
< sigexp > (evy, e1) A sigexp > (eva, ez) A dja(er, ez, ¢, ev, evg, evy)

= (evg < lazy(evq))

[Structure expressions|
(G44) funid(strexp) - (ev’, (1 funid L o);e;(ev’ L @ - ev)) < strexp > (ev, e) Adja(e, ev’, d)

Figure 14.23 Constraint generation rules for functors

(o1 Mog)[sub] = o1[sub] M oafsub]
(fet - e)[sub] = fct[sub] - e[sub]
lazy(e)[sub] =lazy(e[sub])
(e1~~e2)[sub] = e1[sub]~ez[sub]

VD, U py[subl. cap[py < sub] o T[py < sub,
if p; = pNsvars(cap)
A Dy =p\P1
A Ppq[sub] C SVar
A dj(py, vars(py < sub))

(Vp.cap o 7)[sub] =

undefined, otherwise

14.9.3 Constraint generation

Fig. 14.23 extends our constraint generator with rules to handle functor declarations
and functor applications.

Let us detail what rule (G43) does. First with evy=1lazy(ev;), we switch to a
“lazy mode” to deal with the functor’s parameter. With evj=ins(ev,), we abstract
the types specified in the signature of the functor’s parameter. Then we generate
two binder. A binder for the functor’s parameter which is local to the functor’s
definition, and a binder for the functor itself.

Because our initial constraint generation algorithm generates new forms of con-

straints, we extend the lbind, lc, and ge forms as follows (see Sec. 11.5.2):

lbind € LabBind ::= - - - | Lfunid = ¢

le €labCs u=--- |¢£ evi~evs | evéqﬁ' ev’ | evélazy(ev’)

14.9.4 Constraint solving

First, we extend our unifiers as follows (note that this extension also extends Sub):
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build(A, 7)

(vars(7') N FRTyVar) \ (vars(monos(A)) U {aqun})

={d | a® 19} ¢ monos(A) A a € vars(7') \ B}
cap = {(r, sv) | (7, sv) € inters(A) A —dj(p, vars(7))}
o =Vpcaport

toPoly((u, e), ed) = (u', e;e), if toPoly((u, €), e) = (u', ') A e’ = e\e'?

toPoly(A, e1;e2)  =toPoly(A’, es), if A’ = toPoly(A, e;)

toPoly(A, e) =Ase, if none of the above applies

7_/
_ P
toPoly(A, Lvid=T) = A;(1vid = &),if { 4

Figure 14.24 Monomorphic to polymorphic environment function handling inter-
section type schemes

u € Unifier = {U?:1ﬁ | fi €TyVar — ITy
A fo € TyConVar — ITyCon
A f3 € EnvWar — Env
A fy € SigSemVar — SigSem
A fs € FuncVar — Func
A fo € SchemeVar — Scheme}

We extend the function build to intersection type schemes and functors as follows:

build(u, o1 M o9) = build(u, o1) M build(u, 02)
build(u, e1~e3) = build(u, e )~build(u, e2)

The intersection type scheme case is used by the functions inters and rebuild
defined below.

The function tolazy transforms type schemes into lazy type schemes as follows:

Lid=c 2%, | yid=0 (M sv

Lstrid=e L2, | strid—e! o e L, o
{ Vi€ {1,2}. ¢ L3z, o/

toLazy

. Il ?
61762 E— 61,62

Adja(vars(ef) \ vars(er),vars(eh) \ vars(ez))

d tola d tolLa
ed o2y, prd Se 228, of

e fokazy, o & if none of the above applies

The complicated rule for environments of the form e;;e; is to ensure that no type
scheme variable is generated twice.

For example, given the functor:

functor F (S : sig val ¢ : (..) end) = struct
val rec g = fn x => ¢ x

end

at constraint solving, we would generate the following binder for ¢ in F’s parameter:
le=Y{a}. . From this binder, when dealing with the constraints generated for s,
we would then eventually generate a binder of the form: lc=(V{a}. )M sv.

Fig. 14.24 redefines the function toPoly to build our new forms of type schemes.

It only differs from Fig. 14.17 by the generation of ¢ap. It now uses the function
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inters which extracts the types (and their tails) from the intersection types from a

given constraint solving context and which is defined as follows:
inters(A) = {(r,tail(o, A)) | Jvid. strip(A(vid)) = (o1 Mo2) ATM o occurs in build(A, o9)}

We explain below why the constraints annotating intersection type schemes are
discarded in inters’s definition, i.e., why we use strip.

The way the new toPoly function works was already illustrated above with ex-
ample (EX10). Still using example (EX10), let us add a word on this function
now that it is formally defined. At constraint solving, when dealing with the
poly environment generated for g, using inters we find that the intersection type
plist M sv occurs in the current constraint solving context. Because o occurs
in this intersection type and also in the built-up monomorphic type ap—aqlist
(7" in Fig 14.24) generated for g’s declaration, we finally generate the type scheme
V{ap}. {{aolist, sv)} © ay—aplist (where cap in Fig 14.24 is then {{ag1list, sv)})
for g that captures the type g list from the intersection type generated for c (the
intersection type g list M sv).

Let us now explain why the dependencies annotating intersection type schemes
are not needed in inters’s definition. Let us again consider example (EX10). As
explained above, at constraint solving, when dealing with the poly environment
generated for g, using inters we find that the intersection type aglist M sv occurs.
In the current constraint solving context, this intersection type is labelled by [
which c¢’s first occurrence label. We claim it is safe for inters to discard this label.
The intuition is that the type «g1list by itself (and not the whole binder) is only
used to constraint sv further for each of g’s use. Therefore, if we were to label
o list with [, this label would eventually be redundant in ¢’s binder. If we were to
generate V{ap}. {{(ap1ist)!, sv)} © ag—ag 1ist (some dependencies are still omitted
for clarity issues) instead of the type scheme presented above, then dealing with
the constraints generated for g true would lead to constraining sv by an instance

!, The fully built up binder associated with ¢’s first occurrence would

of (ap1ist)
then at this stage be of the form (where again we omit all the dependencies except
[) lc L (V{a}.a) M (ap1ist) M (af1ist)! M sv’. We can observe that I’s second
occurrence is not needed because it occurs in ¢’s binder which already depends on
[.

The function rebuild builds up the type uses gathered (in intersection type

schemes) while solving the constraints generated for functors. It is defined as follows:
rebuild(u, 1~ e3) = build(u, e1)~ ey

Let us consider again example (EX9). The binder generated for c in F’s parameter
is as follows: lc=(V{a}.a—int) M sv. When solving the constraints generated for

F’'s body, we also generate a unifier as follows: {sv+— a; M svq, sv1—ag A sva} U
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such that build(u, @) = int—int and build(u, o) = bool—int. When rebuilding
the environment generated for F’s parameter once the constraints generated for its
body have been solved, we obtain the following binder for c¢: lc=(V{a}. a—int) M
(int—»int) F](bool—éint)[ﬁ SVo.

We define abstractions as follows:
abs € Abs = {f | f € TyConName — TyConVar A f is injective}

In order to use our substitution notation to apply abstractions to constraint
terms, we need first to extend our substitution definition.

We also extend our substitutions as follows:

sub € Sub = {sub| sub=uUfLUfa
A fi € RigidTyVar — [Ty
A fo € TyConName — TyConVar}
Therefore, Abs C Sub.

We then extend the application of a substitution to a constraint term as follows:

- [sub] = {u, if sub(y) = p

v, otherwise

Abstractions are used by the relation abstract which is itself used by rule (B8)
of the extension of our constraint solver defined below in Fig. 14.26. The relation
abstract is used to rebuild the environment associated with the parameter of a functor
and to abstract the functor over the intersection types and type constructor names

defined in its parameter. The relation abstract is defined as follows:

(fet, (u, e)) 2B, v U ran(abs). fet, [abs]
fety = rebuild(u, fet)
A fety = strip(fety)
ANa@ ={a| 1Mo occurs in fet; A a € vars(T)}
A (if fety = eg~veg then 7 = {7 | ltc=y occurs in e} else 7 = )
Adom(abs) =7
| Adja(nonDums((A, e)),ran(abs))

For example let us consider the following typable piece of code:

functor F (S : sig type t end) = struct

local open S in datatype u = c of t end
val rec g = fn x => c x

end

structure T = F (struct type t = int)

At constraint solving, when computing F’s binder, at first we generate the follow-

ing fct (again we omit dependencies and the environment T for readability purposes):

(Le=7)~ (=Y. 7);(Le=Va. =7);(1g=VD. =)
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genLazy({u, e), lvid=c) = (Lvid=V(p; Nsvars(7')) U py. '),
if head(o) = Vp.cap o 7 and p; = p \ vars(cap) and 7/ = build(p; 9 u, 1)
and py = {p | (70, sv0) € Tap A o € vars(ro) N p A p € svars(build(u, a))}

genLazy(A, Istrid=e) = (Istrid=genLazy(A, e))
genlazy(A, e1;e2) = genlazy(A, e1);genLazy(A, e2)
genlazy(A, z?) = genlazy(A, x)¢

genlLazy(A, z) =z, if none of the above applies

Figure 14.25 Recomputation of functors’ bodies

where e is the environment generated for F’s body. Abstracting fct allows us to

obtain an internal functor semantic as follows:
V{0}. (4t=0)~((1u=VD.7);(Lc=VD. =7");(1g=VD. 6-7'))

The function duplicate is used to duplicate intersection types when instantiating a

type scheme that captures intersection types (of the form Vp. capor where cap # 9):

((u, e), d,cap) 2eiate, \n Loy, — 03}
Wi {sv;— T} = Utail(sv, u) — {19} | (1, 5v) € Cap}
Ti =171t Y- T
e AVie l,... n} i ={n} {m},
Nog =T1 M- Ty (M SV

Adja(nonDums((u, €)), sv},...,svl)

Let us illustrate the necessity of duplicate using example (EX7) introduced above
in this section. The binder generated for g at constraint solving is as follows:
lg=Y{a}. {{a, sv)} © a—ay where o is an instance of x’s type (from its specifi-
cation) and occurs also in the intersection type scheme associated with x (due to
x’s bound occurrence), and where sv is the tail of the intersection type scheme as-
sociated with x’s binding occurrence. Because g occurs in the expression (g 1) + 0,
we instantiate this type scheme to obtain a type as follows: o/—af where o/ and
af are fresh variables. The type «f is obtained by renaming o from («g, sv). The
predicate duplicate is then used to duplicate o so that the copy can be added to
the intersection type associated with x using the intersection variable sv. Because
of (g 1) + 0, o is further constrained to be equal to int and therefore, int occurs in
the builtin version of the intersection type associated with x’s binding occurrence.

Fig. 14.25 defines the function genlLazy. Given the application of a functor to
an argument, genLazy computes new type schemes from those generated for the
functor’s body, which have a head of the form Vp. ¢ap ¢ 7 depending on the types in

cap. Let us illustrate the necessity of genlLazy using the following piece of code:

functor F (S : sig val £ : (..) end) = struct
local open S in val rec g = fn x => f true end
end

structure T = F(struct val £ = fn x => x end)

222



Chapter 14. More TES features to handle more of SML

At constraint solving, we eventually generate the following binder for F (where

again dependencies and the environment T are omitted for readability purposes):

e1 = (Lf=(V{ap}. ap) M bool—ay M sv)
IF=V{as}. e;~>ea  where
eo = (lg=V{a, as}. {{bool—as, sv)} o a;—>as)

The constraint term generated for F’s second occurrence is then as follows:

o { e} = (1£=(V{ap}. ap) M bool—al, A sv)
ej~ey  where
(&

~

4y = (1g=V{a1, ah}. {{boolsah, sv)} o ar=ah)

Note that even though as is quantified in g’s type scheme, it is renamed when
instantiating F’s static semantics because it occurs (and so depends) in the inter-
section type associated with £. Such a type variable is not confirmed yet to be a
quantifiable.

Because F’s argument is a structure that defines £ as the identity function, the

environment generated for it is as follows:
lf=Y{a}. a—a

When checking whether £’s binders from F’s parameter (in e]) and F’s argument

match, we generate the following constraint:
Ozé:bool

by first generating an instance of V{a}. a—« as follows: a/—«a’, and by constraining
o’ to be both equal to bool and «, (because of bool—a4 occurring in ej).
Thanks to genlLazy, the environment generated at constraint solving for T is then

as follows (generated from g’s binder in e}):
lg:V{Oél}. «1—bool

Fig. 14.26 extends our constraint solver to handle functors. Rules (B1), (A1),
(A2), (SU1), and (SU2) are updated and rules (B8), (SU6), (SU7), (FP1), (FP2),
(FA1), (FA2), and (FA3) are new. Rule (SU1) for subtype scheme constraints is now
more complicated than in Fig. 14.18 mainly because of the computation of cap) as
part of the generated type scheme. Let us illustrate the necessity of this computation

using the following piece of code:

signature s = sig val g : (..) end
functor F (S : sig val ¢ : (..) end) = struct
open S
structure X = struct val rec g = fn x => x :: ¢ end
structure T = X : s
local open T in val u = g () end

end

The binder generated for g declared in X is as follows:
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binders _ <
(B1) s1v({u, e), d, lid=x) — succ({u, e);(lid = x)),
if id ¢ Funld U Sigld U TyCon

(B8) s1v({u, e), d, L funid=fctsem) — succ({u, e);(Lfunid = fctsem ),

if (build(u, fetsem), (u, e)) 2B, fersem/

accessors
(A1) s1v(A, d, tid=v) —s1lv(A, d U d, v=x[ren]),
if A(id) = (Vsvar. x)d, A dom(ren) = svar A dj(vars({A,v)),ran(ren)) A id ¢ VId
(A2) s1v(A, d, tid=v) — s1v(A, d, v=r),
if A(id) = = A id € Strld U TyVar
(AB) s1v({u, e), d, tvid=a) — succ({v’, €)),
if A(vid) =0 A s1lv({u, €), d,0 =yiq o) —* succ({v’, ')
(A6) s1v({u, e), d, tvid=a) — err(er),
if A(vid) = o A s1v((u, €), d, 0 =yig @) —* err(er)
subtyping constraints _
(SU1) slv(A d, 01 =Zwid 02) — succ((u; Bupdug, €';lvid < Vp.capy © 7)),
if o/ = head(o1) A 05 =09
AYi e {1,2}. (o} = Vp,;.cap; o; or (0 = 7; and p; = ¢ap, = @ and 7; € Dependent))
A dom(reny) = p; A dom(rens) = {a | o € Po} A dj(vars(A),ran(reny), ran(reng), {sv'})
A s1v(A, d, 7 [ren;|=To[rens]) —* succ((u1, ')
A 7 = build(uq, 75[rens))
A p = (py[reni] Upy[rens]) Nsvars(T)
A {u, €', d,cap, [reny]) duplicate, ) A s & vars(ug)
A (if tail(al, ur®ug) = sv then ug = {sv—>7 M sv'} A cap = {{(7, sv')} else ug = cap = @)
A capy = WU {74, svo) | (10, svo) € Cap;[ren1] A 7 = build(u1, 70) A ~dja(vars(7(),p)}
(SU2) slv(A d, 01 Zwid 02) —err(er),
if 07 = head(o1) A 0 = 09
A Vi € {1,2}. (o) =Vp,;.cap, o 7; or (o) = 7; and p; = cap, = @ and 7; € Dependent))
A dom(reny) = py A dom(reng) = {a | a € Gy} A dj(vars(A), ran(reny), ran(rens))
A s1v(A,d, 7 [renl]—Tg[reng]) —* err(er)
(SU6) s1v((u, €), d, 01 =yiqg 02 M T3) — slv(< ey, d, o1 =yid 02),
if slv(< e), d, o1 =yig 03) —* succ((u, e’)
(SU7) siv({u, €), d,01 =yiqg 02 M 03) — err( r),
if slv(< e), d, o1 =yig 03) —* err(er)
functor parameters
(FP1) s1v({uy, e1), d,lazy(e)) — succ({ug, e1;e’)),
if s1v((uy, 1), d, e) —* succ((ug, ) A er\ey 222 ¢/
(FP2) s1v({uy, e1), d,lazy(e)) — err(er),
if s1v((u1, e1),d, e) —* err(er)
functor applications
(FAL) s1v((u, €),d, fct - €) — succ( "sgenLazy(A’, 623/)),
if build(u, fet) = (elweg)d A slv({u, >,EUE/, e:e1) —* succ(A’)
(FA2) s1v((u, €), d, fct - €) — err(er),
if build(u, fct) = (elweg)E A s1v({u, e),d, e:e;) —* err(er)
(FA3) s1v((u, €), d, fet - €) — succ({u, e)),
if strlp(bmld( ,fet)) € Var

Figure 14.26 Constraint solving rules for functors

le=Y{ap}. {{a list, sv)} o ag—ag list

where sv is the tail of ¢’s binder and where g list is the type generated for c’s
bound occurrence. The type scheme generated for g specified in s is as follows:

lg=V{a}.a. When checking whether g’s specification matches g’s declaration (when
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dealing with the constraint generated for X : s), we generate the following binder

for g’s declaration in T:
lg=V{aq}. {{c1 1ist, sv)} o ay—aq list

where {(a; 1ist, sv)} is cap) in rule (SU1) (cap is empty). We also constrain sv to
be equal a; 1ist M sv’ via duplicate. Instantiating the type scheme generated for g in
T leads to the further constraining of sv’, and therefore to the further constraining of
sv as well. For example, because g is applied to () in u’s body, sv’ is then eventually
constrained to be equal to unit1ist M sv”.

Let us now consider a similar example, where g’s specification which was sliced
in our previous example, has been replaced by a specification that respects SML

syntax (we also took out the local declaration):

signature s = sig val g : (’a -> ’a) -> (a -> ’a) list end

functor F (S : sig val ¢ : (..) end) = struct

open S
structure X = struct val rec g = fn x => x :: c end
structure T = X : s

end

The binder generated for g declared in X is as before:
lg=V{ap}. {({a 1ist, sv)} o ap—ap list
The binder generated for g specified in s is now as follows:
Lg=v{B}. (B—-P)—(B-p) list

When checking whether g’s specification matches g’s declaration (when dealing with
the constraints generated for s : s), we generate the following binder for g’s decla-

ration in T:

1g=V{B}. 2 o (8-8)~(B-F) 1ist

where @ is the cap) computed in rule (SU1). In this case we also constrain sv to
be equal to (6—f)1ist M sv’. The set cap| cannot be anything else than empty in
this case because the quantified variable set contains only rigid type variables and
rigid type variables cannot be constrained further. When checking that the type
scheme V{ap}. {{a1ist, sv)} o ap—ap list is a subtype of V{3}. (8-0)—(8—-0) 1ist
we first generate instances of the two type schemes as follows: «;—a;1ist and
(6—0)—=(5—p) 1ist respectively. We then check that these two types can be made
equal which leads to a; being constrained to be equal to f—3. When computing
cap}, we build up ay 1ist from {{(a; 1ist, sv) } (which is a renaming of {{ag 1ist, sv)})

and obtain the type (f—(3) 1ist which does not contain any flexible type variable and
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is therefore not added to cap) (the condition —dja(vars(7), ), where 7} = (8—0) 1ist
and p = {f}, in rule (SU1) is false).

Finally, let us now illustrate how the different mechanisms used by our con-
straint solver interact to handle functor declarations and functor applications. Let

us consider the following incomplete, untypable piece of code:

functor F (S : sig val ¢ : (..) end) = struct

local open S in val rec g = fn x => x :: c end
val _ = g true
end

structure T = F(struct val ¢ = [()] end)
We aim at obtaining the following type error slice:

(..functor F (8 : sig val ¢ : (..) end) =
(..local open S in val rec g = fn x => (..x :: c..) end
..g true..)

..F(struct val ¢ = [()] end)..)

At constraint solving when solving the constraints generated for F’s parameter,

we generate the following binder:
le=(W{a1}.a1) M sv
When solving c¢’s accessor, we generate the following unifier:
{svi—a) M sv'}

where o is an instance of ¢’s binding occurrence’s type and is constrained to be
equal to ¢’s bound occurrence’s type. When solving the constraints generated for g,

because o] is constrained to be equal to s 1ist, we generate the following binder:
lg=V{as}. {{ag list, sv')} © as—ag list

When solving the constraints generated for the last declaration in F’s body, because
g is applied to the Boolean true, we generate an instance of g’s type scheme as

follows (where oy is renamed to aj):
/ / .
042—>Oé2 list
and we also generate the following unifier from (ay 1ist, sv'):
{sv'— b 1ist M sv”}

where «f is constrained to be equal to bool. Therefore, we generate the following

binder for F:

e1 = (de=(V{a1}. 1) M (ag 1ist) M (boollist) M sv”)
IF=V{aso}. e;~vea  where
e2 = (lg=V{aa}. {{aa list, sv')} © ag—ag list)
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The constraint term generated for F’s bound occurrence is then as follows:

., e} = (le=(V{a1}. 1) M (a3 List) M (boollist) M sv”)
ej~+ey where , )
e = (lg=V{as}. {{as list, sv’)} 0 ag—ag list)
where as has been renamed to a3. The environment generated for F’s argument is

as follows:
lc=VJ.unit list

When matching this environment against e], we get a clash between unit and bool
when checking that V&.unit list is a subtype of boollist.

Because restricted forms of functor binders can now occur in constraint solv-
ing contexts (in e in (u, e)), we extend some constraint term forms generated at

constraint solving, originally defined in Sec. 11.6.6, as follows:

sbind € SolvBind n=--- | Lfunid=sfctsem
sfetsem € SolvFuncSem ::= sfct | V@. sfct | (sfetsem, d)
sfet € SolvFunc = ¢ | sep~sey | (sfet, d)

14.9.5 Constraint filtering (Minimisation and enumeration)

We extend our filtering algorithm as follows:
ﬁlt(fct . 6,71,72) :ﬁlt(fct,jl,jg) . ﬁ|t(€,71,72)
filt(lazy(e), l1, l2) = lazy(filt(e, I1,12))
fi|t(61~‘>€2,71,72) :fi|t(61,Zl,ZQ)Wth(EQ,jl,jg)
toDumVar(fetsem) = paun

14.9.6 Slicing

First, we extend our tree syntax for programs as follows:
Class::=--- | fundec

Prod ::=--- | fundecDec | strexpFct
Then, Fig. 14.27 extends the toTree function. We also extend the function getDot

as follows:

getDot((fundec, prod)) = dotD

14.10 Arity clash errors

The slicer presented so far only deals with unary type constructors. Let us now
present how to build a constraint mechanism and a TES that handles type construc-
tor with unconstrained arity (unary as well as non-unary arity). Tuples are not
formally presented in this document, but they can be handled using the machinery
introduced in this section. Note that non-unary type constructors and tuples are

both handled by our implementation.
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Structure expressions
toTree(funid (strezp)') = ((strexp, strexpFct), [, (funid, toTree(strezp)))

Functor declarations

toTree(functor funid(strid : sigexp) L strezp)
= ((fundec, fundecDec), [, (funid, strid, toTree(sigexp), toTree(strezp)))

Figure 14.27 Extension of our conversion function from terms to trees to deal with
functors

14.10.1 External syntax

The external labelled syntax of type sequences is as follows:
tyseq € TySeq::=ty' | €L | (tyy,..., ty,)" | dot-t(term)

We redefine atomic sequences of explicit type variables and the forms of type

constructs at binding and bound positions as follows:

Ity TVarsed, )l
ty te! Do tyseq tc!

[t te]t BatName, ryp000 ¢c]!

An atomic type variable sequence is then labelled by two labels. The inner one
is associated with the explicit type variable itself while the outer one is associated
with the sequence (of length one).

Let us consider the following piece of code:

type (Ca, ’b) t = ’a -> b

val rec f : int t = fn x => x

This piece of code is untypable because the type constructor t is defined as a
binary type constructor and is used as an unary type constructor. As usual they are
many ways of solving the programming error causing this piece of code to be unty-
pable. We only present some of them. One could, e.g., define another type function
type ’a u = (’a, ’a) t and to replace the type annotation int t by the type annota-
tion int u. One could also replace the type definition type (’a, ’b) t = ’a -> ’b by
the type definition type ’a t = ’a -> ’a. One could also replace the type annotation
int t by (int, int) t.

We do not deal in this document with syntactic errors stemming from adding
type and type variable sequences to the language. For example, type (’a, ’a) t = ’a
is syntactically incorrect because the explicit type variable ’a occurs twice in the
type variable sequence (’a, ’a). Such syntactic errors are dealt with and reported

using error slices by Impl-TES (see Sec. 17.1.1).
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14.10.2 Constraint syntax
We introduce internal type sequences as follows:

¢ €lTyVarSeqVar (type variable sequence variables)

w € ITySeqVar (type sequence variables)
vsq € ITyVarSeq ==& | {p1,...,pn) | (vsq, d)
sq €1TySeq s=w | (11, .., ma) | (sq,d)

¢ €EqCs = | 8q1=8qy | vsq;=vsqy

We redefine internal type functions and internal type constructs as follows (App

and TyFun are defined in Sec. 14.3.2 and are used in side conditions):

LabTy
T ==Y sq

Aq. 7 LabName, Avsq. T

T tyf 22 sq tyf

Ao, 7 DYFun, Avsq. T

Note that arrow types of the form 7;—75 can be encoded as follows: (7, 7) ar.
We do not do so because we believe the first form to be easier to read.
Let &qun be a distinct variable sequence variable in ITyVarSeqVar. We extend

Dum as follows: Dum = {Qgun; €Vaun, Odun; Maun, Paun, Edun } -

14.10.3 Constraint generation

Fig. 14.28 extends our constraint generation algorithm. This figure introduces three
new rules to generate constraints for type sequences: (G52)-(Gb4). It also intro-
duces the new rule (G51) for type variable sequences. The other rules redefine rules
introduced above.
Let us consider the following type declaration: type (’a, ’b) t = ’a -> ’b Its
Iz g I3

o Lo L
labelled version is as follows: type [(*a,’, b))% t]? = a" = a".

Our constraint generator generates the following information for (a, ’b) t:

(aa W, €1, 62>

I
L e1= (It = Af. )
where I3 I3 Iy Iy I Is
e2 = (§ = (1, B2)iw = (a1, a2);1’a = B1;01 = P1;1 "o = [Ba;02 = ()
Our constraint generator generates the following information for ’a -> ’b:

l; s I
(aig, e3) where e3 = (17a = aq1b = as;(as =6a4—>a5))

Finally, using rule (G30), our constraint generator generates the following envi-
ronment for the entire type declaration:
(ev=((c 4 a3);loc e in (es;eq)));evh

When replacing e;, ey, and ez, one obtains the following environment:
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[Labelled type variables (liv > (a, 3, ¢))]
(G48) tv! > (a, B, Ltv L ﬁ;aéﬁ)

|Type variable sequences (tvseq > (¢, w, e>)|

(G51) Itv' + (€, w, €= (B)w = (a)ie) < ltv > (a, §, ¢)

(G49) el + (€, w, E=(hw =)

(G50) (Itvy, ..., ltv,)! + (€, w, fé {51, - . ,ﬁnb;wé (0, ... am)i€15 - sen)
< ltvg > (a1, B1, e1) A+ Altvg, > (a, Bn, en) Adja(er, ..., en, & w)

[Type sequences (tyseq > (w, €))]

(G52) ty! + (w, w= (a);e) < ty > (a, e) Adja(e,w)
(G53) €l > (w, w=())

!
(G54) (tyy, -, ty,)t > (w, w={ay,...,an)e1; ;)
< ty; > (a1, e1) A - Aty, > {an, ep) Adjaler, ..., ey, w)

[Datatype names (dn > (a,w, e1, &))]
(G13) [twseq tc]' » (a,w, Ltc L A o, e) < tuseq > (€, w, e) Adja(e, a)

(G11) [tyseq ltc]! + {a, 61;62;(L«)5£0&)> < tyseq > (w, e1) Altc > (9, e2) Adja(er, ez, )

Declarations

(G17) val rec tvseq pat L exp > (ev=poly(loc ey;e in (toV (e );e2;(an L a3z))));ev
< tuseq > (€, w, eg) A pat > {aq, e1) A exp > (a2, ea)

l

Alabtyvarsdec(tvseq, pat, exp) = &J?Zl{tvf-?‘}
! 7 1 7
Ne = ((Itvr = B1)V"5- -5 (Ito, = Ba)¥'")
/\dja(607 €1, €2, €V, ﬁla v 7677,)
(G45) val tvseq pat L exp > (ev=expans(loc ep;e in (eq;er;(ay L ag)),expansive(ezp)));ev
< tuseq > (€, w, eo) A pat > (a1, e1) A exp > (a2, €2)

l

Alabtyvarsdec(tvseq, pat, exp) = &J?Zl{tvf-?‘}

Ae = ((1tvr = B1)""5--5(1tw, = B,)"™)

Adja(eg, €1, €2, ev, B1, ..., Gn)
(G18) datatype dn Locha (ev=((an écul v); (a2 L aq);er;loc ef inpoly(ez)));ev
< dn > {aq,wr, €1, €1) A ¢b > (az, e2) Adja(er, e2,7, ev)

l

(G30) type dn Lty (ev=((a1 L az);loc e} in(ez;er)));ev’!
< dn > {aq,wr, e1, 1) Aty > (aa, ez) Adja(er, ea, ev)

Specifications|

(G36) type dn' > (ev:((aéw(ﬂ;e));evl < dn > (a,w, e, e’) Adja(e, e, ev)

(G38) datatype dn L ed > (ev=((an L 0);(ca éal);el;loc e} inpoly(ez)));ev!

< dn > (aq,w1, €1, €1) A cd > (ag, e2) Adja(er, ez, 7, ev)

Figure 14.28 Constraint generation rules to handle type constructor with unre-
stricted arity

L L I I Is Is
loc (€= (B, fa)iw == (a1, aa);l’a = Bria1 = Br1;1°b = Ba;00 = o)

! I I !
in((1’a = qq:1b = as;(as :6a4—>oz5));(¢t = AL a))

(ev=((a 2 ay);

));evt

o . . Is L
Note that some constraints in this environment are not useful: w={(a, as), ;=

Is . :
(1, and cg=/5. As a matter of fact w does not occur in any other constraint. These
constraints are only useful when generating constraints for datatype declarations.

In order to illustrate this point, let us consider the following datatype dec-
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laration: datatype (*a, ’b) t = T of ’a -> ’b. Its labelled version is as follows:

il

s Iy I I, 7 s ls
datatype [(’a ,’b )" t]? = T of®’a’ =

'a . The same information is gener-
ated for (’a, ’b) t and ’a -> ’'b. Our constraint generator generates the following

information for T of ’a -> ’b:
o o
(g, €4) where eq = es;ar = ag— ;T = (a7, )

Finally, using rule (G18), our constraint generator generates the following envi-

ronment for the entire datatype declaration:

(ev=((« lzlw’y);(a(; LR a);er;loc e inpoly(egt)));evl1

When replacing e, ey, e3, and ey, one obtains the following environment:

(alzlw’y);(a(; lzla);(it L A& a);
L I l l I I
(ev="| loc (6= (B, fehiw == (a1, a2);l?a = Br;00 = B1;1°b = Ba;as = ) sevlt

l; I} I I /!
inpoly((1’a = aq1b = as;(as =6a4—>a5));a7 = az—aplT = {ag,c))

One can see that the three constraints wlzs(al, as), alléﬁl, and o lzsﬁg are used
when dealing with datatype declarations. The variable w occurs in the constraint
alzlwy. They are necessary to have t’s type depending on the labels of the explicit
type variables occurring in the type variable sequence.

Note that t’s arity is constrained via the constraint & 5 (51, B2)-

Because of the tuples generated by the constraint generation rules (G48)-(Gb4),
we extend the set InitGen originally defined in Sec. 11.5.1 and extended in Sec. 14.3.3

as follows:
cg € InitGen ::= -+ | {(a, B, €) | (€, w, ) | (w, €)

Also, because rule (G13) associates new forms with dns, we redefine some of
the forms that our initial constraint generation algorithm associates with terms as
follows:

(57 «, €1, 62> H\it_(-}e_nb (a,w, €1, €2>

Because our initial generation algorithm generates new forms of equality con-

straints, we update LabCs as follows:

shvsq € ShallowlTyVarSeq ::=¢& | (01, ..,0n)
shseq € ShallowlTySeq  :=w | (a1,...,an)
lc  €LlabCs =] ££shvsq | wéshseq
We also the initially generated type constructor binders, some shallow types, and
the shallow type equality constraints as follows:
Lte = § LabBind, 140 L oAg o

ad Shallowl Ty wé

Shallowl Ty
ay ———> w7y

Sitl Q(ED Sitz
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14.10.4 Constraint solving
First, let us extend error kinds as follows:
ek € ErrKind ::= - - - | arity(ni, n2)
We extend our unifiers as follows (note that this extension also extends Sub):

u € Unifier = {2, fi| A € ITyVar — ITy
A fo € TyConVar — ITyCon
A f3 € EnvWar — Env
A fy € SigSemVar — SigSem
A f5 € FuncVar — Func
A fg € SchemeVar — Scheme
A fr € ITyVarSeqVar — ITyVarSeq
A fs € ITySeqVar — ITySeq}

We extend the building function to internal type sequences as follows:

build(w, (11, ..., 7)) = (build(u, 1), ..., build(u, 1))
build(u, Avsq. T) = Abuild(u, vsq). build(u, T)

Let the function shallow be defined as follows:

hall A)if Alw) =
shallow(w, A) _ ow(sq, A), i Aw) = sq
Equm, otherwise
shallow ({71, ..., 7n), A) = {Qaun, - - - s Ydun)
shallow(sq?, A) = shallow(sq, A)?

Fig. 14.29 extends our constraint solver. Rules (523)-(S27), (SU8)-(SU10) are
new and the other ones redefine rules introduced above.

In rule (S23), a constraint of the form sq (A¢. 7 )=7 (we omit dependencies for
readability issues) leads to the constraining of £ using a shallow version of sq which is
obtained using the function shallow. Note that at the time a type function is applied
at constraint solving in our system, it is fully built up. Therefore, if the type function
is of the form A&. 7y, it means that the information relative to the arguments of the
type constructor for which the type function has been generated, has been sliced
out. We then constrain it further using a shallow version of the type sequence to
which the type function is applied to in order to catch arity errors between two
bound occurrences of type constructors. We only extract a shallow version of the
type sequence, which is a type variable sequence that has the same length as the
type sequence. For example, datatype ’a t = T of t -> ’a t is untypable because,
among other things, the two bound occurrences of t have different arities. If the
constraints generated for ’a’s first occurrence is sliced out, at constraint solving, the
two bound occurrences of t can constrain the arity of the binding occurrence of ¢
via rule (S23) which leads to an arity clash between the first bound occurrence of t

which is nullary and the second bound occurrence of t which is unary.
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equality simplification
(S9) slv(A,d,squ=r) —s1v(A,dUdy Udy,e),
if collapse(u?) = (AB1, ..., Bu)dt.71)%2 A ren = U {Bi— a;}
A dj(vars(A),ran(ren)) A e = (sq=(a1, ..., an);build(A, 71)[ren]=T)
(S23) s1v((u, €), d, sq u=r) — slv({u, e), d U E/, &=¢),
if collapse(?) = (Ag.n)dl A & = shallow(sq, u)
(S10) s1v((u, €), d, sq u=7) — succ({u, e)),
if strip(u) =6 A 6 & dom(u)
(S11) siv((u, €), d, sq u=7) — s1iv({u, e), d U d,sq w'=r),
if strip(u) =0 A u(d) =’ A d = deps(p)
(S12) s1v(A, d, sq u=sq' ii') — s1v(A, d1 U do,y="";5q=5¢"),
if collapse(u?) = v% A collapse(u?) = ~'4
(S13) s1v(A, d, 11=T2) — s1v(A, d, p=ar),
if {1,772} = {squ, 7075} A strip(u) € TyConName
(S14) s1v(A, d, 11=T2) — s1v(A, d, u=tv),
if {1, 72} = {squ, B8} A strip(u) € TyConName
(S24) s1v(A, d, sq=5q") — s1v(A, d, Tp=70; - T1=71),
if s =(m,....,m7) ANsq¢ =(1],...,7})
(S25) s1v(A, d, sq=5q") — err((arity(n,m), d)),
if s =(m1,....,70) ANs¢’ =(7],...,7}.)y An#m
(S26) s1v(A, d, vsq=vsq') — slv(A,d, pn=pl; - ;p1=p}),
if vsq = (p1s---spnd N wusq’ ={ph,... ,p;lD_
(527) s1v(A, d, vsq=vsq’) — err((arity(n,m),d)),
if vsg = {p1,.--,pn) AN vs¢ ={pl,...,pl) An#m
subtyping constraints
(SU3) s1v(A,d, k1 =i ko) — succ({u/, e';ltc=scheme(u’,@;[ren,] Uaz[rens), d))),

if k1 = Var. AMBu,. .., Bu) P71 A kg = Vag. A3, ..., B.)%. (11, ..., Tn)% 6)ds
A dom(reny) = @1 A dom(renz) = @2 A dj(vars(A), ran(reny), ran(reng))
A sub = Ul {8 mi[rena]} A d = dUdiUdsUdsUdy
A slv(A,El, d=M{B, ..., 0,). m1[reni][sub]) —* succ({v/, ¢’))
(SU8) slv(A,d, k1 =i k2) — err(er),
if k1 = Van. AMBu, ..., Bu) P71 A kg = Vag. A3, ..., B.)%. (11, ..., Tn)% 6)ds
A dom(reny) = @1 A dom(renz) = @2 A dj(vars(A), ran(reny), ran(reng))
A sub = Ul {8 mi[rena]} A d = dUdiUdsUdsUdy
A slv(A,El, d=A{pB1,...,0,). mi[ren1][sub]) —* err(er)
(SU9) s1v(A,d, k1 < k2) — err({arity(n,m), d)),
if K1 :V@l.A<]61,. AN ,ﬂnbgl.Tl A Ro = VEQAQﬂ{, .,6;71[)32.7'2 A n;ﬁ m
(SU10) s1v(A, d, k1 =<y k2) — succ(A;ltc=0gum),
if k1 not of the form Va;. A Sy, ..., ﬁn[ﬁl.n
V kg not of the form Vaie. A(B, ..., 3. )% ({11, ..., 7)% &)

Figure 14.29 Constraint solving rules to also handle non-unary type constructor

The complexity of the subtyping constraint rules presented in Fig. 14.29 comes

partially from the fact that with non-unary type constructors, we also have to

check that if a type constructor is specified in a signature constraining a struc-

ture then it has to be defined in the structure with the same arity. For example,

struct type ’a t = ’a end : sig type t end is not typable because t is specified as

being a unary type constructor in the signature and declared as being a nullary type

constructor in the structure.

233



Chapter 14. More TES features to handle more of SML

(G55) dot-v(term) > (&, w, [e1;---;en]) < termy > ex A--- Aterm, > e, Adja(er, ..., e, & w)
(G56) dot-1(term) & (o, B, [e1;- - -;en]) < termy > er A--- A term, > e, Adja(er,. .., e, @, )
(G57) dot-t(term) > {(w, [e1; - ;en]) < termy > e A -+ A termy, > e, Adja(er, ..., en,w)

(G31) dot-n(term) & (o, w, @, [e1;- - ;en]) <= termy &> ex A -+ Atermy > en Adjaer, ..., e, 0,w)

Figure 14.30 Constraint generation rules to handle incomplete sequences

14.10.5 Slicing

Because we have changed our constraint generation rules for type variable sequences

and labelled type variables, we need to replace some dot terms as follows:

dot-d(term) Y29, qot-v(term)

dot-d(term) L2V Got-1 (term)

Fig. 14.30 defines new constraint generation rules for our new dot terms as follows
and redefines the one for dot dns.

Because the environments generated for type variable sequences are always used
in local environment (of the form loce; iney) we do not need to generate any ©®
environment in rules (G55) and (Gb6).

We extend our tree syntax for programs as follows:

Class::=--- | tyseq
Prod ::=---
| tyvarseqSgl | tyvarseqEm | tyvarseqSeq
| tyseqSgl | tyseqEm | tyseqSeq
Dot :=---|dotV|dotT
We also extend the function getDot that associates dot markers with node kinds

as follows:

getDot((tyseq, prod)) =dotT

We also redefine this function on tyvarseq nodes as follows:
getDot((tyvarseq, prod)) = dotV

Finally, Fig. 14.31 extends the function toTree that transforms terms into trees.

Non-unary type constructors raise interesting slicing and highlighting issues. Let
us consider the following piece of code: type ’a t = int val x : t. This piece of
code is untypable because t is defined as being unary and is used as a nullary type
constructor. The type error slice that report this error would then be as follows:
(..type (..) t = (..)..t..) because, among other things, the explicit type variables
’a is not part of the error. The obvious problem with this slice is that (..) in (..) t
can be a sliced out type variable sequence of length zero which means that this
slice has to be typable. First, note that this issue does not arise in our labelled

syntax because (..) in (..) t is in fact the type variable sequence dot-1(@)! which is
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tyvarseq, tyvarseqSgl), [, (toTree(ltv)))

Type variable sequences toTree ltvl)

tyseq, tyseqSgl), [, (ty))

(
Type sequences toTree(t (
(tyseq, tyseqEm), [, ())
(
(
(

toTree

(
(
(
toTree(
(
(
(
(

o~
—
~—

Il

~—"
Il

tyseq, tyseqSeq), [, toTree({ty,, ..., ty,)))

(ty1, .- ty,)h)

Types toTree(tyseq tc!) = ((ty, tyCon), [, (toTree(tyseq), tc))
Datatype names toTree([tvseq tc]!) = ((datname, datnameCon), [, (tvseq, tc))
Dot terms toTree(dot-v(term)) dotV, toTree(term))

(
(
(
(
(
(
=
=

toTree(dot-t(term)) dotT, toTree(term))

Figure 14.31 Extension of our conversion function from terms to trees to handle
type and type variable sequences

different from the sliced out empty type variable sequence dot-v(&). The problem
comes from the fact that there is no explicit syntax representing a unary sequence
in SML. To solve this issue, we add special parentheses in our slice language, in
addition to ( and ). We print dot-1(2)! as follows: [(..)] which is then different
from (..) which is an entirely sliced out sequence. Finally, the slice reporting the
error described above is then as follows: (..type [(..)] t = (..)..t..). This error
is highlighted as follows: #ipe £ B int val x :J§. The box around ’a indicates
that t’s first occurrence is unary and that >a itself is not part of the reported error.
The highlighted empty space preceding t’s second occurrence indicates that this
occurrence of t is nullary. The extra parentheses [ and ] are also used to display
type sequences of the form dot-e(())".

Let us consider a similar example which only differs from the previous example by
the removal of the white space between the colon and t: type ’a t = int val x = 1 :t.
As above, this piece of code is untypable because t is defined as being unary and is
used as a nullary type constructor. The issue is that now when highlighting this type
error in the code, we cannot anymore highlight the white space before t’s second oc-
currence because there is no such space. We therefore have to come up with a conven-
tion to highlight such errors. A possibility is to put a box around the type construc-
tor itself when the fact that it is a nullary type constructor is part of the reported
error. We would then obtain the following highlighting: €§pe "2l B int val x :[§.

Finally, let us present another issue raised by non-unary type constructors using
the following untypable datatype declaration: datatype ’a t = T of (’a, ’a) t t.
Because a datatype declaration is recursive, t’s two last occurrences are bound
to t’s first occurrence. Now, t’s second occurrence is a binary type construc-
tor while t’s third occurrence is unary. Therefore we report the following error:
(..datatype (..) t = (..({..), (.. t t..)..). The highlighting of this error in the
original code is as follows: datatype 'a € = T of . Note that in this
case, a portion of the code is highlighted inside the box. Whether or not t’s first
occurrence has to be part of the report is disputable. For example, the system pre-

sented so far does not report any error for type ’a u = T of (’a, ’a) t t wWhere t is
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free even though there is no way of completing this piece of code with a declaration
of t such that the piece of code would be typable. Given this piece of code, we
should then report an arity type error. We do not present in this document how
to report such errors and how to report (..((..), {..)) t t..) instead of the slice
presented above but our implementation report such errors. Informally, reporting
such errors in our implementation involves the generation at constraint solving of

special binders of free, or bound by dummy binders, type constructors.
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Extensions for better error

handling

15.1 Merged minimal type error slices

We have found cases needing the display of many minimal errors at once. The
combination of at least two minimal type error slices is called a merged type error
slice. We present in this section two cases for which our TES report merged type
error slice: for record field name clashes and for unmatched specifications. Note that
our TES does not merge minimal type error slices but directly generates merged type

error slices.

15.1.1 Records

One important case is in record field name clashes where, e.g., the highlighting
Wal {feoybar=n{Eeei=oypag-1J reports two minimal errors at once: that fool is not
in the set {foo,bar} and foo is not in the set {fool,bar}. This merged error is
preferable over the minimal errors because of the explosion in the number of minimal
slices. Green highlights the fields that are common to different minimal slices. For
merged slices minimality is understood as follows: retain a single blue/purple field

name in one of the two clashing records and all field names in the other.

15.1.2 Signatures

With the constraint solver as defined above, our TES would report two minimal

unmatched type error slices for the following piece of code:

structure S = struct val (fool, barr, x, y) = (1, 2, 3, 4) end
signature s = sig val foo : int val bar : int val x : int end
S :> s

structure T
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One of the type errors is that the specification foo in s is not matched in the
structure s (that declares fool, barr, x and y), but s constrains s in T. The other
error is similar but concerns the specification bar.

This is another typical example where finding and reporting merged minimal
error slices would be useful. For the example above, instead of the two reports

described above, we would prefer a highlighting that would looks like:

SETHCtUTe SI=IStTHct el (foou, paEE. K, §) £ (1, 2, 3) EWd
Signature SI=ISig val €66 f int V&l B&E F int ¥&L X F int End
structure T = SIESNS

This highlighting shows that foo and bar are not matched in the structure s,
but also suppose that x might not be the matching for foo or bar as x is specified
in the signature s. Note that x is still reported because we cannot know if x in the
structure s is definitely not the matching of, e.g., foo in the signature s.

We could obtain this slice by altering the part of our constraint solver defined in
Fig. 14.18, Fig. 14.19, and Fig. 14.21.

First, we want unmatched error kinds to be as follows instead (we replace the

previous form by this new one):
ek € ErrKind ::= - - - | unmatched(id1, ida, id3)

For the highlighting presented above, the generated error kind would then be
unmatched(idy, ids, ids), where id; is the set of identifiers highlighted in purple (the
identifiers specified in s that are not declared in §), id, is the set of identifiers
highlighted in blue (the identifiers declared in s that are not specified in s) and ids
is the set of identifiers highlighted in green (the identifiers both specified in s and
declared in s).

Then, when checking if a signature matches a structure, in order to gather (1) the
identifiers that are specified in the signature but not declared in the structure, (2) the
identifiers that are declared in the structure but not specified in the signature,
and (3) the identifiers that are both specified in the signature and declared in the

structure, we extend our “match” states as follows:

© € Unmatched ::= (idy, ids)
state € State = | match(A,d, 0, e, e) | succ(A,0)

(Ll”

In order to update Os, we define the two functions addl and addO (where
stands for “in” and “O” stands for “out”) as follows: addl((idy, idy), id) = (id;, idyU
{id}) and addO((idy, ids), id) = (id;U{id}, idy). The function addl is used when an
identifier has been checked to be both specified in a signature sigexp and declared
in a structure which is constrained by the signature sigezp. The function addO is
used when an identifier has been checked to be declared in a structure strexp but

not in a signature that constrain the structure strexp.
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Finally, Fig. 15.1 updates the rules defined in Fig. 14.18, Fig. 14.19, and Fig. 14.21
to handle the reporting of merged unmatched errors. Rule (SC1) is updated and
we add two new rules for signature constraints: (SC2) and (SC3). Rules (SC2) and
(SM17) are new and replace rule (SM13).

The difference between this new algorithm and the one presented in Fig. 14.18,
Fig. 14.19, and Fig. 14.21, is that when checking that a signature matches a struc-
ture, this new algorithm gathers the identifiers that are both specified in the signa-
ture and declared in the structure (rules (SM4), (SM5), and (SM6)) and also gathers
the identifier that are not matched in the structure (rule (SM10)). If there exists
such an identifier, it means that there is an unmatched error. We then wait to check
the matching of the entire signature against the structure to finally report all such
unmatched identifiers in a single error report (rules (SC2) and (SM17)).

Note that such type error reports for unmatched errors are still imperfect. For
example, the highlighting above does not show that {fool, barr, x, y} is precisely
the set of identifiers declared in the structure s. Similarly, the highlighting does not
show that {foo, bar, x} is precisely the set of identifiers specified in the signature
s. Note that this is made precise in our type error slices because in s, e.g., no
declaration is entirely sliced out and replaced by (..). We could then consider the
following convention when highlighting a type error: if all the identifiers declared
in a structure or specified in a signature are involved in the reported error and this
information is necessary for the error to occur then we highlight the blank spaces
(if any) preceding the corresponding val, type, datatype and structure keywords.

We would then obtain the following highlighting which is a bit more informative

than the one presented above:

Si=lstructival (fool, parE, %, §) E (1, 2, 3) End
SiSisigival £66 [ intiWal Pa¥ § intlWal K § int EHd
structure T = SIESNS

It is important to find conventions as intuitive as possible because the issue with
such conventions is that they have to be known by the user for highlightings to be

understandable.

15.2 End points

Some error reports involve what we call end points. It the case for clash errors
such as type constructor clashes. The two end points of a type constructor clash
error are the two program locations responsible for the generation of two distinct
type constructors that are constrained to be equal at constraint solving. More
generally, the end points of a clash error are the program locations responsible for

the generation of two distinct constraint terms that are constrained to be equal
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Some kinds of errors are not handled by the system presented in this section, although our im-
plementation handles them. For more information please refer to the introductory paragraph of
Sec. 14.7.
signature constraints
(SC1) s1v({u, €),d, e1:e2) — succ(A’), if build(u, e;) = €| A build(u, e3) = €}
A match((u, €), d, (D, D), ef, eb) —* succ(A/, O)
A (O = (2, id3) V —complete(e];e}))
(SC2) s1v({u, €),d, e1:e2) — err({ek, d)), if build(u, e;) = e A build(u7 e2) = eé
A match({u, e),d, (2,9), €1, €5) =" succ(A',0)
ANO= (zdl, ida) A idy # D A complete(e;;es)
A ek = unmatched(zdl, getBlnders(el) \ idy, id2)
(SC3) s1v({u, €),d, e1:e2) — err(er), if build(u, e1) = €] A build(u, e2) = €}
A match({u, e), d, (@, ), e}, eb) —* err(er)

structure/signature matching
(SM1) match(A,d,0,¢,T) — succ(A, 0)
(SM2) match(A,d,0, e, e;1;e) —match(A’, d, 0, ¢, e),
if match(A, d, 0, e, e;) —* succ(A’,0')
(SM3) match(A, d, O, e, e;;e2) —err(er),
if match(A, d, 0, e, e) —* err(er)
(SM4) match(A, d, O, e, Lvid=01) —>succ(A' addl( , vid)),
if e(vid) = o2 A s1v(A, d, 09 Z4iqg 01) —* succ(A’)
(SM15) match(A, d, O, e, Lvid=01) —>err(er)
if e(vid) = o2 A s1v(A, d, 09 Zyiqg 01) —* err(er)
(SM5) match(A, d,©, e, ltc=k;) — succ(A’,addl(0,tc)),
if e(tc) = ko A s1v(A, d, Ky =4 k1) —* succ(A')
(SM16)match(A, d, 0, e, ltc=Kk1) — err(er),
if e(tc) = kg A s1v(A, d, ko =4 k1) —* err(er)
(SM6) match(A, d, O, e, |strid= eo) — succ(A’, addl(©, strid)),
if e(strid) = e}, AN A = (uy, e1)
A match(A, d, (T, D), ), eo) —* succ({ug, ea), (idy, id2))

A (idy = @ Vv —~complete(eh;eq)) A A = (ug, er;(Lstrid < er\e2))
(SM17) match(A, d, O, e, Lstrid=ey) — err({ek, d)),
if e(strid) = e(’) A match(A, d, (T, D), ), eg) —* succ(A’, <zd1, ide)) A idy # @
A complete(ef;eq) A ek = unmatched(idy, getBinders(e)) \ idz, id>)
(SM7) match(A, d, O, e, Lstrid=ey) — err(er),
if match(A, d, (@, 9), e(strid), eg) —* err(er)
(SM8) match(A, d, O, e, lvid=is;) — succ(A;(lvid=is),0),

if e[vid] = is2 A (solvable(isy < iso) V strip(isy) = v) A is = ifNotDum(isy, is$)
(SM9) match(A, d, O, e, lvid=is;) — err(er),

if strip(is1) # v A slv(A, d, isy=e[vid]) —* err(er)
(SM10)match(A, d, 0, e, lid=z)  — succ(A;(lid=y),O"),

if e(id) is undefined A y = toDumVar(z) A ©' = addO(0, id)

(SM11)match(A, d, O, e, ev) — succ(A;ev, 0)
(SM12) match(A, d, O, e, e’d/) —match(A, d U El, ©,e,¢')
(SM14) match(A, d, 0, e, ®) — succ(A;0,0)

Figure 15.1 Constraint solving to handle merged unmatched errors

during constraint solving.

The end points of a minimal type error clash are notable program locations
because they are the sources of conflicting types and because as such they allow us
to derive the kind of the error and therefore they allow us to produce a verbose type

€rror message.
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For example the end points of the type constructor clash in fn x => (x 1, x true)
are the locations of 1 and true. As discussed above, we use different colours to
highlight end points. The type error report for this error is composed by, among
other things, the following highlighting:

fi ¥ B (i, @E5ue)

and the following verbose message:

Type constructor clash between int and bool

This report does not involve the Standard ML basis but a builtin basis where 1
can only have the type int (from the initial static basis [107, Appendix C]). When
checked against the Standard ML basis where 1 is overloaded to several different int

types, one obtains the following message:

Constant 1 overloaded to the overloading class Int not including bool

The overloading class Int is a set of int types that contains the type int from
the initial static basis (See Sec. 18.3 for more details on overloading).
An unmatched error can be regarded as a clash error between two sets of iden-

tifiers. For example, in

signature s = sig val y : int end

structure S = struct val x = 1 end :> s

the set {y} should be included in the set {x}. The end points of the unmatched
error in this piece of code are the locations of x and y.

In order to keep track of end points, changes in our constraint system are re-
quired. Let us informally present how Impl-TES handles end points. We only in-
formally present how to handle end points because formally presenting this feature
of our TES the way we have implemented it would require updating most of the
machinery presented so far.

First, we annotate the type constructor names in the internal type constructor
set as follows: we replace the vs in [TyCon by terms of the form (v, [). We do the
same for ar and replace it by (ar, ). That is to say, We define the following set:

v € LabTyConName ::= (v, 1) | (ar, )
and replace the type constructor names in ITyCon as follows:
ITyCon ~

T
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As part of an informal presentation on how to handle end points, this figure only updates few

constraint generation rules. Not all the rules that need to be updated are redefined in this figure.
(G18) datatype dn LS (ev=((on1 £ w (v, 1));(ag = a1);er;loc ef inpoly(es)));ev!
< dn > (aq,wr, e1, €1) A ¢b > (az, e2) Adja(er, e2,7, ev)

(G3) [exp atexp]' > {a, exens(01=an 5 a)) <= exp & (o, e1) A atep & (on, e2) Adja(er, ez, )

Figure 15.2 Redefinition of some constraint generation rules to handle end points

As part of an informal presentation on how to handle end points, this figure only updates few
constraint solving rules. Not all the rules that need to be updated are redefined in this figure.

(S12) s1v(A, d, sq u=7) — s1v(A, dy U do, 7=7";5¢=5¢"),

if 7= sq i A collapse(u?) =37 A collapse(y/?) = 5
(513) s1v(A, d, 71=72) — slv(A,d, u=(ar,l)),

if {1,772} = {squ,70 4 70} A strip(u) € LabTyConName
(S6) slv(A,d, pu1=p2) — err({tyConsClash(u1, o), d)),

if {pa, po} € {{(v, 1), (Vs )}, {{v, ) (s )} Ay #

Figure 15.3 Redefining of some constraint solving rules to handle end points

rd2

We also remove ar from ITyCon. We label arrow types as follows:
1Ty l
T1—T2 —>T1 > T2

At constraint generation, instead of generating v’s, we generate constraint terms
of the form (v, ) where [ is the label annotating the labelled external syntactic form
responsible for v’s generation. For example, we would replace rule (G18) defined in
Fig. 14.28 by the one defined in Fig. 15.2. The new rule only differs from the old
one by the replacement of the generated v by (7, [). We also need to update each
rule introducing a type of the form 7 —7,. For example, we need to replace rule (G3)
defined in Fig. 11.7 by the one defined in Fig. 15.2. The new rule only differs from
the old one by the replacement of a;—as by a; A as. Note that Fig. 15.2 only
presents a few changes that need to be made to our initial constraint generation
algorithm. Not all the necessary changes are presented in this figure.

We also have to update some constraint solving rules. For example, we replace
rule (S12) defined in Fig. 14.29 by the one defined in Fig. 15.3. The only difference
with the old rule is that TyConName has been replaced by LabTyConName. Another
example is rule (S13) which is originally defined in Fig. 14.29 and which is updated
in Fig. 15.3. The only difference with the old rule is that ar is replaced by (ar, (),
10—, is replaced by 7 A 7, and TyConName has been replaced by LabTyConName.
Yet another example is rule (S6) which is originally defined in Fig. 11.10 and which
is updated in Fig. 15.3. In the new rule, /; and I, are the two end points of a type
constructor clash. Note that Fig. 15.3 only presents a few changes that need to be
made to our constraint solver. Not all the necessary changes are presented in this
figure.

Instead of changing the syntax of internal types and internal type constructors, it

could be interesting to investigate the handling of end points defined as dependencies
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as follows:
d € Dependency ::=--- | e(l)

We leave this investigation for future work.
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Some of TES’ properties

16.1 Compositionality

16.1.1 Status of the compositionality of our TES

The TES originally defined by Haack and Wells [57] allowed a compositional analy-
sis. Their constraint generation algorithm was accumulating the types of identifiers
at bound occurrences in an environment using intersection types. When dealing
with a polymorphic declaration of an identifier id, their constraint generation was
duplicating the constraints generated for the declaration as many times as there were
types associated with id in the environment generated for its scope. This approach
led to a combinatorial explosion in the number of generated constraints. To solve
this combinatorial explosion, we switched to another approach to polymorphic dec-
larations. Bindings are now solved at constraint solving. At constraint solving our
TES forces the solving of the constraints generated for a polymorphic declaration
before using it. Constrained types are simplified into types. We then only have to
duplicate the type of a polymorphic declaration and not all the constraints initially
generated for it. This idea was initially based on other works such as the ones by,
e.g., Gustavsson and Svenningsson [55] or Pottier and Rémy [116].

Because of this change in our system we have lost the compositionality of our
analysis. As a matter of fact, because we force the solving of the constraints gen-
erated for a polymorphic declaration before using it, if the declaration refers to a
free identifier, once the type of the polymorphic declaration is generated from the
constraints, this type is then independent from the free identifier’s type. For exam-
ple, when solving e, the environment generated for val rec f = fn x => z, because z
occurs free, £’s type is of the form (where dependencies have been omitted for read-
ability reasons): V{ay, as}. cy—ay where o is x’s type and «s is a type constrained
to be equal to z’s type. This type scheme does not depend on z. If £’s declaration
is placed in a larger context containing the declaration val z = (), to be able to

recompute £’s type in this larger context we need to solve the environment gener-
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ated for val z = () and then solve once again e. We cannot reuse any information
previously computed while solving e the first time.

However, the compositionality of our initial constraint generation algorithm is
not affected by this change. It remained compositional thanks to our system of
binders and accessors. Our constraint generation algorithm is not based on envi-
ronments that accumulate the types of identifiers at bound occurrences. For an
identifier at a bound occurrence, we generate an accessor as part of the generated
environment. When dealing with an identifier id at binding occurrence we do not
generate constraints relating the type of id to its bound occurrences. We do not
compute bindings at initial constraint generation but for such an identifier we gen-
erate a binder as part of the generated environment. We therefore delay the solving
of bindings to be dealt with at constraint solving instead.

These binders and accessors are especially necessary to obtain a compositional
initial constraint generation algorithm while handling features such as open declara-
tions and dealing with SML identifier statuses. When dealing with an open declara-
tion and when the opened structure identifier is free, we are facing the fact that the
structure might be in the scope of identifiers that it re-declares. Without binders
and accessors, at constraint generation, one can then choose to either (1) shadow
all the identifiers in which the open declaration is in the scope of, or (2) shadow
none of them, or (3) solve the structure opening. None of these solutions would
allow one to design a compositional constraint generation algorithm. A composi-
tional constraint generation algorithm must allow the structure declaration to be
analysed after analysing declarations which open it. Solutions (1) and (2) are not
suitable because it might turn out that the structure only partially shadows the de-
clared identifiers in which the open declaration is in the scope of. Solution (3) would
require having the opened structure already analysed by the constraint generation
algorithm when dealing with its opening. Also, solution (3) would not allow one
to separate the constraint generation phase from the constraint solving phase and
would not allow “faithful” representations of pieces of code in a constraint language.
In our system, when dealing with an open declaration, we generate an accessor re-
ferring to the opened structure identifier and then export the environment declared
by the structure via an environment variable.

Let us now discuss the handling of SML identifier statuses. When dealing with an
identifier vid in a pattern that is not a recursive function (f is a recursive function in
val rec f = fn x => x, but it isnot in val £ = fn x => x) the status of vid is resolved
by looking at its context. If vid is declared as a recursive function in its context
then vid is forced to be a value variable and not a datatype constructor and if vid is
declared as a datatype constructor in its context then vid is forced to be a datatype
constructor and not a value variable. If vid is neither declared as a value variable

nor as a datatype constructor or if vid is free in its context then vid could either be
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a value variable or a datatype constructor. If the analysed piece of code is complete
then it means that vid is a value variable but if the piece of code is incomplete we
cannot resolve the status of vid. In our system if we cannot resolve the status of an
identifier vid then it is considered as a dependent value variable (dependent on wvid’s
status). At constraint generation we therefore generate unconfirmed binders (see
Sec. 14.1) which allow us to delay the resolution of identifier status to be dealt with
at constraint solving. Making this decision at initial constraint generation would
not allow our initial constraint generation algorithm to be compositional.

Because accessors and binders allow us to delay the resolution of bindings to
be dealt with at constraint solving rather than at constraint generation, we can
therefore obtain a compositional initial constraint generation algorithm. However,
because constraint solving requires the context of an environment e to be solved

before solving e, it is therefore not compositional.

16.1.2 Future work on compositionality

Unfortunately, our initial constraint generator is not compositional anymore once
fixity declarations are added to the language. Fixity declarations influence the pars-
ing of a piece of code. We do not have a good solution to handle fixity declarations
in a compositional way. Therefore, our TES deals with fixity at parsing time. We
leave the study of a compositional constraint generation algorithm in the presence
of fixity declarations for future work.

Finally, we believe that the intersection type machinery introduced to handle
functors in Sec. 14.9 could be used to partially recover the compositionality of con-
straint solving. For example, let us consider the declaration val rec f = fn x => z.
Informally, instead of discarding z’s accessor, we could imagine generating an acces-
sor of the form (we omit dependencies and T for readability purposes) tz=a M sv
which would be stored in the constraint solving context from the state in which the
constraint solver is when dealing with z’s accessor. We would also generate a binder
of the form [£=Y{a, o/}. {(a, sv) }oa’—»a for £. If e.g.,val u = if £ () then 1 else O
was in the scope of £’s declaration, we would then constrain sv to be equal to
bool M sv’. For the sequence of the two declarations, we would then generate an
environment of the form (tz=a M bool M sv');(Lt=V{a, /}. {(c, sv)} o &/=a). If
these two declarations were in the scope of val z = (), where z has type unit, we
would then obtain a type error clash when constraining unit to be a subtype of
bool. If instead these two declarations were in the scope of val z = true, where z
has type bool, we would constrain further £’s binder to be lf=V{a'}. a/=bool by
constraining « to be equal to bool. However, we believe that such a solution would
be inefficient. Let us also sketch the implications of such a system in the pres-

ence of open declarations. Let us consider the following sequence of declarations:
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val z = (); open S; val rec f = fn x => z. Instead of simply discarding s’s binder
we would then store it in the constraint solving context from the state in which the
constraint solver is when dealing with s’s accessor. We would then generate the fol-
lowing environment (1z=V@.unit);(1s=ev);ev;(tz=aMsv);(L£=V{a, o’}. {{c, sv) } ©
o/=a). It becomes then unclear what to do when also dealing with, among other

things, signatures. We also leave the investigation of such a system for future work.

16.2 Satisfiability of Yang et al.’s criteria

Yang, Wells, Trinder and Michaelson [149] provide a list of criteria for good type
error reports. We will now informally present how our type error reports meet these
criteria.

First, let us point out that in TES a type error report is composed by a type
error slice, a highlighting, a verbose explanation of the kind of the error, and a set

of identifier statuses context dependencies.

Correct. For the same reasons as listed in Sec. 11.9, we have not formally proved
that, given a piece of code, our initial constraint generation algorithm generates
unsolvable constraints if and only if the piece of code does not have a static semantics
in SML. We however strongly believe this result to be true.

Moreover, every SML compiler already contains a type inference algorithm en-
suring only type safe code is compiled. Standard software engineering techniques,
like our database of 550 regression tests (typable and untypable pieces of SML), are
much more cost effective for ensuring high quality error slices. This database is used
to check the empirical correctness of our algorithms.

Note that we do not plan on building another SML compiler but instead we would
like to obtain an interface where the errors reported by TES would be preferred over
the ones of any SML compiler. This interface could regularly run our TES while
programmers are implementing (e.g., every time programmers stop typing for a
certain amount of time). If a type error was discovered by our TES it would then
be reported to the user, otherwise we would rely on a SML compiler chosen by the
user to find errors that our TES does not find (this would be considered as a bug of
our TES once our implementation finished) and to compile the code. We leave the

building of such an interface for future work.

Precise. We have not proved the minimality result stated in Sec. 11.9 but we
strongly believe that our TES only reports minimal errors. We believe that our type
error slices are minimal and that therefore they are precise because they do not

involve portions of code not participating in the reported errors.

Succinct. Our verbose explanations are succinct. For example, for O (), we would

report the type error slice (.. () (..)..). We would also report a verbose, clear and

247



Chapter 16. Some of TES’ properties

brief message explaining that the error is a type constructor clash between the type

unit and the functional type.

A-mechanical. TES does not report any internal constraint term computed while

searching for type errors.

Source-based. We consider the main components of type error reports in TES to
be the highlightings. Our highlightings directly present type errors in the user code
and therefore are source-based. A type error slice however is based on the user code,
where portions not participating to the reported error are omitted. The omissions
are made explicit thanks to dots and extra parentheses. Note that a type error slice
is therefore not strictly speaking source-based because it involves extra symbols.
However, type error slices are mainly in our reports to formally define type errors

and to make explicit the scoping of identifiers in the highlightings.

Unbiased. TES is unbiased thanks to its enumeration algorithm which is designed
to find all minimal unsatisfiable portions of a constraint/environment. Moreover,
by default no location is presented in our system as being more important than
others. End points are highlighted using different colours because they are used
among other things to generate our verbose error messages. They are by no means
more important than the other locations. Note the use of “by default” above. Even
though we do not believe that any location in a type error slice should be more
important than the other ones, we also believe that this could be relaxed depending
on users’ preferences. For example, one could prefer looking at the non signature
related portions of a highlighting and therefore would prefer having the signature
related portions of a type error highlighted with a lighter colour. This has not been

implemented or investigated yet.

Comprehensive. Thanks to both our highlightings and our type error slices, given
a type error report, the user does not need to look at any other portion that is not
involved in the report. Moreover, our type error slices are unambiguous. In our type
error slices, bindings of identifiers are made explicit thanks to our extra dots and

parentheses.
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Implementation discussion

17.1 Other implemented features

17.1.1 Syntax errors

As mentioned in Sec. 14.1 and Sec. 14.10, our implementation also reports some
context-sensitive and context-insensitive syntactic errors. Let us present some ex-
amples.

We have already mentioned in Sec. 14.1 that our TES reports that x occurring
twice in the pattern in fn (x, x) => x is an error only if x has value variable status.
This is a context-sensitive syntactic error that depends on the x’s status. We report
the following highlighting #8 (%, ®) 2 x where fn and => are highlighted to show
that the highlighted x’s occur in a pattern.

We also report various context-insensitive multi-occurrence syntax errors. For
example, in Sec. 14.10, we mentioned that type (’a, ’a) t = ’a is syntactically in-
correct because the explicit type variable ’a occurs twice in the type variable se-
quence (’a, ’a). We report the following highlighting &pe (#d, P&) t E ’a where
type and = are highlighted to show that the highlighted ’a’s occur in the type vari-
able sequence of a type declaration. The datatype declaration datatype t = T | T is
also syntactically incorrect because it declares twice the datatype constructor T. We
report the following highlighting @atatype t E § | F. Also, datatype t = V and u = V
which declares, among other things, two datatypes t and u is syntactically incorrect
because V is declared as a datatype constructor of both t and u in the same datatype
declaration. We report the following highlighting @a€atype t & ¥ and u E §. We re-
port many other cases of multi-occurrence syntax errors that we do not discuss in
this document.

Let us present another kind of context-insensitive syntactic error. The datatype
specification datatype (’a,’b)t = T of ’a -> ’c is syntactically incorrect because the
type variable >c does not occur in the type variable sequence (’a,’b). We report

the following highlighting datatype FaPB)t € T of ’a —> PBd. We also explain in the
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report that a type variable is unbound in the declaration.

Let us present a last example. As mentioned in Sec. 11.2, recursive declarations’
bodies must be fn-expressions. For example, val rec £ = () is not syntactically
correct because () is not a fn-expression. We report the following highlighting

val rec £ = ().

17.1.2 Datatype replications

A datatype replications in SML is of the form datatype t = datatype u. For example
if u is defined in the context as follows: datatype u = U | Vv, then the datatype repli-
cation will have the effect to splice U’s constructors into the current environment.
Datatype replications are handled similarly to open declarations in Impl-TES. In
our implementation we also associate environments with external type constructors.
For example, for datatype u = U | V, we generate a binder for u that carries u’s
type but it also binds an environment which is the environment generated for its
constructors (U and v in our example). Then we deal with the datatype declaration
by generating an accessor that does not access to u’s internal type but that access

to the environment associated with u.

17.1.3 Exceptions

When adding exceptions, one has to consider another identifier status: exception
constructors. Let us present some interesting issues raised by exceptions. First, let

us consider the following typable piece of code:

exception ex of int;
exception fx = ex;

val x = fn () => raise fx 0;

The exception constructor ex is unary. But the arity of £x cannot be inferred by
just looking at the declaration exception fx = ex. The arity of £x depends on ex’s ar-
ity. That is why when dealing with exceptions we need more that the dummy status
variable ng.,,. When generating constraints for the declaration exception fx = ex, we
associate a status variable with the exception fx, which we constrain to be equal to
ex’s status, which is obtained via an accessor.

There is another issue raised when dealing with such declarations. The issue is
that given exception fx = ex, we do not need to know ex’s arity to known that fx
is an exception constructor. We therefore consider extra raw statuses. We have a
nullary exception raw status e0 and a unary exception raw status el (as we have
d and c for datatype constructors), but we also have an extra exception raw status
e for when the arity of an exception constructor is unknown. For our example,

at initial constraint generation we constrain fx’s status to be equal to ex’s status
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and we also constrain it to be equal to e. This constraining is made such that the
constraint on fx’s status with ex’s status will predominate the constraint on fx’s

status with the raw status e.

17.1.4 Long identifiers

Long identifiers are used to access identifiers defined in structures. Let us consider

the following simple typable SML program:

structure S = struct
val a = 1
val f fn x = x + 1

structure T = struct val b = f a end

(EX14)

end
val x = S.T.b + 1

The main point of this example is that s.T.bis a long identifier that allows one to
access the identifier b defined in T, itself defined in S. A long identifier is a sequence
(possibly empty) of structure identifiers, each of them followed by a dot, followed by
an identifier. In order to handle long identifiers in Impl-TES we use long accessors
where instead of an identifier one can have a labelled long identifier.

One can then obtain unmatched errors involving long identifiers. For example, if

one replaces S.T.b by s.T.v in example (EX14) one obtains the following highlighting:

val a = 1
val £ = fn x => x + 1

structure T = struct val b = f a end

end

val x = ST + 1

We have not fully finished implementing support for long identifiers, but we plan

in reporting the two following slices for the following variant of example (EX14):

structure S = struct structure S = struct

Va1 @ g 1 W&l a = 1

@l B fonx =>x + 1 @l f =fnx=>x+1
STTUcture T E struct val b = f a end STTUcture T B struct val b = f a end
end end

val x = Sl¥.b + 1 val x = SI§lb + 1

This example differs from example (EX14) by the replacement of s.T.b by S.Y.b.
The first highlighting shows that s.Y tries to access Y in s and that s does not declare
s. The second highlighting shows that s.v. tries to access the structure v in s and

that s does not declare any structure called Y.
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Fle Edit Options Buffers Tools SML Help

Eatatype ('a. 'b. 'e] t = Red of 'a * 'h * 'c
| Blue of 'a * 'h * 'c
| Pirde of 'a * 'bh * 'c
| Breem of 'a * 'h * 'h
| Tellow of 'a * 'h * 'c
| Orange of 'a * 'b * 'c

trans (Elue (=, v, =]} = Pink (v, = =)
trans (Pink {x, ¥, 2)) = Green (y. = z)
trans (Green (¥, ¥, 2)) = Yellow (y, = =)
trans (Yellow (x, v, 2)) = Orange (v, = =)
| trans (Orange (X, ¥, =)) = Red (v, = =)
type ('a, 'h) m= {'a, 'a, 'B) £ * 'b
wal = = (Red (2, 2, false), true)
wal v : (int, bool) u = (trans (#1 =), #2 =)

fun trans {Red {x, v, 2)) = Blue (v, = =)
|
|
|
|

--:-- test-prog.sml A1l (1,0} (SML) ——-——=====—= 4
nal

Figure 17.1 Highlighting of a SML type error in Emacs

17.2 Performance

Our implementation is currently usable for small projects (a few thousand lines)
and is steadily improving. Our latest TES is 10 to 100 times faster in many cases
than before we switched to using our constraint/environments. Our previous TES
version was already enormously faster than HW-TES (the original TES by Haack
and Wells) due to avoiding duplication of polymorphic types. We believe that more
careful use of data structures and algorithms will allow much better performance.
Minimisation and enumeration are expensive. The expense of minimisation is
handled by (1) reporting partially minimised slices to the user interface while minimi-
sation continues in the background, and (2) designing the constraint solving system
to avoid including unneeded parts of the program in slices whenever possible (which
means each iteration of minimisation does less work, as explained in Sec.11.7.6).
The expense of enumeration is handled by reporting slices to the user interface as
they are produced while continuing enumeration in the background. Wolfram’s re-
sult [145] shows there will be an exponential number of minimal type error slices in

the worst case, so we merely aim to quickly present a few of them.

17.3 User interface

An Emacs interface (and a preliminary one for Vim) highlights slices in the edited
source code. There is also a terminal command-line interface. Fig. 17.1 presents a
screenshot of the type error presented in Sec. 10.4.2 highlighted in Emacs. The light
pink corresponds to slices other than the focused one. Other such screenshots are
provided in Ch. 13.
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17.4 The Standard ML basis library

Our examples have used operators like :: and +. For now, we allow one to define the
Standard ML basis in a file, and we provide a file declaring a portion of the basis.
For the future, we have begun implementing a way to use library types extracted

from a running instance of SML/NJ.
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Future work

18.1 Examples exhibiting the desire for even more

type error reports

We have found some cases of incomplete pieces of code that we do not believe could
be made typable by completing them. We present some of them in this section. Not
reporting such errors prevents TES from reporting all minimal type error slices in

the presence of incomplete pieces of code.

18.1.1 An example involving structures and signatures

We do not believe that the following incomplete piece of code could be made typable:

signature S = sig val £ : (..) end
structure U = struct val f = true end : S
() end : S

structure V = struct val f

As a matter of fact, whatever (..) is replaced by, the piece of code would always
be untypable. Finding such errors is complicated because, e.g., the following piece

can be made typable by replacing (..) by t:

signature S = sig type t val £ : (..) end
true end : S
() end : 8

structure U = struct type t = bool val f

structure V = struct type t = unit val f

18.1.2 An example involving datatype constructors

Let us consider this other example in which ¢ is free:

val _ = fn (C ) =>
c O O
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The first occurrence of ¢ forces ¢ to be a unary (datatype or exception) construc-
tor. The second occurrence of ¢ forces ¢ to take two arguments. In SML, datatype
and exception constructors can take one argument at most. Therefore, we believe
that there is no declaration of ¢ that would make the piece of code typable. Currently
our TES does not complain. We believe we could generate an error by generating
at constraint solving a binder for ¢ when dealing with the accessor generating for
C’s first occurrence. This binder would force ¢ to have an arrow type. Note that
this piece of code is incomplete in the sense that ¢ is constrained to be a datatype

constructor and there is no declaration of ¢ as such.

18.1.3 An example involving type annotations

Let us now consider the following piece of code in which u is free:

datatype ’a t =T of ’a t
fun f x =T (x : w

We believe that there is no declaration of u that would make this piece of code
typable. If u was defined as a datatype then it would have to be different from t
because u’s definition would have to precede t’s definition. If u was defined as a type
function then because it does not take any argument it would have to be a nullary
type function. It then would have to be equal to a type that does not mention any
type variable and therefore it would have to be equal to a type construct where the
type constructor is different from t because u’s definition would have to precede t’s

definition. We have not yet investigated the report of such errors.

18.2 Missing features

Some of SML’s features are not yet handled by Impl-TES or by Form-TES. We do
not yet deal with type and signature sharing, equality types, and flexible records.
Impl-TES handles non-flexible records but we have not started investigating flexi-
ble records. However, because we allow programmers to use flexible records in pieces
of code (we parse them), Impl-TES handle them in a way that cannot cause false
errors to be found. We have started implementing support for type sharing but it
is currently at an early stage (we only catch a few errors involving type sharing
specifications). We believe that the handling of equality types will require the intro-
duction of another kind of rigid type variables (equality rigid type variables). We
believe that the handling of these features will not require fundamental extensions
to our constraint system. The handling of these features is left for future work.
Also, we have not yet implemented or formalised support for overloading res-
olution as specified in The Definition of Standard ML [107, Appendix E]: “Every
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overloaded constant and value identifier has among its types a default type, which is
assigned to it, when the surrounding text does not resolve the overloading. For this
purpose, the surrounding text is no larger than the smallest enclosing structure-level
declaration; an implementation may require that a smaller context determines the
type.” We currently do not do anything when “the surrounding text does not resolve
the overloading”. For example, Impl-TES considers the following piece of code to be

typable:

structure S = struct fun f x y = x + y end

open S
val x1 = f 1 2
val x2 = f 1.1 2.2

In SML the operator + is overloaded to the overloading class Int described in
Sec. 18.3. If one follows The Definition of Standard ML, because the surrounding
text of + in £’s definition does not resolve the overloading of +, it results that when
dealing with s the function f is forced to be a function from int to int because the
type int is the default type of the overloading class Int. (Note that implementations
are allowed to resolve the overloading of + when inferring £’s type.) Therefore, x1 is
fine but x2’s body should be involved in a type error.

Overloading is further discussed in Sec. 18.3.

18.3 Overloading

18.3.1 Status of TES’ handling of overloading

Impl-TES partially handles overloaded operators and constants. We also allow the
user to overload operators and to define overloading classes thanks to overloading
declarations. These declarations are useful to define the Standard ML basis (Impl-
TES uses a basis file containing most of the declarations from the Standard ML
basis). There are however some issues stemming from the handling of overloading.
One issue is that we feel that we do not currently do a good job at reporting type
error slices involving overloaded operators or constants. Usually such errors involve
many types from many structures from the Standard ML basis, and these tend to
cloud type error slices. Let us first informally present our overloading declarations.
We will then illustrate the issue mentioned above. Overloaded operators and con-
stants are overloaded over overloading classes. An overloading class is the union
of a number of type constructors. For example the overloading class Int is a type
constructor set containing at least int. Similarly are defined the overloading classes
Real, Word, String, and Char (See The Definition of Standard ML [107, Appendix EJ).

These overloading classes are called basic. On top of the basic overloading classes
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are defined the composite overloading classes which combine the basic overloading
classes. For example the overloading class ReallInt is defined as RealUInt. Note that
Int can contain (and usually does) other type constructors. In SML/NJ, it also con-
tains, e.g., the type Int.int which is in SML/NJ the same as the type int (which
is the int type at top-level), and also contains Int32.int which is in SML/NJ differ-
ent from the type int. In SML/NJ, the overloading class Int contains many other
type constructors. In Impl-TES, overloading classes can be defined using overload

declarations which follow the following labelled syntax:

ovcid € OverloadingClassld  (overloading classes identifiers)

ovcitem € Overloadingltem  =:=in! tc | ovcid
oveseq € OverloadingSeq  ::= (ouvcitemy, . . ., ovcitemy,)!
dec € Dec = .. | overload ovcid' ovcseq

For example, in the basis file provided with the implementation of Impl-TES, the

overloading class Int is defined as follows:

overload Int (int, Int.int, Int31.int, Int32.int,

Position.int, IntInf.int, Largelnt.int)

We then use other kinds of overloading declarations to overload operators. These

declarations follow the following labelled syntax:
dec € Dec::=--- | overload vid :' ty with tv in ovcseq

For example, in our basis file, + is overloaded as follows:

overload + : ’a * ’a -> ’a with ’a in (in Int, in Word, in Real)

18.3.2 An issue in handling overloading

Let us now consider the following erroneous piece of code: val x = 1 + true. Because
true is of type bool which is not a type in any of the overloading classes Int, Word or
Real then one obtains a type error. The type error slice reporting this error needs to
contain (..) + true, but it also need to contain +’s definition and also all the types on
which + is overloaded. In this case it involves reporting portions of many structures
from the basis. All the reported information tend to cloud the main point of the
error which is that true is not any of the types on which + is overloaded. Therefore,
even though our error reports are correct, we believe we need to develop a way to
“fold” such errors. The same arguments applies for overloaded constants. This is

left for future work.
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18.4 Tracking programming errors using TES

Even though type error slices are already of a great help on their own, we believe we
could improve our error reports by proposing guidance to users to navigate through
error slices. Let us consider the type error slice presented in Fig. 10.2 in Sec. 10.4.2.
Sec. 10.4.2 contains some text describing a way of reading the presented type error
slice, depending on the bindings in the slice. We would like to automate this in
the future. We would like to make data flow information, computed at constraint
solving, available to users. It is however not evident that such guidance on how to
read type error slices would be useful for every error kind. We believe it would for

at least type constructor clashes and circularity errors.

18.5 Combining TES with suggestions to repair

type errors

We see that our work can enable work for suggesting fixes, because it can correctly
calculate the portion of a program that is involved in a type error, while excluding
the uninvolved portion. This would allow fix suggestions to correctly consider all the
spots which need to be considered to find the right place for the fix. In the absence
of information equivalent to a correct type error slice, automated fix suggestion
will inevitably sometimes suggest fixes at the wrong places. We believe it could be
interesting to study the combination of our work with other approaches to error

reporting, e.g., by Hage and Heeren [59] or by Lerner et al. [99].

18.6 Proving the correctness of TES

Once Form-TES will be close enough to Full-TES and stable enough, we would like
to prove its correctness (i.e., given a piece of code, it finds all and only the minimal
errors of the given piece of code if and only if the piece of code is untypable). This
would require proving the correctness of the different components of TES, i.e., of

constraint generation, constraint solving, minimisation, enumeration, and slicing.
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Proofs of Part 1

A.1 From a semantic proof to a syntactic one
(Ch. 4)

A.1.1 Saturation, variable, abstraction properties (Sec. 4.1)

Proof of Lemma 4.1.2. 1. If r = [Bn, the proof is by induction on the length of
the reduction M —5 N.

e If M = N then M|z := P| = N[z := P]. We prove that N[z := P| —7},
Nz := @] by induction on the structure of N.
— Let N € Var. If N =z then N[z := P] = P —3 Q= N[z = Q)
else N[z := P] = N = N[z := Q).
— Let N = \y.N'". By IH, N[z := P| = Ay.N'[z := P| =}, \y.N'[z :=
Q] = N[z := Q)] such that y & fv(PQxz).
— Let N = NiN,. By IH, N[z := P] = Ni[z := P|Ny[r := P|] —}
Ni[z := Q] No[z := Q] = N[z := Q).
o Let M —3 M’ —p, N. By IH, M[z := P] =} M'[x := Q]. We prove
that M'[z := Q] —p, N[z := Q] by induction on the structure of M.

n

— Let M’ € Var then nothing to prove since M’ does not reduce.
— Let M'" = \y.M].
* Either N = Ay.Mj such that M| —gz, Mj. By IH, M{[z :=
Q] —p, Mjlx == Q]. So M'[lx = Q] = \y. Mz = Q] —p,
Ay.Mix = Q] = N[z := Q] such that y & fv(Qx).
x Or M{ = Ny such that y & fv(N). So M'[z := Q] = \y.N[z :=
Qly —, N[z := Q] such that y & fv(Qx).
— Let M' = M M,.
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« Either N = MM, such that M; —gz, M{. By IH, Mz :=
Q] —p, Mi[lx == Q]. So M'[x = Q] = Mz = Q|My[z =
Q] —py Milz == Q|Ms]x := Q] = N[z := Q).

* Or N = M;M; such that My —g, M;. By IH, Mz := Q] —p,
Mz = Q], so M'[zx = Q| = Mz = Q|M[z = Q] —p,
M|z = Q|M}[z := Q] = N[z := Q).

« Or My = Ay.Mj and N = M{ly := M,]. So, M'[z := Q)] =
(Ay-Mi[z := Q) Mz := Q] —p Milx := Qlly := Ml := Q]| =
Nz := Q] by the well known substitution lemma and such that
y & fv(Qr).

If r = 3, the proof is by induction on the length of the reduction M —} N.

o If M = N then M[z := P] = N[z := P]. We prove that N[z := P] —}
Nz := @] by induction on the structure of N.

— Let N € Var. If N =z then N[z := P| =P —} Q = N[z := QJ, else
N[z :=P]=N = Nz :=Q)].

— Let N = A\y.N". By IH, N[z := P] = \y.N'[z := P] =} \y.N'[x :=
Q] = N[z := Q)] such that y & fv(PQxz).

~ Let N = NiN,. By IH, N[z := P] = Nifa := P]Ny[z := P] —
Nilz = QN == Q] = Nz = Q).

e Let M —j M" —5 N. By IH, M[z := P|] =} M'[z := Q]. We prove that
M'[z := Q] —5 Nz := Q] by induction on the structure of M.

— Let M’ € Var then nothing to prove since M’ does not reduce.

— Let M" = A\y.M;. Then N = A\y.M; such that M| —3 Mj. By IH,
Milz = Q] —p Mslz := @], so M'[z == Q] = \y-Mi[x := Q] —5
Ay.Mj[z = Q] = N[z := Q] such that y ¢ fv(Qz).

— Let M’ = M, M,.

« Either N = MM, such that M; —z M. By IH, Mz :=
Q] —p M|z := Q], so M'[x .= Q] = M|z = Q|Mslx := Q] —p
Mz = QMylz = Q] = N[z := Q).

x Or N = M, M such that My —5 Mj. By IH, Mz := Q] —5
Miz = Q], so M'[z = Q] = Mz = Q|Mzx := Q] —3
Mz = QM[r = Q] = Nz = Q.

* Or My = Ay.Mj and N = M{ly := M,]. So, M'[z := Q)] =
(Ay-Milz := Q) Mz := Q] =5 Mi[z := Qlly := My[z == Ql] =
Nz := @] by the well known substitution lemma and such that
y & fv(Qr).

2. We prove this lemma by induction on the structure of M.
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e Let M € Var then either M = x and so fv(M[z := NJ]) = fv(N) =
fv((Ax.M)N). Or M # z and so fv(M[z := N]) = fv(M) C fv(M) U
fv(N) = fv((Ax.M)N).

o Let M = A\y.P then fv(M[z := N]) = fv(A\y.Plx := N]) = fv(P[z =
NN\ {y} €' fv((Az.P)N) \ {y} = fv((Ax.M)N) such that y & fv(Nz).

e let M = P, P, then fv(M|[z := N]) = fv(Py[z := N])Ufv(Py[x := N|) C'#
fv(A\x.P)N) U fv((Ax.Po)N) = fv((Ax.M)N).

3. We prove this lemma by induction on the length of the reduction M —j N.

e Let M = N then fv(M) = fv(N).
o Let M —j M' —ps, N. By IH, fv(M') C fv(M). We prove that fv(N) C
fv(M’) by induction on the structure of M.
— Let M’ € Var then nothing to prove since M’ does not reduce.
— Let M' = \z.P.
« Either N = Az.Q) such that P —3, Q. By IH, fv(Q) C fv(P). So
fv(N) C fv(M').
* Or P = Nz such that x & fv(N). So fv(N) = fv(M’).
— Let M' = P P,.
« Either N = P{P, such that P, —g, P/. By IH, fv(P)) C fv(P),
so fv(N) C fv(M").
* Or N = P, Pj such that P, —g, P;. By IH, fv(P;) C fv(FP»), so
fv(N) C fv(M').
x Or P, = A\x.Pyand N = By[z := P5). By Lemma 4.1.2.2, fv(N) C
fv(M").

A corollary of this result is that if M —7% N then fv(N) C fv(M).
4 By induction on the length of the reduction Az.M —j N.

o Let A\z.M = N then it is done.
o Let \a. M —%n P —g, N. By IH:
— Either P = Az.Q) such that M —7} Q. Then, by compatibility:
* Either () = Nx such that o & fv(N). So it is done since M —
Nzx.
* Or N = Az.M’ such that @ —g, M’. So it is done since M —7,
M.
— Or M —7%, Px such that x ¢ fv(P). So M —j, Nz and it is done
since by Lemma 4.1.2.3, x & fv(N).

n
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5 By induction on the length of the reduction Mz —7, N.

o Let N = Mz then it is done.

e Let Mz —; P —pg, N. Then by IH, M —} @ (by Lemma 4.1.2.3,
x & fv(Q)) and:
— Either P = Qx. Then, by compatibility:
* Either N = @'z such that Q —z, @'. So it is done since M —7,
Q'
* Or Q =My.Q and N = Q'ly :=z]. So M —}, \y.Q" = Az.N.
— Or Q = Az.P. So it is done since M —3, Q = A\x.P —p, Av.N.

6. (a) If k=0 then P =@ is a direct r-reduct of @), absurd.
(b) Assume k =1, we prove P = M|z := N| by case on r.

e Let r = . The proof is by case on @ = (Az.M)N —4 P.
— If (A\e.M)N —43 M|z := N] then we are done.

— If A\e.M)N —3 (Ax.M')N = P such that M —z M’ then P is a
direct (-reduct of (Az.M)N, absurd.

— If (\e.M)N —5 (Ax.M)N' = P such that N —3 N’ then P is a
direct B-reduct of (Az.M)N, absurd.

e Let r = n. The proof is by case on Q = (Ax.M)N —g, P.
— If (A\e.M)N —43 M|z := NJ, then we are done.
— If \x.M —p, R and P = RN then:

* Either R = Ax.M' such that M —g, M'. So P is a direct
fBn-reduct of (Az.M)N, absurd.

* Or M = Rx and « ¢ FV(R). Hence, P = RN = M|z := N]
and we are done.

— If N =g, N'and P = (Az.M)N’ then P is a direct #n-reduct of
(Ax.M)N, absurd.

(c) We prove the statement by induction on k& > 1.
e If £ =1 then it is done since by (b) P = M|z := N].
e Else, let k> 1and Q = (Ax.M)N —F R —, P.
— If R is a direct r-reduct of @, then R = (Az.M')N’, such that

M —* M’ and N —» N'. Since P is not a direct r-reduct of @),
P is not a direct r-reduct of R. Hence by (b), P = M'[z := N'|.

— Else, by IH, there exists a direct r-reduct (Ax.M')N’ of @) such
that M'[z := N'| =% R —, P.
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7.

8.b)

8.c)

If P is a direct r-reduct of (Az.M)N then P = (Axz.M’)N’ such that M —
M and N —* N'. So P —, M'[zx := N'| and M[z := N| = M'[x =
N’], by Lemma 4.1.2.1. If P is not a direct r-reduct of (Ax.M)N then by
Lemma 4.1.2.6, there exists a direct r-reduct, (Ax.M')N" of (Ax.M)N such
that M —* M', N —* N and M'[z := N'| —* P. Finally, by Lemma 4.1.2.1,
Mz .= N] = M'[z == N'| = P, .

Let n > 0, M[z := N] € CR", (A\e.M)N —} M; and (A\e.M)N —} M.
By Lemma 4.1.2.7, there exist M| and M} such that M; — M|, Mz =
N] —% Mj, My —* M} and M[z := N| —* M)}. Then we conclude using
M|z := N] € CR".

Let n > 0 and for all 7« € {1,...,n}, M; € CR". First we prove that if
xMy---M, —* N then N = xzMj--- M/ such that for all i € {1,...,n},
M; —} M!. We prove the result by induction on the length of the reduction
xM --- M, —} N.

e Let xM;--- M, = N then it is done
o Let M, --- M, — N —, N. By IH, N' = 2zM]--- M/ such that for all
ie{l,...,n}, M; = M. We prove the result by induction on n.
— Let n = 0 then it is done since z does not reduce by —,.
— Let n =m + 1 such that m > 0. By compatibility:
« Either N = PM] such that xM{--- M/ —, P Then by IH P =
aMi"--- M) such that for all : € {1,...,m}, M] —} M. So it
is done.

« Or N =aMj--- M, M such that M) —, M/ then it is done.

Case 3: Let Ax.M —} Py and Ax.M —7 P then Py = Az.M; and P, = Ax.Mj
such that M —J% M; and M —7% M. By hypothesis, there exists M such that
M1 —>% M3 and M2 —>% Mg. So P1 —>% )\I‘Mg and P2 —>% )\I‘Mg

Case fn: Let Av.M —3, Py and Ax.M —j, P>. By Lemma 4.1.2.4:

e Either P, = Ax.(Q; such that M —>§n @1 and P, = Ax.(Q; such that
M —J, Q2. So by hypothesis there exists Q3 such that Q1 —j, (3 and
Q- — B ()3, hence, P; — By Ar.QQ3 and Py — by Ar.Q)s.

e Or P, = Ax.(); such that M — B Q1 and M — B Pyx such that = ¢
fv(P,). By hypothesis there exists 3 such that Q; —%, @3 and Px —7,
Q3. So, by Lemma 4.1.2.5 P, —7%, @2 (by Lemma 4.1.2.3, x & fv(Qs))
and:

— Either Q3 = Qaz. So P = A\r.(Q)1 =}, Av.Q3 = Ar.Q2r — Qa.
— Or ()2 = \z.Q)3. So it is done since P; = \z.()¢ — by Ar.Q)s.
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e Or M —}, Pyx such that x ¢ fv(P) and P, = Az.Qs such that M —%n

(2. This case is similar to the previous one.

e Or M —j Pyx such that = ¢ fv(P;) and M —%, Pax such that z ¢
fv(P,). By hypothesis, there exists (3 such that Pz —j @3 and
B By ()3. By Lemma 4.1.2.5, P, By @1 and P, — B Q2. By
Lemma 4.1.2.3, z & fv(Q1) U fv(Q2). Therefore:

— Either Qg = le and Qg = QQLU SO Ql = QQ.
- OI' Qg = Qll’ and QQ = )\ZL’Qg SO Qg —n Ql-
= Or Q) = A\r.Q3 and Q3 = Q2 s0 Q1 —, Q2.
— Or Ql = )\ZL’Qg and QQ = )\ZL’Qg SO Ql = Qg.

A.1.2 Pseudo Development Definitions (Sec 4.2)

Proof of Lemma 4.2.7. 1 By induction on the structure of M.

e Let M = x then W (M) = M.

o Let M = \x.N. Let z # ¢. By IH, V.(N) —* N. Then, V.(M) =
AtV (N) = Ax.N = M.

o Let M = M;M,. By IH, for i € {1,2}, U (M;) —* M,.

— If M; is a A-abstraction, then W.(M) = W (M;)V.(My) —* MMy =
M.
— Else \I’C(M> = C\IJC(M1>\IIC(M2) —e \Ifc(Ml)\I]c(Mg) —>Z M1M2 =M.

2 By induction on the length of the reduction M —* N. The basic case (M = N)
is trivial. Let us prove the induction case. Let M —. M’ —* N. By IH,
fv(M')\ {c} = fv(N) \ {c}. We prove that fv(M) \ {c} = fv(M’) \ {c} by
induction on the size of the derivation of M —,. M’ and then by case on the

last rule of the derivation.

o Let M =cM' —. M’ then it is done.

e Let M = \u.P —, Ax.P' = M’ such that P —, P’ then it is done by IH.
o Let M = PQQ —. P'QQ = M’ such that P —, P’ then it is done by IH.

e Let M = PQ —,. PQ' = M’ such that Q) —. Q' then it is done by IH.

3 Corollary of Lemma 4.2.7.1 and Lemma 4.2.7.2.
4 Let M € AP". We prove by induction on the structure of M that M & A..

e Let M € Var. then M ¢ A..
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o Let M = A\z.M; then M & A..

e Let M = (Ax.M;)M, then because Az.M; ¢ A, then M & A..
o Let M = cM My, By TH, My & A, 50 M ¢ A..

o Let M =cM,. By IH, M; ¢ A, so M & A..

5 We prove this lemma by induction on the structure of d.

e Let d=cthen cM —, M.

o Let d = dydy then by IH, d = d1dy —} d» and again by IH, doM —} M,
so by compatibility dM —7 M.

6 =) We prove this lemma by induction on the length of the reduction M —? c.

e Let M = c then it is done.
o Let M —* M' —, c. We prove the lemma by induction on the length
of the derivation of M’ —. ¢ and then by case on the last rule.
— Let M’ = cc —, ¢ then M’ € A, and by TH, M € A..
— Let M" = Ax.My; —, Ax.My = ¢ such that M; —. M,, then it is
done because by case on ¢, ¢ # Ax.Ms.
— Let M" = MMy —. MMy = c¢ such that M; —. M]. By case
on d, M{, My € A., so by IH, M; € A.. Hence, M’ € A. and by
IH, M € A..
— Let M" = MMy —. MM} = ¢ such that My —. M). By case
on d, My, M}, € A. so by ITH, M, € A.. Hence M' € A. and by
IH, M € A..
<) We prove this lemma by induction on the reduction ¢ —% N.

e Let ¢ = N then it is done.

o Let ¢ =5 N —. N. By IH, N’ € A.. We prove that N € A. by
induction on the size of the derivation of N’ —, N and then by case
on the last rule.

— Let N' =¢N —_. N then N € A..

— Let N/ = \x.P —, Ax.P’ = N such that P —, P’ then it is done
because by case on N', N’ # \z.P.

— Let N' = PQ) —. P'QQ = N such that P —. P'. Then P,Q € A,
by IH P € A.,so N € A..

— Let N' = PQ) —, PQ" = N such that Q —. Q. Then P,Q € A,
by IH ' € A., so N € A..

7 We prove this lemma by induction on the length of the reduction M —* N.
The basic case is trivial. Let us prove the induction case. Let M —. M’ — N.

We prove the lemma by induction on the structure of M.
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e Let M = x then it is done since M —,. M’ is wrong.

o Let M = Az.M; then by compatibility M" = Az. M/ such that M; —. M.
By IH, N = Az.N; such that M| —* N;. Hence, M; —% N;.

o Let M = M;M,. By compatibility:

— Either M’" = M{Mj, such that M; —. Mj. By IH, either M] € A. and
My —% N or N = Ny Ny and M| —* N; and My —% Ns. In the first
case, by Lemma 4.2.7.6, M; € A.. In the second case, M; —} Nj.

— Or M'" = M; M} such that My —% M). By IH, either M; € A. and
M, —* N or N = NyNy and M; —} Ny and M) —% Ny. In the first
case, My —7% N. In the second case, My —7 N.

— Or My = cand M = c¢My —, My = M’'. Then it is done because
M =cMy —. My =M —% N.

8 We prove this lemma by induction on the structure of M.

o Let M =y. By Lemma 4.2.7.7, M' = y. If y = x then M[z := N| =
N —! N' = M'[z := N'|. Else y # x and Mz := N =M =M =
M'[z := N'].

o Let M = \y.M;. Let y & fv(N) Ufv(N') U{z}. Then by Lemma 4.2.7.7,
M’ = Ay.M] such that M; —* M. Hence, by IH, M[z := N| =
Ay M|z := N] =% \y.M{[x .= N'| = M'[z .= N'].

o Let M = M;M,. By Lemma 4.2.7.7, either M; € A. and My —% M’ or
M' = M{M} and My —} M| and My —* M.

— If My € A. and My —* M’ then by IH and Lemma 4.2.7.5, M|z :=
N] = (MiMy)[x := N] = My(Ms[z := N|) =% Mylx := N] —
M'[z = N'].

— If M’ = M{M} and M; —} M| and My —} M} then by IH, M|z :=
N] = (MiMs)[z := N] = Mz := N|My[z := N|] = M{lx =
N'|Mj[x:= N'| = M'[x := N'].

9 We prove this lemma by induction on the length of the reduction M —% N.
The basic case is trivial. Let M —. M’ —* N. We prove that M —. M’ is
false by first proving that if M —. M’ then ¢ € fv(M) by induction on the size

of the derivation M —, M’ and then by case on the last rule of the derivation:

o Let M =cM' —,. M’ then c € fv(M).

o Let M = Ax.My —. Ax.M{ = M’ such that M; —. Mj. Let x # c¢. By
IH, ¢ € fv(M;), hence ¢ € fv(M).

o Let M = MM, —. M{My = M’ such that M, —. M|. By IH, ¢ €
fv(My) C fv(M).
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o Let M = MyMy —. My M} such that My —. M,. By IH, ¢ € fv(Ms,) C
fv(M).

10 We prove this lemma by induction on the structure of M.

e Let M = z then by Lemma 4.2.7.7 it is done because M = P = N.

o Let M = Xx.M'. Let + # ¢. By Lemma 4.2.7.7, N = Az.N’' and
P = A\x.P’ such that M" —} N" and M’ — N'. By [H, P’ =% N’, hence
P = N.

o Let M = M;M,. By Lemma 4.2.7.7:

— Either My —% P, My —> N and M; € A.. By IH, P = N.

— Or My =% P, My € A,, N = NiN,, M; —* Ny and My —} Ns.
By Lemma 4.2.7.6, Ny € A., so ¢ € fv(IN;) C fv(N). We get a
contradiction.

—Or P = PP, M\ = P, My —% P,, M; € A, and My —% N.
By IH, P, —: N. By Lemma 4.2.7.6, P, € A.. By Lemma 4.2.7.5,
P =P, =% N.

— Or P = PP,y N = N\Nyy, My =% P, My =% Ny, My =% By,
My —* Ny. By IH, P, —} Ny and P, —} N,. Hence, P —! N.

0

A.1.3 A simple Church-Rosser proof for S-reduction (Sec. 4.3)
Proof of Lemma 4.3.1. We prove the result by induction on the structure of M:
o Let M =z € Var. and M € s then z[z := M| =M € s.

o Let M = Az.N. Let fv(N)\ {c,z} = {x1,...,x,} and M;,..., M, € s. Let
& fv(My)U---Ufv(M,). Because s € VAR then z € s. By IH, N[z, :=
M, ...,x, = M,] € s. Because s € ABS then (Az.N)[xy := My,...,z, =
M,]s € s.

o Let M = cPQ. Let fv(P)\ {c} = {x1,...,z,p {2, ... 2, }, v(Q)\ {c} =

{, oy w{al, o an b di({al, ) b {2, 2L })

and My, ..., M,,Mj,...,M; ,M{,...., M) €s. ByIH, Plz, := Mi,..., 2, =
My, 2y = My, ... ¢, =M ], Qxy := M, ... ,x,:= My, 2{:=M{,... x5 =
M) ] € s. Because s € VAR then (cPQ)[z; := Ml,..., Ty = My, x) =
M, ... a, =M o =M . . . x =M ]€

o Let M = (\z.P)Q. Let fv(P)\ {c,z} = {z1,..., 2y W {2}, ... 2 }, (@) \

{c} ={x1,...,x}0{a],.. .,z m}andMl,.. JMy, My, M MY M) €
sand dj({z}, ...,z }, {21,...,2},}). Let z & fv(My)U- - - Ufv(M,,) Ufv(M])U
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UM ) Ufv(M)U---Ufv(M])). By IH, Q" = Qo == My,...,z, =
My, oy = M{,...,x, = M), xf = M/ ...« = M) ] € s By IH,

ni ny? ng

o R /L !/ / [ !/ no.__ 2 "o
Plzy := My, ...,z = My, 2} = Mj,... 2, = M ,2{ == M{,... x5 =

ni n2

M x = Q] € s. Because s € SAT, (Az.P)Q)[z1 = My,...,x, =

ng?

! . / / . / "o, __ " " 1
My, @, = M, ... 2y = M. &l =M}, ... o =M']€s. 0

’»Yny nio 77N

Proof of Lemma 4.3.3. By induction on the structure of M.
e Let M € Var, so V.(M) = M € Var,, since M # c.
e Let M = Az.N. Let x # c. By IH, U .(N) € A% so U.(M) = \z.¥.(N) € A°.
e Let M = PQ.
— If P = Ax.N such that x # ¢ then V. (M) = (Az.V.(N))V.(Q). By IH,
U.(N),¥.(Q) € A%, so U.(M) € A°.
— Else U(M) = cU,(P)¥.(Q). By IH, U,(P), ¥,(Q) € A%, so U.(M) € AP
U
Proof of Lemma 4.53.4.
1 By induction on the structure of M.
e Let M € Var,. Either M = z, then M[z := N]=N € AY. Or, M # =z
and so M[z := N] = M € A".
e Let M = \y.P such that y € Var, and P € A?. By IH, P[z := N] € AY.
Then, M|z := N] = \y.P[z := N] € AY such that y & fv(N) U {z}.
o Let M = (\y.P)Q such that y € Var, and P, Q € A®. By IH, Pz :=
NJ], Q[z := N] € AY. Then, M[z := N] = (A\y.P[z := N])Q[z := N] €
AP such that y & fv(N) U {z}.
e Let M = cPQ such that P, Q € A°. By IH, Plz := N|, Qz := N] € A’.
Then, M[z := N] = cP[z := N]Q[z := N] € A?.

2 We prove the lemma by induction on the length of the derivation M —7% N.

e let M = N then it is done.
e Let M —5 M' —3 N. By IH, M’ € AJ. We prove that N € AJ by
induction on the structure of M’.
— Let M’ € Var, then it is done because M’ does not reduce.
— Let M’ = \z.P such that = € Var. and P € A?, so by compatibility
N = A\x.P’ such that P —3 P'. By IH, P’ € A so N € A”.
— Let M’ = (Az.P)Q such that z € Var. and P,Q € A?. By compati-
bility:
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* Either N = (Az.P")Q such that P —5 P'. By IH, P’ € A? so
N e A8

* Or N = (\z.P)Q’ such that Q —5 @'. By IH, Q" € A? so
N e A8

* Or N = Plz := @], so by Lemma 4.3.4.1, N € A?

— Let M’ = c¢PQ such that P,Q € A?. By compatibility:
* Either N = ¢P'Q such that P —43 P'. By IH, P’ € A’ so N € AP,
* Or N = cPQ' such that Q —3 @Q'. By IH, Q" € A? so N € AP,

3 We prove this lemma by induction on the structure of M.

e Let M € Var, then it is done because by Lemma 4.2.7.7, N = M and
U.(N)= M.

o Let M = Az.M’'. By Lemma 4.2.7.7, N = Az.N’ such that M" —} N'.
By IH, M’ —* W .(N’). Hence, M —* Az.W.(N') = N.

o Let M = (Az.M;)M,. By Lemma 4.2.7.7, N = (Az.N;)N, such that
M1 —>: Nl and M2 —>: NQ. By IH, Ml —>: \Ifc(Nl) and MQ\IIC(NQ), SO
M —* (Az. W (N7))W.(Ng) = W (N).

o Let M = cM; M,. By Lemma 4.2.7.7 and Lemma 4.2.7.4:

— Either N = N1N2 such that M1 —>z N1 and M2 H: NQ. By IH,
M, —! U.(N;) and My —% W.(Ny). If Ny is a A-abstraction then
M =% U (N)V(Ng) —¢ VU (Ny)U(Ny) = W (N) else M —3
W (N1)U.(Ny) = U (N).

— Or N = cN;N; such that M; —* Ny and My —) N;. We obtain a
contradiction because by IH, ¢ & fv(NV).

4 We prove this lemma by induction on the structure of M.

e Let M € Var, then it is done with N = M.

o Let M = Az.M'. By IH there exists N’ such that ¢ ¢ fv(N') and M" —
N'. So, M —* Ax.N' = N and ¢ & fv(N).

o Let M = (Az.M;)M,. By IH, there exists Ni, Ny such that ¢ & fv(N;) U
fV(Ng), Ml —>: Nl and M2 —>: Ng. SO, M —>: ()\ZEN:[)NQ = N and
c & fv(N).

o Let M = cM; M,. By IH, there exists Ny, Ny such that ¢ & fv(Ny)Ufv(Ny),
Ml —>: Nl and M2 —>: NQ. SO, M —>: CN1N2 —c N1N2 = N and
c & fv(N).
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Proof of Lemma 4.3.5.
1 By induction on the structure of M;.

e Let M; € Var, then it is done because M; does not reduce.

o Let M; = A\z.P; such that P; € Af and x € Var,, then by Lemma 4.2.7.7,
My = Az.P, such that Py —} P, and by compatibility Ny = A\z.Q),
such that Py —g (1. By IH, there exists ()2 such that P, —3 Q2 and
Q1 —) (2. So it is done with Ny = Az.Q)s.

o let M; = (Az.Py)Q, such that P;,Q, € A? and » € Var. then by
Lemma 4.2.7.7, My = (Az.P,)Qy such that Py —* P, and Q; —% Q.
By compatibility:

— Either Ny = (Az.P])@, such that P, —3 P/. By IH, there exist
Pj such that P, —3 Py and P/ —* Pj. So it is done with Ny =
(Az.P3)Qs.

— Or Ny = (Az.Py)Q) such that @y —4 Q). By IH, there exists @), such
that Q2 —p Q% and Q) —F Q5. So it is done with Ny = (Az.P2)Q}.

— Or Ny = Pz := (]. By Lemma 4.2.7.8, it is done with Ny =
Pz = Qs

e Let M; = cP; () such that Py, Q; € Af. By Lemmas 4.2.7.7 and 4.2.7.4:

— Either My = c¢P,(Q); such that P, —} P, and ()1 —} (2. By compat-
ibility:

« Either Ny = cP/@Q; such that Py —3 P/. By IH, there exists P,
such that P, —g Pj and P{ —} P,. So it is done with Ny =
cPyQs.

* Or Ny = c¢P1@Q)} such that ¢y —3 Q). By IH, there exists @ such
that Q2 —3 Q4 and Q] — Q5. So it is done with Ny = cP0),.

— Or My = P,()y such that Py —} P, and () —} (J2. By compatibility:

« BEither Ny = ¢P/ @ such that Py —3 P/. By IH, there exists P,
such that P, —5 Py and P; —} Pj. So it is done with Ny = P,Q)s.

* Or Ny = c¢P1Q)} such that ¢y —3 Q). By IH, there exists @ such
that Q2 —3 Q5 and Q] — Q5. So it is done with Ny = PQ5,.

2 By induction on the length of the reduction M; —7 N; using Lemma 4.3.5.1.
O

Proof of Lemma 4.3.6.

=) Let M —} N. Let ¢ be a variable such that ¢ ¢ fv(M). By Lemma 4.1.2.3,
¢ € fv(N). We prove that M —7 N by induction on the size of the reduction
M —5 N.
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o [f M = N, then it is done since M —7] N.

o If M -3 M' —3 N. By Lemma 4.1.2.3, ¢ ¢ fv(M’). By IH, M —}] M".
We prove that M’ —; N by induction on the structure of M’.

— Let M’ € Var then it is done because M’ does not reduce.

— Let M’ = Ax.P such that x # ¢, then by compatibility N = A\z.P’
and P —5 P'. By IH, P —; P'. By definition, ¥ .(P) —} Q and
Q —; P So V. (\z.P) = Av. W (P) —% Ar.Q and A\v.Q —; Av. P’ =
N. Hence, M" —1 N.

— Let M’ = PQ.

(a) If P = Az.P; such that x # ¢ then by compatibility:

« Either N = (Az.P,)@ such that P, —g P». By IH, P, — P».
By definition, W.(P) —j P/ and P| — P. So, U.(M') =
(A2 W () (Q) —; (A\z.P))¥.(Q) and by Lemma 4.2.7.1,
(Ax.P))¥.(Q) —% (Ax.P,)QQ = N. Hence, M’ —; N.

* Or N = (Az.P;)@Q; such that Q —3 @;. By IH, Q@ —; Q.
By definition, V.(Q) —} Q2 and Q2 —} Q1. So, ¥.(M') =
(A2 W ()W (Q) —% (AW (P1))Q2 and by Lemma 4.2.7.1,
A V.(P))Q2 —% (A\x.P)Q1 = N. Hence, M’ —; N.

* Or N = Pz == Q]. So, V. (M) = Az V. (P))V(Q) —p
V. (P)[z:= V. (Q)] and by Lemma 4.2.7.1 and Lemma 4.2.7.8
V. (P)[z = V.(Q)] =% Pz := Q]. Hence, M’ —1 N.

(b) Else, by compatibility:

« Either N = P'Q such that P —3 P'. By IH, P —; P
By definition, W.(P) —% P and P, —; P'. So, U .(M') =
eV (P)V(Q) — cP V. (Q) and by Lemma 4.2.7.1 ¢cP,V.(Q) —7
cP'QQ —.P'Q=N.So M —1 N.

* Or N = PQ’ such that Q —3 Q. By IH, Q@ —1 Q'. By
definition, ¥.(Q) —% Q1 and @, —% Q. So, V. (M') =
eV (P)V(Q) —} ¥ (P)Q: and by Lemma 4.2.7.1 cW¥ . (P)Q; —
cPQ —.PQ =N. So M —; N.

<) Let M —7 N. We prove that M —7 N by induction on the size of the

derivation M —] N.

e Let M = N, then it is done since M —j N.

o Let M -7 M" —; N. By IH, M —% M’'. Because M’ —; N then
by definition there exists P such that W.(M’) —} P and P —} N and
c g fv(M')Ufv(N). By Lemma 4.3.3, ¥ .(M') € A?. By Lemma 4.2.7.1,
V. (M'") —% M'. By Lemma 4.3.5.2, there exists @) such that P —* @) and
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' —% Q. By Lemma 4.1.2.3, ¢ ¢ fv(Q). By Lemma 4.3.4.2, P € A8, By
Lemma 4.2.7.10, @ —7 N. By Lemma 4.2.7.9, Q = N. Hence M’ —% N.

O

Proof of Lemma 4.53.7.

1 By definition, there exist Pp, P such that W (M) —% P, V(M) —5 P,
Py —% My, Py, =% My and ¢ & fv(M) U fv(M;) U fv(M;). By Lemma 4.3.3,
(M) € A, So by Corollary 4.3.2, there exists P3 such that P, —% Ps
and P, —j P3. By Lemma 4.3.4.2, P, P, P53 € AP, By Lemma 4.3.4.4,
there exists Mj such that P; —! Mj and ¢ ¢ fv(M3). By Lemma 4.3.4.3,
P —! V. (M) and P, —! V.(M,). By Lemma 4.3.5.2, there exist Q1, Q2
such that P3 —* Qq, P3s — Qq, V.(M) —% Q1 and U.(Ms) —% Q2. By
Lemma 4.2.7.10, Q); —} Ms and Q3 —} Ms. So M; —; Mz and My — Ms.

2 By Lemma 4.3.7.1 U

A.1.4 A simple Church-Rosser proof for fn-reduction (Sec. 4.4)
Proof of Lemma 4.4.1. We prove the result by induction on the structure of M:
o Let M =2 € Var. and M € s then z[z := M] =M € s.

o Let M = A\x.N. Let fv(N)\ {c,z} = {x1,...,x,} and M;,..., M, € s. Let
r & fv(M;)U---Ufv(M,). Because s € VAR then z € s. By IH, Nz, :=
M, ... ,x, = M,] € s. Because s € ABS then (Az.N)[xy := My,...,z, =
M,] € s.

o Let M = cPQ. Let fv(P)\ {c} = {&1,...,2n,2],..., 27, }, V(Q) \ {c} =

{1, o, a b {2,z b0 e, a) = 9 and
My, M, M, ... M, M, . M €s BylH Pl = M, . . 1z, =
My, 2y = My, ...,z = M ], Qxy := My, ... ,x,:= My, 2{:=M{,... x5 =
M) ] € s. Because s € VAR then (cPQ)[z; = Ml,..., Ty = My, x| =
Mi, ... ¢, =M o =M ... x =DM ]e

o Let M = (A\z.P)Q. Let fv(P)\{c,z} = {z1,...,2n, 2}, ..., 25, }, fv(Q)\{c} =
{1, n, 2], 2} and My, ..., M, Mj, ... M,Ql,M{’,...,M;{2 € s and
{2, o 0 {al,.. .2 n2} =@. Let z & fv(M;) U ---Ufv(M,) U fv(M]) U
UM )UfvM)U---Ufv(M)). By IH, Q' = Qzy := My,... 2, :=
My, 2y = Mi,... 2, = M)  xf = M/, ... x, = M)] € s By IH,
Pley := My,...,2y == My, 2} = My, ... 2, = M, 2{ := M{,... z; =
M) v = Q] € s. Because s € SAT, ((Az.P)Q)[x1 = M,...,x, =
My, 2 =My, ... ¢, =M o =M . .  a =DM ]ec
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o Let M = cP. Let fv(P)\ {c} = {x1,...,2,} and My,..., M, € s. By
IH, Plz; := My,...,x, := M,] € s. Because s € VAR then ¢(P[x; :=
My, ... ,x, = M,]) = (cP)[xy := My, ...,z, = M,| € s. O

Proof of Lemma 4.4.4.
1 By induction on the structure of M.

e Let M € Var.. If M =z then M|z := N] = N € A", Else M[z := N| =
M € AP,

e Let M = \y.P such that y € Var, and P € A", Let y & f'v(N) U {z}.
By IH, Plz := N] € AP, Then, M[z := N] = \y.P[z := N] € A’".

e Let M = (\y.P)Q such that y € Var, and P, Q € A?". By IH, Pz :=
N], Q[z := N] € A%". Then, M|z := N] = (A\y.P[z := N])Q[z := N] €
AP such that y & fv(N) U {z}.

o Let M = cPQ such that P, Q € A?". By IH, Pz := N],Q[r := N] €
AP". Then, M[z := N] = cPlz := N]Q[z := N] € A"

e Let M = cP such that P € A%, By IH, Pz := N] € A", Then,
M|z := N] = c¢(P[z := N]) € AP,

2 We prove the lemma by induction on the length of the derivation M —7, N.

e Let M = N then it is done.
o Let M —3, M’ —z, N. By IH, M" € A". We prove that N € A" by

induction on the structure of M’.

— Let M’ € Var, then it is done because M’ does not reduce.
— Let M’ = A\x.P such that x € Var. and P € A?". By compatibility:
* Either N = Az.P’ such that P —4, P'. By IH, P’ € AP so
N € Afn,
* Or P = Nz such that z & fv(N). Because P € A%", by case on
P, either N = ¢N' such that N’ € A97 so N = ¢cN’ € A97. Or

c

N = M\y.N’ such that y € Var, and N’ € AP, so N = \y.N' €

c )

AP,
— Let M’ = (A\z.P)Q such that x € Var. and P,Q € A?". By compati-
bility:
+ Either N = (Az.P")Q such that P —4, P'. By IH, P’ € A% so
N e Afn,

* Or N = P'QQ and P = P’z such that x ¢ fv(P’). Because
P € AP either P' = c¢P” such that P” € A?" and so we obtain
N = c¢P’Q € AP". Or P’ = \y.P” such that P" € A" and
y € Var,, and so we obtain N = (\y.P")Q € AP,
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x* Or N = (Az.P)Q' such that Q —4, Q. By IH, @’ € A?" so
N € Afn,
x* Or N = P[z := Q). So, by Lemma 4.4.4.1, N € A7".
— Let M' = c¢PQ such that P,Q € AP". By compatibility:
* Either N = cP'Q such that P —g, P'. By IH, P’ € A% so
N € Afn,
x Or N = cPQ)' such that Q —4, Q". By IH, Q" € A% so N € A&,
— Let M’ = cP such that P € A?", so by compatibility N = ¢P’ such
that P —g, P'. By IH, P’ € AP so N € AP,

3 We prove this lemma by induction on the structure of M.

e Let M € Var, then it is done because by Lemma 4.2.7.7, N = M and
U.(N)=M.

o Let M = Az.M’'. By Lemma 4.2.7.7, N = Az.N’ such that M" —} N'.
By IH, M" —* W.(N’). Hence, M —! Az. W .(N’) = N.

o Let M = (Az.M;)M,. By Lemma 4.2.7.7, N = (Az.N;)N; such that
M1 —>: Nl and M2 —>: NQ. By IH, Ml —>: \Ifc(Nl) and MQ\DC(NQ), SO
M —* (Az. W (N7))W(Ng) = W (N).

o Let M = cM; M,. By Lemma 4.2.7.7 and Lemma 4.2.7.4:

— Either N = N; N, such that M; — Ny and My —} N,. By IH,
My —* U.(N;) and My —% W.(Ny). If Ny is a A-abstraction then
M =% U (N)U(Ny) —e U (N)P(Ny) = U (N) else M —%
WU (N1)W,(Ny) = W (N).

— Or N = cN;N; such that My —* Ny and My —% N,. We obtain a
contradiction because by IH, ¢ & fv(NV).

e Let M =cM’'. By Lemma 4.2.7.7:

— Either M’ —* N. By IH, M’ —* U.(N), so M —. M' =% U (N).

— Or N =cN’" and M" —} N’. We obtain a contradiction because by
IH, ¢ & fv(N).

4 We prove this lemma by induction on the structure of M.

e Let M € Var, then it is done with N = M.

o Let M = Az.M'. By IH there exists N’ such that ¢ ¢ fv(N') and M" —
N'. So, M —=* Az.N" = N and ¢ & fv(N).

o Let M = (Az.M;)M,. By IH, there exists Ny, Ny such that ¢ & fv(N;) U
fV(NQ), M1 —>z N1 and M2 —>z NQ. SO, M H: ()\.TNl)NQ = N and
c & fv(N).
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e Let M = cM; M,. By IH, there exists Ny, N such that ¢ & fv(N7)Ufv(Ny),
M1 —>Z N1 and M2 —>: NQ. SO, M —>Z CN1N2 —c N1N2 = N and
c & fv(N).

e Let M = cM’'. By IH, there exists N such that ¢ ¢ fv(N) and M’ —* N.
So, M —. M" —* N.

Proof of Lemma 4.4.5.
1 We prove this lemma by induction on the structure of Mj.

e Let M; € Var,, then it is done because M; does not reduce.

e Let M; = Ax.P; such that z € Var, and P; € Af". By Lemma 4.2.7.7,
My = A\z.Ps such that P, —} P,. By compatibility:

— Either Ny = Az.P] such that P, —g, P|. By IH, there exits P; such
that P, —g, Py and P} —} P,. So it is done with Ny = Az.Pj.
— Or P, = Nyz such that 2 ¢ fv(N;). Because P, € A?" then by
case on P, N; € Af" By Lemmas 4.2.7.7 and 4.2.7.4, P, = Niz and
Ny —% Ni. By Lemma 4.2.7.2, z & fv(N]). So My = Az.Njz —,
NI = N,.
o Let M; = (Az.P;) @, such that x € Var, and Py, Q; € AP". Therefore, by

Lemma 4.2.7.7, My = (Az.P2)Q2 such that Py —! P, and @) —} ()2. By
compatibility:

— Either, Ny = Pi[z := (1]. We have, My —3 Pz := Q] = Ny and
by Lemma 4.2.7.8, Ny —% Nj.

— Or, Ny = (Az.P]) @, such that P, —p, P|. By IH, there exists P,
such that P, —g, P and P| —! Pj. So, My = (Az.P2)Q2 —p,
(\2.P})Qs = Ny and Ny —* Ny,

— Or P; = Ryz such that z & fv(R;) and N; = Ry @;. Because P; €
AP7 then by case on P, Ry € A?7. By Lemmas 4.2.7.7 and 4.2.7.4,
P, = Rz and Ry —} R|. By Lemma 4.2.7.2, z & fv(R]). So
My = (\2.R,2)Qs —y R\ Qs = Ny and Ny = Ry Q) —* No.

— Or, Ny = (Az.P)@Q) such that @ —g, Q. By IH, there exist Q%
such that @y —gs, Q) and Q) = Q5. So, My = (A\z.P)Q2 —py
(Az.Py)Q4 = Ny and Ny —* Nj.

e Let My = cP; (), such that Py, Q) € Af". By compatibility:

— Either Ny = c¢P/@ such that Py —p, P/. By Lemmas 4.2.7.7
and 4.2.7.4:
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* Either My = P,()2 such Py —) P, and ()1 —) Q2. By IH, there
exists P, such that P{ —} P; and P, —g3, P5. So it is done with
Na = P3Qs.

* Or My = cPa@)y such that Py —! P, and @ —} Q2. By IH,
there exists Py such that P/ —} Pj and P, —g, P5. So it is done
with Ny = cPyQs.

— Or Ny = cPQ) such that @; —p, Q). By Lemma 4.2.7.7 and
Lemma 4.2.7.4:

* Either My = Py such Py —7 P and @y —) Q2. By IH, there
exists @5 such that Q] —! Q5 and Q)2 —g3, Q5. So it is done
with Ny = PQ5,.

* Or My = cPa@)y such that P, —! P, and @; —} Q2. By IH,
there exists @5 such that Q) —} Q5 and Q2 —p3, Q5. So it is
done with Ny = cPQ),.

e Let My = c¢P; such that P; € Af". Then by compatibility Ny = cP, such
that Py —g, P/. By Lemma 4.2.7.7:

— Either My = P, and P; —} P,. By IH, there exists Pj such that
Py —g, Pj and P; —} Pj. So it is done with Ny = Pj.

— Or My = ¢P, and P, —% P,. By IH, there exists Pj such that
Py —p, Pj and P/ —* P;. So it is done with N, = cP;.

2 Easy by Lemma 4.4.5.1. O

Proof of Lemma 4.4.6.

=) Let M —% N. Let ¢ be a variable such that ¢ ¢ fv(M). By Lemma 4.1.2.3,
¢ € fv(N). We prove that M —3 N by induction on the size of the reduction
M —5, N.

Vv If M = N, then it is done since M —3 N.
v If M —5 M —p, N. By Lemma 4.1.2.3, ¢ & fv(M'). By IH, M —; M".
We prove that M’ —4 N by induction on the structure of M’.
e Let M’ € Var. It is done because M’ does not reduce.
e Let M’ = A\x.P such that = # c¢. By compatibility:
— Either N = Az.P’ such that P —g3, P'. By IH, P —, P'. By
definition there exists @ such that W.(P) —3, @ and Q —;
P’ Then W (M') = A\z. W .(P) —j, Av.Q and A\r.QQ —; Ar.P'.
Hence, M' —5 N.
— Or P = Nz such that = ¢ fv(N). By Lemma 4.2.7.3, = ¢
fv(T.(N)).
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« If N is a A-abstraction then we have ¥.(M') = \z. ¥ .(P) =
AV (N)x —, V. (N), and by Lemma 4.2.7.1, ¥ .(N) —% N.
Hence, M’ —, N.

* Else, W (M') = AV (P) = Az.c¥.(N)x —, c¥.(N) and by
Lemma 4.2.7.1, ¢¥.(N) —. ¥.(N) —% N. Hence, M’ —5 N.

o Let M' = PQ.
— If P = A\z.Py, such that  # ¢ then M’ = (Ax.P;)Q and by
compatibility:

« Either N = (Ax.P»)Q and P, —g, P». By IH, P, —3 P5. By
definition there exists P such that W.(P,) —p, Pf and P| —

Py, So, W(M) = (W P)WA(Q) —5, (AeP{)U,(Q) and
by Lemma 4.2.7.1, (Az.P{)V.(Q) =} (Az.P»)Q = N. Hence,
M’ —5 N.

x Or, N = PyQ and P, = Pyx such that =z ¢ fv(F). By
Lemma 4.2.7.3, © & fv(V.(F)). If By is a A-abstraction then
V(M) = (Az.We(Ro)z)We(Q) —y We(F)Ve(Q) = We(N).
Else, U .(M') = (Az.c¥.(P)x)V.(Q) —y eV (Po)V.(Q) =
U.(N). In both cases by Lemma 4.2.7.1, ¥.(N) —* N, and
so, M" —4 N.

* Or N = (Az.P)Q such that @ —g, Q1. By IH, Q —2 Q. By
definition there exists Q2 such that V.(Q) —j, @2 and Q3 —7
Q1. So, U (M') = (Az. W (P1))V.(Q) —F, (Ax. V. (F))Q2 and
by Lemma 4.2.7.1, (Az.V.(P1))Q2 — (Ax.P1)Q1 = N. Hence,
M’ —4 N.

* Or N = Pz == Q]. So, V. (M) = Az V. (P))V(Q) —p
V. (P)[z:= V. (Q)] and by Lemma 4.2.7.1 and Lemma 4.2.7.8,
V. (P)[z = V.(Q)] = Pz := Q]. Hence, M’ —1 N.

— Else,

« Either N = P'Q) such that P —g, P'. By IH, P —, P
By definition, there exists P; such that W.(P) —%, 1 and
Py —: P'. So, U (M') = ¢, (P)T,(Q) —%, cP¥.(Q) and by
Lemma 4.2.7.1, cP V. (Q) =% ¢cP'QQ —. N. So M" —5 N.

* Or N = PQ@Q' such that Q —g, . By IH, Q —2 @'. By
definition, there exists @1 such that ¥.(Q) —7, Q1 and Q1 —
Q'. Therefore, U .(M') = ¢V (P)¥.(Q) —} c¥.(P)Q, and by
Lemma 4.2.7.1, ¢V .(P)Q1 —% cPQ" —. N. So M’ —5 N.

<) Let M —3 N. We prove that M —7% N by induction on the size of the

derivation M —% N.
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e Let M = N, then it is done because M —j, N.

e Let M —5 M' —y N. By IH, M —j M’'. Because M' —, N then
by definition there exists P such that W.(M') —3, P and P —; N and
c g fv(M')Ufv(N). By Lemma 4.4.3, ¥ . (M') € AP". By Lemma 4.2.7.1,
U.(M') —% M'. By Lemma 4.4.5.2, there exists ) such that P —% Q
and M' —7% Q. By Lemma 4.1.2.3, ¢ ¢ fv(Q)). By Lemma 4.4.4.2,
P € AP". By Lemma 4.2.7.10, Q —* N. By Lemma 4.2.7.9, Q = N.
Hence M" —7 N.

Proof of Lemma 4.4.7.

1 By definition, there exist P;, P, such that W.(M) —5, P U.(M) —75, P2
P, —% My, Py, =% My and ¢ & fv(M) U fv(M;) U fv(M;). By Lemma 4.4.3,
U.(M) € AJ". So by Corollary 4.4.2, there exists P3 such that P, —%, Ps
and P, —j, P3. By Lemma 4.4.4.2, P, P, P; € AP By Lemma 4.4.4.4,
there exists Mj such that P; —! Mj and ¢ ¢ fv(M3). By Lemma 4.4.4.3,
P —* U (M) and P, —! V.(M;). By Lemma 4.4.5.2, there exist (1, Q2
such that Py —% Q1, Ps =% Qq, V.(M) —%, Q1 and V(M) —%, Q2. By
Lemma 4.2.7.10, Q); —} M;s and Q3 —} Ms. So M; —9 Mz and My —o Ms.

2 Easy by Lemma 4.4.7.1. U

A.2 Comparisons and conclusions (Sec. 5)

Proof of Lemma 5.3.2. 2 Let M =3 N. We prove that M —; N by induction
on the size of the derivation of M =3 N and then by case on the last rule of

the derivation.

o Let M =43 M = N then it is done because by Lemma 4.2.7.1, V(M) —*
M.

o Let M = Ax.P =43 A\x.P’ = N such that P =43 P’'. Let © # ¢. Then
c g fv(P)Ufv(P'). By IH, P —; P’. By definition, there exists ) where
U (P) =5 Q —i P So U (M) = A\z.W (P) =} \v.Q —; A\v.P' = N.
Hence M —; N.

o Let M = PQ =3 P'Q)) = N such that P =43 P’ and ) =3 @Q'. Then
c & fv(P)Ufv(P) Ufv(Q)Ufv(Q). By IH, P —; P and Q —; Q'
By definition, where P” and Q" such that W.(P) —j P" —; P’ and
V() =5 Q" —: Q"
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— If P is a A-abstraction then W (M) = V. (P)V.(Q) —} P'Q" —
P'Q) = N. So M —; N.
— Else V(M) = cW.(P)¥.(Q) —F cP"Q" —; P'Q' = N. So M —; N.

o Let M = (\x.P)Q =3 P'|[v := Q'] = Nsuchthat P =3 P and Q =53 Q.
Let « # ¢. Then ¢ ¢ fv(P)Ufv(Q). By Lemma 5.3.2.1, ¢ & fv(P")Ufv(Q’).
By IH, P —; P’ and Q —; QQ". By definition, there exist P” and Q" such
that W(P) —% P’ —* P' and U.(Q) —% Q" —* Q. So (M) =
(AW (P))¥(Q) =% (Av.P")Q" —5 P"[z := Q"] and by Lemma 4.2.7.8
P'lz:=Q"] = Plz:=Q]=N. So M — N.

3. Let M =3, N. We prove that M —, N by induction on the size of the
derivation of M =3, N and then by case on the last rule of the derivation.

o Let M =3, M = N then it is done because by Lemma 4.2.7.1, ¥ (M) —
M.

o Let M = A\x.P =3, Ax.P' = N such that P =3, P'. Let © # c. Then
c & fv(P)Ufv(P'). By IH, P —, P'. By definition, there exists @ such
that W.(P) —%, @ and Q —7% P'. So W.(M) = Az. W .(P) —j, A\z.QQ and
Ae.QQ —F Ax.P'=N. So M —, N.

o Let M = PQ =3, P'Q" = N such that P =4, P’ and Q) =4, Q. Then
c & fv(P)Ufv(P)Ufv(Q)Ufv(Q'). By IH, P —5 P’ and Q —, @'. By
definition, there exist P” and @" such that W .(P) —j, P", ¥.(Q) —},
C?//7 P// H: P/ and Q// H: Q/'

— If P is a A-abstraction then W.(M) = ¥ (P)¥.(Q) —F, P'Q" and
P'Q" —% P'Q = N. So M —, N.

— Else V(M) = c¥.(P)V.(Q) —F, cP"Q" and cP"Q" —. P'Q" —
P'Q) = N. So M — N.

o Let M = (A\x.P)Q =p, P'lx := Q] = N such that P =3, P’ and
Q =p, Q. Let © # c¢. Then ¢ ¢ fv(P) U fv(Q). By Lemma 5.3.2.1,
c g fv(PYUfv(Q'). By IH, P —5 P’ and ) —2 @'. By definition, there
exist P” and Q" such that W.(P) —3 P", V.(Q) —p, Q", P" - P
and Q" 1 Q. S0 W(M) = (W (P)VL(Q) 4 (P )@ —5
P"[z := Q"] and by Lemma 4.2.7.8 P"[x := Q"] = P'lv :== Q'] = N. So
M —49 N.

o Let M = Az.Pr =3, N such that P =4, N and = ¢ fv(P). Then
c € fv(P). Let © # ¢. By IH, P —5 N. By definition, there exists ) such
that U.(P) —3, Q and Q —; N. By Lemma 4.2.7.3, x & fv(V.(P)).

— If P is a A-abstraction then W.(M) = A\z.W.(P)z —, ¥ .(P) —}, Q
and Q —! N. So M —, N.
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— Else U (M) = Az.c¥(P)x —, V. (P) =5, cQ and cQ —. Q —% N.

SOM—>2N.
U
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Appendix B

Proofs of Part 11

B.1 The MY and AN calculi and associated type
systems (Ch. 7)

B.1.1 The syntax of the indexed A-calculi (Sec. 7.1)

Proof of Lemma 7.1.2. We want to prove that on Ly, < is reflexive, transitive, and
antisymmetric. Let us prove that < is reflexive w.r.t. Ly. Let L € Ly. By definition
L < L because L = L :: ©». Let us prove that < is transitive. Let L; < Lo
and Ly =< L3. By definition there exist L, and Ls such that L, = L; :: Ly and
L3 = Ly :: Ly. Therefore Ly = (Ly :: Ly) 2 Ls = Ly = (Ly == Ly) (it is also easy to
check that < is associative). Let us prove that < is antisymmetric. Assume L; < Ly
and Ly = Ly. By definition there exist Ls and L4 such that L, = L; :: L3 and
Ly = Ly :: Ly. Therefore Ly = Ly :: Ly :: Ly. Which means that Ls = L, = ©. O

Proof of Lemma 7.1.6. =) By definition. <=) Each of 1. and 2. is by cases on the
derivation A\z™.M € M respectively M; M, € M. O

Lemma B.1.1. Leti € {1,2,3}.

1. On M;, © is reflexive and symmetric but not transitive.

2. (a) Let M, (NlNQ) € Mz We have M ¢ {Nl,NQ} ZﬁMO (NlNQ)
(b) Let M, x'.N € M; such that ¥I'. " & fv(M). We have M o N iff
M o (A\z'.N).
(¢) Let M, N[(z} := N;),] € M; and M = {NYU{N; |i € {1,...,p}} C M,.
If M o M then M o N[(z] := N;),).

3. Let My[(z]' := N;),], Mo[(zf := Ny),] € M and M = {M;, My} U{N; | i €
{1,...,p}}. If oM then My[(z] := N;)p] o Mao[(] := N;),).
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4. Let M € M; and {I,,...,L,} = {I | ' occurs in M}. If i € {1,2} then
deg(M) =min(ly,...,1,). Ifi =3 then Vi € {1,...,n}. deg(M) =< .

5. Let M = {M}U{N;|1<i<p}CM,; We have:

(a) (6M andVj € {1,...,p}. deg(N;) = I;) iff M[(x}* := N;),] € M,.
(b) If oM and ¥j € {1,...,p}. deg(N;) = I;, then deg(M[(z} := N;),]) =
deg(M).

6. Let M,N,P € M;. If o{M,N,P}, deg(N) = I, deg(P) = J and 2! ¢
fv(P)U{y’} then M[z' := N[y’ := P] = M[y’ := P|[2" := N[y’ := P]].

7. Let M,N,P € M;. If M o P and fv(M) = fv(N) then N o P.

8. Leti € {1,2} and M,N € M; where deg(N) =n and x™ € fv(M). We have:
Mz .= N] € M iff M, N € M and M o N. O

Proof of Lemma B.1.1.

1. For reflexivity, we show by induction on M € M, that if 2/, 2/ € fv(M) then
I = J. Symmetry is by definition of ¢. For failure of transitivity take z!, 2

and 2?2 for the case i € {1,2} and 22, y™» and 2V for the case i = 3.

2. 2a. Let M, (N;Ny) € M;. Let M o {Ny, No}. Assume z* € fv(M) and 22 €
fv(N1Ny). Then z2 € fv(Ny) or 2”2 € fv(N,). In either case, by hypothesis
and definition of o, Iy = I,. Therefore M ¢ N1 Ny. Let M ¢ N1 N,. Assume
it € fv(M) and 22 € fv(N;). Then by definition of o, [} = L. Assume
x' € fv(M) and 2 € fv(N,) then by definition of o, [} = L. Therefore
M o {Ny, Ny}

2b. Let M, \v!.N € M, such that ¥I'. 2" & fv(M). Let M o N. Assume
y € fv(M) and y € fv(Az’.N). Then y® € fv(N) \ {2/} C fv(N). By
definition of o, I; = L. Therefore M o \z!.N. Let M ¢ A\z!.N. Assume
yh € fv(M) and % € fv(N). Because VI'. 2!’ & fv(M) and y" € fv(M) then
x # y. Therefore y2 € fv(Az!.N). By hypothesis and definition of ¢, I} = L.
Therefore M o N.

2¢c. Let M, N[(zl" := N;),] € My, M = {N}YU{N; | i € {1,...,p}} C M,,
and M o M. Assume y" € fv(M) and y® € fv(N[(z := N;),]). Therefore
y2 € fv(N) or y2 € fv(NN;) for ai € {1,...,p}. In either case, by hypothesis

and definition of ¢, I} = I,. Therefore M ¢ N[(:EZIZ = Ni),l-

3. By 2c, My o My[(2) := N;),) and N o My[(xf := N;),] V1 < j < p, and, by 2c
again and by 1, Mi[(z] := N;),] o My[(z) := Ny),).

4. By induction on M.
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5. Direction <=) of 5a. is by definition of substitution because substitution is only

defined on such conditions.

We prove direction =) of ba. and 5b. by induction on M. Let i € {1,2}.

— Let M = y'. If there exists j € {1,...,p} such that y/ = 2% then
M(z] == Ni)y] = N; € M;. Also deg(M[(z] := N,),]) = deg(N;) =

I; = I = deg(M). If there is no j € {1,...,p} such that y’ = 2%/ then
M((z] := N;),] = M € M;. Also deg(M|[(z]' := N;),)]) = deg(M).

— Let M = \y’.M, such that y’ € fv(M;) and VI'. ¥j € {1,...,p}. y" &
fv(N;)U{z}}. By 2b., o{ M} U{N; | j € {1,....p}}. By IH, M;[(z} :=
N;),) € My and deg(M,[(2]" := N;),]) = deg(M,). Therefore, M[(z] :=
Ny),) = Ayl My[(zF = N;),] € My because y! € fv(M;[(zf = N;),)).
Also, deg(M[(x]" := N;),]) = deg(Mi[(z}" := N;),]) = deg(M;) = deg(M).

— Let M = M;M; such that M; o My. By 2a., o{M;, My} U{N; | j €
{1,...,p}}. Let P, = My[(2}" := N;),] and P, = M,[(x}" := N;),,]. By IH,
P, € My, Py € My, deg(Py) = deg(M;), and deg(P,) = deg(Ms). By 3.,
P, o P,. Therefore, M[(xfz = N;),] = PiP» € Ms. Finally, one obtains
deg(M[(z] := N;),]) = min(Py, P) = min(deg(M,), deg(M,)) = deg(M).

The proof for ¢ = 3 is similar
6. By induction on M using 2c. and ba.
7. If 2! € fv(N) = fv(M) and 27 € fv(P) then since Mo P, [ = J.
8. By induction on M.

— By definition of substitution, 2"[z" := N| € M iff 2", N € M and 2" o N.

— Let M = A\y™. .M’ such that Ym'. y™ ¢ fv(N)U{z"}. Then (\y™.M')[z" :=
N] € M = \y™. M'[z" == N|] € M and y™ € fv(M’') \ fv(IN) (since
Ay M € M) = LemmaTl6 ppiign .— N € M, y™ € fv(M'[z" := N])
and y™ € fu(M') \ fv(N) & P A/ N € M, M’ o N, y™ € fu(M'[z" :=
N]) and y™ € fv(M') \ fv(N) & by 2band Lemma .16 Agm N7 N € M and
Ay™ M o N.

— Let M = M;M,. Note that M; ¢ M,. Then (M;Ms)[z" := N] € M &
M[z" .= N|Ms[z™ := N] € M and o{M;, My, N} (because (M; My)[z"™ :=
N] € M;) & Py sbandLemma 7.L6 \p [gn . — N M[a" := N] € M, M;[z" :=
N] o My[z™ := NJ, o{My, My, N} and deg(M;) = deg(M;[z" := N]) <
deg(My[z™ := N]) = deg(Ms) & » ™ My My, N € M, o{M;, My, N} and
deg(M;) < deg(My) < Py 2aand Lemma 716 Ay Af, N € M and (M Ms)oN.

O
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Proof of Theorem 7.1.11. We only prove 2. Let M € M,. First we prove that if
M —5 N then fv(M) = fv(N), deg(M) = deg(N), and M € M iff N € M. We prove
this result by induction on the derivation M —3 N and the by case on the last rule
of the derivation. We only prove the case M = (Ax™.M;)My and N = M;[n := M,
such that Ym. 2™ € fv(M,) and deg(M;) = n (derivation of M —45 N is of length
1). Because M € M, then z™ € fv(M;) and (Az™.M;) o Ms. One obtains that
fv(M) = (fv(M;y) \ {z"}) U fv(My) = fv(IV) because z" € fv(M;). Also deg(M) =
min(deg(Az". M), deg(Ms)) = min(deg(M;),n). By Lemma B.1.1.4, because z" €
fv(M;) and deg(2™) = n then deg(M;) < n = deg(M;). By Lemma B.1.1.2b, M; ¢
M,. Therefore deg(M) = deg(M;) and by Lemma B.1.1.5b, deg(N) = deg(M;) =
deg(M). Let us now prove that M € M < N € M. This result is easily obtained
using Lemma B.1.1.8. U

Lemma B.1.2. Leti € {1,2,3}, = {—, ="}, r € {8,060, h},p>0and M, N, P,Ny,...,N, ¢
M,;.

1. If M . N, P—,Q, and M o P then N ¢ Q.
2. IfM -, N, Mo P, and deg(P) = I then M[z' := P| =, N[z' := P].
8. If N+, P, Mo N, and deg(N) = I then M[z' := N| - M[z' := P].

4. If M —* N, P—*P', Mo P, and deg(P) = I then M[x! := P] —* N[z :=
P, O
Proof of Lemma B.1.2.

1. The result is obtained because by Lemma 7.1.11, fv(N) C fv(M) and fv(Q) C
fv(P).

2. Note that, by Lemma 1, N ¢ P. Case —, is by induction on M using Lem-
mas B.1.1.5b and B.1.1.6. Case — is by induction on the length of M —} N

using the result for case —,.

3. Note that, by Lemma 1, M ¢ P and by Lemma 7.1.11, deg(P) = deg(N) = I.
Case —, is by induction on M. Case — is by induction on the length of

M —* N using the result for case —,.

4. Use 2. and 3. U

The next lemma shows that the lifting of a term to higher or lower degrees, is
a well behaved operation with respect to all that matters (free variables, reduction,

joinability, substitution, etc.).

Lemma B.1.3. Let p > 0, i € {1,2} and M, N, Ny, Ny,...,N, € M,.
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1. (a) deg(M™*) =deg(M)+1, (M) = M and 2" € fv(M™) iff 2" € fv(M).

(b) If deg(M) > 0 then M~ € M,;, deg(M~) = deg(M) — 1, (M) =M
and (z" € fv(M™) & 2" € fv(M)).

(¢c) Let M C M;. Then,
i. oM iff oM.
i. If deg(M) > 0 then oM iff oM.
iii. M € M* iff (M~ € M and deg(M) > 0).
(d) M € M iff Mt € MNM,.
(e) If deg(M) > 0 then M € M iff M~ € M.

2. Let M = {M}U{N; |ie€{l,...,p}} C M,. IfoM then (M[(z}" = N;),})* =
M*H|(a] = Nt ).

3. If deg(M),deg(N) > 0, and M o N then (M[z"™' := N|)~ = M~ [z" :=
N-]. O

Proof of Lemma B.1.5.

1. la. and 1b. are by induction on M. For 1(c)i. use la. For 1(c)ii. use 1b. As
to 1(c)iii., if M € M+ then M = P* where P € M and by la., deg(M) =
deg(P) +1 > 0and M~ = (P*)” = P. Hence, M~ € M and deg(M) > 0.
On the other hand, if M~ € M and deg(M) > 0 then by 1b., M = P*
and (M~)* = M € M*. 1d. is by induction on M using la., 1(c)i. and
Lemma 7.1.6. Finally, for le., by 1b. and 1d., M = (M~")T e M & M~ € M.

2. By induction on M (by 1(c)i. and Lemma B.1.1.5, we have M[(z]" := N;),] €
M; and M*[(x = N;¥),] € M,).

3. By induction on M (by 1(c)ii. and Lemma B.1.1.5, we have M[z"™! := N] €
M, and M~ [z" := N~| € M;).

]
Lemma B.1.4. Letr € {n, fn}, »€ {—, ="}, p>0,i€ {1,2} and M, N € M,.
I IfM —», N then M* —, N*.
2. Ifdeg(M) > 0 and M —», N then M~ -, N—.
3. If M -, NT then M~ —, N.

4. If M* —~, N then M —, N~. O
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Proof of Lemma B.1.4.

1. The case r € {n} and -=— is by induction on M —, N using Lemma B.1.5,
for case —g, use the results for —5 (Lemma B.1.5) and —»,, case — is by

induction on the length of M —} N using the result for case —,.
2. Similar to 1.
3. By Lemma 7.1.11.2, Lemma B.1.5 and 2 above, M~ — N.

4. Similar to 3. O

Lemma B.1.5. Let »€ {3, >y, =gy, —>n, =%, 0, =5, =4}, @ > 0, p > 0 and
M,N,Ny,...,N, € Ms. We have:

1. M€ M3 and deg(M™) =i :: deg(M) and x% occurs in M™ iff K =i :: L

and z* occurs in M.
2. Mo N iff MT™ o N,
3. Let M C Ms then oM iff OMH
4. (MTH)~" = M.

S.If o{MYyU{N; | 5 € {1,....p}} and Vj € {1,...,p}. deg(N;) = L; then
(M[(x}? = Ny = M¥ ()™ = N, .

6. If M — N then M+ — N*i,

7. If deg(M) =i :: L then:
(a) M = P** for some P € Mj, deg(M~%) = L and (M~")* = M.

(b) IfVj € {1,...,p}. deg(N;) =i :: K; ando{M} U{N; |je{1,....p}}
i:Kj -1 _ —1 J —i
then (M[(a™ = N, ) = Ml = N7,

(c) If M - N then M~ - N~°.
8. If M - N*i then there is P € Ms such that M = P** and P - N.
9. If M*" - N then there is P € Ms such that N = P™ and M — P. O

Proof of Lemma B.1.5.

1. We only prove the lemma by induction on M:

o If M = zF then M = z"F € M3 and deg(x™%) =i :: L =i :: deg(z?).
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o If M = \xl .M, then M; € M3, L = deg(M;) and M*" = \a®L M.
By IH, M, € M3 and deg(M;") = i :: deg(M;) and 2 occurs in M;"
iff K =i K’ and y% occurs in M;. So i = L = i :: deg(M;) =
deg(M;™"). Hence, A\x™*L. M € M3. Moreover, deg(M*?) = deg(M,")

i :: deg(M;) = i :: deg(M). If y® occurs in M™* then either y* = x
L

:L
Y

so it is done because z¥ occurs in M. Or y¥ occurs in M;"". By IH,
. ! . ! . .

K =i K’ and y® occurs in M;. So ¥ occurs in M. If y% occurs in

M then either y® = 2l and then y**¥ occurs in M. Or y¥ occurs in

M,. Then by TH, y*¥ occurs in M;™. So, y*¥ occurs in M.

o If M = M;M, then My, My € Ms, deg(M;) = deg(Ms), M; o My and
M* = M{"My". By IH, M{"", Ms" € Ms, deg(M;"") = i :: deg(M,),
deg(M;") =i :: deg(M>), y* occurs in M iff K =i :: K" and y*" occurs
in My, and y% occurs in M, iff K =i :: K’ and y®" occurs in M. Let
ot € fu(M) and 2% € fv(M") then, using IH, L =i :: L', K =i : K/,
%" occurs in M; and 2% occurs in M,. Using M; ¢ M, we obtain
L' = K',so L = K. Hence, M;""oM". Because deg(M,) < deg(M;) then
deg(M;") = i :: deg(M,) = i :: deg(M,) = deg(M;"). So, M € Ms.
Moreover, deg(M™1) = deg(M;"") = i :: deg(M;) = i :: deg(M). If «L
occurs in M** then either #* occurs in M;™ and using IH, L =i :: L' and

r r

z¥ occurs in My, so " occurs in M. Or z¥ occurs in My™* and using

! . .
L oceurs in M. If ¥ occurs in

i::L

. / .
IH, L =i :: L' and 2% occurs in M,, so x
M then either z* occurs in M; so by IH 2% occurs in M, hence x
occurs in M. Or z¥ occurs in My so by TH z%F occurs in M, hence

2L oceurs in M.

2. Assume M o N. Let 2% € f'v(M ™) and 2% € fv(N'?) then by Lemma B.1.5.1,
L=i:L K=i:K 2 cf(M)and 2% € fv(N). Using M o N we obtain
K'=L"and so K = L.

Assume Mo NTi. Let 2 € fv(M) and 2% € fv(N) then by Lemma B.1.5.1,
vl e fv(M*Y) and 2#K € fv(NT?). Using Mo Nt we obtaini : K =i :: L
and so K = L.

3. Let M C M.

Assume oM. Let M, N € M. Then by definition, M = Pt and N = Q**
such that P, € M. Because by hypothesis P ¢ @ then by Lemma B.1.5.2,
Mo N.

Assume oM . Let M N € M then M+, N+ € M. Because by hypothesis
M+ o Nt then by Lemma B.1.5.2, M ¢ N.

4. By Lemma B.1.5.1, M*" € M3 and deg(M ™) = i :: deg(M). We prove the

lemma by induction on M.
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o Let M = ¥ then M = z%L and (M)~ = 2F.

o Let M = Xal.M; such that M; € M3z and L = deg(M;). Then,
(M)~ = (AL M)~ = Al (M;F) =1 =1 \gL M,

e Let M = M;Ms, such that M;, My € Ms, My ¢ My and deg(M;) =
deg(Ms). Then, (M*)~" = (M;"" My ")~ = (M)~ (M)~ =" My M.

5. By 3, o{ MT}U{N;" | j € {1,...,p}}. By 1. and Lemma B.1.1.5a, M[(xf” =
N;),] and M*i[(xz‘::Lj = N]-Jri)p] € Mj. By induction on M:

J

o Let M =yX. IfVje{l,...,p} & # xfj then yK[(xfj = N;),] =y
Hence (yX[(z}7 == Nyt = y#K = y#K [P == N If 3j €
{1,...,p}. y& = xfj then yK[(xfj := N;),] = N;. Hence (yK[(xf] =
N = N = K[ = N, )

o Let M = \yX.M; such that VK'. Vj € {1,...,p}. y* & fu(N;) U {z}"}.
Then M[(:EJLJ = N;)p| = )\yK.M[(xfj := N;),]. By Lemma B.1.1.2b,
of M} U{N; | j € {1,...,p}}, and by IH, (M[(z]” = N;),])* =
M (25" .= NF),J. Hence, (M[(z}7 := N;),|)* = My (My[(2}7 =
N = AR M (2 = NP),) = O M) F[( = N,

o Let M = M M,. M[(x;’ := Ny),] = My[(a}’ := N;),|Ma[(x}’ := N;),).
By Lemma B.1.1.2a, o{M;} U{N; | j € {1,...,p}} and o{My} U {N; |
j € {1,.oph}. By IH, (Mi[(z;" = Ny)))™ = M{[(a]™ = Nj),)
and (My[(x]” == N)))*" = My[(«" := Ni7),]. Hence (M[(a}’
N = (Mi[()” = Ny )P (ML[(x)7 = Ny = M ()™
NFOIMG (2 2= Nl = M ()™ = NjT), .

J J

6. By Lemma B.1.5.1, if M, N € M3 then M !, N*' € Ms.

e Let - be —3. By induction on M —5 N.
— Let M = (Azl.My)My —5 My[z* := M,] = N where deg(M,) =
L. By Lemma B.1.5.1, deg(M,") = i :: L. Therefore M =
(AL MY MG — 5 M [0 = My = (My[zl = My))*.
— Let M = M\a*.M; —5 Az".N; = N such that M; —3 N;. By IH,
M —5 Ni* hence M+ = Azl M — 5 Ao E N7 = N+
— Let M = MMy —3 NiM; = N such that M; —3 N;. By IH,
M —5 N{* hence M+ = MP M —5 NP M) = Nt
— Let M = MMy —3 M;Ny = N such that M, —3 N,. By IH,
M —5 NS hence M+ = MP M —5 NP MY = Nt
e Let - be —3. By induction on —3 using —4.
e Let - be —,. We only do the base case. The inductive cases are as for

—5. Let M = Mzl Nzt —, N where 2 ¢ fv(N). By Lemma B.1.5.1,
xz’::L € fV(N'H) Then M+ = )\xi“L.NHZEi“L —y N+
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e Let -+ be —. By induction on —} using —,.

e Let - be —g,, —>3,, —, or —}. By the previous items.

7. (a) By induction on M:
e Let M = y*F then y* € M3 and deg((y***)~") = deg(y”) = L and
((yFh) =)+ = it
o Let M = M\y®.M,; such that M; € M3 and K = deg(M;). Because
deg(M;) = deg(M) =i :: L, by TH, M; = P™ for some P € Ms,
deg(M;") = L and (M;")*" = M;. Because K =i :: L then K =
i L K' for some K'. Let Q = \y™¥ . P. By Lemma B.1.5.4,
P = (P*)~" = M; " then deg(P) = L. Because L < L :: K’ then Q €
Mz and QT = M. Moreover, using Lemma B.1.5.4, deg(M~") =
deg(Q) = deg(P) = L and (M~)™ = Pt = M.
o Let M = M;M, such that My, My € M3, My o My and deg(M;) =<
deg(M,). Then deg(M) = deg(M;) = deg(M3), so deg(My) = i ::
L :: L' for some L. By IH M; = P for some P, € M3, deg(M;") =
L and (M;9™ = M,. Again by IH, M, = P,/* for some P, €
Ms, deg(M; ") = L :: L' and (M;)* = M. If y®* € fv(P) and
y*2 € fv(P,) then by Lemma B.1.5.1, K| =i = K, Kj = i = Ky,
%1 € fv(M,) and 252 € fv(M,). Thus K| = K}, so K; = K, and
P, o P,. Because deg(P)) = deg(M;") = L < L :: L' = deg(M,") =
deg(P,) then Q = PP, € M3 and Q*' = (P, P,)* = PF'Pt = M.
Moreover, by Lemma B.1.5.4 deg(M~") = deg(Q) = deg(P,) = L
and (M—z')-i-z' — Q—i—i - M
(b) By the previous item, there exist M’, Ni,..., N/ € M such that M =
M and Vj € {1,...,p}. N; = N'". By Lemma B.1.5.3, o{M'} U
{N; | j € {1,...,p}}. By Lemma B.1.54, M~" = M’ and Vj €
{1,....p}. N;* = NJ. So, of M} U{N;" | j € {1,...,p}}. By
Lemma B.1.1.5a, M[(:B;::Kj = Nj)p],M_i[(x]Kj = Nj_")p] € Msj and
deg(M[(; JARCRESS N;),l) = deg(M) = i == L. We prove the result by

induction on M:

o Let M = yik. If(Vje{l ..,p} yZL%x; )thenyZL(x K=
Nj),) =y, Hence (y™*[(z;™ = N;),])~ = ?JL[(%KJ =
NJ)] IfE|1<k7<p,y2L: ]theny 1[<(‘J ].—'Nj)p]:Nj.
Hence (y"*[(z; := N;),]) ™" = N;* = y*[(2;7 := N;"),).

o Let M = M\y®.M, such that M, € Mj, K = deg(M;), and VK'. Vj €
{1,...p}. ¥ & f(N;) U {2™}. Then, M[(a]"™ := N;),] =
NyE M (2 = Nj),). By Lemma B.1.1.2b, <>{M1} U{N; | j €
{1 ,...,p}}. By definition deg(M) = deg(M,). By IH, (M;[(a}" =
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N = M2l = Ni7),]. Because deg(M;) = i = L

J J

K then K = i = L = K’ for some K’'. Hence, (M[(z5" :=

N D)™ = MR (M (25 = Ny D) T = AR M (2 =

N7 )] = O M) (@ = N7, .

J J J
e Let M = M;Ms such that My, My € Mj, M; o My and deg(M;) <
deg(My). Let Py = My[(«}™ := N)),] and P, = My[(2 := N)), .
Then, M[(:Ej-::Kj = Nj),| = P\ P». By Lemma B.1.1.2a, o{ M; }U{N; |
jge{l,....p}} and o{Ma} U{N; | j € {1,...,p}}. By definition
deg(M) = deg(M;) < deg(M,). Therefore deg(My) =i :: L :: L' for

some L'. By IH, P." = M{[(x}’ := N;"),] and Py = My '[(x}’ =

N7, Finally, (M[(z}™ = N)),)7" = Pr'Pyt = M{[(z)7 =
N7 My () = Ny7),) = M7 [(2)7 == NP,

J J J J

A

(c¢) Using Lemma B.1.5.4, Lemma 7.1.11 and the first item, we prove that
M~ N~" € Ms.
e Let - be —3. By induction on M —5 N.

— Let M = (\z®.My) My —5 M, [z" := M) = N where deg(Ms) =
K. Because M € Mj then M; € Mjs. Because ¢ :: L =
deg(M) = deg(M;) = K then K =i :: L :: K’. By Lemma B.1.5.7,
deg(M;") = L = K'. Hence, M~ = (Aab*K MYM;" —5
M B E = My = (M [z = My])~".

— Let M = X% .M; —5 Ae®.N; = N such that M; —5 Nj.
Because M € M3, My € M3 and K > deg(M;). By defi-
nition deg(M) = deg(M;). Because i :: L = deg(M;) = K,
K =i L K for some K'. By IH, M;* —5 N, hence
M= = \aB K Mo \pBH K N = N7

— Let M = MMy —g N1My = N such that M; —g N;. Because
M € Mj then M, € Ms. By definition deg(M) = deg(M;) =i
L. By IH, M;" —5 N;*, hence M~ = M;'M;" —45 Ny'M," =
N7,

— Let M = M; My —g M;Ny = N such that M, —3 N,. Because
M € Mj then My € M. By definition deg(Ms) = deg(M;) =
deg(M) =i :: L. So deg(My) =i :: L :: L' for some L'. By IH,
M;" —5 Ny* hence M~ = M "My " —5 N "My = N~

e Let - be —3. By induction on —3. using —»g.

e Let - be —,. We only do the base case. The inductive cases are
as for —5. Let M = \a® .Na¥ —, N where 2 & fv(N). Because
i L =deg(M) =deg(N) = K then K =i :: L :: K’ for some K'.
By Lemma B.1.5.7, N = N'* for some N’ € Mj3. By Lemma B.1.5.7,
N’ = N7' By Lemma B.1.5.1, 2" ¢ fy(N~%). Then M~ =
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>\.§(,’L::KI.N_i.C(,’L::KI — N—i'
e Let - be —7. By induction on —} using —,.

e Let - be —g,, —>g,, —, or —}. By the previous items.

8. By 1., deg(N ") =i :: deg(N). By Lemma 7.1.11, deg(M) = deg(N*%). By 7.,
M = M'*" such that M’ € M3. By 4., M’ = (M'")~ = M~ By 7.,
M~ - (N*1)=, By 4., (N*1)=1 = N

9. By 1., deg(M %) =i :: deg(M). By Lemma 7.1.11, deg(M %) = deg(N). By 7.,
N = N such that N' € Ms. By 4., M = (M)~ By 7., (M*))= - N,
By 4., N=i = (N*Fi)=i = N,

U

B.1.2 Confluence of —DE and —Dgn

In this section we establish the confluence of —7 and —, using the standard parallel

reduction method.

Definition B.1.6. Let r € {3, 8n}. We define the binary relation 2% on M;, where
i€ {1,2,3}, by:

(PR1) M 2 M
(PR2) If M 2 M’ and Az’ .M, \z! . M' € M; then \a'. M 25 \a! M.
(PR3) If M 2 M', N 22 N and MN, M'N’ € M; then MN £ M'N’

(PR4) If M 25 M', N 25 N” and (A\z!.M)N, M'[z! := N'| € M; then (\z!.M)N 2
M'[z! = N']

(PR5) If M 22 M', 2! & fv(M) and Aa! .Mxz! € M; then Azl . Ma! % M

We denote the transitive closure of 2 by 2. When M 2 N (resp. M 5N ),

we can also write N £~ M (resp. N & M). If rel,rel’ € {ﬂ,ﬁ;,ﬁ, 51}, we write
M rel My rel’ My instead of My rel My and My rel’ M. O

We now prove the relation between —», for r € {3, n} and 2.
Lemma B.1.7. Let r € {3, 0n}, i € {1,2,3} and M € M,.
1. If M —, M' then M 25 M.

2. If M 5 M’ then M' € M;, M —* M’, fy(M') C fv(M), deg(M) = deg(M")
and if i € {1,2}, fv(M’) = fv(M).

S If M2 M, N2 N and M o N then M' o N'. O
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Proof of Lemma B.1.7.

1. By induction on the derivation of M —,. M’ and then by case on the last
rule used in the derivation. We prove the case where M = (Az!.M;)My —5
M[z! := M,] = M. such that deg(M,) = I and VI'. 2!" ¢ fv(M,). By
definition M € M; and M;, M, € M;. By Lemma B.1.1.1 and Lemma B.1.1.2,
M, o M,. By Lemma B.1.1.5a, M’ € M,. Using rules (PR1) and (PR4)

2. By induction on the derivation of M £5 M’ using Lemmas 7.1.11 and B.1.2.4.
3. M" o N’ since by 2., fv(M') C fv(M) and fv(N') C fv(N') and M o N. O

Lemma B.1.8. Letr < {57677}; (S {17273}? MJN S Mi; N i N/; deg(N) = ];
and M o N. We have:

1. M[z" = N] & M[z" .= N"].
2. If M 5 M' then M[z' := N} 25 M'[2' .= N]. O

Proof of Lemma B.1.8. By Lemma B.1.7.2, deg(N’) = deg(N) = I and fv(N') C
fv(N), and by Lemma B.1.7.3, M o N'.

1. By Lemma B.1.1.5a, M|z := N], M[2' := N'| € M..
Let i € {1,2}. By induction on M:

— Let M = y". If 2/ = y” then M[z' :== N| = N & N' = M[z' := N']. If
a! #y" then M[z! .= N] =M % M = M[z" .= N'].

— Let M = A\y™.M; such that y* € fv(M;) and Vm. y™ ¢ fv(N). By
Lemma B.1.1.2b, M; o N. By IH, M;[z' := N] 2 M;[z! := N']. Hence,
M[z! := N] = M\y". M [z! := N] 2 Ay". My 2! .= N'] = M[z! .= N']

— Let M = MM, such that M; o Ms. By Lemma B.1.1.2a, {M;, My} o N.
By TH M[z' := N] % M[2! .= N'] and My[2! := N] 25 My[a! =
N']. Hence, M[z' := N] = M[z! = N|My[z' = N] & M[2' =
N'|Mslx! := N'| = M[z! := N']

The proof for ¢ = 3 is similar.

2. By Lemma B.1.7.3, M’ o N’. By induction on M % M’ using 1., Lem-
mas B.1.1.2, B.1.1.3, B.1.1.5a, and B.1.7.3. We only consider one inter-
esting case where (\y’ My)M, 25 My’ = ML), My 22 M, My, 2 My,
(\y” . My) My, Mi[y” == My] € M;, and V.J'. y”" & fv(N) U {2} U fv(My). Be-
cause (\y?.M;)M, € M;, by definition, My, My € M;. By Lemma B.1.7.2,
M, M}, € M;. By Lemma B.1.1.5a, M]oM} and deg(M}) = J. By Lemma B.1.1.2,
M;oN and MyoN. By Lemma B.1.7.3, M{oN and MjoN. By Lemma B.1.7.3,
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M{ o N and Mo N'. By Lemma B.1.7.2, deg(N’) = I. By Lemma B.1.1.5a,
Mi[z" := N|, My[x! := N], M{[z! := N'], M}[z! :== N'] € M,. By Lemma B.1.1.2,
M; o My. By Lemma B.1.1.3. M;[z! := N]o My[z! := N] and Mj[z! :=
N'l o Mj[z" := N'|. By Lemma B.1.1.5b, deg(M;[z! := N]) = deg(M,),
deg(M[z! = NJ]) = deg(M,), and deg(Mi[z! = N'|) = deg(M}) = J.
By Lemma B.1.1.5a, M{[z! := N'|[y’ := Mj[z! := N']] € M,;. Therefore
Ay’ .Mi[z" := N] € M; By Lemma B.1.1.2, (A\y’.M;[z! := NJ]) o My[z! :=
N]. Therefore (Ay’ .Mz’ := N])M,[z" := N] € M;. By Lemma B.1.1.6,
M{z! = N[y = Miz" .= N'|] = M[y/ := M}z’ := N'|. Hence,
O’ My .= N)My[z! := N} 2 M{[z! = N'|[y’ := M}z’ := N']] and
so, ((\y? M) M) [z! == N1 22 M! [y’ = ML][2! == N']. O

Lemma B.1.9. Letr € {3, 0n}, i € {1,2,3} and M € M,.
1. If M =z' 25 N then N = 2!,
2. If M = \z'.P %5 N then N = \x!.P" where P 2 P'.
3. If M = Xa! .P "2 N then one of the following holds:

o N =)zl .P' where P"% P,
o P =Pzl where z! & fv(P') and P' "2 N.

4. If M = PQ 25 N then one of the following holds:

e N=PQ,PE P, Q5 Q,PoQ, and P' Q.

o P = X\ol.P', N = P'lz! == Q], deg(Q) = deg(Q') = I, P' 5 P",
Q5% Q,PoQand P" o Q.

Proof of Lemma B.1.9. 1. By induction on the derivation of 2/ 25 N.

2. By induction on the derivation of \z!.P 2N using Lemma B.1.7.2.

3. By induction on the derivation of \z!.P N using Lemma B.1.7.2.

4. By induction on the derivation of PQ 25 N using Lemma B.1.7.2 and B.1.7.3. O

Lemma B.1.10. Let r € {f3,0n}, i € {1,2,3} and M, M, My € M,.
1. If My &2 M 25 M,y then there exists M' € M; such that My 25 M’ &5 M.
2. If M, AR i M, then there exits M' € M, such that My LNy Yy M,. O

Proof of Lemma B.1.10. 1. Both cases (r = 3 and r = Bn) are by induction on M.

We only do the gn case making discriminate use of Lemma B.1.9.
o If M = 2!, by Lemma B.1.9, M; = M, = x!. Take M’ = z'.
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o If NoP, 2 NP "2 N, P, where Ny 2 N 2 Ny and P, 2 P ”2 P,. Then,
by IH, 3N’, P’ € M, such that No “2 N' %2 N, and P, % P’ 2% P,. By
definition, Ny ¢ P. By Lemma B.1.7.2, deg(N;) = deg(N’) and deg(P;) =
deg(P’). By Lemma B.1.7.3, N' o P'. If i € {1,2} then N'P" € M,. If
i = 3 then deg(N;) < deg(Fy), so deg(N') < deg(P’) and N'P’' € M,. Hence,
No Py ™% N'P' & Ny Py

o If Pi[z! = Q1] & NI P)Q ™2 Pyfa! = Q] where P, 22 P "% P, and
Q1 2" Q™% Q,. Then, by IH, 3P, Q' € M, such that P, 22 P 2" p, and
Q1 oo Q' gl ()2. By Lemma B.1.1.5a, deg(Q);) = deg(Q2) = I, P, ¢ Q) and
Py Q. Hence, by Lemma B.1.8.2, Pzl := Q] "% P'la! := Q] 2 P! =
Q).

o If M\l .P)Q1 2 Ml P)Q ™S Pyla! = Q,] where P2 P, P2 Py, Q &
Q"™ Qy and VI'. 2" € fv(Q). By IH, 3P, Q' € M, such that P, %3 P' 2" p,
and Q) e Q' gl 2. By Lemma B.1.1.1 and Lemma B.1.1.2b, P ¢ ). By
Lemma B.1.7.3, P’ ¢ )’. By Lemma B.1.1.5a, deg(Q2) = I and P, ¢ Q2. B
Lemma B.1.7.2, deg(Q’) = I. By Lemma B.1.1.5a, P'[z! := Q'] € M;. Hence,
(Ax™.Py)Qq y p P'[z" := @'] and by Lemma B.1.8.2, Py[z" := Q)] 2o P'x™ =
Q.

o If PQ; 2 A\t . P2!)Q ™% Pyla! := Q,) where P22 Py, Pa! "2 Py, Q) &
Q™ Q,, and VI'. 2" ¢ f(Q) U ( ). By Lemma B.1.1.5a, deg(Q2) = I.
By Lemma B.1.7.2, deg(®,) = I. By Lemma B.1.1.1 and Lemma B.1.1.2,
o{P,z',Q}. By Lemma B.1.7.3, o{P;,2',Q,}. By Lemma B.1.7.2, deg(P) =
deg(Py) and =’ & fv(Py). If i € {1,2} then Piz! € M,. If i = 3 then deg(P) <
I, so deg(P,) = I and Px! € M;. Hence Px! ¢ ) and by Lemma B.1.1.5a,
PQ, = (Pix!)[z! = Q] € M;. Moreover, Pz’ gidd Pyz! and we conclude as
in the third item.

o If \al.N, & P VPR Az!.N; where N, N2 N;. By IH, there is
N' € M, such that Ny 2% N 2 N, If i € {1,2} then 2! € fv(N,),
so by Lemma B.1.7.2, ! € fv(N), hence \a!. N’ € M;. If i = 3 then
by Lemma B.1.7.2, I = deg(N;) = deg(N'), so \x!.N' € M,. Hence,
Az Ny 23 N N \am Ny

o If M; 2 ol . Pxl 2 M, where M, %2 P 2 M,. By IH, there is M’ € M,
such that M, 3 M’ 2% M.

o If My 22 Aol .Pa! "% \a! P’ where P "2 My, Px' ™2 P’ and 2! ¢ fv(P). By
the o property, for all J, z/ & fv(P). By Lemma B.1.9:
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— Either P’ = P"z! and P ™% P". By IH, there is M’ € M, such that
P’ M2 My By Lemma B.1.7.2, ! ¢ fv(P") and deg(P”) < n.
Hence, My = Azl .P"z! 228 Mt 2 M.

— Or P =X\y' P’ and P’ = P"[y' := 2!] such that P" "% P" and where
r # y. Ifi € {1,2} then y! € fv(P"), so by Lemma B.1.7.2, y! €
fv(P") and \y!.M" € M;. If i = 3 then by Lemma B.1.7.2, deg(P") =
deg(P") < I and for all J, 27 & fv(P"). So \y’.M" € M;. Hence, P =
Ayl P2 Ayl P". Moreover, Azl .P' = Mol Pyt = 2] = Ayl .P". We

conclude using as in the sixth item.

2. First show by induction on M % M; (and using 1.) that if M, VL e M,
then there is M’ € M, such that M, oM M;. Then use this to show 2. by
induction on M L M. O

Proof of Theorem 7.1.185.

1. By Lemma B.1.10.2, %, is confluent. By Lemma B.1.7.1 and B.1.7.2, M %N
ift M —* N. Then —7 is confluent.

T

2. <) is by definition of ~4. =) is by induction on M; ~3 M, using 1. O

B.1.3 The types of the indexed calculi (Sec. 7.2)

Proof of Lemma 7.2.5. 1. The =) directions are by definition, and the <) direc-
tions are by induction on the derivations of U-T € GITy for la., of UTV €
GITy for 1b., and of eU € GITy for 1c.

2. 2a. By induction on T

2b. By induction on U.

x Let U = U; MU, such that Uy, Us € ITy,. Because I is commutative,
let deg(U;) = n and deg(Us) = n' such that n” > n. By IH, U; =
M1 €51my: Vi and Uy = TZ m+1e]1n ;Vi such that m,m’ > 1, Ji €

{1,....m}. V; € Ty,,and Fi € {m +1,...,m'}. V; € Ty,. Let Vi €
{1,...,m}. V/ =V,. Let Vi € {m+1,...,m+m'}. V] = €1 Vi
Therefore Uy M Uy = Mm™ €j(1m),Vy and m +m’ > 1.

x Let U = elU; such that U; € ITy,. Then deg(U) =n =n'+1 =
deg(Uy) + 1 By IH, Uy = M2, €j1.n),:V; such that m > 1 and 3 €
{1,...,m}. V; € Ty,. Therefore U = M, €€j(1.1),: V.

* The case U € Ty, is trivial.

2c. By induction on U.
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« Let U = Uy MUy then by 1b., Uy, Us € GITy and deg(U;) = deg(Us).
By IH, Uy = M2&jam.Vs and Uy = M &1y:Vi such that
m,m’ > land Vi€ {1,...,m'}. V; € Ty,NGITy. Therefore U;MU, =
™ & 1m) Vi
x Let U = eU; then by lc., Uy € GITy. Also deg(U) = n = n/ +
1 = deg(Uy) + 1 By IH, U; = M2,€j(1.:n7),;Vi such that m > 1 and
Vie {1,...,m}. V; € Ty, N GITy. Therefore U = M2, e€j(1.n7,: Vi-
x The cases U = U;—T and U = a are trivial.
2d. <) By 1. =) By 2., deg(U) > 0 = deg(T"). Hence, by 1., U-T €
GITy. O

B.1.4 The type systems ; and , for A" and 5 for \®
(Sec. 7.3)

Proof of Lemma 7.3.4. 1. By induction on the derivation I' C I” and then by

case on the last rule of the derivation.

— Let I' = I using rule (ref) then use rule (C.).

— Let I' C I be derived from I' T I' and I C I" using rule (tr). By
IH, dom(T") = dom(I"”) and T, (2! : U) C I, (x! : U’). Therefore z! ¢
dom(I"). Again by IH, dom(I"”") = dom(["") and IV, (2 : U") C I, (2! :
U’). Therefore, using rule (tr), I', (z! : U) T IV, (2! : U’). Also, dom(T") =
dom(I™).

—Let I = I'y,(y"" : Uy) C Ty, (y" : Uy) =TI be derived from U, C U,
and y!" ¢ dom(T';) using rule (C.). Therefore dom(I") = dom(I") Using
rule (C.), T, (2! U) =Ty, (y" : Uh), (2 - U) E Ty, (y" = Uy), (27 - U").
Using rule (C¢) again, T'y, (y" : Uy), (2! : U) C Ty, (y" 1 Uy), (2 1 U) =
[, (! : U"). Therefore using rule (tr), I CI".

2. We prove the direction =) by induction on the size of the derivation I' T I"

and then by case on the last rule of the derivation.

— Let T' = I" using rule (ref) then we are done because I' = (2} : U;),, and
by rule (ref), Vi € {1,...,n}. U; C Uj.

— Let I' C IV be derived from I' C I and I C I using rule (tr). By IH,
D= (zf:U)p, T = (2 : U")p, and Vi € {1,...,n}. U; C U/. By IH

)

again I = (zf : U"),, IV = (zf : U}),, and Vi € {1,...,n}. U’ C U..

Therefore, using rule (tr), Vi € {1,...,n}. U; C U].
— Let T, (2! : Uy) C T, (2" : Uy) be derived from U; C Uy and z’ ¢ dom(T")

using rule (C.) and we are done.
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We prove the direction <) by induction on n. If n = 0 then it is done. Let
=Ty (z™:U0,), I"="4,(z:U,) and Vi € {1,...,n}. U; C U/, such that
Ty = (zf:U)pand T = () : U)),. By IH, T, ETY. By 1., T C TV

)

3. First we prove the direction =) by induction on the derivation of I' ; U C
I+, U’ and the by case on the last rule of the derivation.

— Let I' H; U = 1" +; U’ using rule (ref) then it is done because I' = I'" and
U =U"and by rule (ref), TCT'and U C U.

—Let I' =, U C I" k; U’ be derived from I' ; U C I' +; U” and
IMbE, U"CI"F; U using rule (tr). By IH, T C I, IV C IV, U C U”",
and U” C U’. Therefore using rule (tr), ' T TV and U C U".

— Let I' ; U C I" +; U’ using rule (E;) then we are done using the

premises.
The direction <=) is obtained using rule (C).

4. We prove this result by induction on the derivation of U; C U, and then by

case on the last rule of the derivation.

— Case (ref) is trivial.

— Let Uy C U, be derived from U; C U and U C U, using rule (tr). By IH,
deg(U;) = deg(U) = deg(U;) and (U; € GITy iff U € GITy iff U, € GITy).

— Let Uy = Uy MU C U, be derived from deg(Us) = deg(U) (and U € GITy
in ITy,) using rule (Mg). Then deg(U;) = deg(U;) = deg(U). Let j = 2.
Using Lemma 7.2.3.1b, U; € GITy iff Uy € GITy.

—Let Uy = U NU T U NU) = Uy be derived from U C U;, and
U/ C U} (and deg(U;) = deg(Uy) in ITy;) using rule (M). By IH,
deg(U;) = deg(U3), deg(Uy) = deg(UY), U, € GITy iff U; € GITy, and
Ul € GITy iff U} € GITy. In ITy,, deg(U;) = min(deg(U;),deg(Uy)) =
min(deg(U}), deg(UY)) = deg(Us). Also, using Lemma 7.2.3.1b, we prove
Uy € GITy iff Uy € GITy. In ITys, deg(U}) = deg(U]) = deg(U}) =
deg(U3) and deg(Us) = deg(U]) = deg(U3) = deg(U>).

— Let Uy = Uj-T, C U,—=T, = Uy be derived from Uj C U] and T} C Ty
using rule (—). By IH, deg(Uj) = deg(U}), deg(T1) = deg(1»), U, €
GITy iff U) € GITy, and 77 € GITy iff 75 € GITy. In ITy,, deg(U;) =
min(deg(U;),deg(T1)) = min(deg(U,),deg(T3)) = deg(Us). Also, using
Lemma 7.2.3.1a, we prove U; € GITy ifft Uy € GITy. In ITy,, deg(U;) =
© = deg(Us).

— Let Uy = eU] C eUj = U, be derived from U] C Uj using rule (Cep). By
IH, deg(U]) = deg(U) and U € GITy iff U} € GITy. In ITy,, deg(U;) =
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deg(Uj) + 1 = deg(Uj) + 1 = deg(U;). Also using Lemma 7.2.3.1c, we
prove Uy € GITy iff Uy € GITy. In [Ty, deg(Uy) = i :: deg(Uj) = i =
deg(U) = deg(U).

5. We prove this result by induction on the derivation of I'y £ I's and then by

case on the last rule of the derivation.

— Case (ref) is trivial.

— Let I'; C I'y be derived from I'y C I and ' C T’y using rule (tr). By IH,
deg(I'1) = deg(I') = deg(I"2).

— Let 'y =T, (2! : U)) CT, (2 : Uy) = I'y such that 2! € fv(I") be derived
from U; C U, using rule (C.). We conclude using 5.

6. This result is proved by a simple induction on a derivation of the form ¥, C W,

and then by case on the last rule used in the derivation.

The most interesting case is in [Ty, if Uy = U] MU, C U1 UY = Uy derived
from U] C U}, U/ C UY, and deg(U;) = deg(U}’) using rule (M). To prove that
Us Uy € ITyy we need to prove that deg(U)) = deg(Uy). This is obtained

using 4.

7. We prove this result by induction on the derivation of I'y E I'y and then by

case on the last rule of the derivation.

— If I'y =T’y is derived using rule (ref) then we are done.

— Let I'; C I'y be derived from I'y C I and ' C T’y using rule (tr). By IH,
' € GTyEnv& TN € GTyEnv < T'y € GTyEnv.

—Let I'y =T, (y" : Uy) C T, (y" : Uy) = I'y such that y™ ¢ dom(I") be
derived from U; C Uj using rule (=.). If I'y € GTyEnv then I" € GTyEnv
and U; € GITy. By 4., U; € GITy and therefore I'y € GTyEnv. This other

direction is similar. O
Lemma B.1.11. In the relevant context (ITy,, Ty,, TyEnv, or Typing, ), we have:
1. IfUCVa thenU =U'MNa.
2. Let Uy C Us.

(a) If Uy € GITy and deg(Us) = n then Uy = M2 Eqm)L; and Uy =
M € sy Ty, such that mym' > 1, Vi € {1,...,m}. T; € Ty,, Vi €
{L....m'}.T) € Ty, and Vi € {1,....m'}. Ik € {1,...,m}. €jamr =
¢ jaemi AT E T
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7.

8.

(b) Let Uy = M2 1€50m,),:(VimT;) and Uy = MF_ ez my) i (Vi=T7). If Uy €
GITy and deg(Uy) = n then Vi € {1,...,m}. Vk € {1,...,p}. n;, = my
nandVk € {1,...,p}. 3 € {1,...,m}. €rmyi = € jamaAVi C ViAT; C
Ty.

If eU CV then V = eU’ where U C U'.

If U-T C V and U-T € GITy then V. = _,(U;=T;) where p > 1 and
Vie{l,....p}. UUCUATCT.

Vi e {1,...,m}. n; = n and V = ﬂ?zle_;j(l;n)’i(‘/;,_)j—‘i,) where p > 1 and
Vie{l,....p}. 3k € {1,...,m}. Eumr = € jami A V] C Ve AT C T).

If T2 €5 (1my) (V—>T) C V where V € GITy, deg(V) = n and m > 1 then

If U C Wy then deg(V;) = deg(Vs) and Wy is good iff Wy is good.
IfU C U U, then U = Uy, MUy where Uy C U; and Uy C US.

Ifr Iy nry then I =Ty MLy where I'y T T and I'y C T, O

Proof of Lemma B.1.11.

1.

2.

By induction on U C V M a.
By induction on the derivation of U; C U, using Lemmas 7.2.3.

2a. By induction on the derivation of U; C U, and then by case on the last

rule of the derivation.

« Case (ref). The result is trivial using Lemma 7.2.3.2¢c.

« Case (tr). There exists Us such that U; T Uz and U; = U,. By
Lemma 7.3.4.4, Ul, U; € GITy and deg(Ul) = deg(Us) = deg(Us3) = n.
By IH, U; = ;2 16 jam) Ly, Uy = M2 le jam),i 1y, where mg,mg > 1,
Vie{l,....mg}. T € Tyy, Vi € {1,...,mo}. T/ € Ty, and Vi €
(1,...,me}. 3k € {1,... ma}. € jumn = €jamys AT} T TV, By TH
again, Uy = M4 €51y 1 where mq > 1, Vi € {1,...,m1}. T; € Ty,
and Vi € {1,...,mz}. Ik € {1,...,m1}. €jmyn = € j(1m.i AT C T
Therefore Vi € {1,...,my}. 3k € {1,...,mu}. €jams = ¢ i) A
Ty C T/ using rule (tr).

« Case (Mg). There exists Us € GITy N Ty, such that Uy = Uy M
Us and deg(Us) = deg(Uz). Therefore, by Lemma 7.2.3.2c. Uy =
M2 €5(1m),i L such that m > 1 and Vi € {1,...,m}. T; € Ty, and
Us = M &y T; such that m/ > 1 and Vi € {m+1 com+
m'}. Ty € Ty,. Finally, we have U; = U, 11 Us = 724" ej(l n),i Ly such
that m+m' > land Vi € {1,....,m+m'}. T; € Ty2, and trivially
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we have that Vi € {1,....m}. Ik € {1,....m + m'}. €amp =
€y, N Ti E T by picking k = 4 for each 1.
« Case (M). Then, U; = UiNUY, Uy = USNUY, Uy C U}, and U C Uy
By Lemma 7.2.3.2¢, Uy, = ﬂggléj(lzn),iTi’ such that m > 1 and
Vi e {1,...,m}. T! € Ty,. By Lemma 7.2.3.1b and Lemma 7.3.4.4,
Uy, Uy, U8, U7, Uy € GITy and deg(Us) = deg(Uy) = deg(U;) = deg(UY) =
deg(U;) = deg(U{) = n. Because M is commutative, let us choose
that m = my +me, U) = Fl;illgj(lm),iﬂ’, and Uy = Z”lntf'j‘fle (1in),i Ly -
We have that m;, mg > 1. By IH, we obtain U] = |_|,~:1€j(1;n),iTi and
Uyl = :nln:?lé}(ln) ;T such that mi,mly > 1, Vi € {1,...,m} +
m2} T, € Ty, Vi € {1,....mi}. Ik € {1,....,m}. €amr =
€ i(1m),i /\TkETi’andVZE{ml—l—l my + me}. Fk € {m] +
L...,m) +mb}. €y = € »(1n)-ATkET-’ Therefore Uy = U 1
U{’ = I’lmler2 €j(1m),i1;- Finally, one obtains that Vi € {1,...,m; +
mao}. Ik € {1,...,mi +ms}. €jamyr = ﬁj(l:n),i NT, CTY.
* Case (—) is trivial.
% Case (Cexp). There exists Uy and Uj such that U; = eUj, Uy = el
and U] C U). By Lemma 7.2.3.1c, U € GITy. Also, deg(Us) =n =
n' + 1 where deg(U;) = n'. By IH, we obtain U] = M2, €115,
Uy = M €0 TY, such that m,m’ > 1, Vi € {1,...,m}. T; €
Ty,, Vi € {1,...,m'}. T € Ty,, and also Vi € {1,...,m'}. 3k €
{1,....m}. €k = g’j(l:n/),i ATy © T!. Therefore, Uy = eU] =

M e, Ly, Uy = I_Iﬁleg’j(m) Yoand Vi € {1,...,m'}. Jk €
{1a SRR m} 6€j (1:n'),k — ee—;j(lzn’) i N\ Tk C irz'/-
M €y, (VimT) EV VEME, 6_;- )i (Vi=TY)
2b. We do case (tr): M1 €51y, (Vi=Th) T M€ ol (1ma), (V =T

By Lemma 7.3.4.4, V € GITy and deg(V) = n. By 2a., we have Vi €
{1,...,m}.ny =nand V = N €1 TV Whereq>1 Vie{l,...,q}. T/ €
Ty,, and Vi € {1,...,q}. Ik € {1,...,m}. e 'im)i = €jmy e N V=T E
T!. It T = a then, by 1., V;-»T; = V' Tl a. Absurd. Hence, Vi €
{1, g} TV = WinT}" and V = M €0 s(Wi=T}"). By IH, Vk €
{1,...,(]}. di € {1, . ,m} é}‘(l:n),i = 67/j(1:n),k AW, EV.ANT, C T,;”.
Again by IH, Vi € {1 ..,p}. m; = m and Vk € {1,...,p}. 3i €
{1,...,q}. 67/'171)7,_ jame AN Ve E Wiy ANT)" T T;. Hence, Vk €
{L,...,py. Fie{l,....m}. €j0mn = €amyi A VL EViNT, T T}

3. By induction on eU C V.

n),
e/

4. By 2a., V =1¥_ T/ where p > land Vi € {1,...,p}. U-T CT!. T/ = «a
then, by 1., U=-T = U’ Ma. Absurd. Hence, T/ = U;—T;. Hence, by 2b.,

)
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Vie{l,....,pt. U,CUANT CT.

5. By 2a., Vi € {1,...,m}. n; = nand V = I_I‘f-’:lg’j(l;n),iﬂ” where p > 1 and
Vi € {1,....p}. Ik € {1,....m}. Eumr = €jama A VisTi T T/, Let
i€ {l,....,p}. T = a then, by 1., V=T, = U’ Ma. Absurd. Hence,

T!" = V/=T!. Finally, By 4., V/ TV, and T}, C 1.
6. Using previous items and Lemmas 7.3.4.4 and 7.3.4.7.

7. By induction on U C U; N Us,.

— Case (ref): Let Uy NUS C U N US.
By rule (ref), Uj C Uj and U C UJ.
vcu” U'cuinu,
— Case (tr): Let Ucuinu;
By IH, U” = U m UY such that U C U; and U) C Uj,. Again by IH,
U = U; MU, such that U; C U{ and Uy C UY. So by rule (tr), U; C Uy
and U, C UJ.

U eGITy deg(U;NUS) = deg(U)
— Case (Mg): Let ynuH)nu cunu;
By rule (ref), U] C U] and Uj C Uj. Moreover:

« If deg(U) = deg(U; M U;) = deg(U7) then by rule (Mg), Uy MU C Uj.
We are done.
« If deg(U) = deg(U; MU;) = deg(U) then by rule (Mg), U5 MU C Us.
We are done.
U,CU] U, CUS
— Case (M): Let Uy MU, C U NUS.
Then we are done.
Ucunu,
— Case (Cexp): Let eU C eUj Mels.
By IH, U = U, MU, such that U; C U] and Uy C U). So, eU = eU; MelU,
and by rule (Ceyp), €Uy C eU] and eUs C eUs,.

8. By induction on I' C I"} M T%,.

— Case (ref): Let Iy M I, C Iy M T,
By rule (ref), Iy C I'} and I'y C I'%.
rcr” [MCI,nr,
— Case (tr): Let rcrinry
By IH, I = I'/ I} such that I'Y C I} and I} C I',. Again by IH,
I' =Ty 1Ty such that I'y C I'f and I'y C I']. So by rule (tr), I'y C I'} and
T, C I
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Ui E Uy
— Case (C.): Let I', (y" : Uy) C T, (y" : Uy) where I', (y" : Uy) = I, M T%.

« If I =T, (y" : Ujy) and Ty, =T, (y™ : UY) such that Uy = U1 UY
then by 7, Uy = U; MUY such that U] C U} and Uy C UY. Hence
F=rfnryand ', (y": Uy) =11 M Ty where I'y =17, (y" : U7) and
Iy =17, (y": U) such that I'; C I, and I'y C I'}, by rule (C.).

« If y* & dom(I}) then I' = Ty M Iy where I'y, (y™ : Us) = I'},. Hence,
[, (y" : Uy) = Ty, Ty where I'y = Iy, (y" : Uy). By rules (ref)
and (C.), I} C T} and I'y T T,

« If y™ ¢ dom(I'}) then similar to the above case.

0

Lemma B.1.12. In the relevant context (ITys, Tys, TyEnvy or Typings ), we have:
1. If T € Ty, then deg(T') = @.

2. Let U € 1Ty,. Ifdeg(U) = L = (n;),, then U = w* or U = &, M_, T; where
p>1andVie{l,...,p}. T; € Ty,.

3. Let Uy, Uy € ITyy and Uy C Us.
(a) If Uy = W then Uy = w¥.
(b) ]fUl = §KU then U2 = éKU’ and U E U/.
(c) If Uy = 8xU then Uy = €U’ and U C U'.

(d) IfU, = _ 8k (U;=T;) wherep > 1 then Uy = w' or Uy = M8k (U;~Tj)
where ¢ > 1 andVj € {1,...,q}. Ji€ {1,...,p}. UUCU; AT, ETj.

4. If U € 1Tyy and U T Uy MU, then U = Uy MUy where Uy T U; and Uy C Uj.

5. IfT" € TyEnvy and ' C I'\MIY, then I = T4Mly where 'y C T and Ty T TY,. O
Proof of Lemma B.1.12.

1. By definition.

2. By induction on U.

o If U =a (deg(U) = @), nothing to prove.
o If U =V-T (deg(U) = @), nothing to prove.
o If U = w’, nothing to prove.

o If U =U,NU, (deg(U) = deg(U;) = deg(Us) = L), by IH we have four

cases:
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— If U, = Uy = w! then U = wl.

— IfU, =wland Uy, = &, M| T; where k > 1and Vi € {1,...,k}. T; €
Ty, then U = U, (since w” is a neutral).

— Uy =wland Uy = &M T; where k > 1and Vi € {1,...,k}. T; €
Ty, then U = U, (since w” is a neutral).

—IftU, =&, M_; T, and Uy = &, I_Ilf;;ﬂrl T; where p,g > 1, Vi €
{1,...,p+q}. T; € Ty, then U = &, M1 T;.

=

o IfU=¢e,V (L=deg(U) =n; ::deg(V) =mn; :: K), by IH we have two

3c.
3d.

cases:
— IV =wlk U=e,wr =00l
-V =8k m_, T; where p > 1 and Vi € {1,...,p}. T; € Ty, then
U=2¢&,M_, T, where p>1and Vi € {1,...,p}. T; € Ty,.

. By induction on U; C Us,.

3b.

By induction on K. We do the induction step. Let U; = e;U. By
induction on e;U C U, we obtain Uy = e;U’ and U C U’.

Same proof as in the previous item.

By induction on the derivation of U; C U, and then by case on the last
rule of the derivation:

e By rule (ref), Uy = Us.

M_1€x(U=~T;) TU UL U,

e Case (tr): Let M_,8x(U;=T;) C Uy
By IH, either U = w® and then by 3a., we obtain Uy = w¥. Or
U = Mj_,8x(U;=Tj) such that ¢ > 1 and Vj € {1,...,q}. 3i €
{1,...,p}. U C U; AT, E Tj. Then by IH again, U; = w* or
Uy = M_18x(U=T]) where r > 1 and Vk € {1,...,r}. 3j €
{1,...,q}. U EU; ANT; £ T} Finally, using rule (tr), we obtain
VEe{l,....,r}. Jie{l,....p}. U/ CUANT, CT}.
By rule (Mg), Uy = w™ or Uy = Mi_ &k (Uj-T]) where g € {1,...,p}
and Vj € {1,...,q}. F €{l,...,p}. Uy=U; AT, =T].
Case (M) is by IH.
Case (—) is trivial.

M_,&L(U:=T;) C U,

Case (Cexp): Let MP_ 8k (U;—T;) C e;Uy where K =i :: L.
By IH, Uy = w" and so U, = w or Uy = Mi_&L(Uj-Tj) so
elly = Mi_8x(U;~T]) where ¢ > 1 and Vj € {1,...,q}. i €
L. pp UUCU AT, E T

4. By induction on U C U; N U3,
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e Case (ref): Let Uy MU, C Uy N U,. By rule (ref), U C U; and U} C Uj.
vcu” U'cuinu,
e Case (tr): Let UcCuinu;
By IH, U” = U n Uy such that U C U; and U) C U,. Again by IH,
U = U, MU, such that Uy C Uy and U, C UY.
So by rule (tr), U; C U] and U, C Us,.
e Case (Mg): Let (U U MU C U NUS.
By rule (ref), U] C Uy and Uj C U}. Moreover deg(U) = deg(U; M UJ) =
deg(U;) then by rule (Mg), U; MU C U;.
UCU; U, CU,
e Case (M): Let Uy MU, T U NUS.

Then we are done.
VoC VI TV CETh
e Case (M): Let Vi—T) C VoThy .
Then U{ = Ué = ‘/2—>T2 and U = Ul M U2 SU.Ch that U1 = U2 == ‘/1_>T1

and we are done.
ucunu,
o Case (Ceyp): Let eU T elUj Mels.
Then by IH U = U; M U, such that U; C U] and Uy C Uj. So, eU =
eU; MeU, and by rule (Cep), eU; T eUf and eU, C eUs.

5. By induction on I' C I"} M T,

o Case (ref): Let Iy M, T I, 11T,
By rule (ref), Iy C I} and I}, C I'%.
rCr” I"CIynr,
e Case (tr): Let rcrinrg
By IH, I = I'/ I} such that I'Y C I} and I'j C I',. Again by IH,
I'=T1MTy such that I'y C I'f and I'y C I'5. So by rule (tr), I'y C I'} and
T, C I

UL CE Uy
o Case (C.): Let I', (y* : Uy) C T, (y" : Uy) where ', (yL : Uy) =T, M T,

— If T, =17, (y*: Uj) and Ty = Ty, (y* : U}) such that Uy = Uy N UY
then by 4, U; = U; MUY such that U] C U} and Uy C UY. Hence
L =T{NT5 and T, (y* : U;) = 'y NTy where I'y =T}, (y* : U]) and
[y =T, (y*: U) such that I'; E T} and I’y C T by rule (C,).

— If y* & dom(T"}) then T' = ') M Ty where T}, (y* : Uy) = I'y. Hence,
[, (y* : U)) = T, NTy where I'y = 'y, (y* : Uy). By rule (ref)
and (C.), I C T} and T’y C T%.

— If y* & dom(T) then similar to the above case.
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Lemma B.1.13. Let j € {1,2,3}, I',T'1,I'y € TyEnv; and U, Uy, U, € ITy;.
1. Let ok(I"), ok(I'y), and ok(I'y)

(a) T1 Ty € TyEnv; and ok(I'; MTy).

(b) If j € {1,2} and I'y,I'y € GTyEnv then I'y M T’y € GTyEnv.

(c) el' € TyEnv; and ok(el').

(d) If j € {1,2} and I" € GTyEnv then el € GTyEnv.

(e) If j =2, dom(I';) = dom(I'y) and I'1, Ty € GTyEnv then Ty My C T'y.

2. (a) If ((j = 2 and deg(U) > I) or (j = 3 and deg(U) = I)) then U~" € ITy;.
(b) If ((j = 2 and deg(T') > I) or (j = 3 and deg(I') = I)) then '~ €
TyEnv,.
3. L@t] € {2,3}, INE FQ, and U1 C UQ.

(a) ok(I'}) < ok(T's).

(b) If ((j =2 and Uy € GITy and deg(U,) > 1) or (j =3 and deg(Uy) = 1))
then U7 C U,

(c) If ((j =2 and T'y € GTyEnv and deg(I'y) > 1) or (j = 3 and deg(I'y) =
1)) then T CTST

4. Let j € {2,3} and Ty oTy. If ((j = 2, deg(T'y) > I, and deg(T'y) > 1) or
(j =3, deg('y) = I, and deg(I'y) = 1)) then T7' o T';".

5. ok(envf,). O
Proof of Lemma B.1.13.

1. Let Ty = (2 : U)WI, and T'y = (2 : U/)wI', such that dj(dom(T")), dom(T'%)).
Because ok(I';) and ok(I'y) then ok(I), ok(I'y), and Vi € {1,...,n}. deg(U;) =
I; = deg(U/). Therefore, I'y My = {afi—U; MU} | i€ {1,...,n}} UT, UTY%.

la. In the case j € {1,2}, we have Vi € {1,...,n}. U; U] € ITy, there-
fore Iy M Ty € TyEnv,. In the case j = 3, we use the fact that Vi €
{1,...,n}. deg(U;) = deg(U/) to obtain Vi € {1,...,n}. U;NU! € ITy,,
and finally, I'y M T’y € TyEnvs,.
Because Vi € {1,...,n}. deg(U;) = I; = deg(U/) then we obtain Vi €
{1,...,n}. deg(U; M U}) = I;. Therefore ok(I'; M T).

1b. Because I',I's € GTyEnv then by definition I}, I, € GTyEnv and Vi €
{1,...,n}. U, U] € GITy. Therefore Vi € {1,...,n}. U;N U} € GITy.
Finally, we obtain I'y M T'y € GTyEnv.
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lc.

1d.

le.

2b.

3b.

Let I' = (x : U;),. By hypothesis, Vi € {1,...,n}. deg(U;) = L.

Let j € {1,2}. We have eI' = (/! : elU), € TyEnv,. So Vi €
{1,...,n}. deg(elU;) = deg(U;) +1 = L; + 1. Let j = 3 and e = e;. We
have e, I' = (25 : e,Uy), € TyEnv;. So, Vi € {1,...,n}. deg(erU;) =
k:: deg(U;) =k :: L.

Let I' = (2 : U;)n. Because I' € GTyEnv then Vi € {1,...,n}. U; € GITy.
Because el = (:I:ZII : elU;)n. Therefore, Vi € {1,...,n}. eU; € GITy and

el' € GTyEnv.
Let Ty = (2" : Uj), and I'y = (2" : V;),. By definition, we have

Vie{1,...,n}. deg(U;) = n; = deg(V;) A U,, V; € GITy. Therefore, using
rule (Mg) Vi € {1,...,n}. U;1V; C U;. We have I'y 1y = (2} : U; MV} ).

Hence, by Lemma 7.3.4.2, 'y M Ty C I'y.

. Let j =2 and m = deg(U) > I = n. By Lemma 7.2.3.2b, U is of the form

M5 1€(1:m):Vi such that & > 1 and 3i € {1,...,k}. V; € Ty,. Therefore
U™n = 1€jmm)i Vi € 1Tys.

Let j = 3 and K = deg(U) = I = L. Therefore K = L :: L'. By
Lemma B.1.12.2:

+ Either U = w. Therefore, U=F = w" € ITy,.

* Or U = & M_; T; where p > 1 and Vi € {1,...,p}. T; € Ty,.
Therefore, U™F = &1, ME_, T; € ITys,.

Let j = 2, m = deg(I') > I = n, and I' = (2" : U;),. Therefore
Vie{l,...,p}. n; > mAdeg(U;) >mand I'™" = (2]""" : U; n),. Using
2a., we obtain I'"™" € TyEnv,.

Let j =3, K = deg(T) = I = L, and T = (z : U;),. Therefore
Vie{l,....,p}. Li » K = LANL =L :: L Ndeg(U;) = K = L and
r-L = (2 U1),. Using 2a., we obtain I'"* € TyEnv,.

K3 K3

. By Lemma 7.34.2, Ty = (2 : Uy), and I'y = (2 : U!), and Vi €

{1,...,n}. U; C U!. By Lemma 7.34.4, Vi € {1,...,n}. deg(U;) =
deg(U/). Assume ok(I'y) then Vi € {1,...,n}. I, = deg(U;) = deg(U)),
and so ok(I'g). Assume ok(I's) then Vi € {1,...,n}. I; = deg(U]) =
deg(U;), and so ok(I'y).

Let j = 2. Let deg(U;) = n. By Lemma 7.3.4.4, deg(U;) = deg(Us) =n
and Uy, U, € GITy. Using Lemma B.1.11.2a we obtain U; = M2, €j(1.n),: 13,
Uy = I_Ilf’ileﬁ’j(lm)viﬂ, where m,m' > 1, Vi € {1,...,m}. T; € Ty,, Vi €
{1,....m'}. T) € Ty, and Vi € {1,...,m'}. Ik € {1,...,m}. €jam)r =
Qj(l:n),i ATy C T!. Because k = I < n then Uk = M2 1 €5 (k+1m),i 13 and

U;k = ﬂ;ile_;j(k_;’_l:n)’iﬂ,. Because U; € GITy then by Lemma 7.2.3.1, one

)
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3c.

can prove that Vi € {1,...,m}. T; € GITy. Therefore using rules (Cep)
and (Mg), one can prove U; ! C Uy 7.

Let  =3. Let I = K. Let deg(U;) = L = K :: K'. By Lemma B.1.12.2:
— If U; = w! then by Lemma B.1.12.3a, U, = w” and by rule (ref),

UK =K' C ol =U%.

— U, =¢&,M_,T; where p > 1 and Vi € {1,...,p}. T; € Tys, then by
Lemma B.1.12.3b, Uy = €,V and MY_,7; T V. Hence, by rule (Ceyp),
Ul =6 M_ | T, C &V =Uy %,

By Lemma 7.3.4.2, Ty = (2 : U}),, Ty = (2] : U)p, and Vi € {1,...,n}. U; C
U!. If j = 2 then because deg(I'y) > I = k and I'; € GTyEnv, by definition

we have Vi € {1,...,n}. deg(U;) > kA U; € GITy. If j = 3 then because
deg(I'y) = I = K, by definition we have Vi € {1,...,n}. deg(U;) = K. In
both cases, by 3b., Vi € {1,...,n}. U % C Ui’_l and by Lemma 7.3.4.2,
ry ey

4. Let o1 € dom(I'7") and 22 € dom(I';7).

If j = 2 then ™" € dom(T;) and z'*2 € dom(I'y), hence [ + I} = [ + I, and

SO Il = [2.

If j = 3 then 2" € dom(T;) and z/*2 € dom(I'y), hence I :: [} = I :: I, and

SO Il = [2.

5. By definition, if fv(M) = {2, ... L} then envy, = (z : w’), and by

(2

definition, Vi € {1,...,n}. deg(w’) = L;. O

Proof of Theorem 7.3.5. We prove 1. and 2. simultaneously. We prove the results

by induction on the derivation M : (I' F; U) and then by case on the last rule of

the derivation.
First let us deal with the case where ¢ € {1, 2}.

e Let 2" @ ((a™ : T) ty T) such that T € GITy and deg(7') = n be derived

using rule (ax) (for system F;). We have deg(z™) = n = deg(T"). By definition
" € M.

Let 2% : ((2° : T') k5 T) such that T € GITy using rule (ax) (for system F).
We have deg(2°) = 0 = deg(T') using Lemma 7.2.3.2a. By definition 2° € M.

Let Ax™. M : (I' b; U-T) be derived from M : (I', (2™ : U) F; T') using rule (—)
and where I' = (] : U;),.. By IH, M € M;NM, T, (z" : U) € TyEnv,NGTyEnv,
T € ITy, N GITy, deg(U) > deg(M) = deg(T'), ok(I"), deg(U) = n, deg(I') >
deg(M), and dom(I", (2" : U)) = fv(M). Therefore 2™ € fv(M) and we obtain

A" M e M; N"M. If i = 2 then T € Ty,. Because U € GITy, we obtain
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U-T € 1Ty, NGITy. If i = 2 then U-T € Ty,. Also, I' € TyEnv,NGTyEnv. By
Lemma 7.2.3.2a, if i = 2 then deg(U—T') = deg(T") = 0. We have deg(U-T) =
deg(T) = deg(M) = deg(Az™.M). Because dom([', (z" : U)) = fv(M) then
dom(T") = fv(Az".M).

o Let MM, : (I'y Iy b; T') be derived from M, : (I'y b, U=T), My : (I's F; U),
and I'y ¢ 'y using rule (—g). By IH, My, My € M;NM, I't, Iy € TyEnv, N
GTyEnv, U-T,U € ITy, N GITy, deg(I'y) > deg(M;) = deg(U—-T), deg(I'y) >
deg(My) = deg(U), ok(I'1), ok(I'y), dom(I';) = fv(M;), and dom(I'y) = fv(Ms).
By Lemma 7.2.3.1a, T € ITy,NGITy. If i = 2 then U-T,T € Ty, and therefore
by Lemma 7.2.3.2a, deg(U—-T) = deg(T") = 0. Because I'y ¢ I'y, dom(I';) =
fv(M;), and dom(I'y) = fv(My) then M; o Ms. Also, deg(M;) = deg(U-T) <
deg(U) = deg(M,). Therefore MiMy; € M; N M. Because deg(7T') < deg(U),
we obtain deg(M; M) = deg(M;) = deg(U—-T) = deg(T"). By Lemma B.1.13,
[''MTy € TyEnv, NGTyEnv and ok(I'; MI'y). Because ok(I';MT'y), then deg(I'; M
I'y) = min(deg(I'y), deg(I'2)) > min(deg(M;), deg(Ms)) = deg(M;Ms). Finally,
dom(I"; MI'y) = dom(I'y) Udom(T'y) = fv(My) U fv(My) = fv(MyMs).

o Let M : (I'' M Iy k; Uy MUsy) be derived from M : (I'y F; Uy) and M :
(I'y F; Us) using rule (My). By IH, M € M; "M, I'1,T'y € TyEnv, N GTyEnv
Up,Us € ITy; NGITy, deg(I'y) > deg(M) = deg(U1), deg(l’z) > deg(M) =
deg(U3), ok(I'y), ok(I'y), dom(I'y) = fv(M) = dom(I'y), and if i = 2 and
deg(Uy) = deg(Us) > k then M~% : (7" by U*) and M~F . (T;% Fy U5,
By Lemma B.1.13, 'y M T’y € TyEnv, N GTyEnv and ok(I'; M I'y). Because
ok(['y MTy), then deg(l'y MI'y) = min(deg(l'y),deg(l'y)) > deg(M). Because
deg(U;) = deg(Us) then U; MU, € 1Ty, N GITy. We have deg(M) = deg(U;) =
deg(Us) = deg(U; M Us). Also, dom(I'y M T's) = dom(I';) U dom(I'y) = fv(M).
Finally, let i = 2 and k € {0,...,deg(M)} (deg(M) = deg(U;MUs)). We want
to prove that M~ : (I, N Ty* F, U, NU;®). By IH, M=% . (I'[* +, UTF)
and M~ : (I;* =, U;*). Therefore using rule (M), M~* : (I7* N T5%
UrFn U, %), and we have T NTy* =Ty MTy% and UTF N US* = U MU

o Let M™ : (eI' k; eU) be derived from M : (I' F; U) using rule (exp). By IH,
M e M;nM, I'" € TyEnv, N GTyEnv, U € ITy, N GITy, deg(I') > deg(M) =
deg(U), ok(T'), dom(T') = fv(M), and if i = 2 and deg(U) > k then M~ :
(P=* 5 U7%). By Lemma B.1.3.1d, M € M; N M. By Lemma B.1.13,
el € TyEnv, N GTyEnv and ok(el'). By Lemma 7.2.3.1c, eU € ITy, N GITy.
Also, using Lemma B.1.3.1a, deg(M™) = deg(M) + 1 = deg(U) + 1 = deg(el)
and deg(el') = deg(l') +1 > deg(M) +1 = deg(M™*). Let I = (z}’ : U;), then
el' = (x?ﬁl : eUj)n. Therefore fv(M) = {z}’ | j € {1,...,n}} dom(el) =
{x?ﬁl | 1€{l,...,n}} = fv(M™") using Lemma B.1.3.1a. Finally, let i = 2
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and k € {0,...,deg(eU)}. Therefore k € {0,...,deg(U) + 1}. If k = 0 then
we are done. If k = k' + 1 such that k' € {0,...,deg(U)} then (MT)* =
(M*)=F+1 = M~* using Lemma B.1.3.1a, (eI')™ = (eI')™¥*! = I'"* and
(eU)™* = (eU)™¥+! = U~¥. Because k' € {0,...,deg(U)} and by IH, we
obtain (M*)™%: ((eI') 7% 5 (eU)™*).

o Let M : (I" o U’) be derived from M : (I' o U) and I' o U C IV 5 U’
using rule (C). By Lemma 7.343, I C T"and U C U’. By IH, M €
My N M, I' € TyEnv, N GTyEnv, U € ITy, N GITy, deg(I") > deg(M) =
deg(U), ok(T'), dom(T") = fv(M) and if deg(U) > k then M=% : (I'* I,
U=%). By Lemma 7.3.4, I" € TyEnv, N GTyEnv, U’ € [Ty, N GITy, deg(I") =
deg(l") > deg(M) = deg(U) = deg(U’), and dom(I") = dom(I") = fv(M). By
Lemma B.1.13.3a, ok(I"). Let k& € {0,...,deg(U’)} then because deg(U’) =
deg(U) by IH, M=% : ("% +, U7*). By Lemmas B.1.13.3b and B.1.13.3c,
I'"*CT*and U* C U~ By Lemma 7.34.3, I ", U *CI'*F, UF.
By Rule (C), M=% : (I""F |-, U'~F).

We now deal with the case where 7 = 3.

o Let 22 : ((x? : T) k3 T) be derived using rule (ax) (for system F3). By
Lemma B.1.12.1 we have deg(z?) = © = deg(T).

o Let M : (env’, 3 wieM)) be derived using rule (w). By definition M € M3,
wisM) ¢ | Ty, and dom(env,) = fv(M). It is easy to check that env}, €
TyEnv,. We have deg(M) = deg(w?s™)). By Lemma B.1.13.5, ok(env$,).
Let env?, = (z% : w"), By Lemma B.1.1.4, Vi € {1,...,n}. deg(M) =< L.
Therefore, by definition of deg(envf,) > deg(M). Finally, let deg(M) = K.
We want to prove M5 : ((env§,) K k3 (we))=K)  We have deg(M) =
K :: K' for some K’. By Lemma B.1.5, M~ % € Msj, deg(M—F) = K’,
Vie {l,...,n}. Lj = K = L, and fv(M~%) = {zh,... 2%} We have
(env,) = (xZL, twhh), =env?, . Wealso have (we(M))=K — ( K:K")=K —

Wk = w9 ™) Therefore, using rule (w), M~ : (env?,_ b3 wie® ),

o Let Mz’ M : (I k3 U—-T) be derived from M : (T, (z" : U) 3 T) using
rule (=) and where I' = (2% : U;),. By IH, M € Ms, I, (2" : U) € TyEnv,,
T € 1Ty, deg(U) = deg(M) = deg(T'), ok(I'), deg(U) = L, deg(I") > deg(T),
and dom(T, (z¥ : U)) = fv(M). Therefore z* € fv(M). By hypothesis T" € Tys.
By Lemma B.1.12.1, we have deg(M) = deg(T') = @. Therefore A\z*.M € Ms.
Because I, (z¥ : U) € TyEnv;, we have I' € TyEnv, and U € ITy,. We obtain
U-T € ITy;. We have deg(U—~T) = @ = deg(M) = deg(Az*.M). Because
dom(T, (z¥ : U)) = fv(M) then dom(T") = fv(A\z".M). Finally, deg(l') =
deg(T") = deg(U-T).
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o Let A\z™. M : (I b3 wi—T) such that ¥ & dom(T") be derived from M : (" k3

T) using rule (=) and where I' = (z* : U;),. By IH, M € M3, T € TyEnv,,
T € ITys, deg(I") = deg(T") = deg(M), ok(I'), and dom(I') = fv(M). Therefore
xl & fv(M). By hypothesis T € Ty;. By Lemma B.1.12.1, we have deg(M) =
deg(T) = ©@. Therefore A\x*.M € Mj;. We have w'=T € ITy;. We have
deg(wr=T) = © = deg(M) = deg(Az%.M). Because dom(I') = fv(M) and
zt ¢ fv(M), we obtain dom(T") = fv(A\zL.M). Finally, deg(l") = deg(T) =

deg(wr=T).

e Let MM, : (I'y 1Ty 3 T) be derived from M; : (I'y b3 U=T), My : (I'y b3
U), and T'y ¢ T’y using rule (—g). By IH, My, My € Mj, T'1,Ts € TyEnv,,
U-T,U € ITy;, deg(I'y) = deg(M1) = deg(U~T), deg(I's) = deg(M;) =
deg(U), ok(I'1), ok(I'y), dom(I'y) = fv(M;), and dom(I'y) = fv(Ms). By hy-
pothesis U—=T € Ty, and therefore 7' € Ty;. By Lemma B.1.12.1, we have
deg(M;) = deg(M;— M) = deg(T) = @. Because I'y o I'y, dom(I';) = fv(M,),
and dom(I'y) = fv(Ms) then M; ¢ My. Therefore MiM, € Ms. We have
deg(M; M) = deg(M;) = @ = deg(T"). By Lemma B.1.13, I'; M I'y € TyEnv,
and ok(I'; M I'y). We trivially have deg(I'y MT'y) = deg(7T) = @. Finally,
dom(T'; MTy) = dom(Ty) Udom(T'y) = fv(My) U fv(My) = fv( M My).

o Let M : (I' k3 Uy M Us) be derived from M : (I' k3 Uy) and M : (I k3 Us)
using rule (M,). By IH, M € M3, I' € TyEnvy Uy, Uy € ITy,, deg(M) =
deg(U,), deg(M) = deg(Us,), deg(I') = deg(M), ok(I'),, dom(I') = fv(M),
and if deg(U;) = deg(U,) = K then M~ . (I'"K 3 U") and M~K :
(=K 3 Uy %), Because deg(U;) = deg(U,) then U, MU, € ITy,. We have
deg(M) = deg(U;) = deg(Us) = deg(U; M Us). Finally, let deg(U; MUs) = K.
Therefore deg(M) = deg(U; MUy) = K. We want to prove that MK :
(=K = U,nUR). By IH, M5 . (7K 5 U7F) and M™% - (T7F
U, ). Therefore using rule (M), M~% : ('K k3 U7X n Uy ), and we have
Uk nuy® =unugk.

o Let M7 : (e;I' 3 e;U) be derived from M : (I' k3 U) using rule (exp).
By IH, M € Mj, I' € TyEnvy, U € ITy;, deg(I') > deg(M) = deg(U),
ok('), dom(T') = fv(M), and if deg(U) = K then M~K . (7K 3 UK).
By Lemma B.1.5.1, M™ € Mj. By Lemma B.1.13, ;' € TyEnv,; and
ok(e;I"). By definition e;U € ITy;. Also, By Lemma B.1.5.1, deg(M*7) =
j i deg(M) = j :: deg(U) = deg(e;U). Let T = (2 : U;),. Because
ok(I), Vi € {1,...,n}. L; = deg(U;). Therefore e;T' = (2" : e,U;),.
Because deg(I') = deg(U) then deg(I') = L and Vi € {1,...,n}. L; = L.
Therefore Vi € {1,...,n}. j == L; = j == L. We then have deg(e;I") >

j o L= g deg(U) = deg(e;U). Also, fv(M) = {a*,... 25} and so
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dom(e,I') = {a}*™, ... ai*tn} = fy(M*7) using Lemma B.1.5.1. Finally, let
deg(e;U) = j :: deg(U) = K. If K = @ then we are done. Otherwise
K = j :: K' for some K’ such that deg(U) = K’. We have (M*/)~% =
(M+3)=7:K" = M=K using Lemma B.1.5.4, (e;[)™% = (e;I) 7K = 1=K
and (e;U)™K = (e;U) 7K = UK. Because deg(U) = K’ and by IH, we
obtain (M™)=K : ((e;,1) ™ 3 (e;U)7K).

o Let M : (I" 5 U’) be derived from M : (I' k3 U) and I' =3 U C IV 5 U’
using rule (C). By Lemma 7.3.4.3, Y C I"and U C U’. By IH, M € Ms,
I' € TyEnvy, U € I Ty, deg(I') = deg(M) = deg(U), ok(I'), dom(I") = fv(M)
and if deg(U) = K then M~ : (I7K 3 UK). By Lemma 7.3.4, I € TyEnvs,
U’ € 1Ty, deg(I”) = deg(") = deg(M) = deg(U) = deg(U’), and dom(I") =
dom(I") = fv(M). By Lemma B.1.13.3a, ok(I"). Let deg(U’) = K then because
deg(U’) = deg(U) by ITH, M—% . ("% k3 U~X). By Lemmas B.1.13.3b
and B.1.13.3c, I"" X C I'' X and U™X C U~X. By Lemma 7.3.4.3, ™% I3
UK C 'K b, UK. By Rule (C), M~% : ('K |-, U'-K). O

Proof of Remark 7.3.6.

1. Let M : (I'y k3 Uy) and M : (I'y k3 Us). By Theorem 7.3.5.2a, dom(I'y) =
dom(I'y). Let I'y = (2 : V;), and I'y = (2 : V/),,. By Theorem 7.3.5.2,
Vi € {1,...,n}. deg(V;) = deg(V)) = L. By rule (Mg), V;MV/ C V; and
V; V! C V/. Hence, by Lemma 7.3.4.2, Ty M’y C 'y and I'y My E I'y and
by rules (£) and (E¢), M : (I't' M Ty 3 Uy) and M : (', M Ty =3 Us). Finally,

by rule (|_||)7 M <F1 I FQ |_3 U1 ( U2>

2. By Lemma 7.2.3.2, U = M2, €j(1.n);1; where m > 1, and Vi € {1,...,m}. T} €
Ty, N GITy. Let ¢ € {1,...,m}. By Lemma 7.2.3.2, deg(7;) = 0 and by
rule (ax), 2 : ((2° : T;) b2 T;). Hence, 2" : (2" : €jn): 1) b2 €y Ti) by

n applications of rule (exp). Now, by m — 1 applications of (M), z" : ((z
U)o U).

3. By Lemma B.1.12, either U = w® so by rule (w), ¥ : (2l : w¥) F3 wl). Or
U=rm¥_,&,T; where p > 1, and Vi € {1,...,p}. T; € Ty,. Let i € {1,...,p}.
By rule (ax), 22 : ((x© : T;) 3 T;), hence by rule (exp), al : ((zl : 8.T;) F3
&.T;). Now, by rule (1)), =L : ((xL : U) 3 U).

deg(U)

4. By rule (Mg) and since w is a neutral. O
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B.1.5 Subject reduction and expansion properties of our

type systems (Sec. 7.4)
Subject reduction and expansion properties for ; and F, (Sec.7.4.1)

Proof of Lemma 7.4.1. 1. By induction on the derivation of 2" : (I' b1 T) and

then by case on the last rule of the derivation.

— Case (ax): trivial.
" (U Uy) 2™ Dy by Us)
— Case (M)): Let " (T My by Uy NU,)
By IH, I'y = (2") : U; and 'y = (2™ : Uy). Therefore I'y My = (2" :
Uy N Us)

2" Tk U)
— Case (exp): Let 2" : (el by eU).
By IH, T’ = (2 : U). Therefore el’ = (2™ : eU).

2. We prove this result by induction on the derivation of \x".M : (I by T1-T5)

and then by case on the last rule of the derivation:

— Case (—): Trivial.
Az M (A by Ti=Te)  Ax™ M (A" Th=T3)
— Case (M): Let Az M (ANA B Ti-T)
By IH, M : (A, (z" : T}) b1 Tz) and M : (A', (2™ : Ty) b1 T). Using
rule (M), M : (ANA (2™ : Ty) by T3).

3. By induction on the derivation of M N : (I' ; T') and then by case on the last
rule of the derivation.
M: (D, U=T) N:{(Tyb U) T ol
— Case (—g): Let MN :(Ih'NTy b T)
Then we are done with n =1, m =0 and 777} = U-T.
MN Ty U)) MN :(Ty by Uy)
— Case (M)): Let MN :(I'yly =y U N Us)
By Theorem 7.3.5, deg(U;) = deg(Us) =m. By IH, I'y =T, NI}, U, =
Mi21€iemyiLiy mo > 1, Mo (T b1 T2 €510m),i(T;-T5)) and N & (T F
|_|?:116_}‘(1:7»1),2‘Ti,>- Again by IH, I'y; = I'5115, U = ﬂ?inﬁfj(l;m),iﬂ, ny > 1,
M (1Y 1 TE2, €5y (T7=T0)) and N = (T By T2, 1 €my,i 17

Therefore I'y M Ty, = T TS T MY, and Uy MUy = M72,€(1:m),i 1
Finally, using rule (M), M : ('} T =y T2, €1, (T =T;)) and N :
(P70 1 P21 8510y T7)-
MN : (I' U)
— Case (exp): Let MTNT : (el' b eU).

312



Appendiz B. Proofs of Part II

We have m = deg(eU) = deg(U)+1=m'+1. By IH, I' = I'; N Ty,
U = Ms&amn T o> 1, M 2 (D) by M0y € o (T7-T3)) and N
(Fo 1 T €jamny i L) . Therefore, el = eI’y Mel'y, eU = ML €€(1:mv),: 15,
and using rule (exp), M* : (el'y 1 M e€ja.mni(T{=T;)) and NT :
(ely by T € i T7).-

U

Proof of Lemma 7.4.2. 1. By induction on the derivation of 2™ : (I' 5 U) and then
by case on the last rule of the derivation.
e Case (ax): trivial.

l’nI<F1 }_2 U1> ZL’nZ<F2}_2 U2>
o Case (|_||)I Let " <F1 |—]F2 }_2 Ul M U2>

By IH, I'y = (2") : Uy and T'y = (2" : Uy). Therefore I'y M Ty = (2™ : Uy M Us)

"™ <P "2 U>
e Case (exp): Let " : (el b eU).

By IH, T = (2" : U). Therefore eI’ = (2™ : eU).
n(l"}_2U> P}_QUEF/I_QU/
e Case (C): Let (I U)
By IH, I' = (2" : U). By Lemma 7.3.4, I' = (2™ : U”) such that U” C U and
also U C U’. Therefore using rule (tr), U" C U'".

2. By induction on the derivation of Az™.M : (I' 5 U) and then by case on the
last rule of the derivation. We have four cases:
M :(Tya": Uk, T)
e Case (—=): If \a". M : (T' o U-T).

We are done.

Ax"™ .M <F1 "2 U1> Ax™ .M : <F2 "2 U2>
e Case (|_||)I Let Ax™. M <F1 1 FQ }_2 Ul 1 U2>

By Theorem 7.3.5, Uy MU, € GITy. deg(U;) = deg(Us) = m, I'1, 'y € GTyEnv,
and dom(I';) = dom(I'y). By Lemma B.1.13.1e, I'y 1’y £ I'y and I'; M7y C Ty,
By IH we have: Uy = M &15m):(VimTh), Uz = M50 €0m) i (Vim o), Vi €
{1,.. .k} M (D1, 2" 2 €j(1:m),iVi b2 €jimyi Th), and Vi € {k+1, ... k+1}. M :
(Ca, 2™ : €j1:m),iVi F2 €j(1:m),i13). Hence Uy MUy = M. lej 1:m) Z(V—>T) where
k,l > 1and by Lemma 7.3.4 and rule (C), Vi € {1,..., k+1}. M : (I’ 2"

€j(1;m),iVi o €j(1;m),iTi>-

At M : (T 5 U)
e Case (exp): Let Ax™™L. M* : (el by eU).
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By IH, because deg(U) = m — 1, U = M, €jqm-1),(Vi»T;) where k > 1
and Vi € {1,...,k}. M : (I2" : €jam-1)Vi F2 €jam-1):T7)- Therefore
eU = MF_,e€;(1.m-1),,(Vi=T;) and by rule (exp), Vi € {1,..., k}. M* : (T, 2"
€€j(1:m—1 ,ivi 3 €€j(1:m—1),z'Ti>-
)\l’nM<F|_2U> F}_QUEF/}_QU,
e Case (C): Let Az M (T =y U')

By Lemma 7.3.4.3, I" C I' and U C U’. By Theorem 7.3.5, U,U’ € GITy and
deg(U) = deg(U’) = m. By IH, U = Mt €}(1.m)(Vi=T}), where k > 1 and Vi €
{1k} M - (T2" ¢ €am),:Vi F2 €jaim),1i). By Lemma B.1.11.5, U’ =

M € emy i (VI=T!), where p > 1, and Vi € {1,...,p}. 3 € {1,...,k}. €rmys =
ﬁ](lm NV CVANT CT!. Leti € {1 ..,p}. Because by Lemma 7.3.4
Ia™ : €amyVi F2 €5a )le C IV a": (1), Vs 6](1m) ;T7, then using

rule ( ) we obtain M : <F o j(l:m),i‘/z‘ |_2 €j 1:m)7,~Ti’).

3. By induction on the derivation of M N : (I' 5 U) and then by case on the last
rule of the derivation.
M<F1}_ZU—>T> N(FQ}_ZU> F1<>F2
e Case (—g): Let MN :(Ih'MTy = T)

Then we are done by taking £ = 1 and because by Lemma 7.2.3.2a, deg(T") =
m = 0.
MN : (', U)
e Case (exp): Let (MN)* : (el' - eU).

We have MNT = MTNT and deg(eU) = m = deg(U) +1 = m’' + 1. By IH,
U =M€ mn,i Ly where k > 1, T =11, M 2 (Ty o T € 1mni(Ui=Th)),
and N : (I'y o M2 1ej(1m)ZUZ-). Therefore, eU = Nk 1€€51:m),i T and el =
el’y efg By rule (exp), M* : (el'y o ME e€iqmi(Ui~T;)), and NT -
(el'y o M lee](l m,iUi)-

MN : Ty Vi) MN : (Ty b V)
e Case (M)): MN : (1T Vi)
By Theorem 7.3.5.2a, deg(MN) = deg(Vi) = deg(V2) = deg(V1 M V;) =
m. By IH, Vi = M Eam) D Vo = M, 1€jm) s where k > ky >
1, T, = r' ﬂr'{, Ly = I,NTy M : (I |—2 ML €y i (Ui=Th)), M
(T Fa T @iV T N (T b T Gy li), and N & (T by
l—]?:k1+lej(1:m),2Uz>- Therefore, Vi MV, = M 1€j(1m) il TNy = (I 1
%) N (0 NTY), and by rule (M), M : (T} N5 Fo M €¢1:m),(Ui~T;)) and
N : <F” [l Iw Fo |_|k 1(%(1 m)ZU>.

MN<F|_2U> FFQUEF/}_QU,
e Case (C): Let MN : (I'"H, U)
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By Theorem 7.3.5.2, deg(M N) = deg(U) = deg(U’) = mand U, U’ € GITy. By
Lemma 7.3.4.3, Y CI'and U C U'. By IH, U = I_Ilee*j(l;mMTi where k£ > 1,
T =Ty MLy M : (Ty by M1 (UinTh)), and N 1 (Ty by M E 10 i Us).
By Lemma B.1.11.8, IV = I} M I such that Iy T I'; and I, C I';. By
Lemma B.1.11.2a and using the commutativity of M, U = I‘Iféléj(l;mxﬂﬂi’ such
that ¥ < k and Vi € {1,...,k'}. T; C T!. Finally, by rule (C), M : (I} k5

I—]?;lé'j(l:m),i(Ui_)iri/))a and N : <Fl2 l_2 I—]féle_'j(lm),zU» U
Lemma B.1.14 (Extra Generation for F5).

1 IfMa™ : (D,2" : U by V), deg(V) =0 and 2™ & fv(M) then V = 1¥_, T; where
k>1andVie{1,... .k} M: (T Fy UsT)).

2. If \a" Ma" : (I' o U) and 2™ & fv(M) then M : (I' 5 U). O
Proof of Lemma B.1.14.

1. By induction on the derivation of Ma™ : (I';z" : U k5 V) and then by case on
the last rule of the derivation. We have three cases:
M: Tk, U=-T) 2":(a": Vi U) To(am:V)

e Case (—g): Let Mz (Tyz™ .V o T) where

V C U using Lemma 7.4.2.1 and Theorem 7.3.5.2a.
Then because U-T C V=T, we have M : (I' -5 V-T)).
Max™: Ty, 2™ : Uy by Uy)  Ma™ Ty, 2™ : Uy o Us)

e Case (M): Let Max™ : (I'y M Ty, 2™ : Uy MUY o Uy MUy) where
fv(M) = {z*,...;alm}, T = (2] : V), and Ty = (2" : V/),, using
Theorem 7.3.5.2a.

By Theorem 7.3.5, Uy MUy, Uy MU, € GITy. and Vi € {1,...,m}. V;,V/ €
GITy. By Lemma 7.2.3.1b, deg(U]) = deg(U;), deg(U;) = deg(Us) =
0, and Vi € {1,...,m}. deg(V;)V/. By Lemma 7.2.3.1b, deg(U;) =
deg(U) = 0. By IH, Uy = M\ T;, Uy = et T;, where k1 > 1,
Vi€ {1,... .k} M : (D) by U—T), and Vi € {k+1,....k+1}. M :
(Iy = Uy=T;). Using rule (Mg), rule (—), Lemma 7.3.4.2, rule (&),
rule (C), we obtain Vi € {1,...,k+{}. M : (I'y My 5 U] N U=T;).
Mz" : (T,2" Uk V) Toa" Uk VET 2" : Uy V!

e Case (C): Let Max™ (I, 2™ : U o V)

using Lemma 7.3.4.2.

By Lemma 7.3.4, Y T I', U C U and V C V’. By Lemma 7.3.4.4,

deg(V) = deg(V') = 0. By IH, V = M T; where k > 1 and Vi €
{1,...,k}. M : (' by U-T;). By Theorem 7.3.5, V € GITy. By

Lemma B.1.11.2, V' = r_, T} where 1 < p and Vi € {1,...,p}. 3j €
{1,...,k}.T; T T!. Byrule (=) and Lemma 7.3.4.3, one obtains Vi € {1,...,p}3j €
Therefore, by rule (C), Vi € {1,...,p}. M : (I" o U'-T)).
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2.

By Theorem 7.3.5, m = deg(U) = deg(Ax".Mz"™) = deg(Mz™) < n and
Az Max™ € M. Therefore, we have Mz" € M and n = deg(z") > deg(M) =
deg(Mzx™) = m. By Lemma 7.4.2.2, U = I—llee?j(lzm),i(‘/,-eﬂ) where k> 1 and
Vi e {1,...,k}. Ma™ - (T,2™ : €:m)iVi b2 €imyTi). If m > 0 then, by
Theorem 7.3.5.2d and by 1., Vi € {1,...,k}. M~™ma"™ : (T=™ 2" ™ : V; b
TYNM—™: ('™ ko V;=T;). Now, by m applications of rule (exp), M : (I" I
€j(1:m),i(Vi=T;)). Finally, by k — 1 applications of rule (1), M : (I' -, U). O

Lemma B.1.15. Let i € {1,2,3} and M : (I' =, U). We have:

1.
2
3.
/.

5.

If M : (A +; V) then dom(I") = dom(A).

Assume N : (AF; V). We have I'o A iff M o N.

If N is a subterm of M then there are A,V such that N : (A F; V).
[fT =T, N0y M7y then Ty o Ty.

IfF:Fll_lfg andfggfl thenfgl_lfggf O

Proof of Lemma B.1.15.

1.

2.

Corollary of Theorem 7.3.5.2a because dom(I') = fv(M) = dom(A).
Use Theorem 7.3.5.2a.

By induction on the derivation of M : (I' ; U) and then by case on the last

rule of the derivation.

By Theorem 7.3.5.2a, dom(I') = deg(M). Let 2™ € dom(I'y) and x™ €
dom(I'y). Then, 2™, 2™ € dom(I') = deg(M). Finally, by Lemma B.1.1.1,
M o M, and so ny = no and I'y ¢ I's.

By definition I'; = I"{wI"] and I'y = I, WI"] be such that dj(dom(I'}),dom(I%)),
T = (zf : Upn, Ty = (zF = Vi), and Vi € {1,...,n}. deg(U;) = deg(V;).

Therefore I' = (zf : U; N V;), W T¥ wTY. By Lemma 7.3.4.2, I's = (2 :
U!),wI'% such that I'y C I, dom(I'%) = dom(I'}), and Vi € {1,...,n}. U/ C U,.
Therefore we have T's Ty = (2 : U/MV;), W, WY Using rules (M) and (ref)
we obtain Vi € {1,...,n}. U/ MV, C U;MV;. Finally, again by Lemma 7.3.4.2,

sy ET. U

Proof of Remark 7.4.3. By Lemma B.1.15.3, (A\x™.M;) M, is typable.

e Case ;. By induction on the typing of (Ax™.M;)Ms. The only interesting

case is rule (—g) where M = (Ax™.M;) My is the subterm in question:
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/\l‘n.Ml : <F1 |_1 T1—>T2> M2 : <F2 f—l T1> Fl <>F2
()\x".Ml)Mg : (Fl NIy T2>

By Lemma 7.4.1.2, M, : (I'y, 2" : Ty b1 T3). By Theorem 7.3.5, n = deg(17) =
deg(Ms). Hence, (Ax".My)My —5 My [z := Ms).

e Case 3. By induction on the typing of (Az".M;)M,. We consider only the
rule (—g)

)\x”.Ml : (Fl l—g V—>T> M2 : <P2 l—g V> Fl <>F2
(/\ﬂj‘an)Mg : <F1 NIy g T>

By Lemma 7.2.3.2, deg(V—T) = 0. By Lemma 7.4.2.2, V=T = 1%, (V;=T;)
where £k > 1 and Vi € {1,... k}. My : (I';,2" : V; ko T;). Hence k = 1,
Vi=V, Ty =T and M; : (I'1,2" : V b5 T'). By Theorem 7.3.5, deg(M,) =
deg(V) = n. So, (Az".My) My —5 M, [z" := Ms).

O

Proof of Lemma 7.4.4. By Lemma 7.3.7.3, I' o A.
By induction on the derivation of M : (I';2™ : U 5 V) (note that using Theo-
rem 7.3.5, 2™ € fv(M)), making use of Theorem 7.3.5.
T e GITy
e Case (ax): Let 2°: ((2°: T) -y T).
Because N : (A by T), then N = 2°2° := N| : (A, T).
M: I x":Uy™ U T)
e Case (=) Let \y™. M : (I',z™ : U b5 U'-T).
Let 4™ be such that Vm/. y™ ¢ dom(A). Since T'o A, (I',y™ : U’') o A and we
also have y™ ¢ dom(A). By IH, M[z" := N]: (M A),y™ : U+, T). By
rule (=), (Ay™.M)[z" := N] = Ay™.M[z" := N] : (' M A 5 U'=T).
M1 : <F1,$n : U1 |_2 V—>T> M2 . <F2,l’n : U2 |_2 V) Fl <>F2
[ ] C&SQ (—>E)Z Let M1M2 : <F1 M FQ,SL’” . U1 I U2 }_2 T>
where 2" € fv(M;) N fv(Msy). (The cases 2" € fv(M;) \ fv(My) are 2" €
fv(My) \ fv(M;) are similar.)

We have N : (A 5 Uy M Uy) and (I'y MTs) © A, By rules (Mg) and (E),
N : (AtyU;) and N : (A by Uy). Now use IH and rule (—g).
M - <F1,[L’n : U{ "2 U1> M - <F2,[L’n : Ué "2 U2>
e Case (M): Let M (1M Ty 2™ : Uty Uy MUsy) (because z" €
fv(M) and using Theorem 7.3.5) where U = U] M U,

By Theorem 7.3.5, deg(U]) = n = deg(U3) and Uy, Uj € GITy. Using rule (Mg),
U LC Uj and U C Uj. Using rules (C), (ref), (Ey), and (E), M : (I'y, 2™ :
Uty Up) and M : (I'y, 2™ : U o Uy) By IH, M[z" := N] : (I N A 5 Uy)
and M[z™ := N| : (s M A kg Us) Therefore by rule (My). Mlz" := NJ :
(0, AT, A by Uy 11Us).
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M:(T,2": Uk, V)

e Case (exp): Let M (el’, 2" : eU k4 eV).
We have N : (A k5 eU) and el' o A. By Theorem 7.3.5, deg(N) = deg(elU) =
deg(U) +1 > 0. Hence, by Lemmas B.1.3.1 and 7.3.5.2, N = P and P :
(A o U). Because el'o A then by Lemma B.1.13.4, ToA~. By IH, M[z" :=
Pl : (TMA™ 5 V). By rule (exp) and Lemma B.1.3.2, M*[z""! := N]J :
(el'MA g eV).

M: T x" Uk V) TVa" Uk, VED 2" : Uk V

e Case (C): Let M: I 2": Uk V) (note

the use of Lemma 7.3.4).

By Lemma 7.3.4, dom(I') = dom(I"), ' C IV, U C U’ and V' C V. Hence
Mo A, by rule (E) N : (A, U’) and, by [H, M[z" := N] : (I"M A F, V).
By Lemma B.1.15.,5, TMA CTVMA. Hence, "MAR VETMAR, V and
Mz" .= N]: (T AFy V). O

Lemma B.1.16. If M : (I' -, U) and M — N then N : (I' = U). O

Proof of Lemma B.1.16. By induction on the derivation of M : (I" ko U). Cases (=),
(M) and (E) are by IH. We give the remaining two cases.
M, (D) by U=T) My : (Do by U) Tyol,
e Case (—g): Let MMy : (T1y Ty o T)
For the cases N = M; Ny where My —3 Ny or N = Ny M,y where M; —3 N,
use [H. Assume M; = A\z".P and M, My = (A\a™.P)My —5 Pla™ := My] = N
where deg(M,) = n. By Lemma 7.2.3.2a, deg(U—T) = 0. Because Az™.P :
(I'y ko U=T) then, by Lemma 7.4.2.2, P : (I';,2" : U b5 T'). By Lemma 7.4.4,
Plz" .= M| : (1 M Ty ko T).
M : ('t U)
e Case (exp): Let M* : (eI' b5 eU).
Because Mt —5 N then by Lemma 7.1.11.2, deg(M ™) = deg(N). By Lem-
mas B.1.3.1a and B.1.4.2, deg(N) = deg(M) +1 >0 and M —5 N~. By IH,
N~ : (', U) and, by Lemma B.1.3.1b and rule (exp), N : (el I eU). O

The next lemma will be used in the proof of subject expansion for 3.

Lemma B.1.17. Let (Aa™.M;)My : (I' b5 U) then I' = Ty M Ty and there exists
V € ITy,y such that My : (I'y, (2" : V) ko U) and My : (T'g o V). O

Proof of Lemma B.1.17. By induction on the derivation of (Az".M;)M, : (I' 5 U).
and then by case on the last rule of the derivation.
A" My (T o V=T) My (Do V) Tholy
e Case (—g): Let (Ax™. M) My : (T'; Ty o T

Since deg(V—T) = 0, then by Lemma 7.4.2.2 M, : (I'y, (2™ : V) 5 T').
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(Ax™ My)My : (T'y Fo Uy)  (Aa™ M) My : (T o Us)
e Case (M): Let (Ax™. My)My : (T1 Ty b Uy M Us)
By IH, I'y =T NI%, Ty =T 01T%, 3V, V" € ITy,, such that M; : (I'}, (2" :
V) bo UL), Ma < (T o VY, My < (T, (2" : V') b Us), and My : (T > V'). By
rule (M), My - (TN, (2 : VOV by Uy NMUs), and My : (T,005 = VOV,
Finally, we have ') My = 0, N0 and V1V’ € [Ty,.

()\[L’an)Mg : <P "2 U>

e Case (exp): Let (Az"T .M )My : (el b5 eU).
By IH, I' = I't M 'y and 3V € ITy,, such that M; : (I'y, (2" : V) b U)
and My : (T'y o V). So by rule (exp), M : (el'y, ("' : €V) by eU) and
M2+ : <6P2 "2 €V>

()\Ian)MQ : <F, |_2 U/> F, |_2 U/ E r }_2 U

e Case (C): Let (Ax"™. M) My : (T 5 U)
By Lemma 7.3.4.3, T C IV and U’ C U. By IH, I = I", NI and 3V € ITy,,
such that M : (I}, (2" : V) o U’) and My : (I', F5 V). By Lemma B.1.11.8,
I' =T, M7Ty such that I'y C I'} and I'y C IY,. So by rule (C), M; : (I'y, (2™ :
V) }_2 U) and MQI <F2 |_2 V> ]

Now, we give the basic block in the proof of subject expansion for f3.
Lemma B.1.18. If N: (', U) and M —3 N then M : (I' -, U) O

Proof of Lemma B.1.18. By induction on the derivation of N : (I' k5 U) and then

by case on the last rule of the derivation.

T e GITy
e Case (ax): Let 2°: ((a®: T) ko T) and M —4 2°.

By cases on M, we can show that M = (\y°.4%)z°. Because T' € GITy, by
rule (ax), y°: {(y" : T) k2 T) then by rule (=), A\y°.y° : {() ko T—T), and so
by rule (=g), (Ay%.y®)x®: ((z°: T) o T).
N:(D,(z":U) 2 T)
e Case (—): Let \a™.N : (I' o U-T) and M —5 A\x™.N.

By cases on M.

— If M is a variable this is not possible.
— If M = Aa™. M’ such that M" —5 N and 2™ € fv(M')Nfv(NN) then by IH,
M : (T, (2™ :U) ko T) and by rule (=), M : (' o U=T).

— If M is an application term then the reduction must be at the root. Hence,
M = (Ay™.M)My —5 M[y™ := M| = Ax".N where y™ € fv(M;) and

deg(Ms) = m. There are two cases (M; cannot be an application term):
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« If My = y™ then My = Az™.N and deg(N) = deg(M3) = m. By The-
orem 7.3.5.2, m = deg(N) = deg(T) = 0. So M = (Ay°.4°)(Az".N).
Because by Theorem 7.3.5.2, U-T € GITy N ITy,, by rule (ax), y° :
(y° : U=T) Fo U=T), by rule (=), \y°.4° : () o (U-T)=(U-T)),
and by rule (=g), (A\y°.y°)(Az".N) : (T o U=T).

x If My = \a™.M] such that ¥n'. 2 ¢ fv(M,) U {y™} then M, [y™ :=
M, = A" M{ly™ = M| = Xz".N and deg(M,) = m. Since
(Ay™.M{) My —5 M[y™ := My] = N, by IH, (Ay™.M{)M, : (L', (2" :
U) ko T). By Lemma B.1.17, I', (2" : U) = I'; M I’y and 3V € ITy
such that M : (I';,(y™ : V) by T) and My : (I's ko V). By
Theorem 7.3.5.2a, dom(I'y) = fv(M,). Because " & fv(Ms) then
' =T'NTyand I'y =I", (2™ : U). Hence by rule (—), Az".M] :
(I, (y™ = V) By U=T), again by rule (=), Ay™ A a™. M| : (I'] k2
V—-U-T), and since by Lemma B.1.15.4, I} ¢ 'y, by rule (—g),
M = (\y™ Aa" M)Ms, : (T o UT).

Ny (I U=T) Ny:(Tob2U) Tholy
e Case (—g): Let NiNy : (T4 M Ty o T) and M —3 Ny Ns.

—If M = M1N2 -3 N1N2 where M1 < Ng, N1 < N2 (by Lemma Bll)
and M; —3 N; then by IH, M; : (I'y Fy U-T), and by rule (—g),
M - <F1 |_|P2 "2 T>

— It M= N1M2 —3 N1N2 where N1 < MQ, N1 <>N2 (by Lemma Bll) and
M2 —*p N2 then by IH, M2 : <F2 "2 U>, and by rule (—>E), M - <F1|—]F2 "2
).

— If M = (A\a™.My)My —5 My[z" := Ms] = N1 Ny where deg(M3) = n and
x™ € fv(My). By cases on M; (M; cannot be an abstraction):

« If My = z™ then My = N;N,, deg(N1N2) = deg(My) = n, and
M = (Az°.2°)(N; Ny) because by Theorem 7.3.5, n = deg(N;Ny) =
deg(T) = 0and T € GITy. By rule (ax), 2° : {(2° : T') 5 T'), hence by
rule (=), Az%.2° : (() ko T=T), and by rule (=g), (Ax®.2°)(N;Ny) :
(T1 Ty by T).

« If My = M{M] then Mi[z" := M| = Mj[z" := My]M'[x" := M, =
NiN,. So, Mj[z" := Ms] = Ny and M [2" := M| = No.

- If 2™ € fv(M]) and 2™ € fv(M]) then (A\z™.M])My —3 Ny and
(A" MMy —s5 No. By IH, (\a™.M{)Ms : (Iy 5 U=T) and
(Az™ M{ )My : (I'y o U). By Lemma B.1.17 twice, I'y = I} NI,
Iy =T5NTY%, and 3V, V" € [Ty such that M] : (I'}, (2™ : V) b
U=T), My : ('] ko V), M{" = (I, (2™ : V') ko U) and M, :
(I'Y o V). Therefore, I'y My = Ty AT AT, MTY,. By rule (M),

320



Appendiz B. Proofs of Part II

M, - ('Y Ty V1 V'), Because by Lemma B.1.15.4, I} o I',
then by rule (—g), M{M{ : (I, 1 T%, (™ : VI V') ko T). Using
rule (=), Ae™. M{M{ : (I, 1Y 5 (VN V)-T). Finally, by
rule (»g) and because by Lemma B.1.15.4, I, NT, o 'Y M T, we
obtain (A\x™. M{M{ )My : (I1 M Ty T).
- If 2™ € fv(M]) and o™ & fv(M]) then Mi[z" := M| = N; and
M = Ny. We have (Ax™.M])My —5 Ny, so by IH, (Ax™. M) M, :
(I'y o U=T). By Lemma B.1.17, 'y = I')MI"f and 3V € ITy such
that M7 : (I}, (" : V) Fo U=T) and My : (I'] F2 V). Therefore
[Ty =TTy My Because by Lemma B.1.15.4, T o Ty,
by rule (—=g), M{M] : (I, M Ty, (2" : V) ko T), and by rule (—),
Az MM (TyMTy ko V=T). Finally, by rule (—g) and because
by Lemma B.1.15.4, T, MTyol, (Aa™. M{M{ )My : (I1MTy b5 T).
- If 2™ & fv(M]) and 2" € fv(M') then the proof is similar to the
previous case.
N:(Ty by U)) N i (Ty by Uy)
e Case (M)): Let N :([h'MTy b U NU,) and M —3 N.
By IH, M : (I'1 b2 Uy) and M : (I'y k5 Us), hence by rule (M), M : (T" b
Uy N Uy).

N : <F }_2 U>
e Case (exp): Let N* : (el' 5 eU) and M —5 N™.

By Lemmas B.1.5.8 and B.1.5.4, M~ —3 N, and by IH, M~ : (I' -, U). By
Lemma B.1.3.1b, (M~)" = M and by rule (exp), M : (e’ 5 eU) >.

N(FFQU) P}_QUEF/I_QU/
e Case (C): Let N :(I"ky U') and M —5 N.

By IH, M : (I' =5 U) and by rule (C), M : (I = U’). O

Proof of Lemma 7.4.6.
1. 1 By induction on the length of the derivation of M —% N using Lemma B.1.16.

2. 2 By induction on the length of the derivation of M —% N using Lemma B.1.18.
O

Subject reduction and expansion properties for 3 (Sec. 7.4.2)

Proof of Lemma 7.4.7. 1. By induction on the derivation z* : (I' 5 U). We have

five cases:

e Case (ax): Let 29 : ((z9:T) 3 7).

Then it is done using rule (ref).
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e Case (w): Let ol : {(2F : wl) k3 Wl).
Then it is done using rule (ref).
2l (D3 Uy) ot (T3 Uy)
e Case (M): Let ol (D3 U 1US)
By IH, ' = (zF: V), VC Uy and V C U, then by rule (M), V E U; M Us.
ol (T3 U)
o Case (exp): Let 2%l : (e;" 5 e;U).
Then by TH, T' = (2 : V) and V C U, so ;' = (2% : ;V) and by
rule (Cexp), &,V C U,
2l (U U) TV U' CT U
e Case (C): Let ot (T3 U)
By Lemma 7.3.4.3, T C IV and U’ C U and, by IH, I" = (2L : V') and
V' E U'. Then, by Lemma 7.34.2, ' = (% : V), V C V' and, by
rule (tr), VC U.

2. By induction on the derivation Ax”.M : (I' -3 U). We have five cases:

e Case (w): Let A\al. M : (env? deg(Aa’.M)),

el M }_3 w

We are done.
M: (T, 2" U3 T)
e Case (—): Let \el .M : (' 3 U-T).
Then deg(U—T) = © and we are done.
AeE M (D Fs U) A M : (D by Us)
e Case (M): Let el Mo (D3 Uy 1 Uy)
Then deg(U; MU,) = deg(U;) = deg(U,) = K. By IH, we have four cases:
— If Uy = Uy = w¥ then U; MU, = w¥.
— U, =, Uy =1_8x(V;=T;) wherep > land Vi € {1,...,p}. M :
(T, 2t : 8V b3 ExT;) then Uy MU, = Us (WX is a neutral element).
— Uy = &, Uy =1_8x(V;=T;) wherep > land Vi € {1,...,p}. M :
(I, 2t : 8V b3 €k T;) then Uy MU, = U, (w¥ is a neutral element).
— If Uy = M8k (Vi=T;), Uy = MiZ1 &k (Vi=T;) (hence Uy MUy =
M98 (Vi=T;)) where p,qg > 1 and Vi € {1,...,p+q}. M : (T, z" :
€xVi s exT).
el M (T =3 U)
o Case (exp): Let \x™L M+t (e, 5 e;U).
We have deg(e;U) =i :: deg(U) = i :: K’ = K. By IH, we have two

cases:

— If U = w¥' then ;U = w¥.
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—If U = M_8x/(V;=T;), where p > 1 and Vj € {1,...,p}. M :
(T, 2" : €8xV k3 8xrTy). So ;U = M_ 8k (V;—=T;) and by rule (exp),
Vie{l,....,p}. MT: (e, a%F : 8k V) b3 &xTy).

ANl M (DhsU) T UCT by U
e Case (C): Let el M (T B3 U
By Lemma 7.3.4.3, I C I" and U C U’ and by Lemma 7.3.4.4, deg(U) =
deg(U’) = K. By IH, we have two cases:

— If U = w* then, by Lemma B.1.12.3a, U’ = w¥.
— IfU =1_,8x(Vi=T;), where p > 1 and Vi € {1,...,p}. M : (I, 2l :
exV; F3 €xT;). By Lemma B.1.12.3d:

* Either U’ = w¥,

« Or U' = Ni_ 8k (V/->T!), where ¢ > 1 and Vi € {1,...,¢}. 3j €
{1,....p}. V/ CV; ANT; T T]. Let i € {1,...,q}. Because, by
Lemma 7.3.4.3, (T, 2% : 8xV; b3 8xTy) C (IV, 2l : 6 V/ 3 8xT))
then M : (I, zF : 8, V! b3 8xT}).

3. Similar as the proof of 2.

4. By induction on the derivation Mz* : (I',z% : U 3 T). We have only two
cases:
M: k3 V-T) b (2l :U) V) To(zl:U)
e Case (—g): Let MzP (T, (2% :U) 3 T) us-
ing Theorem 7.3.5.
By 1., U C V. Because V=T C U-T, then we have M : (I' -3 U-T).
MzE (T (b U') 3 V)
e Case (C): Let Ma% : (I, (2L :U)F3 V) where IV, (2F : U') 3 V' C
[, (2l : U) k3 V, using Lemma 7.3.4.
By Lemma 7.3.4, T C TV, UC U',and V' C V. By IH, M : (I" b3 U'=V")
and by rule (), M : (' -3 U=V). O

Proof of Lemma 7.4.8. By Lemma 7.3.7.3, ' © A. By Theorem 7.3.5, M, N € Ms,
deg(N) = deg(U) = L, ok(A) and ok(T, 2% : U). By Lemma B.1.13.1a, ok(I' M A).
By Lemma B.1.1.5, M[z* := N] € Mj;. By Lemma 7.3.5.2a, 2 € fv(M). By
Lemma B.1.1.5, deg(M[z" := N]) = deg(M).

We prove the lemma by induction on the derivation M : ([, zl : U 3 V).

e Case (ax): Let 29 : (29 :T)F3T) and N : (A3 T).
Then z°[z® := N| =N : (A3 T).

e Case (w): Let M : (env?

fu(M)\{aL}? (zL : (UL) s wdEg(M)> and N : <A F3 ujL>.
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deg(M[xL::N})> )

By rule (w), Mlz* = N] : (env}, .\ Fs w Because z¥ €

fv(M), we have fv(M[zl := NJ]) = (fv(M) \ {z"}) Ufv(N). We can prove that

(0} ? _ [0}
enve oy oy 1 ALC eNV(C N [ UR (V) = ENV L= n)- Therefore, by rule (C),
Mzt == NJ 't {envg, p oy A F3 wdee(M)),

M:(U,zt U y® U 3 T)
e Case (=): Let \y®.M : (I',z* : U3 U'=T) such that YK'. y%' ¢ fv(N) U
{z"}.
So (A\yf.M)[zt := N] = \y®.M[z* := N]. By Lemma B.1.1.2b, M o N. By
Theorem 7.3.5, y®* & dom(A). By [H, M[zF := N]: (TNA,y* : U’ +3 T). By
rule (=), A\y®.M)[z¥ ;= N]: (T 1A b3 U'=T).

M:(D,al U3 T) y¥ & dom(T, 2l : U)
e Case (—]): Let My M (D al U by wE=T) such that VK'. y' ¢
fv(N) U {zF}.
So (AyE.M)[zF = N| = \yE. .Mzl := N]. By Lemma B.1.1.2b, M o N.
By IH, M[z¥ := N] : (M A k3 T). By Theorem 7.3.5, y* ¢ dom(A). By
rule (=), A\y®. M)zl := N] : ([ M A k3 wE=T).

My : (D2l U b3 VoT) My (Do, 2l : Uy b3 V) Tioly
o Case (—g): Let MMy : (L) M Ty, 2l U MUy 3 T)
where we consider z¥ € fv(M;) N fv(M,), using Theorem 7.3.5.2a, and where
N (A by Uy 11Uy,

By Lemma B.1.1.2a, M;oN and MyoN. By rules (Mg) and (C), N : (A F3 Uy)
and N : (A k3 Us). By IH M[z" := N] : ([1 1A b3 V=T) and M, [zF =
N]: (I'eMA F3 V). By Theorem 7.3.5.2a and Lemma B.1.1.3, I'y TA T’y MTA.
Finally by rule (—g), M[z* := N]: (I; Ty MA F3 T).

The cases x¥ € fv(M;) \ fv(My) or xl € fv(My) \ fv(M;) are similar.

M: (T2t U3 U)) M: (D, 2l U3 Uy)
e Case (M): Let M: (T, 2k U k3 U NUy)

Use IH and rule ().

M: (T, 25Uk V)
o Case (exp): Let M : (e, 2%l : U 3 ¢;V) and N : (A 3 e;U).
By Theorem 7.3.5, deg(N) = deg(e;U) =i :: deg(U). and N~ : (A~ k3 U).
By Lemma B.1.5, (N=9)* = N and M o N~%. By IH, Mzt := N~ : ('
A~ 3 V). By rule (exp) and Lemma B.1.5.5, M [z%L := N] : (e, TTA k3
eZV)

M: X xb U V) Tl U RV ET, 2F Uk V
e Case (C): Let M: (T, 2" :Ukz V) (us-
ing Lemma 7.3.4).
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By Lemma 7.3.4, dom(I') = dom(I"), ' C IV, U C U’ and V' C V. Hence
N : (A 3 U') and, by TH, M[z¥ := N] : ("M A k3 V’). Tt is easy to show
that TMA CTVMA. Hence, "MAR; V ETTAR; V and M[zF := N] :
(FMAR V). O

The next lemma is needed in the proofs.
Lemma B.1.19.
1. Iffv(N) C fv(M) then env, [N = envy.

2. ]fOk(Fl), Ok(rg), fV(M) g dom(Fl) and fV(N) g dom(Fg) then (F1|_|F2) [MN E
(TiTar) M (T2 lw).

Proof of Lemma B.1.19.

1. Let fv(M) = fv(N) U {zl*,... 2L}, Then env, = env%, (z/ : w),. and

(9] _ (0]
envy, [n = envy.

2. By Lemma B.1.13.1a, ok(I'; M T'y). Also, ok(I'1 ), ok(I'2[x) and dom((I'y M
Do) un) = fv(MN) = fv(M)Ufv(N) = dom(I'y [ar)Udom (s [ ) = dom((I'y [ar)M
(T31n)). Now, we show by cases that if ((I'y M) [yn)(2L) = Uy and ((T'y )
(Taln))(2t) = Uy then Uy C Us:

o If 2 € fv(M)Nfv(N) then I'y(zF) = Uj, Ty (xt) = U}, and Uy = UNU; =
Us,.
o If 2l € fv(M) \ fv(N) then:
— If 2% € dom(T';) then T'y(z%) = Uy, Ty(2%) = U] and Uy = U; MU, £
Us.
— If ' & dom(T'y) then T'y(2%) = Uy and Uy = Us.
o If z¥ € fv(N) \ fv(M) then:
— If 2% € dom(Ty) then I'y(z%) = U}, Ty(z¥) = Uy and Uy = U; MU, £
U,.
— If ' & dom(T';) then Ty(2t) = Uy and Uy = Us.

3. Let T = (27 Uj), (y)” : U), and let fu(M) = {21, ... abejw{olt ) 2Ly
such that dj({ylLll, . ,y,?p}, {zlLlll, ..., zbm}). Therefore I' = (lx]LJ : Uj)n, and
ei(Tly) = (x;::Lj : ¢;U;)n. Because e;' = (x;»::Lj : e;Uj)n, (y;-"Lj 0 e;U}),, and
by Lemma B.1.5.1, fu(M*) = {z01, ... aisba by {5 255 such that

. i Lt 3L (R i L 2L
d.]<{y1 17 -5 Yp p}’ {Zl ' yereyAm m})7 then (elr) rM“ = ('rj T ein)n' O

The next two theorems are needed in the proof of subject reduction.

325



Appendiz B. Proofs of Part II

Theorem B.1.20. If M : (I't5 U) and M —5 N then N : (I'|x F3 U). O
Proof of Lemma B.1.20. By induction on the derivation M : (I' -3 U).

e Case (w) follows by Theorem 7.1.11.2 and Lemma B.1.19.1.

M: (T, (zL:U) 3 T)
e Case (—): Let \el.M : (T3 U-T).
Then N = Azl N’ and M —5 N'. By IH, N’ : (T, (¥ : U)) |y b3 T). If
a e fv(N') then N’ : (T'lq et ), (2% 2 U) b3 T) and by rule (=), Az".N' :
(Tharn F3 U=T). Else N : (T'[apr.nv) F3 T) so by rule (=), At N
(T \pr.nv F3 wE=T) and since by Theorem 7.3.5.2 and Lemma 7.3.6.4, U C w¥,
by rule (C), AxL. N’ : (T'|yge v F3 U=T).

M: (T3 T) 2F ¢ dom(T)
e Case (=]): Let Azl M : (T k3 wl=T)
Then N = Az%.N" and M —3 N’. Because x” ¢ fv(M) (using Theorem 7.3.5),
by Theorem 7.1.11.2, 2% ¢ fv(N’). By IH, N' : (Dlgnpgezy F3 T) so by
rule (=), Ael N’ : (Tl e F3 wl=T).
M11<F1|_3U—>T> MQZ(FQ“gU) F1<>F2
o Case (—>E)I Let M1M2 . <F1 M Pg "3 T>

Using Lemma B.1.19.2, case M; —3 N; and N = N; M, and case My —»3
Ny and N = M| N, are easy. Let M; = A\z%. M| and N = M][zL := M,)].
By Lemma 7.3.7.3 and Lemma B.1.1.2, M| o M,. If & € fv(M]) then by
Lemma 7.4.7.2, M| : (['y,z% : U k3 T). By Lemma 7.4.8, Mj[zF := M,] :
(0y M Ty b3 T). If 2l & fu(M7) then by Lemma 7.4.7.3, M{[z" := My] = M :
(I'y 3 Ty and by rule (C), N : ('t ML) [n F3 7).

e Case (M) is by IH.

M <F |_3 U>
o case (exp): Let M ™" : (e, 3 e;U).
If M —5 N then by Lemma B.1.5.9, there is P € M3 such that P = N
and M —5 P. By IH, P : (I'l p k3 U) and by rule (exp) and Lemma B.1.19.3,
N ((eil) v 5 U).

M(FFgU) FFgUEF”—gU,

e Case (C): Let M : (I3 U
Then by IH, Lemma 7.3.4.3 and rule (C), N : (I"[y F3 U’). O
Theorem B.1.21. If M : (I' =3 U) and M —,, N then N : (I' -3 U). O

Proof of Lemma B.1.21. By induction on the derivation M : (I' k3 U).
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e Case (w): Let M : (env, 3 wdss(M)),
Then by Lemma 7.1.11.1, deg(M) = deg(N) and fv(M) = fv(N), and by
rule (w), N : (env% 3 wde)),
M: (T, (zL:U) 3 T)
e Case (—): Let A& M : (I' =3 U-T) .

then we have two cases:

— M = Nz such that ¥ ¢ fv(N) and so by Lemma 7.4.7.4, N : (T 3
U-T).
— N = XP N and M —, N'. By [H, N : (I, (" : U) b3 T) and by
rule (=), N : (I' =3 U-T).
M: (T rF3T) 2F & dom(T)
e Case (—]): Let  AzP. M : (T k3 wl=T)
Therefore by Theorem 7.3.5, 2% & fv(M). Then N = Az“.N" and M —, N'.
By Lemma 7.1.11.1, fv(M) = fv(N’). By IH, N’ : (I' -3 T'), and by rule (=),
N : <F }_3 (UL—>T>

M11<F1|_3U—>T> MQZ(FQ“gU) F1<>F2
e Case (—>E)I Let M1M2 : <F1 1 Pg "3 T>

Then we have two cases:
- M1 —®p N1 and N = NlMg. By IH N1 . <F1 }_3 U—>T> and by rule (—>E),
N : <F1 |_|F2 |_3 T)
- M2 —>n N2 and N = MlNQ. By 1H N2 : <F2 }_3 U> and by rule (—>E),
N : <F1 |_|F2 |_3 T)
e Case (M) is by IH and rule (7).

M - <F }_3 U>
o Case (exp): Let M T : (e, 3 ;U).

Then by Lemma B.1.5.9, there exists P € M3 such that P™" = N and M —,
P. By IH, P: (I' k3 U) and by rule (exp), N : (e;I' 3 e;U).

M(FFgU) FFgUEF”—gU,
e Case (C): Let M : (I3 U

Then by IH and rule (C), N : (I" k3 U"). O

Proof of Theorem 7.4.10. Proof is by induction on the reduction M —7% N using
Theorem B.1.20 and Theorem B.1.21. O
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Proof of Lemma 7.4.12. By Theorem 7.3.5.2, we have M[zF := N| € Mj3. By
Lemma B.1.1.5a, M ¢ N and deg(N) = L. Let us prove the result by induction
on the derivation M[z% := N] : (I' b3 U) and then by case on the last rule of the

derivation.

e Case (ax): Let y?: ((y?:T) 3 T)
Then M = 2% and N = y?. By rule (ax), 29 : (2 : T) b3 T).

e Case (w): Let M[zF := N]: (enV’

deg(M[zl:=N
MzL:=N] e (Ml D>

}_3(4)

By Lemma B.1.1.5b, deg(M) = deg(M[z* := NJ]). Therefore, by rule (w),
M : (envg, oy pry (zl : wE) by wiee®)) and N : (env% k3 wl) and because
fv(Mz" := N]) = (fv(M) \ {z"}) URV(N), envg, py, ory Menviy = envi o

Mzl := N]: (T, (y® : W) k3 T)

e Case (—): Let \y®.M[z" := N]: (T3 W-T) where VK. y*' ¢ fv(N) U
{z*}.
By IH, 3 V,T';,Ty such that M : (I'y,at : V 3 T), N : (I'y; k3 V) and
(T, y® : W) =T, M Ty. By Theorem 7.3.5.2a, fv(N) = dom(I'y) and fv(M) =
dom(Ty) U {z¥}. Because y* & fv(N), 2 & dom(T'y) and Ty = A,y : W.
Hence M : (A, y® : Wzt : V =3 T). By rule (=), \y%.M : (A, 2tV
W-T). Finally, I' = Ay M1 Ts.

Mzt := N]: (T3 T) y® & dom(T)
o Case (=)): Let  \yS. .Mzt := N]: (T k3 wX=T)  where VK. 4" & fu(N)U
{z*}.
By IH, = V,Fl,rg such that M : <F1,SL’L VvV |_3 T), N <F2 }_3 V> and
[ =T, M. Since y® ¢ dom(T'y) U {al}, AyE M - (T, 28 - V b3 0BT,

My[z" = N] :
e Case (—g): Let Ml[:cL
F1<>F2 and M:MlMQ.

< "3 W—>T> MQ[ZIZ’L = N] . <F2 "3 W>
= N]MQ[SL’L = N] . <F1 I FQ }_3 T> where

By Lemmas B.1.1.1 and B.1.1.2a, M; ¢ M5, We have three cases:

— If 2% € fv(M;) Nfv(My) then by TH, 3 Vi, Vo, Ay, Ay, A, A} such that
My : (Aq, (282 V) B3 WoT), My : (A} (2 2 Vo) b3 W), N & (Ag 3 V1),
N (A F3 Vo), Iy = Ay 1Ay and Ty = A} AL, Because M o Mo,
then by Lemma B.1.15.2, (A, (zL : V1)) o (A, (z* : V3)). Then, by
rule (—g), MiMy : (A; A} (28 2 Vi1 V,) B3 T) and by rule (7)),
N (As AL 3 Vi V,). Finally, I'y Ty = Ay M A, AL AL

— If 2% € fv(M) \ fv(Ms) then My[z" := N] = My and by TH, 3V, A}, A,
such that M1 . <A1, (IL . V) }_3 W—>T>, N : <A2 |_3 V), and Fl = A1|_|A2.
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Because M; ¢ My, then by Lemma B.1.15.2, (A, (z : V)) o Ty By
rule (—>E), M1M2 . <A1 M FQ, (ZL’L . V) |_3 T) and Fl I FQ = Al M AQ I FQ.

— If 2% € fv(My) \ fv(M;) then My[z" := N] = My and by IH, 3V, A}, A,
such that My : (Ay, (xl: V) F3 W), N : (Ay 3 V), and Ty = A; T A,.
Because M; ¢ My, then by Lemma B.1.15.2, (Ay, (2% : V)) o T;. By
rule (—g), MiMy : (LA, (22 V)3 Ty and Ty MTy =T 1A M A,

Mz := N]: (T 3 Uy)  Mlxl := N]: ([ 3 Uy)

e Case (M): Let Mzt = N]: ([ k3 Uy NUs)
By IH, 3 Vi, Vo, Ay, A, AL, Al such that M : (A, ot - Vi3 Uy, M2 (A 2l
Vobs Uy), N:(Ag b3 Vi), N : (AL g Vo), and T' = Ay M Ay = AJ AL By
rule (M), M : (A TTAL 2l ViV b3 Uy NUy) and N @ (A A, B3 ViTTVA).
Finally, I' = Ay M Ay A MAS.

Mlz* := N| : (T 3 U)

e Case (exp): Let M [x¥3l .= Nt : (e;I" -3 e;U) using Lemma B.1.5.5.
By IH, 3 V,T';, Ty such that M : (T, 2l : V3 U), N : (o k3 V) and T =
[y MTy. So by rule (exp), M : (e;T'y,z7%F : ;V b3 e;U), N : (e;I'y 3 e;V)
and e;I' = ¢,;I'; Me;Is.

Mzt .= N] (" U) TR U CT R U
e Case (C): Let M[z¥ .= N]: (T 3 U)
By Lemma 7.34.2, I' C IV and U’ C U. By IH, 3 V,I'{, I}, such that M :
(I, 2l -V =3 U'Y, N : (T b3 V) and IV = ') N T%. By Lemma B.1.12.5,
[ =T,N0y, 'y ETY, and Ty C T, Finally, by rule (C), M : (T, 2% : V 3 U)
and N : (I'y 3 V). O

The next lemma is useful to prove that subject expansion w.r.t. § holds in 5.

Lemma B.1.22. If M[z¥ := N]: (' b3 U), L = deg(M), and iz = fv((Az*.M)N)
then (\z™ . M)N : (D% 5 U). O

Proof of Lemma B.1.22. Let deg(U) = K. By Theorem 7.3.5.2, M|zl := N] € M.
By Lemma B.1.1.5a, M ¢ N and deg(N) = L. By definition \xX*.M € Msj. By
Lemma B.1.1.2a, A\xX.M o N. By definition, (\zX.M)N € Mj. By Lemma B.1.1.5b
and Theorem 7.3.5.2, deg(T") = deg(U) = K = deg(M|[z! := N|) = deg(M) =
deg((Az".M)N). So L = K and there exists K’ such that L = K :: K'. We have

two cases:

o If 2% € fv(M) then, by Lemma 7.4.12, 3 V,I';, 'y such that M : (I';,zt :
Vs U), N: (Tybts V), and I' = I'y M T's. By Theorem 7.3.5.2, ok(I';)
and ok(I's). By Lemma B.1.13.1a, ok(I';y M I'y). So, it is easy to prove, using
Lemma B.1.13.5, that ok(I'1®). By Lemma 7.3.7.3, (I'y, 2% : V))oT'y, so [y ols.
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By Theorem 7.3.5.2, deg(I'y) = deg(M) = deg(U) = K and L = deg(N) =
deg(V') < deg(I'y). By Lemma B.1.12.2, we have two cases :

— If U = w¥ then by Lemma 7.3.7.2, (\z".M)N : (I'1% -5 U).

- U =¢&xm_, T, where p > 1 and Vi € {1,...,p}. T; € Ty, then by
Theorem 7.3.5.2, M~ : (D75 2K . V=K -3 MP_|T;). By rule (), Vi €
{1,...,p}. M=K . (I7%, 2% V=K =3 T3), so by rule (=), \a®" . M—K .
(TT5 3 V-KST;). Again by Theorem 7.3.5.2, N~X : (I';% k3 V%) and
because I} oI, then by Lemma B.1.13.4, T ¥ oI'; ¥ so by rule (=), Vi €
{1,...,p}. AX' M~ EYN-K . (T7E T, k3 T;). Finally by rules (M)
and (exp), (Az". M)N : (Iy M Ty b3 U), so (AzE. M)N : (D% 5 U).

o If 2% & fv(M) then M : (T' 3 U). By Theorem 7.3.5.2, ok(T'). So, it is easy
to prove, using Lemma B.1.13.5, that ok(I'1*). By Lemma B.1.12.2, we have

two cases :

— If U = w¥ then by Lemma 7.3.7.2, (\z“.M)N : (I'1% 5 U).

— IfU =&xMM_,T; wherep > 1l and Vi € {1,...,p}. T; € Ty,, and by Theo-
rem 7.3.5.2, M—5 : (D=5 3 P_ | T3). Byrule (C), Vi€ {1,...,p}. M~K .
(P75 }=3 T;). Using Lemma B.1.5.1 and by induction on K, we can prove
that % ¢ f'v(M~X). So by Theorem 7.3.5.2a, 2" ¢ dom(I'"¥). So by
rule (=), Ae®' M=K (I7F b3 w¥'ST;). By rule (w), N75 @ (env i b

WX’y and N : (env% F3 w’). By Theorem 7.3.5.2, deg(env%) = deg(N) =

L. By Lemma 7.3.7.3, ' o env}. By Lemma B.1.13.4, T"% o env .

By rule (=), Vi € {1,...,p}. A" M F)NK . (I menvf  F3

T;). Finally by rules (M) and (exp), (Azl.M)N : (I'Menvy, k3 U), so

(Azh M)N : (I'1% b5 U).

Next, we give the main block for the proof of subject S-expansion.
Theorem B.1.23. If N : ('3 U) and M —5 N then M : (T'T™ k5 U). O
Proof of Lemma B.1.23. By induction on the derivation N : (I' 3 U) and then by

case on the last rule of the derivation.
e Case (ax): Let 22 : ((z9:T) k3 T) and M —5 z©.

Then M = (A\y%.M,)Ms, and z© = M,[y* = M,]. Because M € M3 then
K = deg(M;). By Lemma B.1.22, M : ((2© : T)1M k3 T').

e Case (w): Let N : (env% 3 wie™)) and M —5 N.
By Theorem 7.1.11.2, fv(N) C fv(M) and deg(M) = deg(/N). We have

(env? )™ = env},. By rtule (w), M : (env§, k3 wie™))  Hence, M :

((env3)TM by wies)),
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N :([,al U3 T)
e Case (—=): Let \e?.N : (' b3 U-T) and M —»5 Azl . N.

We have two cases:

— If M = \z.M’ where M' —s5 N then by IH, M’ : (T, (z% : U))1™ k3
T). Since by Theorem 7.1.11.2 and Theorem 7.3.5.2a, ¥ € fv(N) C
fv(M') then we have (T, (2% : U))1MM) = VM=) (2L ) and
DV} — ™M Hence, M : (DM (zF : U) 5 T) and
finally, by rule (=), AL M’ : (D" M |y UT).

— If M = (\y®.M;)My and \z".N = M, [y’ := M,] then, because M € M3
then K = deg(M;), and by Lemma B.1.22, because M, [yX := M,] : (I' I3
U—T), we have (A\y™ M) M, : (DO -MOM2 - 7Y,

N:(I'k3T) at ¢ dom(T)
e Case (={): Let AeP.N:(I'bk3wl>T) and M —5 N.

Then this case is similar to the above case.

N12<P1|_3U—>T> N22<F2|_3U> F1<>F2
e Case (—>E>I Let N1N2 . <F1 I FQ }_3 T> and M -3 NlNg.

We have three cases:

— M = M;N; where M; —3 N; and M; ¢ N, using Lemma B.1.1. By
IH, My : (DM b3 U-T). Tt is easy to show that (['y 1 Ty) M2 =
[ TMi My, Since M o N, by Lemma 7.3.7.3, I'TMt o T'y. Finally, use
rule (—g).

— M = N1 M, where My —3 N,. Similar to the above case.

— If M = (A\zb.M;)My and NiNy = M|l := My] then, because M €

M3 then L = deg(M;), and by Lemma B.1.22, (AzZ.M;)M, : ((Ty M
L) O MOMz g ),

NZ<F|_3U1> N<F|_3U2>
e Case (M)): Let N ('3 Uy N U,) and M —5 N.

Then use IH.
N <F }_3 U)
o Case (exp): Let N7 : (e;I" b3 e;U).

By Lemma B.1.5.8 then there is P € Mj such that M = P*7 and P —4 N.
By IH, P: (I'1” k3 U) and by rule (exp), M : {(e;T)1™ 3 e;U) (it is easy to
prove that e;(I'1F) = (e;I")1M).
N(Fi‘gU) Pi_gUEF/I_gU/
e Case (C): Let N :(I"k3U') and M —5 N.
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By Lemma 7.3.4.3, IV C T" and U C U’. It is easy to show that [V™ C I'tM
and hence by Lemma 7.3.4.3, 1™ 3 U C "M 3 U, By IH, M : (MM 3
U). Hence, by rule (C), we have M : (I"TM =5 U"). O

Proof of Theorem 7.4.14. By induction on the length of the derivation M —% N
using Theorem B.1.23 and the fact that if fv(P) C fv(Q) then (I'T)19 =1T1¢. O

B.2 Realisability semantics and their complete-
ness (Ch. 8)

B.2.1 Realisability (Sec. 8.1)

Proof of Lemma 8.1.2. 1. easy.

2. If M —* N* where N € M, then, by Lemma 7.1.11.1, Lemma B.1.3.1 and
Lemma B.1.4.3, M = P™ and P —5 N. Because M € SAT", P € M and so
Pt=MeM™,

3. If M —* N* where N € M, then by Lemma B.1.5.8, M = P* such that
P e Msand P —, N. Because M € SAT", P € M and so P =M € .

4. Let i € {1,2,3}, M € My ~ My and N —* M. If P € M, such that Po N
then by Lemma B.1.2.1, P o M. So, by definition, M P € M,. Because M, C
M, then MP € M;. In case i = 3, because M P € Ms, deg(M) < deg(P)
and by Lemma 7.1.11, deg(M) = deg(N). So NP € M; and NP —* MP.
Because MP € M, and My € SAT” then NP € M,. Hence, N € My ~ M,.

5. Let M € (M, ~ My)* then M = Nt and N € My ~ M,. If P € M,"
such that M o P then P = Q*, Q € M, and MP = NTQ* = (NQ)*. By
Lemma B.1.3.1(c)i, N ¢ Q and hence NQ € My and MP € M,*. Thus
M e Mt ~ Myt.

6. Let M € (M, ~ Mo)*i then M = N* and N € M, ~ M,. Let P € M,
such that M o P. Then P = Q%% such that Q € M,. Because M ¢ P then by
Lemma B.1.5.2, No Q. So NQ € M,. Because My C Mjs then NQ € Ms.
Because (NQ)* = N+iQ+i = MP then MP € M,'. Hence, M € M, ~
M,

7.let M € Mt ~» Myt. Because M1 ! Myt then there is N € M, such
that M o N. We have MN € M,* then MN = P* where P € M,. Hence,
M = M. Let Ny € M, such that M; o N;. We have Ny € M;*. By
Lemma B.1.3.1(c)i, Mo N;* and we have (M;N;)* = M, N,* € My*. Hence
MN, € My. Thus My, € My ~ My and M = M+t € (M, ~ My)™".
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+1

8. Let M € Mil ~ M;Z such that Mil ! M, . By hypothesis, there exists
P € M, such that M o P. Then MP € M,'. Hence MP = Q* such
that Q € M,. Because My C My then Q € Mj and by Lemma B.1.5.1,
MP € Mj3. Hence by definition M € M3 and by Lemma B.1.5.1, deg(M) =
deg(Q*") = i :: deg(Q). So by Lemma B.1.5.7, there exists M; € Mj such
that M = M. Let Ny € M, such that M, o N;. By definition N;" € M,
and by Lemma B.1.5.2, M o Nj, i.e., M;" o Nj*. So, MN;" € M,'. Hence,
M;N, € My. Thus, M; € My ~ My and M = M;™" € (M, ~ My)*.

9. It M —% N and N € MN My then by Lemma 7.1.11.2, M e MNMz. O

Proof of Lemma 8.1.4.

1. 1la.
1b.

1c

By induction on U using Lemma 8.1.2.

We prove YV € Var,. VAREL C Z(U) € M¥ by induction on U. Case U =
a: by definition. Case U = w’: We have Vx € Var;. VARL € ME C ME.
Case U = U, MU, (resp. U = e;V): use IH since deg(U;) = deg(Us) (resp.
deg(U) = i :: deg(V), Vo € Var;. (VARE)* = VARZ® and (ME)+ =
MEE) Case U = VT by definition, K = deg(V) = deg(T) = ©.

o Letw € Vary, Ny,..., N, € Mssuch that (Vi € {1,...,k}. deg(V;) =
©), and o{z? Ny, ..., Ni}. Let N € Z(V) such that (z?Ny ... Ni)o
N. By IH, N € M¥ and deg(N) = K = ©. Again, by IH,
22Ny ... NyN € Z(T). Thus 2°N; ... N, € Z(V-T).

o Let M € Z(V-T). Let x € Var; such that VL. z¥ ¢ fv(M). By IH,
X € Z(V) then Mx® € Z(T) and, by TH, deg(Mz"X) = @ (using
Lemma B.1.12.1). Thus deg(M) = ©.

By definition, 2™ € VAR]. We prove VAR? C Z(U) € M" by induction
on U € GITy. Case U = a: by definition. Case U = U MV (resp.
U = eU’): use IH since by Lemma 7.2.3, U,V € GITy and deg(U) =
deg(V) (resp. U’ € GITy, deg(U) = deg(U’) + 1, (VAR?)™ = VAR"*! and
(M) = My, Case U = U~T: Lemma 7.2.3, U,T € GITy and
m = deg(U) > deg(T") = n.

e Let 2"Ny... N, € My and N € Z(U) such that (z"Ny...Ny) o N.
By IH, deg(N) = m > n and N € M™. Therefore N € M,. We
have "Ny ... NyN € Msy. Hence, 2"N; ... NyN € VAR]. By IH,
"Ny ...NgN € Z(T). Thus "Ny ... N, € Z(U-T).

o Let M € Z(U-T). Let x € Var; such that Vp. 2P & fv(M). Hence,
M oz™. By IH, 2™ € Z(U). Then Ma™ € Z(T), and so by IH
Mz™ € M". By Lemma 7.1.6, M € M and deg(M) < m. Since
deg(Mz™) = min(deg(M), m) = n, deg(M) = n and so M € M".
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2. By induction of the derivation U C V. O

Proof of Lemma 8.1.6.

e Case 1 / ko Let ¢ € {1,2}. We prove the result by induction on the
derivation of M : ((x;* : U;), F; U) and then by case on the last rule of
the derivation. First note, by Theorem 7.3.5 and Lemma 8.1.4.1c, M € M.,
Vi € {1,...,n}. U; € GITy Adeg(U;) = n; AN; € M™ and VV € GITy N

ITy,. Z(V) # @. By Lemma B.1.1.5a, M[(z]" := N;),] € Ma.

T e GITy deg(T)=n
— Case (ax) of Fy: Let 2™ : (2" :T)FH T) and Ny € Z(T).
Then z"[z" := N;] = Ny € Z(T).
T e GITy
— Case (ax) of Fo: Let 2% : ((2°: T) b5 T) and N, € Z(T).
Then 2°[2° := N,| = N, € Z(T).
M {((z]" U, (2™ U) F; T)
— Case (—): Let Aa™ M : ((z}" : U;)p by U-T) .
We take Vi € {1,....n}. N; € Z(U;) AVm/. 2™ ¢ fv(N;). By The-
orem 7.3.5, U,T € GITy and deg(U) = m. Let N € Z(U) such that
(Ax™. M)[(x]" := N;)nJoN. By Lemma 8.1.4, N € M™. Since (Az™. M[(z" :=
Ni)n])oN, by Lemma B.1.1, M[(z}" := N;),JoN and M|[(z]" := N;),][z™ :=
N] = M[(z}" := Nj)p, 2™ = N] € M. Hence, by IH, M|[(z]" :=
Ni)p, 2™ = N] € Z(T) and (Ax™.M[(z]* := Np)n])N —5 M|[(z]" =
N, = N| € Z(T). Since, by Lemma 8.1.4, Z(T') is [-saturated
then (Az™. . M[(z]" := N1),])N € Z(T') and hence \x™. M|(z!" := N;),] €
IZ(U) ~Z(T) =Z(U-T).
M, : (D) Fi U=T) My: (Do UY Tyoly
— Case (—g): Let MMy :(IyN Ty T)
Let Iy = (27" - Upn, (77 = Vi), T2 = (27" - U], (2% - Wy), and Ty 11
Ly = (] : Uy VU, ()7 2 Vi)m, (24 Wa)p. Let Vie {1,...,n}. P, €
Zw;nul),vje{l,...,m}. Q; € Z(V;) and Vk € {1,...,7r}. R, € Z(Wy)
where (M My)[(z]" = Pi)n, (y;” = Qj)m, (2" := Ri)p] € My. Let
Ny = My[(z]" = P, (y;” = Qj)m) and Ny = My[(a]" := Pi)p, (2" =
Ry)p). By Theorem 7.3.5.2a, fv(M;) = dom(I';) and fv(My) = dom(I'y).
Hence, (MiMo)[(2}" := P)n,(y;" = Qj)m, (24" := Ri)p] = N1Ny. By
Lemma B.1.1, Ny € My, Ny € My, and N; ¢ No. By IH, Ny € Z(U) ~
I(T) and Ny € Z(U). Hence, NNy = (MiMy)[(z]" := Pp)n, (y;” =
Qj)ms (2" = Ry)p) € I(T').
M:((x:U)p i Uy M:{((z]" Vi) V)
— Case (My): Let M:{((z;":U;n V), H, UunV) (note the
use Theorem 7.3.5.2a).
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We have, Vi € {1,...,n}. N; € Z(U; N V;) = Z(U;) N Z(V;) By IH,
M[(z}" := N;),) € Z(U) and M[(z}" := N;),] € Z(V). Hence, M|[(x}" :=
Nl eZ(UNV).
M :((x] :T;)p i U)

— Case (exp): Let M* : (21 . eTy), b el).
Let Vi € {1,...,n}. N; € Z(eT}) = Z(T;)* where M*[(z}"" == N;),] €
M. Then Vi € {1,...,n}. N; = B,"AP, € Z(T;). By Lemma B.1.3.1(c)i,
oM, Py,...,P,}. By IH, M[(z]" := P,),] € Z(U). Hence, by lemma
B.1.3.2, M*[(z"! := P1),] = (M[(2} := P),])* € Z(U)* = Z(el).

M:ThyU T ULCT U

— Case (C): Let M T U
By Lemma 7.3.4, we have I' = (27" : U;), and [' = (27" : U/),,, where
Vi € {1,...,n}. U C U;, and U C U'. By Lemma 8.14.2, Vi €
{1,...,n}. N; € Z(U;). By IH, M[(z" := N;),] € Z(U’"). By Lemma 8.1.4.2,
M[(z}" == N;),] € Z(U).

)

e Case F3: We prove the result by induction on the derivation M : <(ij] :

Uj)n F3 U) and then by case on the last rule of the derivation. First note,
by Theorem 7.3.5 and Lemma 8.1.4.1b, M € M3, Vj € {1,...,n}. deg(U,) =
Ly AN;j € My, and ¥V € ITy,. Z(V) # @. By Lemma B.1.1.5a, M[(a}’ :=
N;)n] € Ms.

— Case (ax): Let 22 : ((z9:T) 3 T).

Let N € Z(T) then 2°[z? := N| = N € Z(T).
— Case (w): Let M : (env§, -3 wdee(D),

Let env}, = (:lij] s whi), so fu(M) = {af' ... 2L}, By Lemma B.1.1.5,
deg(M[(z; = N;),]) = deg(M) and M[(z}" = N;),] € My =
T (wdesM)),

M (2] Up)u, (25 V) 3 T)
— Case (—): Let \z®.M: ((:EJL] :Uj)n F3 V-T) such that VK'. Vj €
{1,...,n}. 25 & fv(IN;).

We have, (Az® M)[(z7 = N}),| = AeX M[(z} = N;),]. Let N € Z(V)

J J

such that (Az®.M)[(z}” := N;),]o N. By Theorem 7.3.5.2, deg(V) = K.
Because N € Z(V) and by Lemma 8.1.4.1, Z(V) C MK, we have
deg(N) = K. By Lemma B.1.1.2 and Lemma B.1.1.5, ]\4[(:1thJ = N;)n|©
N and M[(z}’ = N)),|[z" = N] = M[(z}’ := N)),,a" = N] €

J

Msj.  Hence, ()\atK.M[(zLj = N;)o))N € M3 and ()\atK.M[(zLj =

J J
N)u)N o, M[(2}7 := N)),, (2 := N)]. By IH, M[(z" := N)),,, (z" =
N)|] € Z(T). Because, by Lemma 8.1.4.1, Z(T') is r-saturated then
A\eX.M((z} == N;),)N € Z(T) and finally Ae®.M|[(z}" = N;),] €

I(V) ~ I(T) = T(V-T).
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M {((z) U s T) o & dom((z7 : U,),)

— Case (—1): Let e M <($]LJ :Uj)p by 0BT such that
VK'.Vj € {1,...,n}. 25" & fu(N;).
Let N € Z(w®) = ./\/l§ such that (Az’. M)[( = N) ]<>N By
Theorem 7.3.5.2a, # & fv(M). We have, (\z [( = Nj),] =

Az M(z; b N;)n]. Because N € Z(w®) = ME by Lemma 8.1.4.1,
deg(N) = K. By Lemma B.1.1.2 and Lemma B.1.1.5, M[(x; i = Nj),] o
N and M{(z} = N)),J[a¥ = N] = M|z}’ = N])n,xK .= N] =
M(z} = j)n] € My. Hence, (A\eX.M[(z;” == N;),))N € M and
MK M((z = Nj) )N -, M[(z;’ = N)),,(z" = N)|. By IH,
.M[(xfJ := N;)n] € Z(T). Because, by Lemma 8.1.4.1, Z(T') is r-saturated
then (A’ ]\4[(:55J = N;),])N € Z(T) and so )\:EK.M[(xfj = N;)n| €
Z(wB) ~ I(T) = Z(wE=T).
M : (D) b5 VT) My:(Tobs V) [0l

— Case (—>E)Z Let M1M2 : <F1 1 FQ }_3 T>
. . . K’
Let Ty = (¢ © Up)u (4 ¢ Vidus D2 = (a7 © Ui (2 = Wy)y
such that dj({y;", ...,ymm} {zl ,...,zf”}) and Iy M Ty = (:)st] s U; M
Uy (427 Vi), (27 = W), Let ¥j € {1,...,n}. P, € T(U; N UY),

Vie{l,....m}. Q; € Z(V;), and Vj € {1,. ..,p} R; € Z(W;). There-
fore, Vj € {1,...,n}. P EI( ;)NZ(U;). By hypothesis, (M1M2)[(:cj =

P-)n,(yfj = Qj)ms (2 K R)] = N1N2 € Msj where using The-
orem 7.3.5, N = Ml[( = P)n,( = Qj)m] € M3z and N, =
MQ[( S0l ) ( ) ]eMg and N1<>N2. By IH, N1 EI(V)""‘)
Z(T) and Ny e Z(V ) Hence, NyN, € Z(T).

M (@7 U s Vi) M (a7 2 Up)n ba Vi)

— Case (M)): Let M : <(l’]LJ 2Uj)p B3 ViT V)
By IH, M[(z}’ := N;),] € Z(Vi) and M[(z}’ := N;),] € Z(V3). Hence,
M{[(a5” = Nj)u] € Z(ViM V).

M : ((zp* : Up)n ks U)

— Case (exp): Let M*7 . (21" . e;U), F3 e;U).
We take, Vk € {1,...,n}. Ny € Z(e;Uy) = Z(Uy)". Then Vk €
{1,...,n}. N, = P,jj/\Pk € Z(Uy). By Lemma 8.1.4.1b,Vk € {1,...,n}. P, €
ME+ By Lemma B.1.5.3, o{ M}YU{P; | k € {1,...,n}}. By Lemma B.1.1.5,
M(zg* = Pp)n] € Ms. By IH, M[(zt* := P),] € Z(T). Hence, by
Lemma B.1.5.5, M*[(x] " .= Ny),] = (M[(zt* == P),))V € Z(U)H =
Z(e;U).

M:TH3U THUCT R U
— Case (C): Let M T3 U

By Lemma 7.3.4, we have I" = (:E]LJ 2Uj)pand I' = (:E]LJ : Uj)n, such that
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Vi€ {l,...,n}. U EU; and U E U'. By Lemma 8.1.4.2, N; € Z(Uj)
then, by IH, M[(x] L = N)),] € Z(U) and, by Lemma 8.1.4.2, M[(z} :=
N;), € Z(U).

0

Next we give a lemma concerning reductions in AI™ that will be used in the rest

of the article.

Lemma B.2.1.
1. If My"™ := 2] =45 N then M —5 N' where N = N'[y"" := z].
2. If M[y" := x2] has a B-normal form then M has a $-normal form.
3. Letk>1. If Mx{l .. x,lj 1s normalisable then M is normalisable.

4. Letk > 1,4 € {1,....k}, 1 > 0, 'Ny...N; be in normal form and M

be closed. If Mx{ ) i" —DE a:le...Nl then for some m > 1 and n < I,
M —7 PRI )\:)sf;b”a:M M where n +k =m + 1, M; ~g N; for every
je{l,....,n} and N4, ﬁxm+] for every j € {1,...,k —m}. O

Proof of Lemma B.2.1.
1. By induction on M[y" := z2] —5 N.

2. M[y" := 2] —% P where P is in f-normal form. The proof is by induction
on M[y" := z"] —% P using 1.

3. By induction on k£ > 1. We only prove the basic case. The proof is by cases.

— If Mz} — M’xl where M'z!" is in S-normal form and M —5 M’ then
M’ is in (- normal form and M is S-normalising.

— If Mz} —7 Ay' . Nzl —5 Nyt == 2]] — —7% P where P is in S-normal
form and M —7 Ay N then by 2., N has a -normal form and so,

Ayt N has a 3-normal form. Hence, M has a $-normal form.

4. By 3., M is normalisable, and, since M is closed, its normal form is as follows:

el Aalm ZTM,y .. M, for n,m > 0 and where each M; is a normal form.
Using Theorem 7.1.13, /Ny ... N; ~5 (Azl'. ... Aalm. lel M ):)3{1 T
Hence m < k and Ny ... N; ~g 2/ M, ... Mnxf;”jll . . Finally, 2/ = 2,
n<lii<m,l=n+k—m,Vje{l,...,n}. M; ~3 Nj, ande e{l,....k—
). Nousy 2y £t s
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Proof of Example 8.1.9.

1. Let y € Vary and take M = {M € M° | M —% ¢y°V (k> 0Axz € Vary AM —
2Ny ... Ni)}. The set M is B-saturated and Va € Vary. VAR? € M C M°,
Let Z be a 3;-interpretation such that Z(a) = Z(b) = M. If M € [(allb)—a]s,
then M is closed and M € M ~» M. Since My’ € M (because y° € M and
Moy®), M is closed, and 2° # 4°, by Lemma 7.1.11.3, My° —7 y". Hence, by
Lemma B.2.1.4, M —% A\y°.5°. By Lemma 7.1.11.3, deg(M) = deg(\y".¢y°) =
0 and M € M°.

Conversely, let M € M? and M —% A\y”.y°. By Lemma 7.1.11.3, M is closed.
Let Z be a [y-interpretation and N € Z(alMb). Because M is closed, we have
M o N. Since Z(a) is saturated, N € Z(a) and MN —7% N, then MN € Z(a)
and hence M € Z(aMb) ~» Z(a). Finally, M € [(alb)—a]gs,.

2 If M\y°.9° : (() k1 (aMb)—a), then by Lemma 7.4.1.2, 4% : {(y° : alb) I, a)
and by Lemma 7.4.1.1, a = alb. Absurd because a # b.

3. Easy using rule (C).

4. Let y € Vary and M = {M € MS | (k> 0Ax € Vary AM —% 22Ny ... Ny V
M —DE y?}. The set M is [-saturated and Vz € Var. VAR? C M C ./\/l?.
Take a fs-interpretation Z such that Z(a) = M. If M € [idg]s, then M is
closed and M € M ~» M. Because y© € M and M o y® then My® € M
and ((My? —% 29N;... Ny where k > 0 and @ € Vary) or My? —} y9).
Because M is closed and 2% # y©, by Lemma 7.1.11.2, My® —} y°. Hence,
by Lemma B.2.1.4, M —% A\y®.y° and, by Lemma 7.1.11.2, M € Mg.

Conversely, let M € Mg such that M is closed and M —% A\y®.y®. Let T be
a fs-interpretation and N € Z(a) such that M ¢ N. By Lemma 8.1.4.1b, N €
MG, so MN € Mg. Since Z(a) is (-saturated and MN —% N, MN € I(a).
Therefore M € Z(a) ~» Z(a) and M € [ido)g,-

5. By Lemma 8.1.8 and 4., [idi|s, = [e1(a—a)]g, = [a—>a]§31 = [ido]E; ={M €
M| M =% Ay 5y},

6. Let y € Vary, My = {M € M§ | M —% y°V (k> 0Az € Var; A M —3
2PNy ... Ni)}and My = {M € M5 | M —% yy°V (k > 0Az € Var, A(M —
29Ny .. N VM =% y?(x?Ny ... N;)))}. The sets My, M, are (-saturated
and Vo € Var. Vi € {1,2}. VAR? C M; C M3. Let Z be a s-interpretation
such that Z(a) = M, and Z(b) = M,. If M € [d]s, then M is closed (hence
Moy?) and M € (M, N (M; ~ Mj)) ~ M,y. Because y¢ € M; and
Yy € My~ My, y© € My N (M ~ My) and My® € M,. Since 22 # 42, by
Lemma 7.1.11.2, My? —7% y“y°. Hence, by Lemma B.2.1.4, M —% \y?.y“y®
and, by Lemma 7.1.11.2, deg(M) = @ and M € M.
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Conversely, let M € MY such that M is closed and M —% Ay®.y“y?. Let T
be a fs-interpretation and N € Z(al (a—b)) = Z(a) N (I( )~ I( )) such
that M o N. By Lemma 8.1.4.1b and Lemma B.1.1.1, N € MY and NoN. So
NN, MN € Mg. Since Z(b) is f-saturated, NN € Z(b) and MN —% NN, we
have M N € Z(b) and hence M € Z(al(a—b)) ~» Z(b). Therefore, M € [d]s,

7. Let f,y € Vary such that f # y and take M = {M € M5 | k,n > 0Ax € Var|A
(M —% (fO)"(x°Ny...Np) VM —% (f9)"y?)}. The set M is [-saturated
and Vz € Var;. VAR? CMC Mg@. Let Z be a (s-interpretation such that
Z(a) = M. If M € [natgs, then M is closed and M € (M ~» M) ~ (M ~» M).
We have f© € M ~ M, y° € M and o{M, f?,4°} then M f%y® € M and
(M foy@ —5 (fO)"(x?Ny... Ng) or M fPy@ —5 (f9)"y?) where n,k > 0
and = € Var1 Since M is closed and dj({z?}, {y , f°}), by Lemma 7.1.11.2,
M fy® —% (f€)"y? where n > 1. Hence, by Lemma B.2.1.4, M —} \f@.f¢
or M —3 A2 y?.(f9)"y® where n > 1. Moreover, by Lemma 7.1.11.2,
deg(M) = @ and M € M?.

Conversely, let M € Mg such that M is closed and M —% Af°.f¢ or M —
AfONYC.(fO)"y® where n > 1. Let Z be a (s-interpretation, N € Z(a—a)
Z(a) ~ I(a) and N’ € Z(a) such that o{M, N, N'}. By Lemma 8.1.4.1b,
N,N" € M3, s0 MNN' (N)"N' € Mg, where m > 0. It is easy to show, by
induction on m > 0, that (N)™N' € Z(a). Since MNN' —% (N)™N' where
m >0 and (N)™N’ € Z(a) which is [-saturated, then M NN’ € Z(a). Hence,
M € (Z(a) ~ Z(a)) ~ (Z(a) ~ Z(a)) and M € [nato)gs,.

™R *

8. By Lemma 8.1.8, [naty]g, = [e1nato|g, = [nat0]53 By 7., [natl]g3 [nato] 3! =
(M e MY | M =5 MO FO VM 5 MO Ay (FO)ry® where n > 1},

9. Let f,y € Vary and take M = {M € Mg | k,n > 0 Adeg(Q;) = (1) A (M —3
PPy PV M =% fP(aWQr.. . Qu) VM = y? v M —% fyWM)}. The
set M is (-saturated and Vo € Vary. VAR? C M C M?. Let Z be a [s-
interpretation such that Z(a) = M. If M € [naty]s, then M is closed and
Me (M™ ~ )~ (M ~ ). Let N € M such that N o f2. We
have N —7 AN AR PJrl or N —7% yV, for some k > 0 and P,,..., P,
Therefore f®N —% fe(OPH Py € M or f°N —% oy e M, thus
foe M I We have f2 € M ~ M,y € M and o{M, f® y},
then M f2y®") € M. Because M is Closed and dj({z2,2M, 42}, {yD, f2}),
by Lemma 7.1.11.2, M f@yM) -7 oy, Hence, by Lemma B.2.1.4, M —7
AfO.f2 or M —5 Af Ay foy). Moreover, by Lemma 7.1.11.2, deg(M) =
© and M € M3.

Conversely, let M € MY such M is closed and M —% Af9.f? or M —
AP YW foyM) | Let T be an fs-interpretation, N € Z(eja—a) = Z(a)*! ~
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Z(a) and N’ € Z(a)™ where o{M, N, N'}. By Lemma 8.1.4.1b, N € MY and
N' e M{", so MNN',NN' € M. Since MNN' —*% NN', NN’ € Z(a) and
I(a) is [-saturated then MNN' € Z(a). Hence, M € (Z(a)™' ~ I(a)) ~
(Z(a)™ ~ Z(a)) and M € [nat})g,. O

B.2.2 Completeness challenges in A\I" (Sec. 8.2)
Completeness for -, fails with more than one E-variable (Sec. 8.2.2)

Proof of Remark 8.2.2. 1. For every interpretation Z, Z(e;a—a) = Z(esa—a) =
I(a)t ~» I(a). Let M € Z(a)* ~» Z(a). By Lemma 8.1.4.1c, deg(M) = 0. We
have M o A\f°.f0. (AfO.fOYM —5 M € Z(a)t ~» Z(a). By Lemma 8.1.4.1a,
(ASYfOYM € Z(a)t ~ Z(a). Therefore, \y°.y° € [natf]s,.

2. It AfO.f% : (() k2 nat)), by Lemmas 7.4.2.2 and 7.4.2.1, fO: (f°: eja—a by
esa—a) and eja—a C eya—a. Thus, by Lemma B.1.11.4, esa C eja. Again,
by Lemma B.1.11.3, eja = e U where a C U. This is impossible because
e, # es. O

Completeness for -, with only one E-variable (Sec. 8.2.3)

Proof of Lemma 8.2.5. 1. We prove the result by induction on U and then by

case on the last rule.

— Let U = U; MUy. By definition deg(U,),deg(Uz) > 0. Therefore by
IH, etU,” = U, and e Uy~ = Us. Finally, elU” = Ui Ne U™ =
etUi " Me Uy =U,NU,=U.

— Let U = elUl. Therefore elU_ = elelUf = elUl.

— Cases U = U;—T and U = a are trivial because by Lemma 7.2.3.2a,

deg(U) = 0.
2. f U=V~ thenetU” =e;V-and by 1., U =V. O
Lemma B.2.2.

1. If deg(U) = n then DVary is an infinite set {y™ | y € Vary}.
2. If U #V and deg(U) = deg(V') = n then dj(DVary, DVary).
3. If y™ € DVary then y™*1 € DVar,, .

4. If y"** € DVary then y™ € DVary-. O
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Proof of Lemma B.2.2.

1. We prove this result by induction on n. Let n = 0 then we conclude by
definition. Let n = m + 1. Then DVary = {y"™! | y" € DVary-}. By IH,
DVary- is an infinite set {y™ | y € Vary}. Therefore DVary is an infinite set

{y" |y € Vara}.

2. We prove the result by induction on n. Let n = 0 then we conclude by
definition. Let n = m + 1. Then DVary = {y"*!' | y" € DVary-} and
DVary = {y"*' | y" € DVary-}. By Lemma 8232 U~ # V~, and by
definition, deg(U~) = deg(V~) = m By IH, dj(DVary-, DVary-). Therefore,
dj(DVary, DVary).

3. Because (e U)” =U.

4. By definition. O

Lemma B.2.3.
1. IfT' C BPreEnv™ then e;I' C BPreEnv™ ™.
2. If T C BPreEnv™™ then '~ C BPreEnv".

3. IfI'y C BPreEnv", I's C BPreEnv™ and m > n then I'y M’y C BPreEnv". [

Proof of Lemma B.2.5.

1. Because I' C BPreEnv", I' = (y;" : U;)n, such that Vi € {1,...,m}. deg(U;) =
n; An; > n Ay € DVary,. Therefore, eI' = (y;”Jrl : e1U;)m and by
Lemma B.2.2.3,Vi € {1,...,m}. deg(e U;) = n; +1An; +1>n+ 1Ayt €

DVar,,y;,. Finally, e;I' C BPreEnv" .

2. Because I' C BPreEnv™™! ' = (y" : U;),, such that Vi € {1,...,m}. deg(U;) =
n; An; > n+1Ay" € DVary,. Therefore, I'~™ = (yfi_1 : Ui )m and Vi €
{1,....m}. deg(U;") = njAn; =n, +1An, >nA yf;H € DVary,. By
Lemma B.2.2.4, Vi € {1,...,m}. yf; € DVary,-. Finally, I'" C BPreEnv".

3. Note that BPreEnv™ C BPreEnv". Therefore I';,I's C BPreEnv". Let (I'y 1
[y)(xP) = Uy M Uy such that I'y(z?) = U; and I'y(2P) = U,. Then deg(U;) =
deg(Us) = p > n and 2P € DVary, N DVary,. Hence, by Lemma B.2.2.2,
U, = U,. Finally, we can prove that I'y Ty =I'; UT'y € BPreEnv". O

Lemma B.2.4.
1. (OPEN™)* = OPEN™"!,
2. Ify € Vary and (My™) € OPEN" then M € OPEN".
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3. If M € OPEN", M o N, N € M and deg(N) =m > n then MN € OPEN".

4. If deg(M) =n, m > n, Mo N, M € M and N € OPEN™ then MN €
OPEN". 0J

Proof of Lemma B.2.4. 1. By Lemma B.1.3.1a. 2. By definition 2* € fv(My™) and
i > n. Because z # y then 2 € fv(M). Therefore M € OPEN". 3. By hypothesis,
M € M" and 2 € fv(M) such that x € Var; and i > n. By definition MN € M"
and therefore M N € OPEN". 4. Similar to 3. O

Proof of Lemma 8.2.8.
1. First we show that I(a) is f-saturated. Let M —% N and N € I(a).

e If N € OPEN® then N € M° and z* for some z € Vary, © > 0 and
x' € fv(N). By Lemma 8.1.2.9, M is (-saturated and so, M € M°. By
Lemma 7.1.11.3, fv(M) = fv(N) and so, z* € fv(M). Hence, M € OPEN’

e If N c {M e My | M: (BPreEnv’ -5 a)} then 3 ' C BPreEnv’, such
that N : (I" by a). By subject expansion corollary 7.4.6, M : (I' k5 a)
and by Lemma 7.1.11.3, deg(M) = deg(N). Hence, M € {M € M} |
M : (BPreEnv’ I3 a)}.

Now we show that Va € Var;. VAR? C I(a) C MP.

e Let # € Var; and M € VAR?. Hence, M = 2°N;...N; € M°, and
2° € fv(M). Thus, M € OPEN".

o Let M € I(a). If M € OPEN® then M € M. Else, 3 I' C BPreEnv’
such that M : (I' k2 a). Since by Theorem 7.3.5, M € M and deg(M) =
deg(a) =0, M € M".

2. By induction on U € GITy.

e Let U = a: By definition of I and by 1.

o LetU = e;V: deg(V) = n—1 and, by Lemma 7.2.3, V € GITy. By IH
and Lemma B.2.4.1, [(e;V) = (I(V))* = (OPEN" ' U {M e M"! | M :
(BPreEnv" ™! I, V)})* = OPEN" U ({M € M"~! | M : (BPreEnv" ™' Iy
VinT.

— If M € M " and M : (BPreEnv"~! I, V) then M : (I' -, V) where
I' C BPreEnv"'. By rule (exp) and Lemma B.2.3.1, M* : (e, I
e1V) and e;I" C BPreEnv". Thus by Theorem 7.3.5.2, M € M"™ and
M+ : (BPreEnv" k4 e, V).
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—If M € M" and M : (BPreEnv" 5 V) then M : (I' k5 e1V)
where I' C BPreEnv". By Theorem 7.3.5.2, and Lemma B.2.3.2,
M~ :(I'" F, V) and '~ C BPreEnv"~!. Thus, by Lemma B.1.3.(1b.
and 1d.), M = (M~)" and M~ € M""!. Hence, M~ € {M € M"! |
M : (BPreEnv" ' I, V)}.

Hence ({M € M™ ' | M : (BPreEnv"™' -, V)Pt = {M € M" |
M : (BPreEnv" 5 U)} and finally, I(U) = OPEN" U {M € M" | M :
(BPreEnv" 5 U)}.

e Let U = U; MUy: By Lemma 7.2.3.1b, U;,Us € GITy and deg(U;) =
deg(Uy) = n. By IH, [({U; N Uy) = I(U,) N 1I(Us) = (OPEN™ U {M €
M™ | M : (BPreEnv" 5 Uy)}) N (OPEN" U {M € M" | M : (BPreEnv" I
U)}) = OPEN" U ({M € M"™ | M : (BPreEnv" o U1)} N{M e M" | M :
(BPreEnv" 5 Us)}).

— If M e M", M : (BPreEnv" I, U;) and M : (BPreEnv" -5 Us) then
M : (T'y b5 Up) and M : (I'y o Us) where 'y, T’y C BPreEnv". By
Remark 7.3.6, M : (I'y MT'y b5 Uy MUy). Because by Lemma B.2.3.3,
'y Ty € BPreEnv”, we obtain M : (BPreEnv" -y Uy M Us).

— If M € M™ and M : (BPreEnv" 5 U; M Us) then M : (I ko Uy M Us)
where I' C BPreEnv". By rule (C), M : (I' b5 Uy) and M : (I b5 Uy).
Hence, M : (BPreEnv" 5 U;) and M : (BPreEnv" 5 Us).

We deduce that I(U; MUy) = OPEN" U {M € M" | M : (BPreEnv"
Uy nUs)}.

o Let U = V-T: By Lemma 7.2.3, V,T € GITy and let m = deg(V) >
deg(T") = 0. By IH, [(V') = OPEN™ U {M € M™ | M : (BPreEnv™ 5 V)}
and I(T) = OPEN° U {M € M° | M : (BPreEnv" -, T')}. By definition,
I(V=T) = L(V) ~ I(T).

— Let M € (V) ~ I(T'). By Lemma B.2.2.1, let 4™ € DVary such that
y € Varg, and Vn,y" & fv(M). Then y™ o M. By remark 7.3.6, y™ :
((y™: V) ko V). Hence, y™ : (BPreEnv™ 5 V) and so y™ € I(V)
and My™ € I(T).

« If My™ € OPEN® then since y € Vary, by Lemma B.2.4.2, M €
OPEN".

x If My™ € {M € M° | M : (BPreEnV’ k5 T)} then My™ € M°
and My™ : (BPreEnv® 5, T). So My™ : (I' 5 T) where
I' C BPreEnv’. Since 3™ € fv(My™) and since by Theorem 7.3.5,
dom(I") = fv(My™), I' = I",(y™ : V'), and deg(V') = m.
Since (y™,V’) € BPreEnv’, deg(V’) = m and y™ € DVary., by
Lemma B.2.2.2, V = V'. So My™ : (I', (y" : V) o T') and by
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Lemma B.1.14.1, M : (I -5 V=T) and by Theorem 7.3.5.2, M €

M and deg(M) = 0. Since I" C BPreEnv’, M : (BPreEnv’

V—T). And so, M € {M € M° | M : (BPreEnv® -, V—T)}.

— Let M € OPEN°U{M € M°® | M : (BPreEnv® -, V—=T)} and
N eI(V) =O0PEN" U{M € M™ | M : (BPreEnv"™ I3 V')} such that
M o N. Then, deg(N) = m.

+ Case M € OPEN’. Since N € M, by Lemma B.2.4.3, MN €

OPEN° C I(T).

x Case M € {M € M° | M : (BPreEnv’ -, V=T)}, so M € MC.

. If N € OPEN™ then, by Lemma B.2.4.4, MN € OPEN" C
I(T).

- N e{MeM"|M: (BPreEnv™ ko V)}, then M : (T';
V-T) and N : (I'y o V) where I'y C BPreEnv® and T’y C
BPreEnv™. Because M ¢ N, then by Lemma B.1.15.2, I'; o I's.
So by rule (=g), MN : (I'' M 'y ko T). By Lemma B.2.3.3,
I, My C BPreEnv’. Therefore MN : (BPreEnv® -, T). By
Theorem 7.3.5, MN € M°. Hence, MN € {M € M° | M :
(BPreEnv” -, T)} C I(T).

In all cases, M € I(V-T).

We deduce that 1(V-T) = OPEN" U {M € M° | M : (BPreEnv" I,
V—>T>}.

O

Proof of Theorem 8.2.9. By definition we have: [U]z, = {M € M, | closed(M) A
M e mIEInterpﬁ2 I(U)}

1. Let M € [U]g,- Then M is a closed term and M € I(U). Hence, by
Lemma 8.2.8, M € OPEN"U{M € M" | M : (BPreEnv" -5 U)}. Because M is
closed, M ¢ OPEN". Hence, M € {M € M" | M : (BPreEnv" I, U)} and so,
M : (I' by U) where I' € BPreEnv". Since M is closed, by Theorem 7.3.5.2a,
I' = () and therefore M : (() 2 U).

Conversely, let M € M"™ where M : (() b5 U). By Theorem 7.3.5.2a, M is
closed. Let 7 be a [-interpretation. By soundness Lemma 8.1.6, M € Z(U).
Thus, M € [Ula,.

2. Let M € [U]p, and M —73 N. By 1., M € M" and M : (() F» U). By subject
reduction Corollary 7.4.6, N : (() F2 U). By Lemma 7.1.11.3, deg(N) =
deg(M) = n. By Theorem 7.3.5.2, N € M. Hence, by 1., N € [U]g,.
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3. Let N € [U]p, and M —} N. By 1., N € M" and N : (() 2 U). By subject
expansion Corollary 7.4.6, M : (() F» U). By Lemma 7.1.11.3, deg(N) =
deg(M) = n. By Theorem 7.3.5.2, M € M. Hence, by 1., M € [U]g,. O

B.2.3 Completeness for \*" (Sec. 8.3)

Proof of Lemma 8.3.2. 1. Let deg(U) = L, and deg(V') = Ly such that Ly = L ::
L} and Ly = L :: L},. By Lemma B.1.12.2:

. T/ U
— Either U = w1 = e w!h.

= Or U = &puyy My Ti = €8y, My_; T; such that p > 1 and Vi €
{1,...,p}. T € Ty,

In both cases there exists U’ such that U = epU’. Similarly, there exists V"’
such that V =e V. f UL =V~ then U’ = V' and therefore U = V.

2. Easy induction on L

3. We have DVary = {y” | y© € DVary-.} and DVary = {y* | y© € DVary . }.
By 1., UL #£ V~L. By Lemma B.1.12, deg(U %) = deg(V %) = @. Therefore
by definition, dj(DVary-r,DVary -1 ), and finally, dj(DVary, DVary).

4. We prove the result by induction on L. The case L = @ is by definition.
Let L =i :: L'. By IH, UUelTyg’ DVary = Varl. Let y% e UUGIW% DVary,
then y* € DVary— for some U € ITyy. We have, U™ € ITyg. Therefore,
= Var®'. Finally, y* € Var®. Let y* € Var” then y* € Var®'. Therefore,
y~ € DVary for some U € ITyL". We have, e;U € ITyL. and e, U~ = U.
Therefore, y* € DVar,,y. Finally, y” Uvermye DVarp.

5. Let y* € DVary then because ;U " = U, we obtain by definition y** &
DVar,,u.

6. By definition. O
Proof of Lemma 8.3.4.

1. Let T' C BPreEnv®. By definition, we have I' = (xZL : U;), such that

Vi € {1,...,n}. i € DVary, AU; € ITy;* A L; = L. Therefore Vi €
{1,...,n}. deg(U;) = L;, i.e., ok(I).

2. Let I' C BPreEnv” then by definition I' = (:L’JLJ : Uj), such that Vj €

{1,...,n}. 2l € DVary, AU; € ITygj/\Lj = L. Therefore, ;" = (SL’;::Lj ce;Uj)n
and by Lemma 8.3.2.5, Vj € {1,...,n}. 2" € DVar,,y, Ae;U; € ITyi ™ A
L; > :: L. By definition, we obtain ¢;I' C BPreEnv’ ¥,
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3. Let I' C BPreEnv*Y. then by definition T' = (SL’jLJ : Uj), such that Vj €
{1,...,n}. 2" € DVary, AU; € ITys? AL; = i = L By Lemma 8.3.2.6
and Lemma B.1.12, I' = (:):;::L} : ;U}), such that Vj € {1,...,n}. 2l €
DVarys AU; = Ui ALy =i AU, € ITyy ™ AL = L. We then have I =
(:I:JL3 : Uj)n such that Vj € {1,... n}. ol e DVary AUj € ITy?]?3 NL; = L, ie.,
'~ C BPreEnv’.

4. Let IT'; C BPreEnvL, Iy, C BPreEan, and L = K. By definition, we have I'y =

(:L’ZLZ :Us), and 'y = (yZKZ : Vi)m such that Vi € {1,...,n}. 2% € DVary, AU; €
ITyY AL; = Land Vi € {1,...,m}. y™ € DVary, AV; € ITyS' AK; = K. By 1,
ok(T';) and ok(T'y), therefore I'y M I'y is well-defined. Let (I'y M Iy)(z%) = U.
Either 2~ € dom(I';) \ dom(I';) then by hypothesis, ¥ € DVary, U € ITy%
and L' = L. Or ¥ € dom(T) \ dom(T';) then by hypothesis, #* € DVary,
UelTyY and ' = K = L. Orz¥ € dom(I';)Ndom(T';) then U = U;MU; such
that I'y (2% = Uy) and Ty(z” = U,). By hypothesis, y* € DVary, N DVary,,
U, Uy € ITyY and L' = K = L. Because dom(U;) = dom(U,) = L' then by
Lemma 8.3.2.3, we have U; = U,. and U1 MUy, = Uy = U, € ITy?f,. We then
have that I'; M Ty € BPreEnv’. O

Proof of Lemma 8.5.6.

1. Let M € (OPEN™)** then M = N* such that N € OPEN*. By definition
N € MZ such that % € fv(N), z € Var;, and K = L. By Lemma B.1.5.1,
M e ML 2K ¢ fy(M), and 4 :: K =i :: L. Hence, M € OPEN*.

Let M € OPEN**. Then M € M+, 2% € fu(M), 2 € Vary, and K =i = L.
Therefore, K =i :: K', Ky = L, and deg(M) = i :: L. By Lemma B.1.5,
M = N*" such that N € M% and %" € fv(N). Hence N € OPEN” and
M € (OPEN®)*,

2. Let y € Vary, My® € OPEN”, then My® € M%, z¥ € fv(My*), and K’ = L.
Because © # y then ¥ € fv(M). By definition, M € MY, therefore M €
OPEN*.

3. By definition of OPEN®.

4. By definition of OPEN®. O

Proof of Lemma 8.3.8.

1. We do two cases (r = n and r = 3).

Case r = [n. It is easy to see that Vz € Var;. VAR? C OPEN? C I3,(a). Now
we show that Ig,(a) is n-saturated. Let M —75 N and N € Ig,(a).
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o If N € OPEN? then N € MY, x € Vary, and z% € fv(N) for some
L. By Theorem 7.1.11.2, fv(N) C fv(M) and deg(M) = deg(N), hence,
M € OPEN®

e If N € {M € MJ | M : (BPreEnv® 5 a)} then N —% N’ and
3 T C BPreEnv?, such that N’ : (I’ k3 a). Hence M —% N’ and
since by Theorem 7.1.11.2, deg(M) = deg(N'), M € {M € M5 | M :
(BPreEnv? I3 a)}.

Case r = 3. It is easy to see that Vz € Var;. VAR? C OPEN? C I5(a). Now
we show that I5(a) is G-saturated. Let M —7% N and N € Is(a).

e If N € OPEN® then N € MY, x € Vary, and x% € fv(IN) for some
L. By Theorem 7.1.11.2, fv(N) C fv(M) and deg(M) = deg(N), hence,
M € OPEN?

o If N e {Me M| M: (BPreEnv® I3 a)} then 3 I' C BPreEnv?, such
that N : (' b3 a). By Theorem 7.4.14, M : ('™ +3 a). Since by The-
orem 7.1.11.2, fv(N) C fv(M), let fv(N) = {z}*,... 25} and fv(M) =
fv(V) U xi_’ﬁll, Lamtml So TM = ,(xi_”ﬁll Cwlner o glmtm
whntm). For each i € {n + 1,...,n + m}, take U; such that ™ €
DVary,. Then F,(:):ﬁfll : Un+1,...,:)sL"+"‘ : Upsm) C BPreEnv® and

n+m

by Remark.7.3.6.4 and rule (C), M : <F,(:c£f11 D Uiyt aimim

Unim) F3 a). Thus M : (BPreEnv® I3 a) and since by Theorem 7.1.11.2,
deg(M) = deg(N), M € {M € M3 | M : (BPreEnv® I3 a)}.

2. By induction on U.

e U = a: By definition of Ig,.

e U = wh: By definition, I, (w’) = M%. Hence, OPEN* U {M € M} |
M : (BPreEnv® I wh)} C g, (wh). Let M € Ig,(w”) where fv(M) =
{xfr ... alr} then M € ./\/lL For each i € {1,...,n}, take U; such that
xl € DVarUZ.. Then T' = (2 : U;),, C BPreEnv”. By Lemma 7.3.7.2 and
Lemma 8.3.4, M : (I' b3 w”). Hence M : (BPreEnv" -3 w”). Therefore,
Is,(w") € {M € ME | M : (BPreEnv" I w™)}. We deduce I, (w") =
OPENY U {M € ML | M : (BPreEnv" 5 wh)}.

o U =¢V: L =i: K and deg(V) = K. By IH and Lemma 8.3.6,
Is,(eiV) = (Ig,(V))*" = (OPEN® U {M € MK | M : (BPreEnv"
V)})T = OPEN" U ({M € ME | M : (BPreEnv™ k3 V)}) ¥
—If M € MY and M : (BPreEnv™ +5 V) then M —% N and N :

(T k3 V) where I' C BPreEnv®. By rule (exp), Lemmas B.1.5.6
and 8.34.2, N*': (e, 3 e;V), M —% N*tiand eI’ C BPreEnv".
Thus M+ € M% and M+ : (BPreEnv" I U).
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—If M € M& and M : (BPreEnv" 5 U), then M —%, N and N :
(T' b3 U) where T' C BPreEnv®. By Lemmas B.1.5, 7.3.5, and 8.3.4.3,
M~ =% N7 N7 : (I k3 V), and ™" C BPreEnv™, and M =
(M~")*". Therefore M~ € {M € ML | M : (BPreEnv™ k5 V)}.

Finally, ({M € ML | M : (BPreEnv™ 5 VW)Y = {M € ML | M -
(BPreEnv® 5 U)} and I, (U) = OPEN*U{M € ML | M : (BPreEnv” I}
U)}.

e U =U,NUy By IH, I, (U, NUy) = I,(Uy) N1, (Uz) = (OPEN* U{M €
ME | M : (BPreEnv" 5 Uy)})N(OPEN"U{M € M | M : (BPreEnv" 1}
Us)}) = OPEN" U ({M € M% | M : (BPreEnv" 5 Up)} N {M € M¥ |
M : (BPreEnv" 5 Us)}).

— If M € M, M : (BPreEnv” F; Uy) and M : (BPreEnv” F: U,) then
M —5, Ni, M =5 Na, Ny @ (Ty B3 Up) and Na @ ([ 3 Uz) where
I'1,Ty C BPreEnv®. By confluence Theorem 7.1.13 and subject re-
duction Theorem 7.4.10, 3 M’ such that N; — % M'" and N, — %
M, M" . (Ty[p b3 Up)y and M @ (Tafpr b3 Us). Hence by Re-
mark 7.3.6, Lemma 7.1.11, Theorem 7.3.5.2a, and Lemma B.1.19.2,
M’ (1) [y 3 Uy MUs) and, by Lemma 8.3.4.4, (1) [a €
'y 1Ty C BPreEnvh. Thus, M : (BPreEnv’ 5 U, M U,).

—If M € Mk and M : (BPreEnv" +5 U M Us) then M —% N,
N : (I b3 UNU,) and T’ € BPreEnv”. By rule (C), N : (T' 3 U;) and
N : (T k3 Uy). Hence, M : (BPreEnv”* % U,) and M : (BPreEnv" I
Us).

We deduce that Ig,(U; MTy) = OPEN" U {M € M% | M : (BPreEnv" I
UinUs)}.

o U=V-T: Let deg(T) = @ < K = deg(V). By IH, I;,(V) = OPEN* U
{M € ME | M : (BPreEnv™ = V)} and I4,(T) = OPEN? U {M € MY |
M : (BPreEnv® 15 T)}. By definition, Ig,(V—T) = 14,(V) ~ 1g,(T).

— Let M € Ig,(V) ~ I5,(T) and, by Lemma 8.3.2, let y®* € DVary
such that VK. y* & fv(M). Then M o y¥. By remark 7.3.6.3, y* :
((y : V) 5 V). Hence yX : (BPreEnv™ -5 V). Thus, y* € I4,(V)
and My® € I, (T).

x If My® € OPEN? then since y € Vary, by Lemma 8.3.6, M €
OPEN®.

« If My® € {M € MZ | M : (BPreEnv® 5 T')} then My® —% N
and N : (I" -3 T') such that I' C BPreEnv?, hence, Ay . My* — 5,
Ay%.N. We have two cases:

- If y® € dom(T) then T = A, (y* : V) and by rule (=), \y®.N :
(A3 V=T,
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- If y® & dom(T), let A = T. By rule (=), \y®.N : (A k3
wE=T). By rule (), since (A k3 wE-T) C (A 3 V-T)
using Remark 7.3.6.4, we have A\y%X.N : (A b3 V=T,

Note that A C BPreEnv?. Because A\yX.My% —5, M and

MK . My® —5, \y® N, by confluence Theorem 7.1.13 and sub-

ject reduction Theorem 7.4.10, there is M’ such that M —g, M,

MEN =g, M', M 2 (Alyy b3 V=T). Since Ay € A C

BPreEnv®, M : (BPreEnv® -5 V=T).

— Let M € OPEN® U{M € M | M : (BPreEnv® -} V—T)} and
N € I, (V) = OPEN* U {M € ME | M : (BPreEnv™ I V)} such
that M o N. Then, deg(N) = K = @ = deg(M).

x If M € OPEN? then, by Lemma 8.3.6.3, MN € OPEN?.
x* If M € {M € M3 | M : (BPreEnv® 5 V—T)} then:

. If N € OPEN® then, by Lemma 8.3.6.3, M N € OPEN?.

It N € {M € ME | M : (BPreEnv™ +5 V)} then M —3,
My, N —5 Ny, My 2 (I B3 V=T) and Ny @ ([ B3 V)
where I'; € BPreEnv® and I'y C BPreEnv®. By Lemma B.1.2.1
and Theorem 7.1.11.2 deg(M) = deg(M;), deg(N) = deg(NVy),
and M, o Na. Therefore, MN —7  M;N;. By rule (—g) and
Lemma 7.3.7.3, M1 N; : (I M Ty b3 T). By Lemma 8.3.4.4,
[y M Ty C BPreEnv®. Therefore M N : (BPreEnv® 5 T)).

We deduce that Ig,(V—T) = OPEN® U{M € M3 | M : (BPreEnv® +}
V-T)}.

3. We only do the case r = (3. By induction on U.

e U = a: By definition of I.

e U = wh By definition, I5(w*) = M%. Hence, OPEN" U {M € M} |
M : (BPreEnv" I3 wh)} C Iz(wh). Let M € Iz(w”) where fu(M) =
{x*,... 2L} then M € ME. For each i € {1,...,n}, we take U; to
be the type such that 27 € DVary,. Then I' = (2 : U;),, € BPreEnv’.
By Lemma 7.3.7.2 and Lemma 8.3.4.1, M : (I' b3 w%). Hence M :
(BPreEnv” k3 wh). Therefore, T5(w?) € {M € M% | M : (BPreEnv’ -,
wh)}. Finally, Ig(w”) = OPEN" U {M € M¥ | M : (BPreEnv" 5 wh)}.

o U =¢V: L =1i: K and deg(V) = K. By IH and Lemma 8.3.6.1,
I3(e;V) = (Ig(V))* = (OPEN* U{M € ME | M : (BPreEnv® K3
VYT = OPEN" U ({M € ME | M : (BPreEnv™ I3 V) })*i.

— If M € MX and M : (BPreEnv™ k3 V) then M : (I' 3 V) where
I' C BPreEnv’. By rule (exp) and Lemma 8.3.4.2, M+ : (e, b3 e;V/)
and e;' C BPreEnv®. Thus M** € M% and M** : (BPreEnv” I3 U).
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— If M € M% and M : (BPreEnv” t3 U), then M : (I' 3 U) where
I' C BPreEnvl. By Lemmas 7.3.5, and 8.3.4.3, M~ : (I'"" I3 V)
and I'"* C BPreEnv. Thus by Lemma B.1.5, M = (M~%)*" and
M= € {M € ME | M : (BPreEnv™ -5 V) }.

Finally, ({M € ME | M : (BPreEnv™ 3 V)W) = {M € ML | M -
(BPreEnv” I-3 U)} and I5(U) = OPEN" U {M € M% | M : (BPreEnv” I3
U)}.

e U= U, NUy By IH, I3(U; NU,) = I4(Uy) N15(Us) = (OPEN* U {M €
ME | M : (BPreEnv* -3 U)})N(OPEN*U{M € M% | M : (BPreEnv” I3
Uy)}) = OPEN* U ({M € ME | M : (BPreEnv* 5 U))} N {M € M} |
M : (BPreEnv™ k5 U,)}).

— If M € M, M : (BPreEnv® k3 U;) and M : (BPreEnv” I3 U,) then
M : (I'y k3 Up) and M : (T'y b3 Uy) where 'y, Ty C BPreEnv”. Hence
by Remark 7.3.6.1, M : (I'y 1’y 3 U; M Us) and, by Lemma 8.3.4.4,
Iy Ty C BPreEnvt. Thus M : (BPreEnv’ 5 Uy M1 Us).

— If M € M% and M : (BPreEnv” k3 U, MU,) then M : (I" 5 U, M Us)
and T' C BPreEnv”. By rule (C), M : (I' b5 Uy) and M : (T b5 U,).
Hence, M : (BPreEnv” 5 Uy) and M : (BPreEnv" k5 Us).

We deduce that T5(U; 1 Ty) = OPENY U {M € M | M : (BPreEnv’ -,
Uy NUs)}.

e U=V-T: Let deg(T) = @ < K = deg(V). By IH, I3(V) = OPEN* U
{M € ME | M : (BPreEnv® -3 V)} and I4(T) = OPEN? U {M € MY |
M : (BPreEnv® -3 T)}. Note that I5(V—=T) = 15(V) ~ 15(T).

— Let M € T5(V) ~ I4(T) and, by Lemma 8.3.2, let y® € DVary such
that VK. y% & fv(M). Then M o y%. By remark 7.3.6.3, y* : ((y/* :
V) F5 V). Hence y® : (BPreEnv™ 3 V). Thus, y* € I4(V) and
My% € T5(T).

x If My® € OPEN? then since y € Vary, by Lemma 8.3.6.2, M €
OPEN®.

x If My® € {M € M$ | M : (BPreEnv® i3 T)} then My : (I' 3
T) such that I' C BPreEnv®. By Theorem 7.3.5.2a, dom(I') =
fv(My®) and y& € fv(My®X), T = A, (y¥ : V’). Since (y* :
V') € BPreEnv®, by Lemma 8.3.2.3, V = V'. So My® : (A, (y¥ :
V) k3 T) and by Lemma B.1.14.1, M : (A k3 V=T). Note that
A C BPreEnv?, hence M : (BPreEnv? 3 V—T).

— Let M € OPEN® U{M € M | M : (BPreEnv® I3 V=T)} and
N € 14(V) = OPEN® U {M € ME | M : (BPreEnv™ 3 V)} such
that M o N. Then, deg(N) = K = @ = deg(M).
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x If M € OPEN? then, by Lemma 8.3.6.3, MN € OPEN?.
x* If M € {M € M3 | M : (BPreEnv® i3 V=T)} then

. If N € OPEN® then, by Lemma 8.3.6.4, M N € OPEN®.

- IfN € {M e ME | M: (BPreEnv™ 5 V)} then M : (' I3
V—=T) and N : (TI'y b3 V) where I'y C BPreEnv® and I'y C
BPreEnv®. By rule (—¢) and Lemma 7.3.7.3, MN : (T'; M
I'y 3 T). By Lemma 8.3.4.4, T'; 1Ty € BPreEnv®. Therefore
MN : (BPreEnv® 3 T).

We deduce that I5(V—-T) = OPEN? U{M € M$ | M : (BPreEnv? 3
V-T)}.

B.3 Embedding of a system close to CDV in our
type system F3

Let us now present a sketched proof of the embedding of a restricted version [27,
28], which we call RCDV, of the well known intersection type system CDV, both
introduced by Coppo, Dezani, and Venneri [28] and recalled by Van Bakel [4], in
our type system k3.

Let us provide an alternative presentation of RCDV’s normalised types:

¢ € RCDVTyVar  (a countably infinite set of type variables)
¢ €eRCDVTy =y |0o—¢
o €RCDVITy  t=w|¢1N---N ¢y, where n > 1

Even though we provide an alternative presentation of RCDV we shall prefix
entities and rules names of this system with “RCDV” in this section.

Let the form N,o0; be a notation for ¢; N --- N ¢,. A basis (set of type assign-
ments) is written B (€ RCDVBasis) and N, B; is similar to our intersection of type
environments (without indexes).

Let us now recall their type system (the original version of RCDV is presented

in a natural deduction fashion):

BibM:¢, - By M:éy
cTor s g (RCDV-AY) AT iy (RCDV-N1)
BiFM:0-¢ ByFN:o
T (REOV-) BN MN: g (RCDV-—E)

Bx:obFM:¢
BFXMe.M:0-¢

BEFM:¢ x doesnot occur in B
BFXe. M :w—¢

(RCDV-—I)

(RCDV-a)
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Coppo, Dezani and Venneri [28] allow the w type to be a normalised type in
their RCDV system. They then consider many restrictions on normalised types and
in their typing rules to disallow the use of w at many places, which is why we chose
to consider an alternative presentation of their system.

Let us now define an erasure function on our types and type environments.
Informally, this erasure remove all the indexes and expansion variables from our
different syntactic objects. Let us assume that there exists a bijective function
bijtyvar from TyVar to RCDVTyVar. The erasure on types is as follows: er(a) =
bijtyvar(a), er(U—T) = er(U)—er(T), er(U; N Uy) = er(U;) Ner(Uy), er(wl) = w and
er(e;U) = er(U). One can check that the erasure of a type in ITy; is in RCDVTy
and that the erasure of a type in Ty, is in RCDVITy. We trivially extend the erasure
function to type environments.

Let us define a decoration function to decorate A-terms. Let dec(z) = 29,

dec(\x. M) = Az®.dec(M) and dec(MN) = dec(M)dec(N). One can check (by
induction on the structure of M) that the decoration of an undecorated A-term M
(such that each variable is decorated with the index @) is in MJ. In our simple
embedding the untyped A-calculus is embedded in M which is the range of our
decoration function.

Let us prove that if ¢ € RCDVTy is a normalised type then there exists 7" € Ty,
such that er(T') = ¢, if o € RCDVITy is a normalised intersection type then there
exists U € ITy; such that er(U) = o, if B € RCDVBasis then there exists a type
environment I' such that er(I') = B, and if B F M : o then there exists I' and U
such that er(I') = B, er(U) = o, and dec(M) : (I'79eM) -, [J).

Let ¢ € RCDVTy be a normalised type and ¢ € RCDVITy be a normalised inter-
section type. We now provide a sketch of the proof (by induction on the structures
of ¢ and o) that there exists 7" € Ty, such that er(7') = ¢ and that there exists
U € Ty, such that er(U) = o: let ¢ = ¢ then there exists a € TyVar such that
bijtyvar(a) = ¢ and er(a) = bijtyvar(a) = ¢; let ¢ = o0—¢’ then o is a normalised
intersection type and ¢’ is a normalised type, by induction hypothesis there exists
T € Ty, such that er(T) = ¢ and U € Ty, such that er(U) = o, so er(U-T) = ¢;
let ¢ = N, ¢; then for all i, ¢; is a normalised type, by induction hypothesis, for all
i, there exists T; € Tys such that er(T;) = ¢;, so, er(Iy M ---M7T,) =0; let 0 =w
then take U = w? for example.

Let us provide a sketch of the proof that if B = M : o then there exists I' and U
such that er(I') = B, er(U) = o and dec(M) : (['19M) 5 U).

e (RCDV-Ax): let x : ¢ = x : ¢. We proved that there exists T € Ty, such that
er(T)=¢ and 22 : ((z? : T) k3 T') by rule (ax).

e (RCDV-w): let = M : w then using rule (w), dec(M) : (envﬁec(M) ks w@).
e (RCDV-=l): let B+ Ax.M : 0—¢ such that B,z : o & M : ¢. By induction
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hypothesis, there exists I” and T" such that er(I") = (B,z : o), er(T) = ¢
and dec(M) : (I'79M) -, T). Because x € fv(M) then we can prove that
72 € fv(dec(M)) and IV1dec(M) = [pdecOha-M) (2@ . []) such that er(U) = o.
By rule (=), Az@.dec(M) : (['1decOz-M) 1y 7T,

e (RCDV-a): let B = A\x.M : w—¢ such that B+ M : ¢ and where x does not
occur in B. By induction hypothesis, there exists I" and T" such that er(I") = B,
er(T) = ¢ and dec(M) : (I'19M) -3 T'). Because x does not occur in B then
x & fv(M) and by rule (=), A\z?.dec(M) : (['1decOe-M) |-y (@ T,

e (RCDV-—E): let ByN By MN : ¢ such that Bi - M : 0—¢ and By - N : 0.
By induction hypothesis we can prove that there exit I';, Iy, U and T" such that
er(l'y) = By, er(Ty) = By, er(U) = o, er(T) = ¢, dec(M) : ([ 79 |3 U=T)
and dec(N) : (T'y19) -5 U). Because I'; 19M) and 'y 19<(V) are compatible
then by rule (—g), MN : (I';79M) Ty 19e<V) (-3 T') and we can prove that
[y 7dec) [Py 1decN) = (T M Ty) 19 N) and that er(I'y M Ty) = M{By, By}

e (RCDV-N1): let N,B; = M : N,¢; such that B; = M : ¢;, for all i. Then we

can conclude using Remark 7.3.6.

The type system introduced at the beginning of this section can then be embed-
ded into our type system without making use of expansion variables and restraining
the space of meaning M3 to the basis MY .

Unfortunately, as mentioned in Ch. 9, we do not believe that it would be pos-
sible to embed RCDV in our system such that we would make use of the expansion

variables “as much as possible”.
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