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PROPS OF RIBBON GRAPHS, INVOLUTIVE LIE BIALGEBRAS
AND MODULI SPACES OF CURVES

SERGEI MERKULOV AND THOMAS WILLWACHER

ABSTRACT. We establish a new and surprisingly strong link between two previously unrelated theories: the
theory of moduli spaces of curves My , (which, according to Penner, is controlled by the ribbon graph
complex) and the homotopy theory of E4 operads (controlled by ordinary graph complexes with no ribbon
structure, introduced first by Kontsevich). The link between the two goes through a new intermediate stable
ribbon graph complex which has roots in the deformation theory of quantum A., algebras and the theory
of Kontsevich compactifications of moduli spaces of curves ﬂf,w

Using a new prop of ribbon graphs and the fact that it contains the prop of involutive Lie bialgebras as
a subprop we find new algebraic structures on the classical ribbon graph complex computing H® (Mg ).
We use them to prove Comparison Theorems, and in particular to construct a non-trivial map from the
ordinary to the ribbon graph cohomology.

On the technical side, we construct a functor O from the category of prop(erad)s to the category of
operads. If a properad P is in addition equipped with a map from the properad governing Lie bialgebras
(or graded versions thereof), then we define a notion of P-“graph” complex, of stable P-graph complex and
a certain operad, that is in good cases an E; operad. In the ribbon case, this latter operad acts on the
deformation complexes of any quantum Aso-algebra.

We also prove that there is a highly non-trivial, in general, action of the Grothendieck-Teichmiiller group
G RT1 on the space of so-called non-commutative Poisson structures on any vector space W equipped with a
degree —1 symplectic form (which interpolate between cyclic Ao structures in W and ordinary polynomial
Poisson structures on W as an affine space).
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1. Introduction

1.1. On two previously unrelated theories. The purpose of this paper is to build a bridge between
two well developed, but somewhat separate areas of mathematics: (i) the study of the cohomology of the
moduli spaces of curves H(M, ) and (ii) the study of the homotopy theory of Eq operads, that is, the
chain operads of the classical topological operads of d-dimensional cubes [BV] [Ma]. The problem of studying
H(M,.,) is classical and few words need to be said. Studying E, operads and their homotopy theory is a
more modern endeavor, and less recognized in mainstream mathematics. Let us just mention that in recent
decades it has been realized that the F,; operads appear, and often control, many problems in diverse areas
of mathematics. For example, the homotopy automorphisms of the Fy operad may be identified with the
Grothendieck-Teichmiiller group, and this fact underlies the appearance of this group in many situations, e.g.,
in the study of quantum groups, deformation quantization, or the theory of motives through its connection
with the motivic Galois group. The higher E; operads are very important in algebraic topology. In particular
they can be used to recognize based d-loop spaces and appear prominently in the recently quite popular
Goodwillie-Weiss embedding calculus (and the related concept of factorization homology), whose goal is,
simplifying slightly, to equate embedding spaces of manifolds (e.g., knot spaces) to mapping spaces of Fy
modules.

The second goal of this work is to establish some new highly non-trivial pieces of algebraic structure on the
totality of the spaces H(M, ) (for varying g,n).

More concretely, the space H(My ) may be computed as the cohomology of a combinatorial complex of
ribbon graphs introduced by Penner [P]. Here a ribbon graph is a graph together with the data of cyclic
orderings of the incident half-edges at each vertex separately. We denote the ribbon graph complex with
r labelled “punctures” by RGC'®"“d(;) " a more precise definition will be provided below. Its counterpart
with unlabeled punctures we denote by

RGC = [[RGC' "¢ (r)/S,..
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This complex is defined so that its cohomology is connected to the cohomology of the moduli spaces of
curves, skew-symmetrized in the punctures.

for k=1,4,7,...
1 qu RGC) = H69—6+3n—k s Sn Q )y Ey by
(1) ( ) H ( (M‘J Qe sgnn) /5n & 0 otherwise

g,m
n>0,2—2g<n

(Here sgn,, is the sign representation of the symmetric group S,.) Similarly, one may also define a ribbon
graph complex RGC,44 which computes the cohomology of the moduli space of curves, but symmetrized in
the punctures instead of anti-symmetrized. (The complex RGC,44 is the one considered by Kontsevich [K3],
for a precise definition and the relation to the cohomology of moduli space see below.)

On the other hand, the deformation theory of the E; operads is controlled by similar complexes of ordinary
(i.e., non-ribbon) graphd] GC2, that were first defined by Kontsevich [K3]. Recently there was a progress
in understanding of the cohomology of graph complexes GC?I for even d, in particular it was proven in [W1]
that

get fori=0

HY(GCH) ={ K fori=—1

0 for i < —1,
where grt is the Lie algebra of the prounipotent Grothendieck-Teichmiiller group GRT; introduced by Drin-
feld in [D2].
Previously, little had been known about the relation between the ribbon graph complex RGC (which is in fact
the d = 0 member of a family RGCy of complexes parameterized by an integer d € Z, see §4) and the graph
complexes GC?I other then the existence of the forgetful map forgetting the cyclic orderings of the half-edges.
Furthermore, we introduce an ”intermediate” (between RGC4 and GC3) complex sRGC, of stable ribbon
graphs, i.e., graphs together with the data of cyclic orderings on disjoint subsets of the half-edges incident at
each vertex; it originates (see §3 and 5) in the deformation theory of so called quantum A -algebra structures
on vector spaces equipped with a (skew)symmetric scalar product of degree 1 — d. The complex sRGC, is
similar (but not identical) to the complexes studied in [BIl B2 [HI] in the context of the (co)homology

theory of the Kontsevich compactification ﬂfm [K1] of the moduli space of curves. The complexes sRGC,
for various d are isomorphic to each other (up to degree shift) so that at the cohomology level it is enough
to study sRGC := sRGCy; the same is true for the family of complexes RGC,; but in applications it is often
useful to keep track of signs and degree shifts coming from different values of the integer parameter d so that
we shall work in this paper in the maximal generality keeping the value of d arbitrary.

Our results about these complexes are two-fold: on the one hand we describe some pieces of natural algebraic
structure on the ribbon graph complexes. On the other hand we show how this structure may be used to
compare and constrain the cohomology of those complexes.

1.2. From props of ribbon graphs and of involutive Lie bialgebras to new algebraic structures
on RGC. We describe natural dg Lie algebra structures (RGC, §, [—, —]) and (sRGC, 4, [—, —]) on the ribbon
and, respectively, stable ribbon graph complexes. (For GC?I the existence of the analogous Lie algebra
structure has been known.) Furthermore, we show that there are two natural additional operators A; an
Az on each of the ribbon and the stable ribbon graph complexes, that anti-commute with the differential
and square to zero.

The key step in finding those algebraic structures is the interpretation of the (stable) ribbon graph complexes
as deformation complexes of certain (pr)operads. More concretely, we define a properad RGra of ribbon
graphs, that comes equipped with a natural injective map

Lieb® — RGra

from the properad governing involutive Lie bialgebras (often called diamond algebras), and hence with a
natural map
Lieb — RGra

IThe superscript 2 in the symbol GC?l means that we consider graphs with at least bivalent vertices, while the symbol GCy
is reserved traditionally for a complex of graphs with at least trivalent vertices.
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from the properad of ordinary Lie bialgebras (which factor though the obvious map Lieb — Lieb® which is

identical on all generators). One can consider also a different map Lieb 5 Lieb® which sends the cobracket
generator to zero and the bracket generator to the bracket generator. By composition with the map to RGra
above we obtain a map Lieb — RGra. Then there is an identification

RGC = Def(Lieb = RGra)

with the properadic deformation complex, whose definition will be recalled below. It immediately follows
that there is a dg Lie algebra structure on RGC (since there is a canonical one on the right-hand side) and
this dg Lie algebra structure can be described very explicitly. Now, considering the deformation complex
Def(Lieb — RGra) instead, we find that this complex can be identified with the graded vector space RGC,
but with a modified differential § + A;. This yields the operation A, A Considering the deformation complex
Def(Lieb® — RGra) similarly leads to the operation Ay. For the stable ribbon graph complex analogous
arguments lead to the definition of the analogous algebraic structures.

Similar arguments (up to certain degree shifts) yield a dg Lie algebra structure and a deformation,  + Ag,
of the standard differential § in the ”odd” counterpart RGC,4q, the Kontsevich ribbon graph complex.

We note furthermore that our arguments provide an operad structure on the collection of labelled ribbon
graph complexes RGC'**“!¢(_)  We emphasize that this is not the same as the cyclic operad structure on
the compactified moduli spaces of curves. In particular, the composition of two elements with r; and ry
punctures has r; + ro — 1 punctures. Geometrically, this operation is best explained using Costello’s dual
interpretation of the ribbon graph complex [Co].

1.3. From new algebraic structures to Comparison Theorems for cohomology. Our first main
result computes the homology of the stable ribbon graph complexes.

1.3.1. Theorem. There are isomorphisms
H(sRGC) = H(RGC) @ H(GC?)

and
H(sRGC,qq) = H(RGC,oqq) ® H(GCT)

As a corollary, one may obtain the following statement.

1.3.2. Theorem. There are long exact sequences

(2) .-+ = HP(RGC,6 + A1) — HP(sRGC, 8 + A;) — HP(GC3,6) — HPTH(RGC, 6 + Ay) — -

and

(3) -+ — HP(RGCpug,d + Az) — HP(SRGCpaq, 6 + Az) — HP(GC3,0) — HPTH(RGCpqa,d + Az) — -+ .
The interesting statement here is that we find, in particular, highly nontrivial connecting homomorphisms
(4) p: H*(GCZ,6) — H* 1 (RGC,5 + A)

(5) Podd : H*(GC2,8) — H* 1 (RGCoaq, 6 + As).

These morphisms can be quite explicitly described and provide a direct map between the ordinary and
the ribbon graph cohomology. In fact, using the fact that the plain graph cohomology H (GC(QJ) may be
(essentially) identified with the homotopy derivations of the properad Lieb, and similarly H (GC%) with the
homotopy derivations of the odd analog Lieboqq (see [MW2]), the connecting homomorphism may be most
directly understood as induced by the canonical maps

Def(Lieb % Lieb) — Def(Lieb — RGra) and Def(Lieboaq % Lieboaq) — Def(Lieboga — RGra).

We conjecture that the connecting homomorphisms are injections. However, for the moment being, we can
prove only the following result (we only treat the “even” case here).

1.3.3. Theorem. The connecting homomorphism p of (@) has the following properties:

2We learned from A. Caldararu that the operation Aj had essentially been considered earlier by Tom Bridgeland
(unpublished).

4



e The image of p is infinite dimensional.

e The map p sends classes of homogeneous loop order g in H'(GC%,(S) to classes of genus g in
H*tY(RGC,6 + Ay). (The genus of a ribbon graph is defined to be the same as the genus of the
associated punctured surface.)

e The map p sends (ordinary) graph cohomology classes represented by linear combinations of graphs
with k edges to ribbon graph cohomology classes with k 4+ 1 edges.

We note furthermore that some conjectures about the complex H(RGC, §+A1) also appear in the forthcoming
work [AC].

1.4. Full stable ribbon graph complex and the deformation theory of quantum A..-algebras.
We carry out constructions in somewhat larger generality, with the results about moduli spaces outlined
above as the most prominent application. In particular, we provide a action of the dg Lie algebra

RGC® := (RGC[[A]], 5 + Ay + hA,)

on the space of quantum A, structures on any vector space, thus exhibiting many universal deformations
of such objects.

Furthermore, our methods provide a second proof of the main result of [W2] on the relation of the ordinary
graph complexes GCy; to similar complexes of oriented graphs.

In this paper, we work almost exclusively in the algebraic setting, as one of our goals is to provide an algebraic
setup within which one can study the moduli spaces of curves. That said, one should be able to describe the
algebraic structures we find in completely geometric language, a task we leave to a future work.

1.5. Some technical innovations. We construct a new polydifferential functor O from the category of
props to the category of operads which has several nice (for our purposes in this paper) properties:

(a) For any representation P — Endy of a dg prop P in a dg vector space V there is an associated
representation O(P) — Endgey in the graded symmetric algebra ©*(V); elements of O(P) =: OP act on
®*V as polydifferential operators.

(b) For any dg prop P, there is a canonical injection of operads Com — OP. Moreover, any morphism
of props Lie; — P extends to an associated morphism of operads Poisq — OP, where Lieg is the prop
associated with an operad of degree shifted Lie algebras, and Poisy is the operad of Poisson d-algebras
(which, by definition, has multiplication generator in degree zero while Lie bracket generator in degree 1 —d
so that Poiss is the same as the operad of Gerstenhaber algebras).

(c) If a dg prop P comes equipped with a non-trivial morphism Lieb. 4 — P from the prop of Lie (¢, d)-
bialgebras (in which the cobracket generator has degree 1 — ¢ and the bracket generator has degree 1 — d),
there is an associated non-trivial morphism of dg operads Lie.iq — O.P := O(P{c}) which gives rise to

e a stable deformation complex
S'PGCQd = Def(ﬁiec+d — OCP)

containing the deformation complex PGC, 4 := Def(Lieb.q — P) as subcomplex,
e a twisted operad PGraphs. q which has the following properties: (i) the dg Lie algebra sPGC, 4 (and
hence PGC, q4) acts on PGraphs. q by operadic derivations, (ii) there is a canonical morphism

Poiscra — PGraphsc,q

of operads, and (iii) for any representation p : P — Endy and any Maurer-Cartan element m in the
associated dg Lie algebra Def(Lieciq — O.P — Endge(vi—q))) there is a canonical representation of
PGraphs..q in the deformation complex of m.
(d) If a dg prop P comes equipped with a non-trivial morphism s : ﬁiebz_’ 4 — P from the prop of involutive
Lie (¢, d)-bialgebras, there is a “diamond” version of the structures described above, i.e. there is an associated
non-trivial morphism of dg operads s° : Lie.rq — O P[[fi]] giving rise to (i) a diamond deformation complex

SPGCSy i= Def (Lieora = O(P)[[H])) > PGCS, = Def(Lieb? , — P)
5



and (ii) a twisted operad PGraphs? ; = Tw(O.P[[h]]) having properties analogous to PGraphs,q (but now
in the category of continuous K[[}]] modules).

This new general construction is powerful enough to reproduce many important operads and graph complexes
from the literature (such as, e.g., Kontsevich’s operad Graphs [K5], Kontsevich’s graph complex GCy [W1],
or their extensions studied in [MWI1, MW?2, [CMW]). In this paper we apply this machinery to a new prop
of ribbon graphs RGrag which comes equipped with a canonical morphism from Liebzyd, and which leads
us immediately to the graph complexes RGC,; and sRGC, discussed above, and also to two new dg operads
RGraphsq and RGraphs of 2-coloured ribbon graphs; the latter operad is proven to act on the Hochschild
complex of an arbitrary quantum Asss algebra (and hence gives us a ribbon analogue of the Kontsevich-
Soibelman operad of braces [KS|] introduced in the context of ordinary Asss, algebras). We prove that the
canonical map

Poisasg — RGraphsy

is a quasi-isomorphism. We also prove that there is a highly non-trivial, in general, action of the
Grothendieck-Teichmiiller group GRT; on the space of so-called non-commutative Poisson structures on
any vector space W equipped with a degree —1 symplectic form (which interpolate between cyclic A
structures in W and ordinary polynomial Poisson structures on W as an affine space).

1.6. Some notation. The set {1,2,...,n} is abbreviated to [n]; its group of automorphisms is denoted
by Sy; the trivial one-dimensional representation of S, is denoted by 1,, while its one dimensional sign
representation is denoted by sgn,,; we often abbreviate sgn? := sgnf? 4 The cardinality of a finite set A is

denoted by #A.

We work throughout in the category of Z-graded vector spaces over a field K of characteristic zero. If
V = @®;ezV? is a graded vector space, then V[k] stands for the graded vector space with V[k]* := V** and
and s* for the associated isomorphism V — V[k|; for v € V' we set |v| := i. For a pair of graded vector
spaces V7 and Vs, the symbol Hom;(V7, V3) stands for the space of homogeneous linear maps of degree i, and
Hom(V1, Va) := @@,., Hom;(V1, Va); for example, s¥ € Hom_x(V, V[k]).

For a prop(erad) P we denote by P{k} a prop(erad) which is uniquely defined by the following property:
for any graded vector space V' a representation of P{k} in V is identical to a representation of P in V[k]; in
particular, one has for an endomorphism properad Endy{—k} = Endy . The degree shifted operad of Lie
algebras Lie{d} is denoted by Liegy; while its minimal resolution by Holies1; representations of Liegyq
are vector spaces equipped with Lie brackets of degree —d.

1€

For a right (resp., left) module V over a group G we denote by Vi (resp. ¢V) the K-vector space of
coinvariants: V/{g(v) —v | v € V,g € G} and by V& (resp. “V) the subspace of invariants: {Vg € G
g(v) =wv, v € V}. If G is finite, then these spaces are canonically isomorphic as char(K) = 0.

2. Involutive Lie bialgebras and Kontsevich graph complexes

2.1. Lie n-bialgebras. A Lie n-bialgebra is a graded vector space V' equipped with linear maps,
AV VAV and [, ]:A3(V[n]) = Vin],

such that

e the data (V, A) is a Lie coalgebra,;
e the data (V[n],[, ]) is a Lie algebra;
e the compatibility condition,

A [a, b] = Zal X [ag, b] + [a, bl] ® by — (_1)(|a|+n)(|b\+n)([b, al] ®as + b1 ® [bg, a]),

holds for any a,b € V. Here Aa=:Y a1 @ az, Ab=:> b ®ba.
6



The case n = 0 gives us the ordinary definition of Lie bialgebra [D1]. The case n =1 is if interest because
minimal resolutions of Lie 1-bialgebras control local Poisson geometry [Mell [Me2]. For n even it makes sense
to introduce an involutive Lie n-bialgebra as a Lie n-bialgebra (V,[, ], A) such that the composition map

v 2 oay o Loy
a — Y a1 ®ay — [a1,a9]

vanishes (for odd n this condition is trivial for symmetry reasons).

Let Lieb, (resp. Lieb) be the properad of (resp. involutive) Lie n-bialgebras. Let us also introduce the
notation

Liebeq = Liebeyqg—2{1 —c},  Lieb] ; = Liebeya—2o{1 — c}

for the degree shifted properads of Lie bialgebras and, respectively, involutive Lie bialgebras, defined such
that the cobracket has degree 1 — ¢, and the bracket degree 1 — d. It is worth emphasizing that the symbol
Lieby ,; tacitly assumes that ¢ +d € 2Z, i.e. that the numbers ¢ and d have the same parity.

The properads Lieb;; and Eiebil are often denoted in the literature by Lieb and Lieb® respectively, and
we denote Liebg 1 by Liebodq,

2.2. Properad of (involutive) Lie bialgebras. Let us furthermore describe explicitly the properads

Lieb. g and Lieb? ; and their minimal resolutions.

By definition, Lieb, 4 is a quadratic properad given as the quotient,
Liebe,q := Free(E)/(R),

of the free properad generated by an S-bimodule E = {E(m,n)}m n>1 with all E(m,n) = 0 except

E(2,1) =1, ® sgn[c— 1] = span< 1\(2 =(-1)° 2\(1 >
A)

2

E(1,2) :=sgnd@i[d—1] = span< /‘K = (-1)¢
1 2

by the ideal generated by the following elements

1. 2 3 1 2 3

3 2 1

\<{ + \C%/ + \%/ 7 1%3 + 3/{\2 + 2%1

1 2 2 2 1 1
1, 1 2 2

e T e e N
1 1 2 2 1

2

(6)

Note that for c+d € 27 the generators \( and /&\ have the same symmetry properties, while for c+d € 2Z+1
the opposite ones.

Similarly, Lieby ; (with ¢+ d € 2Z by default) is a quadratic properad Free(E)/(R,) generated by the same
S-bimodule £ modulo the relations

o=R || <:>

It is clear from the association A< \(, [, ]« /g\ that there is a one-to-one correspondence between
representations of Lieb 4 (resp., Lieb ;) in a finite dimensional space V' and (resp., involutive) Lie (c+d—2)-
bialgebra structures in Vic — 1].

It was proven in [K6, MaVol [V] that the properad Lieb.q is Koszul for d + ¢ € 2Z and in [Me2] for

d + c € 2Z + 1 so that its minimal resolution Holieb. 4 is easy to construct. It is generated by the following
(skew)symmetric corollas of degree 1+ ¢(1 —m) +d(1 —n)

o(1) o(2), . a(m) 1L2...m1m

_ (_1)c|0|+d|‘r| >< Yo € Sm,VT c Sn

W@ () 12 "n1n



and has the differential given on the generators by

——
1.2 .. . m1m I
T [,...,m]=I1Uly [1,...,n]=JqUJs 7N >
[11120,[I2]=1  [|J1[=1,]J2|=>1 —

Ji
where the signs on the r.h.s are uniquely fixed for ¢+ d € 2Z by the fact that they all equal to +1 if ¢ and d
are odd integers, and for ¢ + d € 2Z + 1 the signs are given explicitly in [Mell, [Me2].

It was proven in [CMW]| that the properad Eiebi 4 1s also Koszul and that its minimal resolution ’Holiebi 4 1s
is a free properad generated by the following (skew)symmetric corollas of degree 1+c¢(1—m—a)+d(1—n—a)

1 2 m o(1) o(2) . o(m)

>< = (—1)d+D(o+7) >< Yo € Sy, VT € Sy,

12 n r1) 7@ r(n)

where m+n+a >3, m>1,n>1,a>0. The differential in Holiebz is given on the generators by

12 m I
~ =
® IR
R . I1>1 a=b+c+l—1 [m]=I1uly ‘

[n]=J1UJ2
~——
Ji

where the summation parameter [ counts the number of internal edges connecting the two vertices on the
r.h.s., and the signs are fixed by the fact that they all equal to +1 for ¢ and d odd intergers.

The case ¢ = d is of special interest because of the following basic example.

2.3. An example of involutive Lie bialgebra. Let W be a finite dimensional graded vector space
equipped over a field K of characteristic zero equipped with a degree 1 — d (not necessarily non-degenerate)
pairing,
0: WeoW — K[1-d
w] X we —> G(wl,wg)
satisfying the (skew) symmetry condition,
(9) @(wl,wg) = (—l)del”wzl@(wz,wl).

If © is non-degenerate, then for d odd it makes W into a symplectic vector space, while for d even it defines
an odd symmetric metric on W. The associated vector space of “cyclic words in W7,

Cyc* (W) := Y _(We)Pn,
n>0
admits a canonical representation of the operad ﬁiebzyd given by the following well-known proposition (see,
e.g., [Ch] and references cited there).
2.3.1. Proposition. The formulae

[(wl X ... ® wn)Zn, (Ul ®R..Q vm)Z"] =

Z Z :t@(’w“ wj)(wl R QWi—1 QU141 R . QU OV V... ®Vj—1 Wi ... & wn)Z"“”*?
i=1 j=1
A (w1 ®...Q0 ’wn)zn = Z :t@(’w“ wj)(le ®...Q wj_l)Zj7i71 ®(’U}j+1 ®...Q wi_l)Z"7j+i71
i#j
where £ stands for standard Koszul sign, make Cyc®(W) into a Lieby 4-algebra.

We shall show in §[4.2.4lbelow a new short and elementary proof of this proposition with the help of a certain
properad of ribbon graphs RGra, which comes equipped with the canonical representation in Cyc®(W).
8



2.4. Deformation complexes of (involutive) Lie bialgebras and Moyal type brackets. According
to the general theory [MeVa], the set of Holiebz 4-algebra structures in a dg vector space V' can be identified
with the set Maurer-Cartan elements of a graded Lie algebra,

(10) g5 = Hom(V,V)[1] & Def (Hohebgd 9 8ndv> ,

which controls deformations of the zero morphism from ’Holiebzd to the endomorphism prop Endy; the
summand Hom(V, V')[1] takes care about deformations of the differential in V. As a Z-graded vector space,

gv[—c—d = H Homg,, «s,, (sgn‘é‘ @ sgnWe(m +a—-1)+dn+a—1)], V" @ (V*)®") [—c—d]

— I[I orwvi-d)ée™ (Vi-d)[-(c+da]
= O (V[=d & V*[—d))[[A]

where £ is a formal parameterﬁ of degree ¢+ d. Note that g{,[—c — d] is a graded commutative algebra. The
Lie brackets { , } in g, can be read, according to [MeVal, from the formula (§) for the differential in the
minimal resolution Holiebid. They are best described as a degree —(c + d) linear map,

{,}: gvl-c—dog[-c—d — gy[-c-d[-c-d
(f,9) — {f.9}
which in turn is best described in terms of a K[[A]]-linear associative non-commutative product *p in

oozl (V[—=¢] + V*[—d]) [[A]] which deforms the standard graded commutative product and is given on ar-
bitrary polynomials,

VUl = v, vg U UL U € O (V]—c)) ® 0% (V*[=d]),

J1 72 J#Jg
as follows
(vpv’y) 5 (vgvy) = (—I)IU{’HU’CIUIUKU/JUIL +
max{#I,#L} ﬁk k
Yoo > <H<vs(i)vv:§(i)>> VI (K VKV Ve (k)
k=1 s:[k]—1T i=1

t:[k]— L
where (—1)° is the standard Koszul sign, and the second summation runs over all injections of the set [k]
into sets I and L. The associativity of the product x5 implies that the degree —(c 4 d) brackets

* — (=1)I/1lgl *

make g5, into a (degree shifted) Lie algebra which is precisely the one which controls the deformation theory
of the zero morphism of props ’Holiebzd—>5ndv. Hence Maurer-Cartan elements of this Lie algebra, that

is, degree ¢+ d + 1 elements v in el (V[—¢] ® V*[—d]) [[h]] satisfying the equation
{r1r=0

are in one-to-one correspondence with Holieb? ; structures in V.

As usual for the star products, the limit

o Fmg = (DUl

defines a Poisson structure of degree —(c+d). The Lie algebra ((5'-2\1 (V= +V*[-d), {, }0> is precisely
the degree shifted deformation complex gy [—c — d],

(12) gy := Hom(V, V)[1] & Def (Hozz‘ebc,d 0, Endv) ,

3For a vector space W we denote by W/[[l]] the vector space of formal power series in /i with coefficients in W. For later use
we denote by K™ W|[R]] the subspace of W{[h]] spanned by series of the form h™ f for some f € W{[h]].

9



and its MC elements are in 1-1 correspondence with Holieb. 4 algebra structures in V.

2.4.1. A compact description of ’H,oliebi 4 algebras. The fact that the deformation complex (I0) is most
naturally described in terms of formal power series in /i prompts us to consider properads in the symmetric
monoidal category of topological modules over the graded algebra K[[A]] with |A| = ¢ + d. Consider the
following formal power series in Holieb, 4[[h]],

1.2, .mAm 12 n

(13) 1>< = i he >< for m,n > 1.

n—1 n a>3—-m—n
a>0 1 2 m

These are homogeneous elements in Holieb, 4[[h]] of degree 1+ ¢(1 —m) + d(1 — n). Note that

+ = i ha@ € hHolieh? 4[[h]]
a=1

The differential ([8) takes now the form of the formal power series in f,

12 n ; v
N e T
(14) 5 e = R (-1 Qo
PN 2 HZ \)(7

Ji
where [ counts the number of internal edges connecting two vertices on the r.h.s.

Let Holiebzd be a dg properad in the category of topological K[[%]] modules which is freely generated over
K|[[A]] by corollas [I3]), and is equipped with differential (I4). Then we have the following obvious facts

(i) There is a canonical morphism of dg properads

Holieb” ;, — Holieb? 4([h]]
1.2 ., . m-1m

> A
Z o
172 nln a>3—m—n
2 m

a>0 1

(ii) There is a 1-1 correspondence between morphisms of dg properads p : Holiebzd — P in the
category of graded vector spaces over K, and morphisms of dg properads py, : ’Holiebz « — P[] in

the category of topological K][[A]]-modules satisfying the condition pp (+) € hP[[R]] (Let us call such
continuous maps py admissible).

(i) The deformation complex ([0) can be equivalently rewritten as g, = Hom(V,V)[1] &
Def wam (’H,oliebzd N Endv[[h]]), where the second summand describes deformations of the zero

morphism only in the class of admissible morphisms.

The properad Holiebzd has much fewer generators than Holieb; ; so that working with the former makes
sometimes presentation shorter.

2.5. An action of the Grothendieck-Teichmiiller group on (involutive) Lie bialgebras. There is
a highly non-trivial action of the oriented versions of the Kontsevich graph complexes GCc;4 on the dg props
Holieb.,q and ’Holiebzd which was discovered in [W2| MW?2], and which plays a very important role in this
paper.

10



2.5.1. Kontsevich graph complexes. Let G,,; be the set of directed graphs I' with vertex set V(I') =
{1,...,n} and the set of directed edges F(T") = {1,...,k}, i.e. we assume that both vertices and edges of
I" carry numerical labels. There is a natural right action of the group S,, x S; x (Sg)l on this set, with S,
acting by relabeling the vertices, S; by relabeling the edges and the (S,)! via the reversing the directions of
the edges. For each fixed integer d, consider a collection of S,-modules,

Grag = Grag(n) == [ [ K(Gn.1) @g,x s,): sgny! @ sgny®Mi(d — 1)]

1>0 n>1

Thus an element of Grag(n) can be understood as a pair (I',or), where I' is a undirected graph with a
fixed bijection V(I') — [n], and or is a choice of orientation in T' which depends on the parity of d: for
d even or is a total ordering of its edges (up to an even permutation) while for d odd or is a choice a
direction on each edge of T" (up to its reversing and the simultaneous multiplication of the graph I" by —1).
For every d and every graph I' there are only two possible orientations, or and or°P?, in I', and we have a
relation (T, or) = —(T', 0or°PP). In particular, if I’ admits an automorphism which swaps orientations, then
(T,or) = (T, 0r°PP) = —(T,or) = 0. We abbreviate from now on (T',or) to I' keeping in mind that some
orientation is implicitly chosen, for example

(15) € Gragi, =- € gragi+1

The homological degree of a graph from Graq is given by assigning degree 1 — d to each edge. For example,
all the graphs shown just above have degree 3(1 — d).

The S-module Gragy is an operad. The operadic composition,
o; 1 Grag(n) x Grag(m) — Grag(m+n—1), Vi€ [n]
(I'1,T2) — I'yo; Iy,
is defined by substituting the graph I's into the i-labeled vertex v; of I'; and taking a sum over re-attachments
of dangling edges (attached before to v;) to vertices of 'y in all possible ways.

For any operad P = {P(n)},>1 in the category of graded vector spaces, the linear the map

[,]: PP — P
(a€P(n),beP(m)) — [a,b]:=>1" a0, b— (=DIFIS" boja € Pm+n—1)

makes a graded vector space P := [], -, P(n) into a Lie algebra [KM]; moreover, these brackets induce a Lie
algebra structure on the subspace of invariants PS := T[] -, P(n)S». In particular, the graded vector space

fGCy := H Grag(n)S*[d(n — 1)]

n>1

is a Lie algebra with respect to the above Lie brackets, and as such it can be identified with the deformation
complex Def(Lieq RN Grag). Hence non-trivial Maurer-Cartan elements « of (fGCq, [, |) give us non-trivial
morphisms of operads « : Lieq—Grag. One such non-trivial morphism is easy to detect — it is given on the
generator of Lieg by [W1]

(16) a( 1)\2 )_{ e—ei= o0 * oo fordeven

o0 = —@® — @—@m fordodd

Note that graphs from fGC,y;1 have vertices’ labels symmetrized (for d even) or skew-symmetrized (for d
odd) so that in pictures we can and will omit labels of vertices completely and denote them by black bullets
as in the formula above. The above morphism makes (fGCq, [, ]) into a differential Lie algebra with the
differential § := [«, ]. This dg lie algebra has three important subalgebras,

(i) fcGCy C fGC, which is spanned by connected graphs,
ii) GC2 c fcGC,4 which is spanned by graphs with at least bivalent vertices, and
d
(iii) GCq C GC3 which is spanned by graphs with at least trivalent vertices.
11



It is obvious that the cohomology H*®(fGC,) is completely determined by H® (fcGCy); it was shown in [K3| [WT1]
that the cohomology H*®(fcGC,) is essentially determined by H*(GC;) as one has the decomposition

H*(fcGCq) = H*(GC?) = H*(GCy) @ P K-,

i1
j=2d+1 mod 4

where the summand K[d — j] is generated by the loop-type graph with j binary vertices. Note that the
homological degree of graph T' from fGCy is given by |T'| = d(#V (') — 1) + (1 — d)#E(T). It was proven in
[W1] that
HY(GCy) = grt

where grt is the Lie algebra of the Grothendieck-Teichmiiller group introduced by Drinfeld in the context of
deformation quantization of Lie bialgebras [D2]. This group play an important role in many other areas of
mathematics, in particular in the knot theory, in deformation quantizations of Poisson manifolds [K5] and
of Lie bialgebras [EK], and in the classification theory of solutions of Kashiwara-Vergne problem [AT].

2.6. A class of representations of Gray and fGC,;. Let W be a finite-dimensional vector space equipped
with a degree 1 — d scalar product © satisfying (@)). Then there is a representation

p: Grag — Endgew
e Grag(n) — pr € Hom((@*W)®" o*W)
given by

pr(fi®...® fn)i=p H Ac(f1®...® fn)

ecE(T")
where g : @*(O*W) — ©°*W is the standard multiplication map and, for each edge e connecting vertex

labelled by i € [n] to the vertex labelled by j € [n], the operator A, acts only the i-th and j-th tensor factors

fi ® f; as follows
A O'W o'W — o'W o'W
P m
(wiwg -+ - wp) @ (Wiwh - -wy)  — Z Z FO (Wh, WW1 - W1 W1 -+ - WpW] -+ W] Wy - Wy
k=11=1

The image of the graph e—e/ e—e under this representations makes the vector space V := @*W into a Liey
algebra so that one can consider its Chevalier-Eilenberg complex

CE*(V,V) := Def(Lieq =3 Endy) ~ [ [ Hom(e™(V[d]), V[d]).

n>1

poa

The representation p induces a canonical morphism of dg Lie algebras
fGCqy — CE*(V,V)

which gives us an interpretation of the graph complex fGCy as a universal version of CE*(V, V).

2.7. Oriented graph complexes. Let G7"; be the subset of G, consisting of directed graphs I' with no
wheels, that is, directed sequences of edges forming an oriented closed path; let us call such directed graphs
oriented. The S-module

d—
Grag" = { Grag(n HK nl) s, sgni a

>0 n>1

is an operad which comes with a canonical morphism « : Lieq—Gra" given by the same formula (I6]); the
associated graph complex

fGCY := Def(Lieq = GraJ")
is called the oriented graph complex. It contains a subcomplex G spanned by connected graphs whose

vertices are at least bivalent and which contain no vertices with premsely one input edge and one output
12
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edge. It was proven in [W2| that that the cohomology of the oriented graph complex GCY, ; is related to the
cohomology of the ordinary graph complex fcGC, as follows,

H*(GCY.,) = H*(fcGCy) = H*(GCy) @ P Kid-jl.

j=>1
j=2d+1 mod 4

In particular, H°(GC4") = H°(GCy) = grt.

Note that the operad GraJ” and the dg Lie algebra GCJ" admit representations in ©*W and, resp.,
CE*(®*W,®*W) for arbitrary vector spaces W equipped with derree 1 — d scalar products (@), includ-
ing infinite-dimensional ones.

Consider next a Lie algebra GCy,,[[7]], where the formal parameter / has homological degree 2d and the Lie
brackets are defined as the K[[7]] linear extension of the standard Lie brackets in GC5;, ;. This Lie algebra
admits the following M C' element [CMW]

Op = Z Rrt ()
k=1 *
k edges

which makes GC3; | | [[7]] into a complex with the differential

on: GCZLL[B] —  GCgh.[[h]]
T — 0yl = [(I)h,F]gra

The induced differential in GC3), |, = GC3},, [[A]]/AGCS; [[R]] is precisely the original differential J. One
has H°(GCS"[[h]], 0r) = gtt (see [CMW]).

2.7.1. Actions of oriented graph complexes on genus completions of Holieb. ; and ’Holiebz_’d. The
properads Lieb. 4 and Lieb; ; (as well as their minimal resolutions Holieb.q and Holieb, ;) are naturally

graded by the genus of the graphs. Let us denote by @bc,d and E/z;biyd (resp., H/oﬁbc,d and ’H/oﬁbzd) their
genus completions. The natural maps mbd — E/ie\bd and ’H/oﬁbfi — E/i\eb?i are quasi-isomorphisms.

There is a natural right action of GC?} ; on the properad %bc,d by continuous properadic derivations

IMW?2]. Concretely, for any graph I" one defines the derivation F(T') € Der(mbd) sending the generating
(m,n) corolla of Holieb. 4 to the linear combination of graphs
1.2 m—1m 2 s
N\
(17) L) = "
1 2/'\n—1 n Z 1{/"\41

where the sum is taken over all ways of attaching the incoming and outgoing legs such that all vertices are at
least trivalent and have at least one incoming and one outgoing edge. This action gives us a morphism of dg
Lie algebras F' : GCY/ 5, — Der(H/o-lgbc,d) which is a quasi-isomorphism up to one class in Der(?-L/o-l;de)
corresponding to the 1-parameter rescaling automorphism

1.2 m—1m 1.2 m—1 m
— A2 AeK
1 2/‘\7171 n 1 2/.\>71 n

of H/o%bc’d. As a complex the continuous derivations Der(%bc)d) are identical to the deformation
complex Def(Holieb..q — Holieb. q)[1], so that we have a canonical morphism of complexes GCZ\ ;. ; —

Def(Holiebe,q — Wbc,d)[l] which induces [MW2] in turn isomorphisms of cohomology groups,

H**! (Def(Holieb, g — Lieb, q)) = H®*(GC" @ K=~ H*(GC%, ) @ K
> ) c+d+1 c+d
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where the summand K (placed in degree zero) corresponds to the rescaling automorphism. Therefore, for
any morphism of properads Holieb. 4 — P we have an associated morphism of cohomology groups

(18)  H*(GC2,,) ® K — H*H! (Def(Hoh‘ebc,d - Wbc,d)) — H*™! (Def(Holiebo g — P)).
Similarly, the dg Lie algebra (GCZ._ 4, 1[[7]], dr) (with c+d € 2Z) acts naturally from the right on the properad
H/oﬁbzd by continuous properadic derivations. More precisely, let I' € GC?', ;. ;| be a graph. Then to the

element A*T' € GCY, ;. [[R]] we assign a continuous derivation of H/o%bi)d whose values on the generators
are given by

1 2 m 1\2\"/"

> r ifk>a
>@< (W) = 2N
N 0 " fk<a

where the sum is over all graphs obtained by attaching the external legs to I' in all possible ways and
assigning weights to the vertices in all ways such that the weights sum to a — k (see [MWZ2] for full details).
By a change of sign the right action may be transformed into a left action and hence we obtain a map of Lie
algebras

Fi: GCZ4 gy 1 [[B]] — Dex(Holieb )

which is a quasi-isomorphism [MW2] up to K[[#]] span of the derivation corresponding to the 1-parameter
automorphism

12 m 12 m

>l< )\m+n+2a72 X

12 n 12 n
—_—

of 7—[/011?172) 4- For any morphism of properads ’Holiebz 4 — P we have an associated morphism of cohomology
groups

(19) H*(GCY, g1 [[R]], 6r) & K — H*t' (Def(Holieb? ; — P)) .
In §5 below we introduce a prop(erad) of ribbon graphs RGrag which comes equipped with a non-trivial

map %bfi,d — RGragq (and hence with a map 7—[/olz?bd7d — RGragq as well as its “forgetful” versions

%bcyd — RGrag) to which all the above observations apply.

3. Involutive Lie bialgebras and quantum A, algebras

3.1. BV algebras. A graded commutative algebra A = @;cz A" is called a BV algebra if it comes equipped
with a degree 1 derivation A of order < 2,

A= Aq + JAD)
— —~

order 1 derivation  order 2 derivation

such that A% = 0. The order 2 part of the derivation makes A into a Lieg algebra with the bracket
{,}: o4 — A
(al,ag) — {al,ag} = (—1)‘“1‘A2(a1a2) — (—1)‘“1‘A2(a1)ag - alAg(ag).
while order 1 part of the derivation makes this Lie algebra differential,
Ai{ar,az} = {A1(ar), a2} — (=1)!"Hay, Ay (a2)}

Note that if A is a free graded commutative algebra, i.e A = ©@*W for some vector space W, then the BV
operator A is uniquely determined by its restriction, A|gzy : ©2W — ©=2W.

A degree zero element S in a BV algebra A is called a master function if it satisfies the equation
1
AS + 5{5, St =0.

14



If the exponent exp(S) =1+ 5+ %52 + ... makes sense in A, then the above equation can be rewritten
equivalently as A(e”) = 0.

2. Quantum diamond functions. Let (V[ , ]) be a Lieyq algebra (so that V[d — 1] is an ordinary Lie
algebra). It is well-known that the Lie brackets in V' can be understood as a degree 1 codifferential A, in
the (completed) graded commutative coalgebra,

C3(V) = 0*(V[d))

which gives us also an order 2 derivation of Cj(V') as a graded commutative algebra and hence makes C3 (V)
into a BV algebra, and in particular, into a Lieg-algebra with the brackets { , } given as in the subsection
above.

If (V,[, ],4) is a Lieb. 4-algebra, the cobracket
A V[d] — G*(VId)[L — ¢ —d]
extends to a derivation §, of C3(V) as a graded commutative algebra, so that
o = CuWV)[IA]] — Ca(W)I[R]), Al = ¢ +d,

is a differential in C§(V)[A]]. The Lie bialgebra compatibility conditions on [, ] and A imply that id,
respects the Lie brackets,

0s{a,b} = {0a(a), 0} = (=1)"{a, 82 (1)}
and hence makes (C3(V)[A]],{ , },hds) into dg Lieg algebra. Note that (C3(V)[A]],{, },4, ) is also a dg
Lieg algebra.

Finally, if (V,[, |,4) is a Lieb; ;-algebra, then the above two dg Lie algebra structures on C§(V) can be
combined into a single one,
(CaWV)RL L, hhda + A ),

that is, the sum A := hd, + A, | defines a differential in the Lle algebra (C3(V)[[A]],{ , }). In fact, this
differential is a derivation of order < 2 so that the data

(CIWV)[R, hon +Ap ),

is a BV algebra. By analogy to [B1l B2l [HIl [H2], one can define a quantum master function associated to
a Lieb, ;-algebra V as a degree zero element S € C§(V)[[h]] which satisfies the equation

(20) héAS+A[Y]S+%{S,S}:O
and lies in the dg Lie subalgebra
Qu(C5(V)) = [ p ' o™ (VIdD[R] C C3(V)[[A]

As Lieb; ; algebras are sometimes called diamond algebras, one can call these solutions quantum diamond
unctions in order to avoid confusion with the graded commutative Batalin-Vilkovisky formalism.
g y

3.2.1. Basic example. Let V be Cyc®(W) equipped with its standard ﬁiebg)d—structure induced from a
(skew)symmetric product in a vector space W of degree 1 — d (see §2.3]). Then we have the following list of
associated algebraic structures
(i) Cyclic Ax algebra structures in W are in 1-1 correspondence with degree zero elements « in
Cyc*22(W)[d] satisfying the equation {a, a} = 0. We recall that the Hochschild complex of a cyclic
As algebra a is, by definition, the Lie algebra (Cyc®(W)[d],{ , }) equipped with the differential
do = {a, }.
(i) Quantum A algebra structures in W are, by definition [Bl], quantum diamond functions S €
Qr(C3(Cyc*=tW)) satisfying an extra boundary condition

S|h=o € Cyc*=2W[d).
According to Serguei Barannikov [B1l [B2], quantum A, algebras give rise to (co)homology classes

in the Kontsevich quotient, ﬂfm of the Deligne-Mumford moduli stack.
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The Hochschild complex of a quantum A, algebra S is, by definition, the Lie algebra
(Qr(C3(Cyc*W)),{ , }) equipped with the differential

ds == hos + A +{S, }

(iii) Onme can consider an “intermediate” object between the two just considered — a degree zero element
7 € @*(Cyc*(W))[d] satisfying the equation [r,x] = 0. For d = 2 this structure generalizes the
classical notion of a Poisson structure on the affine vector space W, and can be called a non-
commutative Poisson structure on W as it contains, in general, cyclic “words” in W of length > 2;
in fact ordinary polynomial (or formal power series) Poisson structures 7 on W form a subclass of
non-commutative ones characterized by the condition that 7 belongs to the subspace ©*(W)[2] of
O°(Cye* (W))[2] spanned by cyclic “words” of length one. Thus a non-commutative Poisson structure
reduces in one extreme case to a cyclic A, structure on W and in another extreme case to a standard
Poisson structure on W. We prove below that there is a highly non-trivial (in general) action of the
Grothendieck-Techmiiller group G RT} on the set of non-commutative Poisson structures on arbitrary
W extending the known action of GRT; on ordinary Poisson structures.

3.3. A reparametrization of quantum diamond functions. In the above notations, consider a rescaling
map of homological degree ¢ + d,

HeoQu@v) )= o (V)]
et om (vid)) TS CRUEENITI

which multiplies a generating (over K[[A]]) monomial i 'v; ® vy ® ... ® vy, in Qr(CY(V)) by A™™ and
simultaneously shifts its homological grading by (1 —m)(c+d) (so that the total degree of the output equals
the total degree of the input + (¢ + d)).

It is easy to see that, if (V,[, ],A) is a Liebg j-algebra, then C$(V) is a dg Liecyq algebra with brackets
{, } (of degree 1 — c — d) and the differential oy + A j. The morphism H above extends to isomorphism
of dg Lie algebras Qr(C3(V)) — C%(V) and sends, in particular, quantum diamond functions into degree
¢+ d elements S in C§(V) satisfying the equation

1
(21) 555 +hA |5+ 5{S.5} =0.

Quantum Asss, algebras in this parametrization have been studied in [H1]; they correspond to solutions
S € Co_,(Cyc*='W) of (1)) which satisfy a “boundary” condition

S|h=o € Cyc*2*W[—d] ® @°*=2(Cyc*='W[~d)).

Alastair Hamilton also considered in [HI] a more general class of solutions S of (2I)) which belong to the full

graded commutative algebra ©*(V[—d])[2d][[1]] and has shown that under certain boundary conditions (and
L

g.n» Of the Kontsevich moduli

for d even) they give us homology classes in the Looijenga generalization, M
——K
space M .

Any quantum diamond function S € C¢(V') makes the Lie.1q algebra (C3(V),{, }) into a dg Lie.4q algebra
with the twisted differential

55::5v+ﬁA[7]+{S,}

called the Hochschild complex of S. In the special case V = Cyc(W) and ¢ = d this notion gives us an
equivalent (to the one given §3.2.7ii)) definition of the Hochschild complex of a quantum Ass, algebra S.
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4. Prop of ribbon graphs and involutive Lie bialgebras

4.1. Ribbon graphs. A graph T is, by definition, a triple (H(T'), o1, ~) consisting of a finite set H (T") called
the set of half-edges, a fixed point free involution o1 : H(T') — H(T') whose set of orbits, E(T') := H(T")/o1,
is called the set of (unordered) edges, and an equivalence relation ~ on H(I') with the corresponding set
of equivalence classes, V(I') := H(T")/ ~, called the set of vertices. For a vertex v € V(I') the associated
subset H(v) := p~t(v) C H(T), p: H(T') — V(T) being the natural projection, is called the set of half-edges
attached to v; the number #H (v) =: |v| is called the wvalency of the vertex v. Any graph I' can be be
visualized as a 1-dimensional CW complex whose 0-cells are vertices of I' and 1-dimensional cells are edges.
Thus it makes sense to talk about connected graphs, and about connected components of a graph which is
not connected.

A ribbon graph T is, by definition, a triple (H(T'), 01, 00) consisting of a finite set H(T') called the set of half
edges H(T'), a fixed point free involution o1 : H(I') — H(T') whose set of orbits, E(T') := H(T') /o1, is called
the set of edges, and a permutation oo : H(I') — H(T'). The set of orbits, V(T") := H(T")/oy, is called the set
of vertices of the ribbon graph. Each orbit of oy comes equipped with an induced cyclic ordering so that
a ribbon graph is just an ordinary graph equipped with a choice of cyclic ordering on subset of half-edges,
H(v) ¢ H(T), attached to each vertex v € V(I'). The orbits of the permutation oo, := o' 0 07 are called
boundaries of the ribbon graph I'. The set of boundaries of I" is denoted by B(T).

The set of ribbon graphs with n vertices, m boundaries and [ edges is denoted by RBﬁnyn. Every connected
ribbon graph I' from RBL)W can be visualized as a topological 2-surface S with m boundary circles and
n distinguished points which is obtained from the C'W realization of I' by thickening its 1-cells into 2-
dimensional strips, thickening every vertex v into a closed disk (whose center is a “distinguished point”),
and then gluing the strips to the disks in accordance with the given cyclic ordering in H (v). If we also glue
a disk into each boundary circle of the 2-surface St., then we get a closed topological 2-surface Sf of genus

g=1+ %(l —m —n). This motivates the following definition: for any connected ribbon graph I' the number

1
(22) g =1+ (#B(T) - 4V(T) - #B(T))
is called the genus of T'.

We shall use in this paper a slightly different geometric realization of a ribbon graph I' € RBZ,W in Sf
we always cut out “small” open disks with centers at the distinguished points (vertices) and get therefore a
topological 2-surface St with m +n boundary circles; n boundary circles corresponding to vertices are called
in-circles, while m boundary circles corresponding to elements of B(T") are called out-circles. For example,

-
r, = Q €RBy, = Sp, = , Iy =e—ecRB, = Sr, =
-—
I3 = CQ/) ERB}, =  Sp,=
U e S e
O -
I'y=49 € 'R,Bg)l = SF4 = R I's =e—e—0 c RB%;3 = SFs =
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Therefore it is sometimes useful to represent our ribbon graphs I' as 1-dimensional CW complexes with
vertices blown up into anticlockwise oriented dashed circles:

e & Qe m
Note that edges attached to a vertex split the corresponding dashed circle into a union of dashed intervals,

and we call each such interval a corner of the ribbon graph I' under consideration, and denote the set of all
corners of I by C(I"). There are two natural partitions of the set C(I") into disjoint unions of subsets,

cry= [ cw. cm= ][] co.
veV () beB(T)
such that each subset C(v) and C(b) comes equipped with a canonically induced cyclic ordering. It is some-
times helpful to employ this second partition of C(T") to represent each boundary b of T as an anticlockwise

oriented topological circle of the form ‘ o ‘ where dashed intervals represent (always different) corners

of T corresponding to b, and solid intervals represent (not necessarily different) edges of I' which belong to

b when it is viewed as a cycle of the permutation o.,. For example, the graph W € Rl’:v’%1 has 4 corners
belonging to one and the same boundary, and this boundary gets represented exactly by the above picture.
This pictorial representation of boundaries makes obvious the following claim-definition which will be used
below.

4.1.1. Claim. Let " € RBin)n be a ribbon graph, and let ¢; and ¢z be two (not necessarily different)
corners of I'. Let e, ., (I') be the ribbon graph obtained from I' by attaching a new edge e connecting c;

to ca. Then e, (,(I') € ’RBf,‘f_an if and only if the corners ¢; and ¢y belong to different boundaries as in

— N —

the picture ‘ ‘ ‘ , and e, ., (I) € RBf:il)n if and only if the corners ¢; and ¢y belong to the

same boundary of I" as in the picture

‘ . For example, the graph I'; = Q € RB%J has two

corners, C(I'1) = {c1, ¢z}, which belong to two different boundaries so that e, ¢, (I'1) = Q\Q/) € RB},

while ec, ¢, (T'1) = €cy,e, (T'1) = @ € RB3 ;.

A (ribbon) graph is called directed if its every edge is equipped with a choice of flow (“direction”), e.g. e—e
and @ are directed (ribbon) graphs.

4.2. Prop RGrag. Let ann be the set of (isomorphism classes of) directed ribbon graphs I' equipped
with bijections E(I') — [I], V(') — [n] = {1,2,...,n} and B(I') — [m] = {1,...,m}. The permutation
group S; acts on elements of ’Rﬁnn by changing the orderings of edges, while the group S;l acts by flipping

the directions of edges. For an integer d € Z, let sgnl(d) be the one dimensional representation of the group

P, :=S; x S5! on which (i) S; acts trivially for d odd and by sign for d even, and (ii) each Sy acts trivially for
d even and by sign for d odd. For every pair of natural numbers m,n € N we define a graded vector space
over a field K,

RGraq(m.n) i= ) (K(RL, ) ©p, sgn(®) [1(a — 1)
1>0
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Thus a generator ' of RGrag(m,n) can be understood as the isomorphism class of a ribbon graph whose
vertices are labelled by elements of [n], boundaries are labelled by elements of [m], whose every edge is
assigned degree 1 — d, and which is equipped with an orientation which depends on parity of d:

e for even d the orientation of T is defined as a choice of ordering of the set of edges E(T") up to a sign
action of Sy p(r),

e for odd d the orientation of I" is defined as a choice of a direction on each edge up to a sign action
of Sg.

Note that every ribbon graph I' has precisely two possible orientations, or and or°?P, and I" vanishes if it
admits an automorphism which changes the orientation.

A warning: we sometimes show neither the labellings of vertices and boundaries nor the choice of an orienta-
tion (e.g. directions of edges) in our pictures of elements of RGraq(m,n) below; in such cases some choices
of these data are assumed by default.

4.2.1. Examples. (i) The graph QQ/) equals zero in RGrag(1,1) for any d as it admits a changing
orientation automorphism.

12
(ii) The permutation group Sy acts on e—e € RGraqy1(1,2) by changing the labels of the vertices. One
has, for (12) € S,,

2
(iii) The permutation group S5 acts on @ € RGraq(2,1) by flipping the labels 1 and 2 of the boundaries.
One has, for (12) € S,

in RGraq(2,1).
The collection of S-bimodules,
RGraq := {RGraq(m,n)},
forms a prop in the category of graded vector spaces with respect to the horizontal composition

o: RGrag(mi,ni) @k RGraqs(ma,ne) —> RGrag(mi + ma,ni + na)
@Iy — Iy Iy

defined as the disjoint union of ribbon graphs, and the vertical composition,

o: RGrai(p,m)®x RGraqs(m,n) — RGraq(p,n)
T'y®Ty — I'soIy

which is defined by gluing, for every i € [m], the i-th oriented boundary (out-circle) of T'y,

O ‘

to the i-th oriented blown-up vertex (in-circle) of I's,

e
AN

as follows (cf. [TZ]): first we place the out-circle inside the in-one, then we erase the dashed in-circle leaving
edges attached to that circle hanging (for a moment) in the “air”, and finally we take a sum over all possible

reattachments of the hanging edges to the dashed intervals (corners) of the out-circle while respecting the
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cyclic orderings on both sets — the set of hanging edges of the i-th vertex of I's and the set of corners of
the i-th boundary of T'y,

N

Every ribbon graph in this linear combination comes equipped naturally with an induced orientation, and
belongs in fact to RGraq(p,n). It is obvious that this operation satisfies the required axioms for vertical
compositions; it is slightly less obvious that every summand in the resulting linear combination of ribbon
graph has precisely p boundaries, see §4.1.1] above for a hint. The graph e consisting of a single vertex serves
as the unit in RGray.

The subspace of RGrag spanned by connected ribbon graphs forms a properad which we denote by the same
symbol RGrag; this should not lead to confusion as the prop closure of the properad RGrag is precisely the
prop RGrag; similarly we do not distinguish in notation, for example, properad Lieb; and prop Lieb$ as
the former completely determines the latter and vice versa. Thus when we talk about properad RGraq we
always mean the subspace of connected ribbon graphs; when we talk about prop RGrags we mean the full
space of (not necessary connected) ribbon graphs.

The main motivation for the above definition of the properad RGragy is the following theorem-construction.

4.2.2. Theorem. Let W be an arbitrary graded vector space and Cyc*W = @p>1(WE™)2n | the associated
space of cyclic words. Then any (not necessarily non-degenerate) pairing © : W @ W — K[1 — d] satisfying
(Q) gives canonically rise to a representation of prop(erad)s,

pw : RGraq — Endcycow -

Proof. We shall show the argument for d even; the case of d odd is analogous, and is left to the reader. Let

(23) {Wi = (wi, ® ... ®wli)zzi}

1<i<n, ;€N

be a collection of n cyclic words from Cyc®(W), and let I' € RGraq(m,n) be a ribbon graph with vertices
(v1,...,0;,...,0,) and boundaries (b1,...,b;,...,by) such that #H(v;) < ;, Vi € [n], i.e. the valency of
each vertex v; is less than or equal to the length of the i-th cyclic word. A state s on I is, by definition, an
injective morphism of cyclically ordered sets,

s: H(v;) — (wyy ®..-®wli)zli7

that is, an assignment to each half edge h; € H(v;) of an element s(h;) from the set (w;, ® ... ®@wy, )z, ina
way which respects natural cyclic orderings of both sets. To each state s we associate an element

LWy, ..., Wy) € " Cyc® W

as follows:

(i) recall that orbits, e = (h,o1(h)), of the involution o1 : H(T') — H(T") form the set of edges, E(T'), of
the graph I". Let us choose arbitrarily a half-edge representative h of each edge e = (h,o1(h)) € E(T),
and let us denote this set of representatives by +H(I') ~ E(T'). The weight of a state s is, by
definition, the number

A= [ ©s(n),s(o1(h)).

he3 H(T)
(ii) The complement, (wi,,...,w; ) \ Ims, splits into a disjoint (cyclically ordered) union of totally

ordered subsets, ]_[cec(v) 1., parameterized by the set of corners of the vertex v.
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iii) To each boundary b; € B(I') we can now associate a cyclic word
Yy 05 y

W @
ceC(by) 25 ooy el
where the tensor product is taken along the given cyclic ordering in the set C'(b,), and then define
P Wi, ..o W) = (1) AW, @... W,
where (—1)7 is the standard Koszul sign of the regrouping permutation,
W@ aW,— [] Ghesei(h)eW, e...aW; .

hei H(T)

Note that @& (Wi, ..., W, ) does not depend on the choice of half-edge representatives of edges, i.e. on the
choice of an isomorphism $H(I") ~ E(T).

Finally we define a linear map,

pw : RGrag(m,n) — Hom(®"Cyc*W,@™Cyc*W)

by setting the value of py (I') on cyclic words (23] to be equal to

0 if #H (vy,) > 1, for some p € [n]
pw (DYWL, ..., W,) = > @E(Wi,...,W,) otherwise
all possiblle
states s
It is now straightforward to check that the map pw respects prop compositions in RGraq and Endcycew
(as the prop structure in RGrag was designed above just to make this claim true). O

4.2.3. Theorem (cf. [CS]). There is a morphism of prop(erad)s,
s%: Lieby g — RGrag

given on generators as follows,
(24) < (Y) = Q o (A) =

Proof. One has to show that the map s° sends to zero all the Lie bialgebra relations (@) as well as the
involutivity relation

s
S =0
|

among the generators \ﬁ/ and /g\ The involutivity relation is respected by p as

(4)-P

and the latter graph vanishes identically in RGrag(1,1) indeed (see §4.2.T)(i)). All the other required
conditions on s® can be checked by as elementary calculations as the above one; we leave the details to the
reader. ]

4.2.4. Remark. Composing the above morphism s® with the representation py of Theorem [4.2.2] we get
a proof of Proposition 2.3.7]
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4.3. Ribbon graph complex and universal deformations of a class of involutive Lie bialgebras.
Using results of §2.4.1] we can now explicitly describe the dg Lie algebra, the Ribbon Graph Complexz,

RGC := Def (Eiebg)d = Rgrad) = Def (Hohebgd LR Rgrad) ,
which controls deformations of the following composition of morphisms of dg properads,
s : Holieby 4 proj Lieby 4 =% RGraq.

Here the first arrow is the natural projection and the second arrow is given by Theorem [4.2.2] One can un-
derstand this deformation theory as the theory of universal Holiebj-deformations of the standard involutive
bialgebra structure in a vector space W equipped with a scalar product © as in §2.3]

Let % be a formal variable of homological degree 2d, then we have a continuous (in the fi-adic topology)
morphism of dg properads,

s": Holieb” , 74 Lieh ,[[H] = RGraa[[h]),

and an isomorphism of dg Lie algebras,
h
RGC ~ Def g (Hozz‘ebgd N Rgmd[[h]])

where the complex on the r.h.s. describes deformations of the map s” within the class of all possible admissible
properadic morphisms, f : ’H,oliebg)d EN RGraq[[h]], that is, the ones which satisfy the condition

5" (+) € hRGraas[[H]).
Therefore, we have a canonical isomorphism of graded vector spaces,

RGCS = hRGray(1,1)[[h]] @ @ (Rgmd(m,n) ®s,, xs, (sgnld @ sgn‘,ﬁ')[[h]]) [d(2 —m —n)]

m,n>1
m4n>3

i.e. a homogeneous element I' of RGC, can be understood as a formal power series

I = Zl“ah“

a>0
where T',, is a connected oriented ribbon graph with m = #V(I',) vertices and n = #B(T,) where
e the orientation or of I', is defined a choice of the unit vectof] in the one-dimensional vector space
det(E(I'a)) (for d even) or det(V(I'a)) ® det(B(I'a)) Qe p(r,) det(H (e)) (for d odd), where H(e) is
the set of two half-edges of the given edge e; every graph has precisely two orientations, (I'y, or) and
(Ty, —or), and we identify (T, or) = —(T'q, —or).
o T(y| = d(#V(C() + #B(L(0)) —2) + (1 = d)#E([T () — 2ad = —2(g + a)d + #E(T), where g =
1—1(#V (o) — #E(Ta) + #B(T,)) is the genus of the compact Riemann surface associated to I',.
o Ty =0 if #V(I'g)=#B(Iy)=1.
The Lie brackets [, ] in RGCj can be read off from the differential (I4]) along the lines explained in [MeVa].
Maurer-Cartan elements in (RGC3, [, |) are in one-to-one correspondence with admissible morphisms of dg
props, (Holieb”, 5,) — (RGraq|[h]],0), or, equivalently, with arbitrary morphisms of dg props (Holieb$, §) —
(RGrag,0); here we understand RGraq as a prop with zero differential. In particular, the canonical morphism
s° determined by Theorem is given by the following Maurer-Cartan element,

I'o=e—e + Q

4For a finite set S we denote det(S) := A#S(K[S]), where K[S] is the linear span of S over the field K; we also equip det(S)
with a Euclidian norm.
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It makes RGC, into a complex with the differential §, := [[s, ]. For a connected ribbon graph I' one has
(up to signs)

(25) oI = Z Ty, 1o (F) + Z Z €ci,e2 (F) +

veV () Hw)=I1Uly beB(T) c1:e2 in C(b)
Iy,I570 c1#cy
or AT
+h § § €ereo(I) + 1 § E Teyeo(I)
by,bp€B(T) ¢q€C(b1) v1,v2€V(I) ¢ €C(vy)
by #bg co€C(bg) v F#v c2€C (va)
ALT AYT

where

- €¢,,c, () is the graph obtained from I' by attaching a new edge connecting the corner ¢y to the corner
s (see JLLT)

- for a fixed splitting, H(v) = I; U I, of the set of half-edges attached to the vertex v into two
non-empty subsets I; and I (each equipped with the induced cyclic ordering), the associated linear
combination of ribbon graphs 7y, 1,(I') is obtained from I' by (i) replacing the vertex v with the
2-vertex graph e—e_ (ii) attaching half-edges from I (respectively, I5) to one vertex vy (respectively,
another vertex vy)) of the graph e—e, and (iii) taking a sum over possible ways of equipping the sets
H(vy) = I Uland H(vy) = I, U| with cyclic structures which agree with the given cyclic structures
on the subsets I; and, respectively, Io;

- for any fixed pair of different vertices, v; and wvq, of T,

NS
v = — e s Vg = — PR
/N
and for any fixed corners ¢; and ¢z belonging to C'(v1) and, respectively, C(vy), the associated graph
Teq,e,(I') is obtained from I' by glueing vertices vy and vy into a single vertex along the marked
corners as shown in the picture,

and then attaching a new loop-like edge to the new vertex as also shown on the picture above.

4.3.1. Remarks. (i) Let Gl , be the subspace of RGCj(m,n) spanned (over K[[h]]) by graphs with
edges. Then for T" € Gﬁn)n one has J,I' = 0T + AT + A(ALT + AL, where 0T € Gi;;iH_l, AT € Gi:ilm,
AT € GhTL) and AYT € Gl ). We denote Ay := A) + AY so that do = 6 + Ay + hA.
It follows that operations 9y := ¢ + hA), and 0> := A; + hAY are also differentials in RGC. If we consider a
morphism of properads

s7 1 Lieby g — RGrag

such that
(26) S5 (\ﬁ/) =0 , s (/K) = eo—eo

The associated ribbon graph complex Def (Liebid 2 Rgrad> coincides with RGC, as a graded vector space

but comes equipped with the differential 9; = § + AA). Similarly, the complex (RGCg4, d2) can be identified
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with Def (Liebg)d 3 Rgrad), where s§ is a version of the map (26]) which sends to zero the Lie generator

(rather than the coLie one).

(ii) The quotient dg Lie algebra RGC,; := RGCj/ARGC controls deformations of the canonical map

s : Liebyq — RGraq given by the composition Lieby 4 — Eiebg)d S—o> RGrag , or, equivalently, universal
deformations of the standard Lie bialgebra structure on Cyc®*W (with involutivity condition forgotten). Its
differential is given by the first two terms, § + Ay, in ([25). This complex plays an important role below. The
operator As : RGCy — RGC, has degree 1 — 2d; it commutes with § + A; and satisfies AZ = 0.

Note that the deformation complex Def (Eiebd)d LN Rgrad) associated to the composition map

<o
. . S
s* i Liebgq — Liebs ;, — RGrag

is identical to the complex (RGCyg, ).

(iii) The case d = 0 is of special interest as the complex RGC := (RGCy, ) computes cohomology of the
moduli space M, ,, of genus g algebraic curves with n punctures as shown in (Il). The complex RGC splits
into a direct sum

RGC := RGCZ% ¢ RGC=2

where RGC=? is spanned by ribbon graphs with all vertices at least trivalent and RGC=? is spanned by graphs
which have at least one vertex of valency < 2. The cohomology of the first direct summand is given by (see
K6, K5, (K3l [LZ] [H1] for detailed definitions, proofs and further references)

H*(RGC=) = [  (H* " F( My, K) ® sgn,,) /Sn

g,n
n>0,2—2g<n

while (cf. [W1])

K fork=1,4,7,...
H* (RGC=?) = ork=141,
0 otherwise

Note that in d = 0 case all the operators d, A; and As have degree 1 so that it makes sense to equip the
graded vector space RGC not only with differentials §, § + Ay, but also with 6 + A; + Ay. By Remark (i)
above, the operations § + Af, and A; + A are also differentials in RGC.

It is worth emphasizing that the complex (RGC, §) is not identical to the Kontsevich ribbon graph complex
in [K6] as it computes cohomology H*® (M, ,, Q) with numbering of punctures skew-symmetrized, rather
than symmetrized.

(iv) The complexes (RGCy,d) with d even (or for d odd) are obviously isomorphic (up to degree shifts) to
each other. It is less evident the isomorphism claim holds true for all d as the one-dimensional vector spaces
det(E(I')) and det(V(I'a)) ® det(B(I'a)) @.cp(r,) det(H (e)) (which determine orientations for d even and
d odd respectively) are canonically isomorphic to each other — see Proposition 1 in [CV]. Hence all the
complexes (RGCg4, §) compute the (degree shifted versions of) cohomology groups (H® (Mg, K) ® sgn,,)/Sn.

(v) To any ribbon graph from RGC, one can associate the genus g of the associated compact Riemann surface,
and the differential § preserves this numerical characteristic. Therefore the complex (RGCg4,d) decomposes
into a direct sum
RGCy = P RGCY
920
and one has an explicit relation between complexes for various d,

RGCY) = RGCW[2¢d).

(vi) Let * be a map Rﬁnn — Rﬁhm associating to a ribbon graph I' its dual graph I'* defined as follows:

represent I' as surface with m punctures and n output boundaries, glue punctured disks to each of the n
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boundaries, and finally draw a ribbon graph I'* on the resulting surface with V' (I'*) identified with punctures
of the glued disks and E(I'*) obtained as follows: two vertices from V(I'*) are connected by an edge in if
and only if the associated to these punctures boundaries of I' share a common edge in I'. The map * induces

involutions of the vector spaces RGC, and RGC,. As the ribbon graph dual to e—e is Q , these involutions
commute with the differentials in both complexes RGC®,d,) and (RGC,d + Ay).

4.3.2. Variation: Odd case and moduli space of curves with symmetric punctures. The family
of complexes

(RGCy, §) = Def (cz‘ebd,d LN Rgrad) Vdez,

defined in §4.3.7ii) is in fact a subfamily of a larger family of complexes. Indeed, for any ¢,d € Z we may
define a morphism of properads

s*: Liebeg — RGraq

()0 ()

Hence we obtain the ribbon graph complexes

such that

RGC,.q := Def (cz‘ebc,d R Rgmd) = Def (Hoh‘ebc,d LR Rgmd) VedeZ
which for ¢ = d coincide with the complexes (RGCgq,d) considered in §4.3.7[ii). Here s’ stands for the
composition of the canonical projection Holieb. q — Lieb. q with s*.
In particular, the ribbon graph complex
RGCpqq := RGCyp 1
is the one originally considered by Kontsevich [K1} [K2| [K3]; it computes the cohomology of the moduli space
of curves with unidentifiable punctures. More concretely, we can split as before

RGCoqq := RGC;, ® RGC,

where the first summand consists of series of graphs that have at least one vertex of valence < 2, while
the second summand consists of graphs all of whose vertices are at least bivalent. Then as shown in [K3]

H (RGngQd) is spanned by classes represented by loops of k bivalent vertices, with k = 3,7,11,..., while
> ~ — n—
HRGCZ) =[] (HY P *(Mya,K)) /S,
n>0,gf2g<n

More generally, all RGC, 4 for ¢, d of the same parity are essentially isomorphic to RGC, up to certain degree
shifts, and all RGC, 4 for ¢, d of opposite parity are essentially isomorphic to RGC,qq, again up to certain
degree shifts.

We finally note that apart from the “trivial” map s* more interesting maps from the properad of odd Lie
bialgebras may be considered.

4.3.3. Theorem. There is a properad map
s© . Holiebp,y — RGraa,

defined on generators such that

1 .A& ; —
1.2 ... m1m m ZJGSm an =2 and m odd

o . B X—7
= N—— )
/\\ m edges
reoome 0 otherwise

where the notation on the right shall indicate that one sums over all ways of numbering the m boundaries.
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Proof. We have to show that the right-hand side of (the Holiebo, 1-analog of) (@) is zero. All ribbon graphs appearing
on this right-hand side are easily checked to be of the form

with some numbering of the punctures, where (in the notation of (M)) n =3 and m = k1 + ko + k3 is even. Fix some
numbering of the punctures for concreteness (which does not matter by symmetry). Let us count which terms on
the right-hand side of (@) can produce terms such as the above for given ki, k2, k3. The terms that can contribute
correspond to |I1| being equal to one of the kj;, which must be odd. Since m is even, either all of the k; are even
(then there is no contribution) or exactly two are odd, say k2 and k3. Let us first suppose that |I1| = k3. Then the
above contribution to the right-hand side of (7)) comes with a combinatorial multiplicity factor 1, given that the fixed
numbering of the punctures uniquely determines how the edges must be attached. Similarly, the contribution with
|I1| = k2 comes with a factor —1, the minus arising from the necessity to once permute the input labels. If k2 # k3,
the sum is zero. Otherwise, if k2 = k3 then the term is killed due to the anti-symmetrization on the input labels. [J

4.3.4. Corollary. There are properad maps
3¥V : Holiebi,o — RGra:

and
SXV : Holiebo,y —> RGrai{1}

defined on the gemerators as follows

g
1L2...milm 1 Xi / ;
W ) 2ses, (1) il \ if m=2 and n odd
AN S
e
e 0 ”\ ‘ otherwise

where i =1,2, \y =0, A2 = 1 and |o| € Z2 is the parity of the permutation o.

Proof. The claim about s}V follows Theorem .3.3lupon applying the duality (in sense of inverting inputs and outputs
of the properad, see §4.3.7|(vi)) functor to its main formula, and noting that the graph dual to the “m-theta” graph
on the r.h.s. of the map s® os precisely the graph with m binary vertices.

The second claim follows from the first one upon noticing that Holiebo,1 = Holiebo,1{1}. O

4.3.5. Corollary. Given any vector space W equipped with a symplectic form of degree zero. The associated vector
space Cyc(W) comes equipped with a canonical formal power series Poisson structure given by the sum over all
possible odd wheels as shown explicitly in Corollary §4.3.4

Proof. The prop Holieb: o is identical to the prop Lie'Bioo from [Mell,[Me2] and hence has the property that there is a
1-1 correspondence between representations of Holieb1 o in a graded vector space V and formal power series Poisson
structures on V' with vanishing constant term at 0 € V. Composing the canonical representation RGrai — Endeoye(w)
with the map s]” we obtain the required claim. O

5. Twisting of props by morphisms from Holieb]
and the stable ribbon graph complex

5.1. Operads twisted by morphisms from Lie type operads. For any morphism of operads
f: Holieq — O

from a (degree shifted) operad of strongly homotopy Lie algebras to an arbitrary dg operad O, one can construct
[W1] an associated twisted (by f) dg operad,

TwO = TwO(n) := [[ P(n+j) ®s; (K[-d])*’
Jj=0
which often has interesting cohomology and applications. For example, this twisting construction gives us almost for
gratis dg operads of Kontsevich graphs and the dg operad of braces out of much simpler non-differential operads, and
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also short proofs of some non-trivial theorems about their representations. The differential and operadic compositions
in TwO are explicitly given in [W1]; one can understand (and even reconstruct) these structures through the following
main property of TwO: given (i) any representation p : O — Endy, (ii) any (pro)nilpotent algebra n, (iii) any Maurer-
Cartan element m € V ® n with respect to the n-linear Holieq algebra structure in V ® n induced by the composition
po f:Holieqg1 — Endy, then there is an induced representation

pm : TwO — Endvgn

in the n-module V' ® n equipped with the twisted n-linear differential

S"™v®a = 6v—|—z,un(m,...,m,v) a YveV,aen,

n>2
where § is the original (untwisted) differential in V' and the operations {pn : ®"V — V[—d|}n>1 are precisely the
values of the composition p o f on the generators of Holieq.

The dg operad TwQO comes equipped with the natural action of the dg Lie algebra Def(Lieq — O) via operadic
derivations [WTJ.

Let us illustrate all notions and claims in the concrete examples.

5.1.1. Examples. (i) The operad Graq (see §2.7) comes equipped with a non-trivial map
o Holieq — Lieq = Grag

where the first arrow is the canonical projection and « is the map defined in ([I6). Hence the operad Graq can be
twisted by o’ into a new dg operad Twgraq which we describe explicitly. An element I' € TwGraq(n) is graph T’
from Graq(n + j) ®s; (K[—d])®’ which has n + j vertices such that n vertices are labelled by numbers from [n] as in
Graq(n) while the remaining j vertices have labels (skew)symmetrized and hence can be viewed as unlabelled. We
call these unlabelled vertices internal and denote by black bullets, for example

L] ./_\.
é € TwGraqs1(1) @@@ € TwGraay1(3)

The set of internal vertices is denote by V4 (I'); the remaining vertices are called external and denoted by white circles,
V(') \ Vo(T') =: Vo (T"). The operadic composition

o; : TwGraq(n) ® TwGraq(m) — TwGraq(n+m —1)

't @Iy — I'yo0; '
is given as in Grag, i.e. by substituting the graph I's into the i-th external vertex of I'; and taking a sum over all
attachments of the resulting hanging edges in I'1 to external and internal vertices of I's.
The right action of the graph complex fGC, by derivations is defined by
TwGrag ® fGCy — TwGraq
ey — F'W’::ZUev.(r)F'v’Y
where I' -, 7y is given by substitution of the graph = into the internal vertex v and taking the sum over all possible
attachments of the resulting hanging edges to external and internal vertices of .
The operad Grag is non-differential so that the differential § in TwGray is completely determined by the map o/, i.e.
by formulae (I6). It is given explicitly by [W1]
? r ? r
) R )" 3" ro, Lo- (=D)TIT - (e—e)
eV, (T)

Let Graphsq be a dg suboperad of TwGraq spanned by graphs with all internal vertices at least trivalent and with
no connected component consisting entirely of internal vertices; it was first introduced by Kontsevich (for d = 2) in
[K5].

Let Poisq be a quadratic operad generated by degree zero corolla I/L\Q = 2/‘!’\1 and degree 1 — d corolla

1/J'\2 = (-1)¢ 2)\1 which are subject to the following relations

27



and
/%\3 = & : f(K = Kk + /5\
1 2 2 3 1 2 1 3 2 3

The operad Poisz is precisely the well-known operad ez of Gerstenhaber algebras; the operad Poisq for d > 2 is
often called the operad of (d — 1)-algebras [K5] while the case d = 0 corresponds to the operad of ordinary Poisson
algebras. We always assume that Poisg is a dg operad with trivial differential.

We have a canonical morphism of dg operads

Poisq —> Graphsg
1)\2 - 00
1/1\2 - (Can©)
which is proven in [K5| [LV] to be a quasi-isomorphism.
(ii) Let RTraq be a suboperad of the properad RGraq spanned by connected graphs of genus zero, i.e. by ribbon
(unrooted) trees. There is a morphism of operads,
v: Lieq — RTraq
given on the generators by formula (6] so that one can construct an associated twisted dg operad
RTreesq := Tw(RTraq).

Its cohomology is equal [Wa] to the (degree shifted) gravity operad Grav{d — 2} introduced by Ezra Getzler [G]; in
this picture the cohomology is generated by the ribbon tree given on the r.h.s. of (I8 and also by (connected) ribbon
trees with black vertices of valency 3 and white vertices of valency 1. The dg operad R7T reesq acts naturally on the
Hochschild complex (see §3.2.9)i)) of any cyclic A algebra.

In this section we shall construct a dg operad which admits a natural action on the Hochschild complex of any
quantum A., algebra; it is obtained by twisting of a certain polydifferential operad canonically associated with the
full properad RGraq of ribbon graphs.

5.1.2. Twisting by maps from a Lie type operad. We shall use below operads twisted by morphisms from a

slightly different Lie type operad. Let Liej be an operad generated by degree 1 corolla + and degree 1 — d corolla

)\2 = (-1)¢ 2/l\1 which are subject to relations (27]) and the following ones[i

o p A

We always understand Lie® as a dg operad with trivial differential.

1

Given a morphism of dg operads
f: Lieg — (0,0)

the image f ( ) € O(1) induces a differential do in O through the canonocal action of O(1) on O as derivations.
Moreover, the sum § + do is also a differential in @. The composition

Lieq — LieG -5 O
is a morphism of dg operads with O assumed to have the new differential § 4+ do. Applying now the standard twisting
construction to the above map from Lieg to (O, + ds) we get a twisted dg operad which we denote by Tw®O. As a

%

5 The minimal resolution Holie§ of the operad Lie] is generated by the (skew)symmetric corollas AN of homological
I
degree 1 — d(k — 1 + p) and has the differential [CMW] d //é\\ = Dpmqir k=101, }{‘s‘ . Representations,

—

p : Holie§ — Endy, of this operad in a dg vector space (V,d) is the same thing as continuous rcg)resontations of the operad
Holieq[[h]] in the topological vector space V[[A]] equipped with the differential d + 37 -1 hPAp, Ap :=p < %} > , where the

formal parameter & is assumed to have homological degree d.
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non-differential operad Tw®O is identical to TwO, but it comes equipped with a slightly different differential affected
by the image f (D

5.2. Polydifferential operad associated to a prop. In this section we construct a functor from the category of
(augmented) props to the category of operads which has the property that for any prop P = {P(m,n)}mn>1 and its
representation

p: P — Endv

in a vector space V, the associated operad OP = {OP(k)},r>1 admits an associated representation,
PP OP — Endgey
in the graded commutative algebra ®*V on which elements p € P act as polydifferential operators.
The idea is simple, and is best expressed in some basis {z®} in V (so that ®*V ~ K[z“]). Any element p € P(m,n)
gets transformed by p into a linear map
p(p) : "V — "V
'R .. Q%" — Z Aglaz G e e.. @
B1,B2;--:8m

ajag...ap
for some A,8152. S K.

cey

Then, for any partition [n] = I U ... U I of [n] into a disjoint union of (possibly, not all non-empty) subsets,
Ii = {siy, Sigs- -+ 51’#11»}7 1 <i < k, we can associate to p a polydifferential operator
ppoly . ®k(®ov) N o'V
L 8 b gomon, O ORI fy
f1($)®f2($)®®fn(x) I Z ﬁ]; 11; 2...1; Aﬁlfbm,ﬁm 8:2&11 a.’.l)alk
arsan
Bl Bm,

where ay, for ¢ € [k] stands for the multindex sy, Olsyy - Qs and

8#11' fl f@ if #I1; =0
T B v if #1; > 1

s
i2 oz H#I;

This association p — pP°'¥ (for any fixed partition of [n]) is independent of the choice of a basis used in the construc-
tion. Our purpose is to construct an operad OP out of the prop P together with a linear map

Fn=n,u..u1, : P(m,n) — OP(k)

such that, for any representation p : P — Endy, the operad OP admits a natural representation p?°%Y in ®*V and

poly poly (

p =p F[n]:jlu,“ulk(p)) :

Note that ®®*V carries a natural representation of the operad Com of commutative algebras so that the latter can
also be incorporated into OP in the form of operators corresponding, in the above notation, to the case when all the
sets I; are empty.

5.2.1. Some notation. Sometimes we understand a prop P in the category of graded vector spaces as a collection
of S;? x S, bimodules P(m,n) (with — solely for simplicity of some formulae below — an assumption that m,n > 1)
and sometimes as a functor from the category of pairs of non-empty finite sets to the category of graded vector spaces,

P={P(,J)}

where each vector space P(I,J) is a S7¥ x Sy-bimodule; in particular, P(m,n) = P([m],[n]). The horizontal
composition in P is denoted by om,

og: P(h, ) ®@P(Iz,Jo) — P(LiUl,JiUJ2)
P1 & p2 — P1 OH P2.

For any two injections of sets f : S < J1 and g : S < I2 there is a vertical composition denoted by f(s)04(s),
159y 1 P, i) @ P(la, J2)  — P(LiUd(I2\42(5)), (J1 \ j1(5)) U J2)
P1 ® p2 — D1 5(s) 9g(s) P2

which glues S-labelled (via f) outputs of p2 with the corresponding S-labelled (via g) inputs of p;.
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5.2.2. Remark. Up to now all our props and operads were unital by default. The functor O can be defined for an
an arbitrary prop. However, some of our construction in this paper become nicer if we assume that the props we
consider are augmented,

P=K®P,

and apply the functor O to the augmentation ideal P only (see the Definition below). This assumption holds true in
all applications of the functor O in this paper.

It is worth noting that in some cases this restriction of the functor O to the augmentation ideal comes at a price of
loosing in OP rescaling operators which can be useful in applications.

5.2.3. Definition. Let P be an augmented prop. Define a collection of (completed with respect to the filtration by
the number of outputs and inputs) S-modules,

OP(k) := Com(k) @ ] b orr.
m,n>1 [n]= JyiU...uJy
HI1sees #J), >0

where
OPY,.....0, = L @gor @P(m,n) Qs x..xSy Ls;, ®...®1s,

where 1 stands for the trivial one-dimensional representation of the permutation group Sr. Thus an element of the
summand OP7,  ; C OP(k) is an element of P(m,#J1 + ... + #Ji) with all its m outputs symmetrized and all
its inputs in each bunch J; C [n], s € [k], also symmetrized. We assume from now on that all legs in each bunch J,
are labelled by the same integer s; this defines an action of the group Sk on OP(k). There is a canonical linear map,

(28) .0, Plm,n) — OPY ;..

It is often useful to represent elements p of the (non-unital) prop P as (decorated) corollas,

12 m
p o~ Y
AN
12 n
The image of such an element under the projection 777;  ; is represented pictorially as the same corolla whose

output legs are decorated by the same symbol 1 (which is omitted in the pictures) and the input legs decorated with
possibly coinciding indices as in the following picture

€ P(m,n)

[m]

~~

Iy Ji Ji
Note that some of the sets J; can be empty so that some of the numbers decorating inputs can have no legs attached!

12 3 4

V4

For example, an element g = N € P(4,5) can generate several different elements in OP,

(29) /\i(\ € OP(2) /\TV\ € OP4) , etc.

112 12 112 12 34

Often (but not always) it is useful to represent elements of OP not as corollas decorated by elements from P whose
legs are labelled by possibly coinciding natural numbers, but as graphs having two types of vertices: the small one
(with is decorated by an element of P) and new big ones corresponding to inputs of OP and having a “non-coinciding”

numerical labelling

In this notation elements (29) gets represented, respectively, as

4

)4
gQ% e !Qg®@

while generators of Com(n) C OP(n)as © @ - ® .
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We denote P(0,n) := Com(n) ~ 1,, n > 1, and set OPJ,  ; tobe Com(k) for Ji = ... = Jp = () and zero otherwise;
we also extend the map (28) to the value m =0

,,,,,,

in the obvious way.

For any ¢ € [k] consider a map
o;: OP(k)®@OP(l) — OPk+1-1)

which is given on arbitrary elements a € OP};  ; C OP(k) and b € OP?L...,IL C OP(1) as follows

(a) Ifm,q>1,
max(#1;,q)
. — m+q—r
ao;b = Z Z Z Ty yeeosTi -1, TAUTY e UT Ty 1 e T (@ ¢(ir1) g(ir)) ©)
r=1 Filrl—=I; J\F(Ir)=T1U...UT;
filrl—ld] #T1,.-s #T; >0
m-4q
+ Z 7TJ1,,4.,Ji,1,JluTl,m,JluTl,JiJrl,m,Jk(a‘ on b)

I;=T1u...uT}
#T1,... . #T;>0

(b) ifm>1,¢q=0,

aoi( ©® 0 ):: Z Tr’,‘]riv“w‘]i—l7T17~'7T17J'L+17~'7Jk:(a)

Ji=TyU...UT)
#T1,... #T >0

(¢) f m=0,¢=0,

(00 “®)o (00 =0 )= 00-()

: m+gq—r
The first group of elements in (a) belongs, for each r, to the subspace OPJIv~~~in—1vJ1UT1v~~~vJL\—|TL;J'L+L+1;~~~;Jk+L—1

of OP(k + 1 — 1) and is obtained from a and b by (i) taking vertical compositions of along r-labelled outputs of
b and the corresponding r-labelled inputs of a belonging to the bunch J;, (ii) symmetrizing over the outputs of
a with the remaining ¢ — r outputs of b, and (iii) taking the sum over all possible assignments of the remaining
#J; — r inputs of a to the input bunches I, ..., I; of b. The second group of elements in (a) belongs to the subspace
OP}?T?:Jiflr‘]lUTl:“':Jl\—'TL:Ji+L+1v~~~ka+l—1 of OP(k +1—1) and is obtained from a and b by taking their horizontal
composition, symmetrizing over the all outputs m + p outputs, and taking a sum over all possible assignments of the
input legs of a from the bunch J; to the input bunches I, ..., I; of b.

Using “big-circle” notation for inputs one can understand the operadic composition a o; b in a way similar to the

description of the operadic composition in the operad Graq+i1: substitute the decorated corolla b = %W\ into
1

the i-th input vertex of a = and then take the sum over all possible ways to attach the hanging edges

(previously attached to the i-th vertex) to the out-put legs of b and to the input big-circle vertices of b. The element
@ plays the role of the unit in the operad OP.

5.2.4. Proposition. (i) For any augmented prop P the associated data (OP,0;) is an operad (called the polydiffer-
ential operad associated to P).

(i1) Any representation of the augmented prop P in a graded vector space V induces canonically an associated repre-
sentation of the operad OP in ®°V.

Proof. Given an arbitrary representation p : P — Endy. Compositions o; have been defined in such a way that the
morphism of S-modules pP°% : OP — Endyey given explicitly above satisfies the condition

PP (@ 0, b) = g1 (a) o PV (B).

Put another way, compositions o; in OP are just combinatorial incarnations of the standard substituition of polyd-
ifferential operators acting on ®*V. That these compositions satisfy axioms of an operad is a straightforward check
(which is easiest to do in local coordinates as in the beginning of §5.2). |
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1 102
5.2.5. Example. Consider elements /K € P(1,2) and \i/ € P(2,1). We can associate to them, e.g., the
172 1

following three elements in the operad OP,
/J)\ € OP(2), /% , ¥ € OP(1)
1 2

We have in OP,

| |
1/J>\2 - I/J)\2 B 1/ >o\ + 1/ \22/J)\3 + 1/J>\2£3\3
| !
o A Pt AT IA T AR TSA
[ S Loy ﬁ
SO Sl SR ! S SR Bl O

5.3. Polydifferential operads and hypergraphs. The above examples show that the horizontal compositions in
a prop P play as important role in the definition of the polydifferential operad OP as vertical ones so that to apply
the polydifferential functor to a properad (or operad) P one has to take first its prop enveloping UP and then apply
O to the latter; for an augmented properad P we understand UP as K @ UP and define

OP = O(UP).

The case of properads is of special interest as elements of OP can be understood now as hypergraphs, that is,
generalizations of graphs in which edges can connect more than two vertices. For example, elements of a properad P
12 1
p= v €P(2,4) and g¢= l € P(1,3)
1/2/\3\4 12 3

generate, for example, an element
1 2 3

AV
1/2/\3\4 /l\ e UP(3,7)

which in turn gives, for example, rise to an element

N
€ OP(3)
@@@

which looks like a real graph with vertices of two types — the small ones which are decorated by elements of the
properad P and big ones corresponding to the inputs of the operad OP. In fact it is better to understand this graph
as a hypergraph with small vertices playing the role of hyperedges. With this interpretation of elements of OP one can
recover, for example, the operad of graphs Graq from §2.7 as a particular polydifferential operad (see the following
example as well as example below).

5.3.1. Example. Let 75 (7 standing for trivial) be a properad such that

Kld—1] ifn=2andm=1
Ta(m,n) = (K fn=landm=1.

0 otherwise

We define the compositions such that the arity (1,1) element is the properadic unit, and such that all properadic
compositions of the arity (2,1) element are zero. The properad is clearly augmented, the augmentation being the
projection onto the part of arity (1,1). In this case OTg = Graq.
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5.4. Twisting of properads by morphisms from (involutive) Lie bialgebras in the case ¢ = d = 0. Let us
start for pedagogical reasons with the case ¢ = d = 0 when all the generators of Liebo,o/Liebf o and Lieo/Lie§ have
degree +1. Given a morphism of properads

g: Liebg o — P,

1 2
let us denote the images of generators of Lieb§ o under g by the corollas \(?/ and /@g\ (some or both of them
1 2

can, in principle, stand for zero). In these notations we have the following statement.

5.4.1. Lemma. For any a morphism of properads g : Liebs o — P there is an associated morphism of operads,

¢ Lie§ — OP

feh oo (A)- A

Proof. The claim is proven once one checks the following three equations

(Fe) ()
(Fed)e A Aa(hed)s As(fef)-

b 6 b

given on the generators of by

7N + N +/\ =0.
© ©,

AN TN 2/\
2 3 1 2

The last equation follows immediately from the second equation in (B). The first two equations follow from the
computations shown in the above Examples, and the relations for generators of Liebg . |

5.4.2. Remark. In fact there is a one-parameter family of morphisms f° associated to any morphism f (in the
above notations). Let i be a (formal) parameter of degree zero. Then under the assumptions of the above Lemma
there a morphism of operads

g : Lie® — OP[A]

given on generators of Lie® by the following formulae
o o 3 _
1 11 1 2

5.4.3. Remark. Let us next adopt the above lemma/construction for generic values of the integer parameters ¢ and
d. Denote

Oc,dP := O(P{c})

1 12
and notice that elements (cf. Example §5.2.5]) /rk € P(1,2) and \ﬁ/ € P(2,1) of homological degrees 1 — d and,
1 2 1

respectively, 1 — ¢ give us elements,

/<L\ € 0.4P(2) , € 0.aP(1)
2

H
—
——o—

of homological degrees 1 —c —d, 1 — ¢ — d and 1 respectively.
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5.5. Twisting in the Lie bialgebra case. Any morphism of dg properads
g: Liebe,a — (P,9),
implies by Lemma [5.4.1] an associated morphism of dg operads

o

g°: Lie,y — (OcdP,0d)
given explicitly by

P(A)=r(A)= A e =r(Y)=

1

The image g° (+) defines a differential deorie in Oc,qP through the standard action of O, ¢P(1) on the operad O, 4P

by derivations; moreover, the sum 6 + deoric is a differential in O, 4P such that the restriction of g° to the suboperad
Liecyq gives us a morphism of dg operads,

(31) g i Liecra — (Oc,dP, 5 + dcoLie)
Therefore we obtain two deformation complexes
PGCe.a = Def (Lichea 2+ P)
and
fsPGC,q := Def (Lﬁiec+d N Oc,dp>

The latter complex is called the full stable P-graph complex. Note that here is an abuse of notation — both complexes
are uniquely determined by a morphism g : Lieb. 4 — P, not just by the properad P — while the symbol g is omitted
from the notation. The associated to the morphism ¢° twisted operad is denoted by fPGraphs.a (f for full).
Generators of fPGraphs.,q are given by hypergraphs

Pv q
/ \\/- € fPGraphse,q(2)
© @

with hyperedges decorated by elements of P and with vertices of two types, external and internal (cf. Example
[B.1.7), while elements of fsPRG.,q are given by similar graphs but with no external vertices, e.g.

M AL
m , ﬂ( /\ € fsPGC, 4.

Denote by sPGC,,q the dg Lie subalgebra of fsPGC, 4 spanned by connected graphs (as the first graph in the picture
just above) and call the stable P-graph complex. Similarly, we denote by PGraphs..q the suboperad of fPGraphsc,q
spanned by connected graphs.

Note that the map g’ above induces a non-trivial morphism of dg operads

(32) g™ Poiscra — (Oc.dP, 8 + SeolLic)
and hence, via the inclusion O, 4P — PGraphsc,q, a morphism
(33) g™ Poiseyrqa — PGraphse,a.

5.5.1. Proposition. There is a canonical monomorphism of dg Lie algebras
(34) i:PGC¢,qg —> sSPGCq q
which identifies PGC..q with the subspace of SPGC. q spanned by graphs with univalent black vertices.
Proof. Let us first show that the map ¢ makes sense. We have
PGCeq = H sgnle! ®gor ®@P(m,n) s, sgnl;” [e(1 —m)+d(1—n).

while
fSPGCed = [ [ Oc.aP(n) ® sgni ™ [(c + d)(1 — n)]

The subspace in fsPGC, 4 spanned by connected graphs with univalent black vertices is given by
$:=[[S(n) ® sgnle*1[(c + d)(1 —n)]
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where

S(n) = [To(P{hin

is the direct summand in O 4P (n) associated with the maximal non-empty partition [n] =1+ ...+ 1. As
————

O(P{ch)in = P{d}(m,n) = sgn;;) @ P(m,n) ® sgn,;[e(n — m)],

we conclude

S = [[S(m)®sgnl™ e+ d)(1 —n)]
= T sl @P(m.n) @ sgnl[e(n — m) + (¢ + d)(1 — n)]
= ﬁGCd

as required. It remains to show compatibility of the monomorphism i with differentials which is almost obvious and
is left to the reader. |

5.5.2. Example: Kontsevich graph complexes. Consider again the properad 74 introduced in §5.3.11 It comes
equipped with a canonical morphism

(35) Liebeg — Ta
which sends the Lie bracket generator to the unique generator of 7, and the Lie cobracket generator to zero.We have

Oc,a(Ta) = Gracta
TaGCy = K
SﬁGCd = fCGCc+d
TaGraphsq = GraphSc+d-

This makes the Kontsevich graph complexes/graph operads special cases of our general construction.

5.5.3. Example: complexes of marked graphs. As a second toy example (which will be important later on) let
us consider another properad 7. 4 defined such that

Kld—1] ifm=1andn=2
Klc—1] ifm=2andn=1
Te,a(m,n) = .
al ) K ifm=n=1
0

otherwise

Again we define a generator of the arity (1, 1) subspace to be the unit, and define all properadic compositions except
those with the unit to be trivial. The properad is clearly augmented. There is an evident map Liebc.q — T¢,a given
by sending the two generators to the two elements spanning 7. Again, let us consider the associated graph complexes
and twisted dg operad,

Te,dGCa 2K K
sTe.aGCy =: fcGC ke

Te.aGraphsq =: graphsl'fgked
These graph graph complexes (resp. dg operad) may be identified with complexes (resp. dg operad) of ordinary
graphs, with markings at some of the vertices. Concretely, the marking signifies the presence of a hyperedge in
7;'@(27 1) at the vertex (there can be at most one such hyperedge at any vertex, otherwise the graph vanishes). The
differential in marked complexes/operads acts by splitting the vertices and redistributing edges as in the unmarked
case with the only difference that when a marked vertex splits into two, one takes a sum over decorating each new
vertex with the mark. There is an evident commutative diagram of maps of properads,

Liebe,g — Te,a

1

Eiebc,d — 771
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which induces the following maps of graph complexes (resp. dg operads)

fcGC T — fcGCoy

marked

Graphscyy ~ — Graphscyq.

We claim that, homologically, the markings are irrelevant.

marked

5.5.4. Proposition. The map Graphs '’y — Graphscyaq is a quasi-isomorphism of operads. The map
feGCr 5 fcGCorg ® K

is a quasi-isomorphism of complexes, where the K on the right stands for the graph with a single vertex which is
marked.

Proof. The proof is essentially the same as that of [W1, Proposition 3.4], where it is shown the tadpoles (edges
connecting a vertex to itself) can be omitted from the graph complex. Here, one has markings instead of tadpoles,
however, the argument and final conclusion stay the same. O

5.6. Maps from the Poisson operad. We denote by Hopois,, the minimal resolution of the n-Poisson operad. An
algebra over Hopois,, is in particular a Holie,-algebra, and a Hocom-algebra, with additional (somewhat complicated)
homotopies ensuring compatibility between these structures. In many cases however such a structure simplifies as
follows: the Hocom-structure is an honest commutative algebra structure, the Holie,-operations are derivations in
each slot with respect to the commutative product and all other Hopois, -operations vanish. Let us denote the

quotient of Hopois, governing such restricted Hopois, -algebras by Hopois,. Concretely, Hopois,, is generated by
Holie, and one binary commutative product generator, such that the Holie, operations are multi-derivations with
respect to the commutative product, cf. also the introductory section of [W2].

Now let Holieb.,q — P be a properad map and recall the map (31,
Holiecra — Oc,aP.
This map can be easily extended to a map
Hopois,, g — OpdP.

by declaring the commutative product generator to be mapped to the graph with two vertices and no hyperedge. The
multi-derivation relation is satisfied in this case since the Holie 1 4-generators are mapped to graphs with all vertices

univalent. Hence by composition with the projection Hopois,, , — Hopois,, ; we obtain an operad map

—~

Hopois,, 4 — Hopois,, 4 — Oc,dP.
By functoriality of operadic twisting we obtain a map
TwHopois 4 — TwOc,aP.
Composing with the canonical map Hopois., 4 — TwHopois. 4 (cf. [DW]) we obtain

Hopois, g = TwO. aP.

—~

Unpacking the definition of the twisting functor, one finds that this map again factors through Hopois, ., 4, with
the commutative product generator mapped to the graph with two vertices and no edge, while the k-ary Holiec+q-
generator gets mapped to a series of graphs with one hyperedge, k univalent external and [ > 0 univalent internal
vertices. Overall, we find the following result.

5.6.1. Proposition. There is a map of operads
Hopois. 4 — Hopois,, ; — PGraphsea C TwO¢aP

extending the canonical map from Holiecyq, and such that the commutative product generator is sent to the graph
with two vertices and no edge.
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5.7. Example. Let us study the constructions of the previous section in a more instructive example. We take for
‘P the genus completion Holieb. 4 of Holieb. 4 with the natural inclusion

Holiebe,q — P.

In this case the resulting P-graph complexes and P-graph operads have mostly been studied in the literature. First,
in this case o

PGC.,q = Def(Holieb.,q — Holiebc,q)
is the completed deformation complex of the properad Holieb. 4. This complex has been studied in [CMW| [MW?2].
Elements can be seen as series of oriented graphs (that is, directed graphs without closed paths of directed edges)
with inputs and outputs as the following picture shall illustrate:

I
As remarked in [CMW] and proven in [MW?2] there is a map
(36) GCZl g1 — PGCeall],
given graphically by attaching an arbitrary number of inputs and outputs to a graph in GCZ/ 4

mX

——

r

m,n>1 /ﬁ‘&
———

nx

I —

and retaining only graphs in which each vertex has at least one input and one output. As shown in [MW2, Theorem
1.2.1] the map (B6) is a quasi-isomorphism up to a one-dimensional subspace of the cohomology of PGC, 4 spanned
by the following series of graphs

mX

A

nx

m,n

(37) S (m 4 n—2) \< |

As shown in [W2| (and re-proven in this paper below) we furthermore have H(GC?! 4, 1) = H(GCc4.4), so that in this
example the unstable P-graph cohomology can be understood in terms of the ordinary graph cohomology.

Next consider the polydifferential operad O, ¢P for P = Holieb. q. For the present example, elements of OP, 4(r)
are series of oriented graphs whose inputs are “attached” to r external vertices labelled 1,...,r, as in the following
example (where all the edges are directed from the bottom to the top as usually),

(38) %

The differential of OP. 4 has two terms ¢ + d, with ¢ stemming from the differential on P and d coming from the map
Holieb. 4 — P. Combinatorially, the part ¢ splits non-external (denoted by black bullets in our pictures) vertices in
the oriented graphs

m

5 >/ — >+
/\\ [ml=1, Ul
NS ml=I1Uly
n [n]=J1UJgy

as explained in (7). The part d acts by splitting from external vertices and by attaching corollas to outputs

d%%%\iﬂz\:v l\i‘ 3

More precisely, in the r.h.s. of this formula

37



e the first summation symbol stands for the double summation: one summation runs over white vertices of
the input graph, and the second summation corresponds to the substitution into, say, k-th white vertex @
the sum of corollas

<

and then summing over all attachments of the “hanging edges” (i.e. the ones attached previously to @) to
the output legs of ([B9) (so that at least one output leg is hit) and to @ itself; we assume that the input leg
of (3J) always hits (k) (see the picture for k = 1);
e the second summation symbol stands for the sum over all ways to attach ([39) to the output legs of the input
graph.
The map
Hopois. g4 — Oc.aP
in this case sends the product generator m and the Holie.iq4-generators ur (k = 2,3,...) to the following series of

graphs

m— O©@ , “k_)z

™2 o' ®

More generally, the above map can be extended to a map HogBV,,, — OP (see Appendix [Al for the definition of
the operad HogBV . 4) by sending the generators m and py, to the series

PN

T -1

m=t @é/ \®
5.7.1. Lemma. The assignment [@Q) defines a map of operads ’}-l/o;gVHd — OP.

Proof. A straightforward graphical computation we leave to the reader. |

o

A slight variant of the operad O, 4P has already been considered in the literature. In [W2] the operad Graphs? 4 is
introduced, whose elements are series of oriented graphs as in (29]), but without output legs, with a similarly defined
differential (and with an opposite flow on the edges which is a matter of conventions only). More concretely, there is
a map of operads

Graphsli g — OcqP
by sending a graph I' to the sum of graphs obtained by attaching output legs to internal vertices, retaining only
graphs in which each vertex has at least one outgoing edge.

mX

——

F—)Z T ,

m>1

The map ’)—Tz;;z)/isﬁd — Oc,qP factors through the map Hopois,, — Graphsgy 4 from [W2| section 3.5].

for example,

It is shown in [W2| Theorem 2] that the map Hopois, — Graphs], is a quasi-isomorphism. By a very similar
argument (which we again leave to the reader) one may obtain the following result.

5.7.2. Proposition. The map HogBV.1q — O.4P is a quasi-isomorphism of operads.
Proposition in turn may be used to understand the stable P-graph complex

sPGC. 4 C Def(Holiecrqa — Oc dP)
in this case. More concretely, since O¢ ¢P ~ ¢BV.44 we may apply Lemma [1.0.3] to find that

(41) Def(Holiecrq — OP) ~ Def(Holiecra — q¢BVcra) =~ K.
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Hence H(sPGC.,q) is one-dimensional, and the one class can be traced back to be represented by the series (37),
which may be seen as an element of sSPGC, 4 via the canonical map PGC. 4 — sPGC, q4.

5.8. Twisting in the involutive Lie bialgebra case. Consider a morphism of properads g : [Ziebf;d — P. Using
Lemma [5.4.7] we obtain an associated morphism of dg operads

(42) g°: Liet,y — OqqP[[A]

g°<1)\2>:=f<1/l\2>:: 1/@&\2 and f°<+):hf/% + %

where # is a formal parameter of degree ¢ + d. Hence we obtain a deformation complex

given explicitly by

fsPGC? ; := Def (Liez+d AN 07%,4[5]])

and its stable subcomplex sPGCS ; spanned by connected graphs. The associated to the map g° twisted operad is
denoted by fPGraphs 4; its suboperad spanned by connected graphs is denoted by PGraphs? ;. The deformation
complex (called the diamond P-graph complez)

PGC,q = Def (LiebZq L P)

sits inside fsPGC? ; as a subcomplex spanned over K[[h]] by graphs with univalent black vertices, i.e. there is a
canonical monomorphism

7 PGCid — SPGCZyd
of dg Lie algebras (cf. Proposition [5.5.T]).

5.9. Stable P-graph complex and quantum diamond functions. By Proposition [5.2.4] any representation
p: P — Endy of P in a dg vector space (V, J) induces an associated polydifferential representation p : OP — Endgev,
or equivalently, a continuous representation
pe.d : OcaPl[R]] = Endoevi—c)[M]]
where i is a formal variable of homological degree ¢ + d. Hence any morphism of properads g : Lieb§ — P induces a
composition
<
pea: Lielia = OcaP[R)] 25 Endoe vi—ap[[P])-

We conclude that an involutive Lie bialgebra structure in V makes the vector space C3 (V) = ©*(V[—c])[[]] into a

continuous dg Lie.tq algebra with the differential hA[ 1+ 0n := pe,a(h % + %’é ) and with Lie brackets { , } :=
11 1

Pe,d /é’)\ ) of degree 1 — (¢+d). This structure is precisely the one we discussed in §3.3so that its M C elements,

that is1 degrQee c+d elements S € C§(V) satisfying equation (2I) are precisely quantum diamond functions of the given
Lieb? 4-algebra, and any such a quantum diamond function gives rise to a continuous representation of the twisted
operad PGraphsg ; in the Hochschild complex of S so that the latter can be considered as an operad of quantum
P-braces (cf. [KS]).

Let
CE*(C2(V)) = Def <L‘,z’ef§+d Leq Sndcz(v)> ~ HHom @"C(V),Ce (V) [(c+d)(1 —n)].

be the standard Chevalley-Eilenberg complex of the dg Lieyq algebra (C2(V),nA; | ;+6a,{, }). The representation
p induces a canonical morphism of dg Lie algebras
p°: PGCS 4 —» CE®(C2(V))
and hence a morphism of their cohomology groups,
p® + H° (PGCS4) — HY (CE®(C2(V))).

Let ¢ be an arbitrary element in H° (PGCid) and let 6 be a cycle representing o in the P-graph complex PGCY ;. Its

image p°(&) is a degree zero cycle in dg Lie algebra CE®(C2(V)) of co-derivations of the co-commutative coalgebra

O*(C2(V)[e + d]). Codifferentials in latter coalgebra are precisely Holiectq algebra structures in C3(V), so that

p° (&) gives us a Holie. q-derivation of the dg Lie algebra (C2(V),hA[ |+ d4s,{, }). If the exponent of the adjoint
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action, exp(ad,s(s)) happens to converge as a linear automorphism of CE®*(CZ(V)), it gives us a genuine Holie.iq
automorphism (cf. [MW1]),

P = (I 1 0*CE*(CUV) — CE*(CV)l(e+ )1~ B)]} |

of the dg Lieciq algebra (C2(V),hA[ |+ ds,{, }) with FY = Id. If the exponent does not converge, one plays a
standard trick by introducing a formal parameter u (of homological degree zero) and considering a dg Lie algebra
CE*(CZ(V))[[u]]. As exp(uad,o(s)) converges, we obtain from & a continuous Holie.4-automorphism F7 = {F7}
of the dg Lie algebra (CZ(V)[[u]], hA; |1+ da,{ , }). Hence for any element S € C2(V)[[u]] of degree ¢ + d which
satisfies the MC equation

RA[ 1S+ 605 + %{5'75'} =0
the series

57 ::S+Z%FS(S,...,S)

E>2
gives us another solution of the same MC equation. Thus we can formulate the following proposition (cf. [MW1]).
5.9.1. Proposition. For any P-algebra V', there is an action of the Lie algebra HO(PGCZ@) on the differential
graded Lie algebra (C2(V),RA[ 1+ 6a,{ , }) by Holiecya derivations.

In particular, it follows that there is an action of the group exp(uH°(PGCS) on the set of gauge equivalence classes
of quantum diamond functions S € C&(V)[[u]].

Finally we note that the stable P-graph complex PGC? ; can be understood as the universal (in the sense of in-
dependence of a particular vector space V and of a particular representation p : P — Endy) incarnation of the
Chevalley-Eilenberg complex (C2(V),AA[ | +0a,{, }).

5.10. Applications to the properad of ribbon graphs. In this paper we are mostly interested in the properad
RGragq of ribbon graphs which comes equipped with a canonical morphism s°® : Lieby ; — RGraq given by (24). The
associated ribbon graph complexes

RGC,y = Def (uebd,d LI Rgra) and RGCS = Def (Eiebzyd i Rgrad)
were described in detail in §4.31

The polydifferential operad O4(RGragq) is spanned by ribbon graphs whose vertices can have coinciding numerical
labels while boundaries have no labels at all (because their labels are (skew)symmetrized). The canonical morphism

([#2) is given explicitly by

fo.  Lies, — Oa(RGraq)[[A]]
Q +h e—e
. . 11

/l\ — o— o

1 2 1 2

l

<
Denote the composition Liesq — LieS, f‘—hio 04(RGraq) by f'. The associated stable ribbon graph complex

SRGC, := Def (Liezd EAN (’)d(Rgrad)>

connected
is spanned by connected ribbon graphs whose boundaries and vertices are unlabelled and, moreover, the vertices are
grouped in clusters; the associated to f’ twisted operad is denoted by RGraphsg; it comes equipped with a non-trivial
morphism

Poisag — RGraphsg.
which is proven below to be a quasi-isomorphism.

Twisting the morphism f° as explained in the beginning of this section we obtain a dg operad
RGraphsg := Tw (O4(RGraq)[[A]])

which admits a canonical representation in the Hochschild complex (see §3.2.7]) of an arbitrary quantum Asse
algebra. Therefore RGraphsg gives us a ribbon analogue of the famous braces operad introduced by Kontsevich and
Soibelman in [KS] in the context of ordinary Ass« algebras; we call RGraphsq the dg operad of ribbon braces.
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The diamond ribbon graph complex

SRGCS := Def (z:z‘ebg EAR Od(Rgrad)[[h]]>

connected

acts by derivations on the dg operad RGraphsy; this dg Lie algebra has the property that its zero-th cohomology
group H 0(sRGCd) acts universally on homotopy classes of quantum Ass. algebra structures on any given graded
vector space W equipped a (skew)symmetric scalar product of degree 1 — d (see Proposition [6.9.7]).

5.11. Remarks. (i) The differential §° in sSRGC§ (or, in general, in sSPGCY) consists of three terms,
=6 + A1 + hAs

corresponding, respectively, to the ribbon graphs o, @ and, respectively, i o—o .
1
(ii) The differential in sSRGCq (or, in general, in sPGCy) is given by the sum § + A;.

(iii) The data (sRGCgq, ) is also a dg Lie algebra which can be identified with Def(Lie2q 5 0O4(RGraq)) where the
map f* is given by the composition

Liesq < LieSy 15 Oa(RGraq)
where the first arrow is the natural inclusion of operads. The family of complexes (sRGCq,d) is a subfamily of
complexes

e
SRGC, 4 := Def(Liecra <5 O(RGraq)), V¢ deZ,
where f7,; is the composition

Licerq < Licdya 15 O(RGrag)

(iv) Note that in d = 0 case all the operators d, A; and Az in sSRGCq have degree 1 so that it makes sense to equip
the graded vector space sRGC := sRGCy not only only with differentials §, § + A1, but also with § + As.

6. The cohomology of the stable complex

6.1. Standing assumption and an important point. In the following we will work with unital augmented
properads P together with a map Holieb. s — P, that satisfy a certain technical condition. We assume that the
properads P we consider come equipped with a descending filtration

P=FPO>F'POFPD- .-
satisfying the following properties:
e The filtration is complete and compatible with the properad structure[d
e Endow Holieb.,q with the filtration induced by the grading that places the generator of arity (p,q) into
degree p + g — 2. Then we require the map Holieb.,q — P to respect the filtrations. In particular, by the
completeness of the filtration on P this means that the map Holieb..q — P extends continuously to a map

Holiebe,q — P.
e We have 77/}'273 = T¢,4, cf. §5.5.3] and the map Holieb.,q — T¢,q4 factors as

Holiebeg — P — P/F*P = Toa.
In particular this means that the Lie bracket generator of Holieb. q is mapped to a non-zero element of P.

Concretely, we will apply our constructions to three cases:

e To P = T, with F'P being the kernel of the augmentation and FPP = 0 for p > 2.

e To P being the genus completion of Holieb. 4, with the filtration being obtained from the complete grading
that places the generator of arity (p,q) into degree p + ¢ — 2.

e To the ribbon graphs properad P = RGray. Here the filtration will be simply by the number of edges in the
graphs.

SWe consider the filtration to be compatible with the properad structure if any composition of elements in FP1P, ..., FPkP
lands inside FP1+-+PrP,
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Our standing assumptions have some important consequences. First, the properad P is pro-nilpotent. Secondly, we
have a natural properad map P — 7¢,q — Tq. Hence, by functoriality of all the constructions, the graph complexes
and operads associated to P come equipped with natural maps to the ordinary graph complexes and operads:

(43) PGCeq — TaGCoy 2 K
(44) S'PGCcd — S%Gcc’d = fCGCc+d
(45) PGraphsc,a — TaGraphsc.qa = Graphscya.

We will use these facts extensively below.

6.2. The main vanishing result. Note that if the standing assumptions above are satisfied we have natural maps
of dg Lie algebras

(46) PGC..q = SPGC,.q — fcGCpg.

The composition is not zero, but close to zero: the kernel of the composition is of codimension 2 and acyclic.

Our main result, which is a generalization of Theorem [[.3.1] is the following.

6.2.1. Theorem. Suppose that we have a properad map Holieb. q — P satisfying the standing assumptions of §6.11
Then there is a long exact sequence in cohomology

(47) oo = HP(PGC.q4) = HP(sPGCeq) — HP(fcGCryq) — HPTH(PGCoy) — --- .
The morphisms
H(PGC.,q) = H(sPGC,,q) — H(fcGCc44q)
are induced by [@6). The “connecting” homomorphism
HP(fcGCeyaq) — HP T (PGC.q) = H? ™' (Def(Holieb.q — P))
is given by the canonical map
HP(fcGCorq) = HP(GC gp1) = HP T (Def(Holieb.,q — Holiebe q)) — HP T (Def(Holieb..qa — P)),

where for the identification HP (fcGC.qq) = HP(GCZL 41 1) we use a special isomorphism constructed in the proof.
6.3. Proof of Theorem [6.2.7]

6.3.1. First step: H(PGraphsc,q) = Poisc+q. We have seen above that (under our standing assumption) we have
natural maps Hopois,,; — PGraphsca — Graphscyq, cf. Proposition [B.6.1] and (@L)). The key result then is the
following.

6.3.2. Proposition. Under our standing assumptions of section [6.1] the maps
Hopois,, 4 — PGraphsed — Graphscia

are quasi-isomorphisms of operads.

It is easy to check that the composition of the two maps in the proposition is the standard quasi-isomorphism
Hopois,, ; —+ Graphs.iq. Hence the proposition follows by finite dimensionality of Pois.1q in each arity if we can
show that H(PGraphsc,q) = Poisc+d. To this end we perform an induction on the arity in PGraphs. 4. The induction
hypothesis states that H(PGraphsc,a(n — 1)) = Poisctq(n — 1).

Now endow PGraphs..q with the following filtration. As in our standing assumption above we have a descending
complete filtration F*P on P. Then we define

FPPGraphsc.d
to consist of series of graphs with k& hyperedges in FP1P, ..., FP*P, such that

p1+-+p—k2>p.
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6.3.3. Lemma. The subspaces FPPGraphsca(n) define a filtration, i.e., they are subcomplexes. Furthermore, this
filtration is bounded below and complete.

Proof. The filtration is clearly bounded below since the filtration on P is trivial for p < 0 and hence p; —1 > 0. It
is complete by construction. O

Then on the associated graded grPGraphs.,q the only piece of the differential that survives, say J, is the one creating

one internal vertex and one new hyperedge, decorated by the image of the Lie bracket generator under Holieb. q — P.

Let us call such a hyperedge a plain edge. We claim that H(grPGraphscq,0) = Poisc+qa. We endow grPGraphse q(n)

with another very simple decomposition of graded vector spaces (which we may consider as a filtration):
grPGraphsca(n) = Vo ® Vi @ V>1,

where Vp is spanned by graphs such that no hyperedge is connected to external vertex 1. The space Vi is spanned by
graphs for which at external vertex 1 there is exactly one hyperedge attached (exactly once), and this one hyperedge
is a plain edge, i.e., it is decorated by the image of the Lie brachet generator. The subspace V> is spanned by all
other graphs. The first differential in the spectral sequence is the map

Vi« V21
obtained by splitting off all (hyper-)edges incident at vertex 1 to a new internal vertex, connected to 1 by a plain
edge. This is an injection. Furthermore, the cokernel is spanned by graphs such that

e cither 1 is connected by a plane edge to another external vertex,
e or 1 is connected by a string of > 2 plain edges to another internal or external vertex.

Let us denote the two subspaces of the cokernel generated by these two sorts of graphs W and W', so that the
cokernel is W & W’. The next differential in the (inner) spectral sequence renders W' acyclic (cf., e.g., the proof of
[W1l, Proposition 3.4]).

For W, one uses the same inductive argument leading to the proof that H(Graphsct+a) = Poiscya (cf. [LV]), finally
concluding that H(PGraphsc,q) = PoiSc+q. ]

6.3.4. Second step: Analyzing Def(Hopois,,; — PGraphsc,q)conn, and deriving the cohomology long exact
sequence. Let us consider the deformation complex
Defoperaa(Hopois, 4 — PGraphs. a).

Elements can be considered as series of graphs in PGraphs.,q whose external vertices are organized in “clusters”.
Consider the “connected” subcomplex (spanned by the connected graphs)

Defoperaa(Hopois, ; — PGraphsc a)conn C Defoperad(Hopois, 4 — PGraphs.,a).
Given Proposition [5.6.1] we can then conclude that the maps
Defoperaa(Hopois, 4 — Poiscid)conn — Defoperaa(Hopois, 4 — PGraphsc.d)conn — Defoperad(Hopois,. 4 — Graphscya)conn

are quasi-isomorphisms. Now we may use the result of [WI] that

(48) H (Defoperaa(Hopois,, — Graphsy)conn) = K[—1] & H(GCi)[—l].
It then follows that
(49) H (Def operad(Hopois.q — PGraphse,q)conn) = K[—1] @ H(GCZ, 4)[1].

Now we turn to analyzing the deformation complex Def(Hopois ctd = PGraphse,d) conn, whose cohomology we just
computed. Whenever we consider the deformation complex Def(Hopois,, ; — X) of a map Hopois,  ; — X factoring
through Poisc+q, the differential (on the deformation complex) has the form

dCom + dLie + 0

where 0 is the internal differential induced by the internal differential on X, dcom is a Harrison type differential and
drie is the remainder, as in [W1]. As in that paper, we may interpret elements of Def(’HOpaistrd — PGraphsc,d) conn
as elements of PGraphs.,q, whose external vertices are organized in clusters, with dcom keeping the number of clusters
the same, but increasing the size of one cluster and dre creating one more cluster.

Now there is a natural subcomplex

HPGC.,q C Def(Hopois, 4 — PGraphsc,d)conn

consisting of elements such that all external vertices are in clusters of size one, and each such vertex is connected
to exactly one hyperedge (and connected excactly once to the hyperedge). (The notation stands for “hairy P-graph
complex”. If we replace P-graphs by ordinary, the complex HPGC. 4 would become the hairy graph complex, hence
the notation.) Analogously to the case of plain graph complexes we have the following result.

43



6.3.5. Proposition. The inclusion
HPGC. g — Def(Hopois,, 4 — PGraphsc,a)conn

is a quasi-isomorphism of dg Lie algebras.

Proof. One takes a spectral sequence first on the number of internal vertices, plus the number of clusters, so that
the differential on the associated graded is dcom. But the cohomology of Def(Hopoist — PGraphsc,q) conn With
respect to dcom is just HPGC, 4. O

Next we analyze the differential on the ”hairy P-graph complex” HPGC, 4. It has two pieces

dLie + 5
Again the piece ¢ stems from the internal differential on PGraphsc,q. The piece dr.e adds one or more external
vertices, in its own cluster, and connects them by a hyperedge to one internal vertex. To compute the cohomology

we will consider an extended version of the hairy P-graph complex, which is as a graded vector space obtained by
allowing graphs without external vertices, i.e.,

HPGCL" = HPGC.,q ® sPGCcq.

The differential dric + d naturally extends to this larger vector space, with ¢ extending as the differential on sPGC, 4,
and drie maps sPGC. 4 into HPGC, 4. Now define fGCc’d C PGC,,q to be the subcomplex which is the kernel of the
augmentation PGC. 4 — K. Then there is a map

PGC.,q — HPGCY

by sending a (non-stable) P-graph to the sum of graphs obtained by coloring its vertices either black or white, i.e.,
either external or internal. One checks that this map indeed respects the differentials.

6.3.6. Proposition. The map PGC.q4 — HPGCﬁf”dt above is a quasi-isomorphism.

Proof. We endow PGC, 4 and HPGCE% with the (evident extension of the) descending complete filtration of Lemma
We claim (say Claim 1) that the above map induces an isomorphism on the cohomology of the associated
graded spaces, thus proving the Proposition. The differential on the associated graded is zero on PGC.q4. The
differential on the associated graded of HPGCﬁf”dt acts by the addition of one plain edge, added either by splitting an
internal vertex into two internal, an external vertex into an external and an internal vertex, or by attaching a plain
edge to a new external vertex to an internal vertex. To show Claim 1 we endow the associated graded spaces with yet
another bounded above descending filtration on the number of internal vertices. The differential on the associated
graded is the piece not adding an internal vertex, so that the graded pieces split according to the number k of internal
vertices in graphs. Combinatorially, the differential adds one new external vertex connected by a plain edge to an
internal vertex, and is in particular 0 if ¥ = 0. Note that the map PGC, 4 — HPGCifcf}S induces an isomorphism onto
the piece corresponding to k = 0. It hence suffices to check that the subcomplexes with k& > 1 (i.e., at least one
internal vertex) are acyclic. But this is easily established, an explicit homotopy is obtained by removing an external

vertex connected by a plain edge to an internal vertex.
a

Now consider the short exact sequence
0 — HPGC, g — HPGCSY — sPGC.q — 0.
It induces a corresponding long exact sequence in cohomology
(50) -+ — HP(HPGC..) — HP(HPGCSY) — HP(sPGC.a) — HPT'(HPGC.a) —
Note that by Proposition and (@) we have
H(HPGC,.q) = H(GC2, 4)[-1] ® K[-1].
By Proposition we have
H(HPGCZ) = H(PGCca) & H(PGCc,a) ® K[-1].

By an easy verification we see that the two copies of K above are mapped to each other in the long exact sequence
so that we can omit them to obtain the long exact sequence

(51) <= HP7Y(GC2,,) — HP(PGC,.4) — HP(sPGC,.q) — HP(GC2,4) — -~ .

This shows the existence of the long exact sequence asserted by Theorem [6.2.1] To show this Theorem it hence
remains to verify that the morphisms in the long exact sequence indeed agree with the ones stated in the Theorem.
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In fact, for the morphisms H?(PGC.,q) = HP(sPGC,,q) this is obvious. For the other two types of morphisms the
verification will be done in the following subsections.

6.3.7. The simplest example. Let us apply our findings so far to P = T4, with the map Holieb. g — P being the
projection (38). In this case the stable P-graph complex (essentially) agrees with the ordinary graph complexes as
described in section The unstable P graph complex PGC. 4 is two dimensional and acyclic.

Inserting these data into the long exact sequence (B0]), and using Proposition [6.3.5] we obtain the long exact sequence

o+ =0 — HP(SPGCea) = H? (fcGCepa®K[-1]) — HP T (HPGC. q) = H”(Def(Hopois, , — Poiscid)conn) — 0 — -+

We hence obtain a rederivation of ([48]), shown in [W1].

There is another interesting consequence of the present example. Clearly, the long exact sequence (B0) is functorial
in Holieb.,q — P. But by our standing assumptions any such map fits into a diagram

Holiebe,qg — P

S

Ta
Hence we get a map of the long exact sequences

- ————— HP(HPGC.q) — HP(PGCq) —— sPGCeqg —— - -

! | |

<o —— HP(GCZ, ; & K[-1]) 0 H?(fcGCpopg) — - - -

In particular, we can fill in the first missing bit in the proof of Theorem and obtain the following.
6.3.1. Lemma. The morphisms
HP(sPGC.q) — HP(GC2,4)
appearing in the long exact sequence ([B1) are induced by the natural projection of complexes
sPGCc,qa — fcGCeya

stemming from the projection P — Ta, together with the identification H(fcGCeyq) = H(GC2, ).

6.3.8. Example and a(nother) proof of the main Theorem of [W2|. In this section let us apply the spectral
sequence of Theorem [6.2.7] which we already costructed, to the properad P which is the genus completion of Holieb. 4
with the map

Holiebe,q = P
being taken to be the standard inclusion.
The (stable and unstable) P-graph complexes have been discussed in detail in section 571 The long exact sequence
(D) in this case reads
S HPTNGCE ) »— HPY(GCY gy @ K[—1]) = HP(sPGC,q) — HP(GC2,q) — - -

By (1) we know that H(sPGC.,q) is one-dimensional in this case, the single class (of degree 1) being represented
by (37). This class is in the image of the map from H(PGC.,q4). Hence we immediately recover the central result of
[W2], namely that

H(GCZ,4) = H(GC ay1):

6.3.9. The proof of Theorem [6.2.7]1 Continuing the example of the previous section, we may use again the
functoriality of the long exact sequence. Concretely, any map Holieb.,4 — P satisfying our standing assumptions fits
into the “tautological” commutative diagram

Holiebe,q — H/Oli\ebc,d

~__|

P
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Hence functoriality relates the long exact sequence (BI)) associated to P to that of the previous example

- —— HP"Y(GCZ, 4) —— HP 1 (GCY 4y, ® K[-1]) 1 (K)

I | |

i —— HPY(GC2,y) — > HP(PGC,q) —— SPGCog — -+

In particular, from the left-hand commuting square in this diagram the remaining claim of Theorem [6.2.7]is evident,
and the Theorem thus proven.

7. Proofs of the main Theorems

7.1. Proof of Theorem [I.3.7] We merely apply Theorem to P = RGra (respectively, P = RGra;), with
the map Liebg — RGra (respectively, Liebo,1 — RGray) sending the Lie bracket generator to the two-vertex graph
and the cobracket generator to zero. We obtain a long exact sequence of the form ([@T). Clearly, in this case the
connecting homomorphism H(GC3) (respectively, from H(GC?)) is zero, since an oriented graph necessarily contains
a vertex with (at least) two outputs, to which is assigned the (higher) cobracket generator, i.e., zero. Theorem [I.3.7]
hence immediately follows from the exactness of the sequence. O

The above proof works in fact for arbitrary values of the parameters ¢ and d so that we have the following Theorem
(of which Theorem [I.3.T]is a special case).

7.1.1. Theorem. H(sRGC. ) = H(RGC.q) ® H(GCZ,,)

7.1.2. Corollary: Grothendieck-Teichmiiller group GRT: and non-commutative Poisson structures.
The case ¢ = 0, d = 2 is of special interest as the Lie algebra grt; is a Lie subalgebra of H°(GC3) and hence, by the
above Theorem, of HO(SRGCo,z). By Proposition [5.9.1] the Lie algebra HO(SRGCO,Q) acts by Holiez-derivations on
the Lie algebra ©®(Cyc(W))[[/] equipped with Lie brackets { , } given explicitly in §2.3.11 As grt; C H°(sRGCo,2),
we conclude that there is a highly non-trivial, in general, action of the group GRT} on gauge equivalence classes of
non-commutation Poisson structures = € u ©* (Cyc(W))[[R]][[u]] (cf. [MWI]).

7.2. Proof of Theorem We apply Theorem to P = RGra to the map Lieboo — RGra sending the
Lie bracket generator to the graph with two vertices and one edge, and the Lie cobracket generator to the graph with
one vertex and one edge, cf. Theorem [4.2.3] This yields the long exact sequence (2)).

Similarly, we may apply Theorem to P = RGra;, with the map Holiebo,1 — RGra; being that of Theorem
[.3.3] This yields the long exact sequence (3.

7.3. Images of loop classes, and proof of Theorem [I.3.3l We use the description of the connecting homo-
morphism of Theorem through the oriented graph complex GC?". The identification of H(GCo) and H(GC{")
preserves the loop order grading. Now consider an oriented graph I' € GC7". We may assume that I" has only bivalent
and trivalent vertices, with either exactly two incoming or exactly two outgoing vertices. (If, e.g., there is a vertex
with more inputs/outputs the graph is mapped to zero as the images of the corresponding generating morphism of
Holiebo in RGrag are 0.) Let us begin with the source vertices of I' and then compose the images of the bracket
and cobracket generators one by one, and record the Euler characteristic of the ribbon graph thus produced. We can
distinguish three types of vertices in I':

e Vertices with two outputs, no inputs (cobrackets). They create two punctures, one edge and one vertex, the
effect on the Euler characteristic is 7 +2”.

e Vertices with one input and two outputs (cobrackets). They create a puncture and one edge, the effect on
the Euler characteristic is zero.

e Vertices with two inputs (brackets). They destroy a puncture and create an edge, the effect on the Euler
characteristic is ”-2”.

So, if we denote the numbers of the above vertices by v1, vz, vs, then the Euler characteristic of all ribbon graphs in
the image of I' is 2v; — 2v3, and hence the genus is g = 1 — v1 + v3. On the other hand, it is not hard to see that
the Euler characteristic of I itself is v1 — vs, and hence T is of loop order g. This shows the second claim of Theorem
@33

To see the third claim, note that the identification of H(GCo) and H (GC?") sends classes of loop order [ with k edges
to classes with the same loop order, but k£ + [ edges. Now proceeding just as above, we count that the ribbon graphs
appearing non-trivially in the image all have v1 + v2 + v3 edges (with v; as above). On the other hand I itself has
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k + 1 = v2 + 2v3 edges and loop order | = 1 — v1 + v3 (as we mentioned above), so that the number of edges of the
ribbon graphs in the image is

U1+U2+U3=U2+2U3—(U3—’U1):k+l—(l—1)=k+1.

Hence the third claim of Theorem [I.3.3]is shown. The first claim follows from the computation of the next subsection.

7.4. Example computations. The simplest classes in the graph complexes GC? are the loop classes L, consisting
of 7 bivalent vertices, cf. Figure [ (left). Tt is known [W2] that under the identification H(GC3) = GCZ, these
classes correspond to the ”zig-zag loop” classes with one more vertex, cf. Figure [l (middle). Let us investigate what
the images of these classes are (under the map of Theorem [6.2.7]) in the ribbon graph complexes (RGC,d + Aq)
respectively (RGCoqq,d + Agz).

7.4.1. Proposition. The torus graphs T, € H(RGC) depicted in Figure [ (right) are cocycles and represent non-
trivial cohomology classes for n odd. The image of the loop class Lax+1 € GCo (cf. Figure[dlleft) under the connecting
homomorphism is the torus class in (RGC,d + A1) represented by Tok+1.

Proof. The statement that the image of Lax+1 is Tor+1 is a simple direct verification, given that one knows that the
loop classes in GCy are represented by similar “zigzag loop” classes in the oriented graph complex GCS”, cf. Figure [Il
The non-trivial part of the Proposition is that the classes Tar41 are non-trivial (i.e., the cocycles are not exact).
To show this, the easiest way is to construct cycles cox+1 in the (pre-)dual complex which have a non-zero pairing
with Tox41. The (pre-)dual complex in this case is the complex of linear combinations of ribbon graphs, with the
differential given by the contraction of one edge, plus the removal of one edge as long as this does not alter the genus
of the graph. We will not construct cax+1, but rather construct the formal series Zk Cok+1, with the understanding
that cox41 is the part with 4k 4 2 edges. Now fix numbers ag, a1, ... such that ap = 1 and recursively

n—1

an = E ajQAn—j-.
Jj=0
1 (Qn

(Concretely an = —y n) are the Catalan numbers, but this will play no role here.) We construct ¢ as the sum of
all graphs of the following form

25,41

SR IEID VD ol (1 T

r>10dd  j1,e,ir >0k, k>0 \i=1

Here a fat edge with number m stands for a string of m edges, while a loop with number m stands for m parallel
loops. To check that closedness, note that the differential contracts a string of 25 + 1 edges to a string with 2j
edges (with coefficient 1), and makes 2k + 1 parallel loops into 2k parallel loops. The j = 0 piece in particular will
result in two bunches of loops to be appended, while the k = 0 piece results in two strings of edges to be appended.
Note that in both cases a resulting bunch of 2K loops (respectively, string of 2J edges) may be produced in K ways
(respectively, J ways), by juxtaposing an a-bunch and a 2K — a-bunch (respectively, an a-string and a 2J — a-string).
The coefficients a, are chosen so that the terms corresponding to j = 0 cancel those for k¥ > 0 and those for j > 0
cancel those for k = 0.

It is furthermore clear that our class Tox+1 has non-zero pairing with ¢ and must hence be a non-trivial class. O

7.4.2. Proposition. The image in (RGCoad,d + A1) of the loop class Lay—1 in H(GC?) is represented by an infinite
sum of graphs whose leading order term (i.e., the term with fewest edges) is given by the graph Oy in Figure[2

Proof. Again a simple direct verification. |
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Ol

FIGURE 1. A picture of the loop class L5 in GCq (left), together with the corresponding
“zigzag loop” class in GC{" (middle), and the corresponding “torus class” T3 (right).

> O

FIGURE 2. A picture of the loop class L3 in GC; (left), together with the corresponding
“zigzag loop” class in GC5" (middle), and the corresponding ribbon graph ©; (right).

APPENDIX A. d-QUADRATIC BV OPERADS

In this Appendix we will study operads ¢3), generated by the operads Poisq and one additional square zero operation
A € gBV4(1) that is a derivation with respect to the product and bracket of Poisq. In other words, A satisfies the
following compatibility relations with respect to the product m € ¢8V4(2) and the bracket p € ¢BV4(2):
At=0 Am(=, =) = m(A—, =) +m(~, A-)
A/"’(_7 _) = /’L(A_7 _) + (_1)7L*1M(_7 A_)
In particular for d = 2 the operad ¢BV: is the homogeneous associated quadratic operad associated to the Batalin-
Vilkovisky operad. It is known that the operad ¢BVg is Koszul [GCTV], and we define the minimal resolution

HogBVy = Q(¢BVY)).

Concretely, as a symmetric sequence ¢BVy = Pois, [u], where u is a formal variable of degree 0 which stands for the
Koszul dual cooperation to A. Accordingly, a HogB)V 4-structure on some vector space is determined by operations
1,
where 7 = 0,1,2,... and X ranges over a basis of Pois,,. There is a natural inclusion Poisq — ¢3V4 and hence a map

Hopois, — HogBVg4, and a projection (sending A — 0) ¢BV4 — Poisq and hence a map HogBV4 —— HogBVg.
The operad ¢BV,4 has a suboperad Dlieq C gBV 4 generated by the bracket u and the unary operation A. This latter

operad is also Koszul, the Koszul dual cooperad being identified (as symmetric sequence) with Dlie; = Liey [u].
Concretely, the minimal resolution

HoDlieq = Q(Dliey )
is generated by (k-ary) operations uj for » > 0, k > 1 and k + r > 2. Pictorially we may represent the operation pj,
by the corolla

The differential of such an operation is then pictorially written as

0 é\ — Z Z +
s+t=r IHUlz=[k] I

1 k ! I
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Next, we define the operad HogBV, to be generated by HoDlieq and an additional commutative product operation
m of arity 2 aBd\(iegree zero, such that all operation% are multi-derivations with resect to m. Alternatively, we may
understand HogBV; as a quotient of HogBVq4: A HogBYV ;-algebra is a Hogl3V 4-algebra such that the operations p’
vanish unless (i) 7 = 0 and X € Pois; is the cobracket (this yields the product operation m) or (ii) X € Liey C Poisy
is a cocommutative coproduct (this yields the operations uf).

We have a commutative diagram of maps of operads

—~

Holieq — Hopois, —— Hopois,

| Lo L

HoDlieq — HogBVy ——— HoqBV,

Finally, let us remark on the deformation complexes associated to the operad HogBV . First, it is an easy exercise
to check that

Def(Holieq — Poisq)
is acyclic. (It follows from symmetry that the “connected part” Def(Holieq — P0isq)conn is 2-dimensional, with
non-zero differential.) By a similar (but slightly more complicated) argument one shows the following.

1.0.3. Lemma.
H (Def(Holieq — qBV4)) =2 H(Def(Holiea — ¢BVq)conn) = K[—1]

APPENDIX B. REMARK: PROPERADIC TWISTING AND COSTELLO’S PROPERAD

Let Holieb.,q — P be a properad map. Above, we constructed from this data an operad OP, to which we applied
the operadic twisting functor to obtain another operad PGraphs.,q. Alternatively, one may also define a notion of
properadic twisting.

To this end, we define a Maurer-Cartan element in a Holieb. q-algebra V to be an element m € V of degree d, which
satisfies the equations

1
(52) Z—'uz,k(m7...7m):0
i1 k! T

for every | > 1, where we use the notation py,; to denote the generating Holie. q-operations. In particular g1 is
the differential in V. Given such a Maurer-Cartan element we may twist the Holieb. 4 structure to a different one
(denoted 1477%,) with

1
(53) (Vi .. op) = Z ﬁm,,ﬁk/(mp. LMV, .., Uk)
E>1 M
= k!’ x
for vi,...,vx € V. In particular, the differential on V' is altered (from 1,1 to pui’).

Now given the properad map Holieb. q — P any P-algebra V is naturally endowed with a Holieb. q structure. We
define the properad Tw’P to be the properad generated by P together with an arity (1,0) operation m of degree
d satisfying the Maurer-Cartan equations (52)), and with differential being (formally) the commutator of operations
with the arity (1,1) operation pi%;. The definition is made such that for V' a P-algebra and m € V' a Maurer-Cartan
element, the prooperad Tw’P naturally acts on the dg vector space V™, with the additional (1,0) operation acting

as the element m € V. There are natural maps
Holiebe,q — Tw'P — P,

the former being given on algebras by (B3), while the latter send the arity (1,0) operation to 0. Finally we define
TwP to be the completion of Tw’P with respect to the filtration by the number of copies of the (1,0)-ary operation
m occurring.

If we apply the above twisting construction to the properad map Holieb.,q — Lieb. q LN RGrag (with the map s*
as in section [4.3.2]) we obtain a ribbon graphs properad TwRGray whose arity (p,q) operations consist of possibly
infinite linear combinations of ribbon graphs with ¢ numbered vertices, p numbered boundary components and an
arbitrary number of “unidentifiable” vertices, which correspond to copies of the (1,0)-ary operation inserted in the
corresponding inputs of the underlying operation in RGray. If we consider the deformation complex

Def(Holiebe.q - TwRGrag)
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we obtain a ribbon graph complex with two sorts of vertices. This recovers K. Costello’s definition of the ribbon
graph complex “with black and white vertices” in a purely algebraic manner.

Ezample. For any graded vector space W equipped with a degree 1 — d scalar product satisfying (@) the associated
vector space V' = Cyc(W) spanned by cyclic words in W carries a natural Holieby 4 structure (see §2.3) with only
two non-trivial operations, the Lie bracket pi1,2 = [ , ] and Lie cobracket ps1 = A. Hence the equation (IEI) defining
Maurer-Cartan elements m (of homological degree d) in the Holiebg 4-algebra Cyc(W) can be written as

[m,m] =0, Am=0.
Solutions of the first equation, [m, m] = 0, are precisely cyclic Ao structures in W, while the second equation puts
a constraint on cyclic A structures. It was noticed in [H2] that cyclic As structures in W satisfying this extra
constraint solve the equation (2I)) and hence extend to quantum Ao algebra structures in W; the conclusion is that
Maurer-Cartan elements m in the Holiebg 4-algebra Cyc(W) give us cohomology classes in the Kontsevich moduli
space M, . Kontsevich produced in [K4] (see also [B2, [2]) an infinite family of such Maurer-Cartan elements m
in the case dim W = 1. Indeed, choose any integer n > 1 and equip the one-dimensional space W := K[—1] with the

scalar product of degree —2n (i.e. in the notation of §2.3] d =1 + 2n)

0: WeW — K[-2n]
(a,0) —> ab

Using explicit formulae given in Proposition 2.3.1] it is immediate to see that, for any z € W \ 0, the cyclic word

————
2n+1

has homological degree d and satisfies [m, m] = 0, Am = 0. According to Kontsevich, this infinite family of Maurer-
Cartan elements generates non-trivial cohomology classes in H(Myg ») and their linear span is precisely the space
of all polynomials in Morita-Miller-Mumford classes. It was noticed furthermore in [B2, [H2] that these cohomology
classes in H(Myg ) admit an extension to classes in H (./\;lffn) Therefore the above notion of a Maurer-Cartan
element of a Holieb. q algebra admits many non-trivial and useful examples.
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